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Abstract. This article briefly describes four algorithmic problems where
the notion of treewidth is very useful. Even though the problems them-
selves have nothing to do with treewidth, it turns out that combining
known results on treewidth allows us to easily describe very clean and
high-level algorithms.
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1 Introduction

While the definition of treewidth may seem very technical at first sight, the natu-
rality of treewidth is witnessed by the fact that it was introduced independently
at least three times with equivalent definitions by different authors [7, 50, 69].
One may arrive to the study of treewidth from various directions and justify its
importance with different arguments. One can, for example, argue that graphs
of low treewidth (or some generalization of it) appear naturally in certain ap-
plications [14, 38, 60, 73], hence algorithms for such graphs could be of practical
interest. Or one could say that algorithms on bounded-treewidth graphs are
based on the fundamental idea of recursively splitting the problem along small
separators, and the study of treewidth is a good formalization of the study of this
basic principle. But perhaps the nicest and most surprising reason for arriving
at this notion is when the original goal has nothing to do with treewidth, but
suddenly treewidth appears as the right theoretical tool for handling the prob-
lem. This article contains four such “war stories,” where the notion of treewidth
and algorithms for bounded-treewidth graphs give very elegant solutions, which
are sometimes in fact more efficient than those that were obtained earlier by
involved and problem-specific techniques.
? This research is a part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme under grant agreement SYSTEMATICGRAPH (No. 725978).
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2 D. Marx

The four stories below are intentionally kept very brief in order to highlight
the conceptual simplicity of the arguments. The aim is to show how certain high-
level results can be combined in a clean way to achieve our goals. The detailed
discussions or proofs of the results we are building on are beyond the scope of
this article. Later in this volume, the article of Marcin Pilipczuk contains more
advanced examples of algorithmic use of treewidth bounds [63].

2 Bidimensionality

Restricting an algorithmic problem to a certain family of graphs can make it
easier than trying to solve it in general on every possible graph. A large part
of the literature on algorithmic graph theory concerns algorithms for restricted
classes of graphs that are of practical or theoretical significance. Restriction to
planar graphs are studied both because of their interesting mathematical prop-
erties and as a starting point for modelling, e.g., road networks or 2D geometric
problems.

From the viewpoint of polynomial-time solvability vs. NP-hardness, the re-
striction to planarity does not seem to make the problem significantly easier.
Most of the classic NP-hard problems (e.g., 3-Coloring, Maximum Indepe-
nent Set, Hamiltonian Cycle, etc.) remain NP-hard on planar graphs. The
situation is very different from the viewpoint of parameterized complexity. Many
of the basic problems that are W[1]-hard on general graphs turn out to be FPT
on planar graphs. In fact, it took some time to arrive to the first relatively simple
and natural problems that are W[1]-hard on planar graphs [13,19].

The restriction to planarity can help even for problems that are already FPT
for general graphs. One of the main goals of the area of parameterized algorithms
is to design algorithms with running time f(k)nO(1) such that the dependence
f(k) on the parameter is a function that grows as slowly as possible. For many
of the fundamental problems studied in parameterized algorithms (e.g., Vertex
Cover, Feedback Vertex Set, k-Path, Odd Cycle Transversal), algo-
rithms with running time 2O(k)nO(1) are known. Furthermore, it is very likely
that this form of running time is optimal: it is known that, under the Exponen-
tial Time Hypothesis (ETH) [51,52], no algorithm with running time 2o(k)nO(1)

exists for these problems. When restricted to planar graphs, significantly better
algorithms are known for many of these problems, typically with running times of
the form 2O(

√
k)nO(1) or 2O(

√
k log k)nO(1). Below we show how a very clean argu-

ment based on treewidth delivers such agorithms for certain basic problems; for
others, more involved problem-specific ideas are needed [1, 35, 44, 54, 58, 64, 65].
The main argument we present here was described first by Fomin and Thi-
likos [46] (for the Dominating Set problem) and was further developed under
the name “bidimensionality” (see, e.g., [28–31]).

