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Metabolic reprogramming is a characteristic feature of cancer cells, but

there is no unique metabolic program for all tumors. Genetic and gene

expression studies have revealed heterogeneous inter- and intratumor pat-

terns of metabolic enzymes and membrane transporters. The functional

implications of this heterogeneity remain often elusive. Here, we applied a

systems biology approach to gain a comprehensive and quantitative picture

of metabolic changes in individual hepatocellular carcinoma (HCC). We

used protein intensity profiles determined by mass spectrometry in samples

of 10 human HCCs and the adjacent noncancerous tissue to calibrate

Hepatokin1, a complex mathematical model of liver metabolism. We com-

puted the 24-h profile of 18 metabolic functions related to carbohydrate,

lipid, and nitrogen metabolism. There was a general tendency among the

tumors toward downregulated glucose uptake and glucose release albeit

with large intertumor variability. This finding calls into question that the

Warburg effect dictates the metabolic phenotype of HCC. All tumors com-

prised elevated β-oxidation rates. Urea synthesis was found to be consis-

tently downregulated but without compromising the tumor’s capacity for

ammonia detoxification owing to increased glutamine synthesis. The largest

intertumor heterogeneity was found for the uptake and release of lactate

and the size of the cellular glycogen content. In line with the observed

metabolic heterogeneity, the individual HCCs differed largely in their vul-

nerability against pharmacological treatment with metformin. Taken

together, our approach provided a comprehensive and quantitative charac-

terization of HCC metabolism that may pave the way for a computational

a priori assessment of pharmacological therapies targeting metabolic pro-

cesses of HCC.
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Introduction

Hepatocellular carcinoma (HCC) represents the fifth

most common cancer and the third most common

cause of cancer-related deaths in the world [1]. The

incidence of HCC in Europe and the United States is

constantly rising, turning HCC into a pivotal threat to

general health. Robust therapy resistance and very

poor prognosis characterize HCC. Most cases of HCC

develop on a pre-existing chronic liver disease, but

between 15% and 50% of HCCs develop in the

absence of a known etiology of liver disease, and dif-

ferent lines of evidence identify nonalcoholic fatty liver

disease as a possible relevant risk factor for HCC [2].

The transformation of a normal liver cell (hepato-

cyte) to a tumor cell is accompanied by alterations of

the cellular metabolism [3]. A well-known hallmark of

this metabolic reprogramming is the Warburg effect

characterized by a marked increase in glucose con-

sumption and lactate formation despite the availability

of oxygen. Changes in the expression level, isoform

pattern, and phosphorylation status of several gly-

colytic enzymes contribute to the Warburg effect [4].

The functional importance of enhanced glycolytic rates

for growth progression of transformed liver cells was

first observed in a rodent hepatoma model [5]. In par-

allel, the rate of oxidative phosphorylation may be

reduced or remains unchanged. It was Otto Warburg

himself who reported in a seminal publication [6] that

both glycolysis and respiration were significantly

enhanced in transplanted tumors of Flexner–Jobling’s
rat carcinoma or Jensen’s rat sarcoma. Later, based on

experiments with Ascites tumor cells, he stated that

tumor growth would result from the combination of

defective mitochondria and enhanced glycolysis [7,8].

Today, we know that there are not only differences

in the gene expression profiles of normal and malig-

nant cells/tissue but also among individual tumors of

the same clinical type [9,10] and even between cells in

different spatial regions of a solid tumor [11]. Regard-

ing the metabolic consequences of this heterogeneity,

studies in human melanoma have provided first evi-

dence that the metabolic program in subgroups of

tumors can be either glycolytic or oxidative, depending

on the expression level of PGC1α, the master regulator

of mitochondrial biogenesis [12]. This finding high-

lights the importance of environmental factors, such as

the nutritional status or the presence of pro-inflamma-

tory immune cells, influencing the expression level of

PGC1α. More general, it appears that there is not only

one metabolic map of cancer but several [13]. This fact

excludes a one-fits-all concept for an efficient pharma-

cological treatment as the ‘metabolic Achilles heel’ of

the tumor may vary from one HCC patient to the

other.

Despite the large progress achieved in the elucida-

tion of intra- and intertumor heterogeneity in the

expression of metabolic enzymes and transcription

factors, a comprehensive, quantitative assessment of

the functional implications of this heterogeneity is

missing so far. Most studies in the field inferred

tumor-specific metabolic changes from gene expres-

sion data by means of biostatistical methods of net-

work analysis, such as pathway enrichment analysis

or flux balance analysis [14]. However, the capacity

of metabolic pathways is controlled not only by

enzyme abundances but also by other modes of

enzyme regulation, such as allosteric regulation or

reversible hormone-controlled chemical modifications

[15]. Often, enzymes resident in opposing pathways

(e.g., synthesis and degradation of glycogen) are con-

comitantly up- or downregulated making it difficult

to assess the net metabolic effect. Therefore, inferring

metabolic changes from gene expression changes in a

more reliable way calls for the use of physiology-

based models, which take into account all relevant

modes of metabolic regulation.

In this work, we extend our approach applied in a

previous study on the heterogeneity of lipid metabo-

lism in human HCC [16] to study a larger panel of

metabolic functions in HCC. The core of our

approach consists in mapping mass spectrometry

resolved protein abundances of metabolic enzymes and

transporters onto Hepatokin1, a kinetic model of the

hepatic central metabolism [17]. We used the model to

simulate the metabolic response of HCC to varying

concentrations of nutrients and hormones in the

blood. Applying this approach to 10 individual human

HCCs revealed a large heterogeneity in the alteration

of metabolic functions. Taking the usage of the anti-

cancer drug metformin as example, we demonstrated

how the knowledge of the metabolic signature of a

tumor could be exploited to assess the efficacy of a

pharmacological tumor therapy.

Results

Histological characterization of tissue samples

All tumors were of low or moderate extension

(T1–T2). Except for one case, there was no tumor

invasion into the lymph nodes or vein. The degree of

fibrosis in the tumor-surrounding tissue varied largely

from the absence of fibrosis (F = 0) to cirrhosis

(F = 4). For detailed information, see Table 1.
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Protein intensity profiles of tumors and

noncancerous tissue

First, we compared protein intensity profiles (defined

through label-free intensities, see Methods) of 10

HCCs (T1–T10) and their noncancerous adjacent tis-

sue (C1–C10). In total, the proteomics yielded signals

for 6502 protein-identifying peptides. From this total

set, we selected a subset of 347 protein intensities,

which correspond to enzymes and transporters occur-

ring in the 174 processes contained in the metabolic

model. Average network coverage, that is, the percent-

age of enzymes and transporters for which a protein

intensity value was available from the proteomics anal-

ysis, was 84.7%.

Pearson’s correlation coefficients shown in Fig. 1A

revealed consistently high correlations among the pro-

tein intensity profiles of the noncancerous tissue sam-

ples (mean R = 0.95), irrespective of varying degrees

of fibrosis of the tumor-adjacent tissue. The correla-

tion coefficients among the protein intensity profiles of

the tumors were generally lower (mean R = 0.67) and

displayed a larger variability compared to the control

tissue. Thus, potential metabolic deviations of the non-

cancerous tissue from normal liver tissue should be

rather uniform and small compared to metabolic dif-

ferences among the tumors.

The volcano plot in Fig. 1B illustrates the difference

between the mean protein intensities of controls and

tumors. A substantial portion of proteins (59.7%) was

downregulated in the tumor, but only few enzymes

were significantly upregulated. Among these proteins

were subunits of the pyruvate dehydrogenase, the cen-

tral enzyme enabling the transfer of carbons from glu-

cose, pyruvate, and lactate into the citric acid cycle

and ATP citrate synthase Pathways enriched in

downregulated enzymes were gluconeogenesis, ketoge-

nesis, fatty acid de novo synthesis, β-oxidation, and

urea synthesis.