Let us consider the k-Path problem as our running example: given a (planar)
graph G and an integer k, we have to decide if G contains a simple path on k
vertices. Let us first note that k-Path is FPT parameterized by the treewidth
w of the input graph G. More precisely, standard dynamic programming tech-
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niques give 2O(w logw)nO(1) running time, while more sophisticated arguments
are needed to obtain 2O(w)nO(1) time [11, 25, 33, 34, 36, 37, 45] (note that some
of these algorithms are randomized and some of these algorithms work only on
planar graphs).

Theorem 1. k-Path can be solved in time 2O(w)nO(1) if a tree decomposition
of width w is given in the input.

The second ingredient that we need is the Planar Excluded Grid Theorem [48,68].
A minor of a graph G is a graph H that is obtained by a sequence of vertex
deletions, edge deletions, and edge contractions. A k × k grid is a graph with
vertex set [k] × [k], where vertices (x, y) and (x′, y′) are adjacent if and only if
|x− x′|+ |y − y′| = 1. The following theorem states that, in a very tight sense,
the existence of a grid minor is the canonical reason why a planar graph has
large treewidth:

Theorem 2 (Planar Excluded Grid Theorem). Every planar graph with
treewidth at least 4.5k has a k × k grid minor.

In particular, Theorem 2 implies that an n-vertex planar graph has treewidth
O(
√
n): it certainly cannot contain a grid minor larger than

√
n×
√
n.

Finally, we have to make two simple observations about the k-Path problem:

(1) The k × k grid contains a path on k2 vertices: imagine a “snake” that visits
the rows one after the other.

(2) If H is a minor of G, then the length of the longest path in H is not larger
than in G. This can be proved by verifying that none of vertex deletion, edge
deletion, or edge contraction can increase the length of the longest path.

Now the claimed algorithm can be obtained by putting together these ingre-
dients using a win/win approach. For simplicity, we describe an algorithm for
the decision version of the problem where only a YES/NO answer has to be
returned.

Theorem 3. k-Path on planar graphs can be solved in time 2O(
√
k)nO(1).

Proof. Let w := 4.5d
√
ke. If G is a graph with treewidth at least w, then The-

orem 2 implies that G contains a d
√
ke × d

√
ke grid minor H. Then the first

observation above shows that H contains a path on k vertices and the second
observation shows that G also contains a path on k vertices. Therefore, we can
conclude that if the input graph G has treewidth at least w, then it is a YES-
instance: it surely contains a path on k vertices.

The algorithm proceeds as follows. First, we compute an (approximate) tree
decomposition of G. For this purpose, it is convenient to use the algorithm
of Bodlaender et al. [12], which, given an integer w and a graph G, in time
2O(w) · n = 2O(

√
k) · n either correctly states that treewidth of G is larger than

w, or gives a tree decomposition of width at most 5w + 4. We can complete the
computation in both cases:
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– If the algorithm states that G has treewidth larger than w, then, as we have
seen above, the answer is YES.

– If the algorithm returns a tree decomposition of width at most 5w + 4 =
O(
√
k), then we can invoke Theorem 1 to decide the existence of a path

on k vertices and return YES or NO accordingly. The running time is
2O(w)nO(1) = 2O(

√
k)nO(1), as required.

Thus we have an algorithm that returns a correct YES/NO-answer in time
2O(
√
k) · nO(1).

The same argument works for Feedback Vertex Set and Vertex Cover.
Only the analogs of the two observations (1) and (2) need to be verified: the
optimum value is Ω(k2) on the k × k grid and that the minor operation cannot
increase the optimum value. A variant of the argument, based on contractions
instead of minors, can give algorithms for Independent Set and Dominating
Set. There are also less straighforward uses of Theorem 2, where it is invoked not
on the input graph itself, but on some auxilliary graph defined in a nonobvious
way; see the article of Marcin Pilipczuk later in this volume for some examples
[63].

3 Exponential-time algorithms for graphs of maximum
degree 3

If the task is to find a subset of vertices satisfying certain properties, then we
can typically solve the problem in time 2n · nO(1) on graphs with n vertices by
enumerating every subset. For many problems, it is easy to improve on this brute
force algorithm. For example, in the case of the Maximum Independent Set
problem (for graphs with arbitrarily large degree), there is a simple textbook
example of an improved branching algorithm that beats the 2n · nO(1) running
time. As long as there is a vertex v of degree at least 3, branch into two directions:
either the solution avoids v (in which case we can remove v, decreasing the size of
the graph by 1) or it contains v (in which case we can remove v and its neighbors
from the problem, decreasing the size of the graph by at least 4 vertices). The
problem can be solved in polynomial time if every vertex has degree at most 2.
Analyzing the algorithm shows that its running time is 1.3803n · nO(1). Further
improvements are possible with more and more involved techniques [18,41,53,55,
70,72] with the current best algorithm having running time 1.1996n · nO(1) [77].
Similar “races” for the best exponential-time algorithm are known for many other
problems [43]. Let us remark that for some problems just beating the trivial
2n · nO(1) running time is already highly nontrivial [10, 26,66].

For the Maximum Independent Set problem on graphs of maximum de-
gree 3, the current best algorithm has running time 1.0836n ·nO(1) [76]. Here we
would like to highlight an earlier, less efficient algorithm that can be explained
using the notion of treewidth very easily. Fomin and Høie [42] proved, using
an earlier result of Monien and Preis [62], that the pathwidth (and hence the
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treewidth) of an n-vertex graph with maximum degree 3 is essentially at most
n/6. More precisely:

Theorem 4 (Fomin and Høie [42]). For any ε > 0, there is an integer nε
such that the pathwidth of any graph on n > nε vertices and maximum degree at
most 3 is at most (1/6 + ε)n.

Together with the fact that a Maximum Independent Set on an n-vertex
graph can be solved in time 2w ·nO(1) if a tree decomposition of width w is given,
it follows that the problem can be solved in time 2n/6 · nO(1) = 1.1225n · nO(1).
The running time obtained as a simple consequence of this pathwidth bound was
better than some earlier work at that time [5, 20], but since then improved al-
gorithms with more complicated and problem-specific arguments were found for
this problem [17,18,67,76]. In a similar way, algorithms for Minimum Dominat-
ing Set and Max Cut follow immediately from Theorem 4, which were better
than some of the algorithms found by earlier problem specific techniques [42].

4 Finding and counting permutation patterns

Interesting combinatorial and algorithmic problems can be defined on permu-
tations and on the patterns they contain or avoid. A permutation of length
n is a bijection π : [n] → [n]; typically we describe permutations by the se-
quence (π(1), π(2), . . . , π(n)). We say that a permutation σ of length n contains
a permutation π of length k if there is a mapping f : [k] → [n] such that
f(1) < f(2) < · · · < f(k) and π(i) < π(j) if and only if σ(f(i)) < σ(f(j)).
That is, σ contains π if the sequence (π(1), . . . , π(k)) can be mapped to a sub-
sequence of (σ(1), . . . , σ(n)) in a way that preserves the relative order of the
values. As an example, the permutation (3, 4, 5, 2, 1, 7, 8, 6) contains the permu-
tation (2, 1, 3, 4) (e.g., by the mapping (f(1), f(2), f(3), f(4)) = (1, 4, 6, 7)), but
it does not contain the permutation (4, 3, 2, 1). Observe that the permutations
not containing (1, 2) are exactly the decreasing sequences, while the permuta-
tions not containing (2, 1) are exactly the increasing sequences. As shown by
Knuth [56, § 2.2.1], the permutations avoiding (2, 3, 1) are exactly the permuta-
tions sortable by a single stack. From the extremal combinatorics point of view,
a very natural question is to bound the number of permutations of length n
avoiding a fixed permutation π. Marcus and Tardos [61] proved a long-standing
conjecture of Stanley and Wilf1 by showing that for every fixed permutation
π, there is a constant c(π) such that the number of permutations of length n
avoiding π is at most 2c(π)·n. This has to be contrasted with the fact that the
total number of permutations of length n is n! = 2O(n logn).

From the algorithmic point of view, perhaps the most fundamental question
is testing for containment: given a permutation σ of length n and a permutation
1 Marcus and Tardos [61] mentions that the conjecture was formulated around 1992
(but it is hard to find a citable source) and the PhD thesis of Julian West is an even
earlier source [75].
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π of length k, does σ contain π? The problem is often called Permutation Pat-
tern Matching and is known to be NP-hard [16], but of course can be solved
in time O(nk) by brute force. Albert et al. [3] improved this to O(n2/3k+1) time,
Ahal and Rabinovich [2] further improved it to n0.47k+o(k) time, and Berendsohn
et al. [6] gave an n0.25k+o(k) time algorithm. Guillemot and Marx [49] showed
that Permutation Pattern Matching can be solved in time 2O(k2 log k) · n,
that is, it is fixed-parameter tractable (FPT) parameterized by the length of π.

Even though the problem is FPT, algorithms with running time nck can
be still interesting for two reasons. First, if k is fairly large, say, Ω(log n), then
2O(k2 log k) ·n is actually worse than nO(k). Thus unless we have 2O(k) ·nO(1) FPT
algorithms for the problem, we need different type of algorithms to understand
the complexity of the problem in the regime where k is large. Second, the nck
time algorithms [2, 3, 6] can be easily modified to count the total number of
solutions, while the FPT algorithm of Guillemot and Marx [49] returns only a
single solution. This is not just a shortcoming of the presentation [49]: the FPT
algorithm contains a step where a certain structure is discovered that guarantees
that every permutation of length k appears in σ. Then the algorithm stops and
does not look for any further occurences of π. Furthermore, it is unlikely that the
algorithm can be extended to a counting version: Berendsohn et al. [6] proved
that the counting problem is #W[1]-hard.

The nck algorithms for Permutation Pattern Matching [2, 3, 6] are im-
plicitly or explicitly based on dynamic programming on a certain tree decompo-
sition. Here we follow the presentation of Berendsohn et al. [6], where it is shown
how high-level arguments and previous results on treewidth can be combined to
obtain an nk/3+o(k) time in a very clean way (a further improvement, based on
a technical idea of Cygan et al. [24], reduces the running time to n0.25k+o(k) [6]).

A permutation π : [k] → [k] can be seen as a k-element point set Sπ =
{(i, π(i)) | i ∈ [k]} (see Figure 1). With this interpretation, σ contains π if Sπ
can be mapped to a subset of Sσ in a way that the mapping preserves the relative
ordering of any two points along both the horizontal axis and the vertical axis.
For a point p ∈ Sπ, we will denote by p.x and p.y the first and second coordinates
of p, respectively. For each point (x, y) ∈ Sπ, we define the four neighbors of (x, y)
as follows:

NR((x, y)) = (x+ 1, π(x+ 1)),

NL((x, y)) = (x− 1, π(x− 1)),

NU ((x, y)) = (π−1(y + 1), y + 1),

ND((x, y)) = (π−1(y − 1), y − 1).

The superscripts R, L, U , D are meant to evoke the directions right, left, up,
down, when plotting Sσ in the plane. That is, if we start sweeping the vertical
line going through (x, y) to the R ight, then NR((x, y)) is the next point that
we meet, and similarly with the other directions. Note that some neighbors of a
point may coincide.

The incidence graph Gπ of π is a graph on Sπ where each point is connected
to its four neighbors (when defined). It is easy to see that Gπ is the union of two
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Fig. 1. Permutation π = (6, 5, 3, 1, 4, 7, 2) and its incidence graph Gπ. Solid lines indi-
cate neighbors by index (L-R), dashed lines indicate neighbors by value (U-D). Indices
plotted on x-coordinate, values plotted on y-coordinate.

Hamiltonian paths on the same set Sπ of vertices, with one path going in the
left-right direction in the plane, while the other path going in the top-bottom
direction.

The key lemma that allows a clean abstraction of the problem is the following
characterization of solutions.

Lemma 1. Let σ : [n] → [n] and π : [k] → [k] be two permutations. Then σ
contains π if and only if there is a function f : Sπ → Sσ such that for every
p ∈ Sπ

f(NL(p)).x < f(p).x < f(NR(p)).x, and (1)
f(ND(p)).y < f(p).y < f(NU (p)).y, (2)

whenever the corresponding neighbor of p is defined.

It is not very difficult to prove Lemma 1 using the definitions and we can
also see that the functions f satisfying the requirements of Lemma 1 are in one
to one correspondence with the occurrences of π in σ. The inequalities in the
first line ensure that the mapping of points represent the left-to-right ordering,
while the inequalities in the second line handle the top-to-bottom ordering. The
key observation is that even though we require these inequalities only between
neighbors in Gπ, it follows as consequence that every pairwise inequality in the
definition of containment holds. For example, if π(i) < π(j), then (j, π(j)) can
be reached from (i, π(i)) by going through a sequence of U-neighbors, hence a
sequence of inequalities ensure that the second coordinate of f((i, π(i)) is less
than the second coordiante of f((j, π(j))).

Readers familar with the notion of Constraint Satisfaction Problems (CSPs)
may recognize that Lemma 1 cleanly transforms the problem into a binary con-
straint satisfaction problem. A binary CSP instance is a triplet (V,D,C), where
V is a set of variables, D is a set of admissible values (the domain), and C is
a set of constraints C = {c1, . . . , cm}, where each constraint ci is of the form
((x, y), R), where x, y ∈ V , and R ⊆ D2 is a binary relation. A solution of the
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CSP instance is a function f : V → D (i.e., an assignment of admissible values
to the variables), such that for each constraint ci = ((xi, yi), Ri), the pair of
assigned values (f(xi), f(yi)) is contained in Ri.

The constraint graph of the binary CSP instance (also known as primal graph
or Gaifman graph) is a graph whose vertices are the variables V and whose edges
connect all pairs of variables that occur together in a constraint. Low treewidth
of the constraint graph can be exploited for an efficient solution of the problem:

Theorem 5 ([27,47]). A binary CSP instance (V,D,C) can be solved in time
O(|D|t+1) where t is the treewidth of the constraint graph.

To view the Permutation Pattern Matching problem as a binary CSP
instance, let V = Sπ be the set of variables and let D = Sσ be the domain. Then
we want to find a function f that satisfies the inequalities in Lemma 1. Each
inequality is a binary constraint between p and Nα(p) for some α ∈ {L,R,D,U},
restricting the possible combination of values that f(p) and f(Nα(p)) can take.
Thus we end up with a CSP instance on k variables, domain size n, and whose
constraint graph is exactly Gπ.

In order to invoke Theorem 5 on this instance, we need to bound the treewidth
of Gπ. Recall that Gπ has k vertices and maximum degree 4. By splitting each
degree-4 vertex into two degree-3 vertices connected by an edge, we can create
a graph G′π that has at most 2k vertices, maximum degree 3, and Gπ is a minor
of G′π. Then Theorem 4 shows that G′π has treewidth 2k/6 + o(k) = k/3 + o(k)
and Gπ being a minor of G′π shows that the same bound holds for Gπ as well.
Therefore, we can conclude that Theorem 5 solves the instance in time nk/3+o(k).
It is not difficult to modify the algorithm to count the number of solutions.
Therefore, the combination of an easy observation (Lemma 1), a combinatorial
treewidth bound (Theorem 4), and a known general algorithm (Theorem 5)
solves the problem in a very clean way.

In Lemma 1, the functions f satisfying the requirements are in one to one
correspondence with the occurences of π in σ and Theorem 5 can be extended
to a counting version. Theorem 4 is purely combinatorial, thus it is of course
irrelevant if we are using it for the decision or the counting problem. Thus the
same algorithmic idea goes through.

Theorem 6 (Berendsohn et al. [6]). Given a length-k permutation π and
length-n permutation σ, the number of occurrences of π in σ can be counted in
time nk/3+o(k).

5 Counting subgraphs

It is a well-known phenomenon in theoretical computer science that in many
cases finding a solution is easier than counting the number of all solutions. For
example, it can be checked in polynomial time if a bipartite graph contains
a perfect matching, but the seminal result of Valiant shows that counting the
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number of perfect matchings is #P-hard and hence unlikely to be polynomial-
time solvable [74]. By now, many other examples of hard counting problems are
known.

Flum and Grohe [39] started the investigation of the complexity of counting in
the setting of parameterized complexity. They introduced the notion of #W[1]-
hardness to give evidence that certain parameterized counting problems are un-
likely to be FPT. As a highly nontrivial example, they considered the k-Path
problem: the decision version is known to be FPT by various techniques [4, 45],
but they showed that the counting version of the problem is #W[1]-hard. In
the same paper, they asked as an open question whether the counting version of
the polynomial-time solvable k-Matching problem is FPT. This question was
resolved in the negative by the #W[1]-hardness proof of Curticapean [21], which
used heavy algebraic machinery, and by the later simpler proof given by Curt-
icapean and Marx [23]. More recently, Dell et al. [22] described and exploited a
connection beween subgraph counting and homomorphism counting problems.
This connection can be useful in two different ways: it gives new subgraph-
counting algorithms by reducing it to homomorphism-counting problems, and
gives hardness results for subgraph counting (including new and clean #W[1]-
hardness proofs of k-Matching and k-Path) based on our understanding of
the complexity of counting homomorphisms. Below we give an example of the
algorithmic use of this connection.

Given the #W[1]-hardness of k-Path, we cannot hope for an FPT algorithm
solving the problem. But it is still an interesting question whether we can improve
on the trivial nk+O(1) time brute force algorithm. The “meet in the middle”
approach can be used to improve this to nk/2+O(1) time [8,57], which was further
improved by Björklund et al. [9] to n0.455k+O(1). Here we describe an algorithm
with running time kO(k) · n0.174k+o(k), which has a much smaller exponent for a
fixed k and at the same time conceptually much simpler.

Let us first review some basic background on homomorphisms. A homo-
morphism from graph H to graph G is a mapping f : V (H) → V (G) such
that for every edge uv ∈ E(H), we have f(u)f(v) ∈ E(G). We will denote by
#Hom(H → G) the number of homomorphisms from H to G. Given a tree de-
composition of H, standard dynamic programming techniques can be used to
compute the number of homomorphisms from H to a given graph G.

Theorem 7 (Díaz et al. [32]). Given graphs H and G, #Hom(H → G) can
be computed in time (|V (H)|+ |V (G)|)w+O(1), where w is the treewidth of H.

Note that the algorithm of Theorem 7 does not need a decomposition of H, as
it can be found in time |V (H)|c+O(1).

A homomorphism f : V (H) → V (G) is injective if f(u) 6= f(v) for any
two distinct u, v ∈ V (H); let #Emb(H → G) denote the number of such ho-
momorphisms. Let us denote by #Sub(H → G) the number of subgraphs of G
that are isomorphic to H. It is well known and easy to see that #Emb(H →
G) = #Sub(H → G) · #Aut(H), where #Aut(H) = #Emb(H → H) is the
number of automorphisms of the graph H. Therefore, for a fixed H, computing
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#Sub(H → G) is essentially equivalent to computing #Emb(H → G), the num-
ber of injective homomorphisms. In order to explain the connection between
counting homomorphisms and subgraphs, it will be more convenient to work
with #Emb(H → G) than with #Sub(H → G), as the former is already defined
in terms of homomorphisms.

Of course, not every homomorpism from H to G is injective, the images of
some vertices may coincide. For example, if H is the 4-cycle on vertices 1, 2, 3, 4,
then a homomorphism from H to a loopless graph G either (1) is injective, (2)
identifies 1 with 3, (3) identifies 2 with 4, (4) identifies 1 with 3, and 2 with 4.
In case (1), the image of H is a 4-cycle; in cases (2) and (3), the image of H is
the path P3 on three vertices; and in case (4), the image of H is the path P2

on two vertices. This shows that the following formula holds for the number of
homomorphisms:

#Hom(C4 → G) = #Emb(C4 → G) + 2 ·#Emb(P3 → G) + #Emb(P2 → G).

More generally, we can classify the homomorphisms according to which sets
of vertices they identify. To each homomorphism h : V (G) → V (H), we can
associate a partition ρh of V (H) with the meaning that, for every u, v ∈ V (H),
we have h(u) = h(v) if and only u and v are in the same block of ρ. For a
partition ρ of V (H), let H/ρ be the quotient graph obtained by consolidating
each block of ρ into a single vertex. The key observation is that the homomor-
phisms from H to G having type ρ are in one-to-one correspondence with the
injective homomorphisms from H/ρ to G. Therefore, we can express the number
of homomorphisms from H to G as

#Hom(H → G) =
∑
ρ

#Emb(H/ρ→ G), (3)

where the sum ranges over every partition ρ of V (H).
Why is this useful for us? Observe that H = H/ρ holds only for the partition

ρ0 where every block has size exactly one and H/ρ has strictly fewer vertices for
every other ρ. Therefore, Eq. (3) can be written as

#Hom(H → G) = #Emb(H → G) +
∑
ρ6=ρ0

#Emb(H/ρ→ G),

and hence

#Emb(H → G) = #Hom(H → G)−
∑
ρ6=ρ0

#Emb(H/ρ→ G). (4)

That is, Eq. (4) reduces the problem of computing #Emb(H → G) to the
problem of computing #Hom(H → G) and to computing some number of
#Emb(H/ρ → G) values, where H/ρ has strictly fewer vertices than |V (H)|.
Therefore, we can repeat the same argument and recursively replace each term
#Emb(H/ρ → G) with a #Hom term and some number of #Emb terms. As
the replacement strictly decreases the number of vertices in the #Emb terms,
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eventually all these terms disappear, and we can express #Emb(H → G) as the
linear combination of #Hom(H ′ → G) values for various graphs H ′. This means
that we can reduce the problem of computing #Emb(H → G) to computing
certain homomorphism values.

Which graphs H ′ can appear in the #Hom(H ′ → G) terms when we express
#Emb(H → G) this way? It is easy to see that the quotient graph of a quotient of
H is also a quotient graph ofH. This means that every graphH ′ appearing in this
linear combination is a quotient graph ofH. Thus we can express#Emb(H → G)
as

#Emb(H → G) =
∑
ρ

βρ,H ·#Hom(H/ρ→ G) , (5)

where βρ,H is a constant depending only on ρ and H. The argument described
above gives an algorithm for writing#Emb(H → G) in this form and for comput-
ing the constants βρ,H (and the work of Lovász et al. [15,59] gives more explicit
formulas for these constants). Given this expression, we can reduce the problem
of computing #Emb(H → G) to computing the values #Hom(H/ρ → G). If
H has k vertices, then the sum ranges over kO(k) different partitions ρ. There-
fore, if every H/ρ has treewidth bounded by c, then invoking Theorem 7 for
the computation of each #Hom(H/ρ → G) results in an algorithm with run-
ning time kO(k) · nc+O(1) for the computation of #Emb(H → G) (and hence of
#Sub(H → G)).

These considerations show that bounding the running time of our algorithm
essentially boils down to a bound on the maximum treewidth of H/ρ. The
treewidth of H/ρ can be much larger than the treewidth of H. For example,
it is not difficult to see that if H is a matching with k independent edges, then
we can obtain any connected graph with k edges as H/ρ for an appropriate par-
tition ρ. However, this operation cannot increase the number of edges: if H has
k edges, then H/ρ has at most k edges. We can use the following bound on the
treewidth of graphs with at most k edges:

Theorem 8 ([40,71]). Every graph with at most k edges has treewidth 0.174k+
o(k).

This immediately gives an upper bound on the running time needed if H has at
most k edges.

Theorem 9 (Dell et al. [22]). If H has at most k edges, then #Emb(H → G)
and #Sub(H → G) can be computed in time kO(k) · n0.174k+o(k).

In particular, we obtain algorithms with running time kO(k) · n0.174k+o(k) if H
is a path with k edges (the k-Path problem) or a matching with k edges (the
k-Matching problem). We want to emphasize that for a fixed H, the algorithm
is very simple: it consists of invoking Theorem 7 for various graphs H ′ = H/ρ
and then taking a linear combination of these values. All the real work is done by
the computation of the fixed constants βρ,H and by the algorithm of Theorem 7
exploiting low treewidth and tree decompositions.
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