Metabolic signatures of individual HCCs

We defined the metabolic signature of the various tis-

sue samples (control and tumors) by the set of the 24-

h mean values of 18 different metabolic functions (for

the numerical values and statistically significance of

differences, see Fig. 2). Overall, eight metabolic func-

tions were significantly downregulated but only two

metabolic functions (glutamine release and β-oxida-
tion) were upregulated in the tumors compared with

the control. This finding corresponds well to the much

higher number of downregulated model proteins

shown in Fig. 1B. All tumors exhibited a downregu-

lated glucose release and, except HCC3, also reduced

oxygen consumption. Notably, only one tumor,

HCC8, showed the characteristic features of the War-

burg effect: increased glucose uptake paralleled with

decreased oxygen consumption and increased lactate

release.

Synthesis of urea was significantly reduced in all

tumors, but ammonia detoxification was not altered

due to the increased conversion of ammonia to glu-

tamine. The largest heterogeneity with coefficients of

variation larger than unity was obtained for the

uptake of glucose, the uptake and release of lactate,

and the size of the glycogen store.

For a better overview of metabolic similarities

between the tumors and between the tumors and the

control, we normalized the metabolic signatures by

scaling each metabolic function to the range [0,1] with

‘0’ corresponding the smallest and ‘1’ corresponding to

Table 1. Characteristics of tumors and adjacent noncancerous tissues. HCCs were classified according to the tumor–nodes—metastasis

classification system of malignant tumors [18]. T(0–4)—tumor size; N(0–3)—spread to regional lymph nodes; G(1–4)—differentiation grade; L

(0–1)—invasion into lymphatic vessels; V(0–2)—invasion into vein; R(0–2)—completeness of the operation (resection boundaries free of

cancer cells or not); LiMAx—score of the LiMAx functional liver breath test [19]. The degree of fibrosis F(0–3) and the presence of cirrhosis

(F4) in the adjacent noncancerous tissue were assessed according to the Desmet and Scheuer scoring system [20].

HCC# Gender Age BMI MELD LiMAx T G L V R F Underlying liver disease

1 f 70 40.3 NA NA 2 2 0 1 0 4 Alcohol-induced liver cirrhosis

2 m 68 27.7 6.43 498 2 2 0 1 0 2 Cryptogenic fibrosisa

3 m 80 27.1 9.63 469 1 3 0 0 0 1 Alcohol-induced hepatic fibrosis

4 f 22 21.0 NA NA 1 1 0 0 0 0 No history of a chronic liver disease

5 f 67 31.2 NA 296 1a 2 0 0 0 4 Cryptogenic cirrhosisa

6 m 73 32.9 6.98 309 2 2 0 0 0 4 Alcohol-induced hepatic cirrhosis

7 m 71 27.3 8.00 160 2 2 0 0 0 3 Alcohol-induced advanced fibrosis

8 f 66 27.4 8.39 107 1b 2 0 0 0 4 NASH cirrhosis

9 f 59 23.0 6.43 682 2 2 0 0 0 2 Cryptogenic fibrosisa

10 m 77 33.8 7.92 217 1b 3 0 0 0 2 Cryptogenic fibrosisa

aThe underlying etiology remains unknown as no liver disease was previously diagnosed.
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the largest function value. We used Pearson’s correla-

tion coefficient to quantify the similarity between the

normalized metabolic signatures of tumors and con-

trol.

None of the tumors had a metabolic signature that

resembled the metabolic signature of the control with

statistical significance. Arranging the tumors and the

control as well as the metabolic functions based on

pairwise similarities underscored the large metabolic

heterogeneity (Fig. 3).

We used the overall dissimilarity between control

and tumor to evaluate the extent of metabolic repro-

gramming present in a specific HCC. The metabolic

distance between the normal hepatocyte and the tumor

was defined by D = (1 − RCT)/2 where RCT is Pear-

son’s correlation coefficient quantifying the similarity

between the metabolic signatures of the control and

the tumor.

We identified four metabolic functions showing a

statistically significant trend with increasing metabolic

distance: Glucose release decreased, while fatty acid

uptake, ketone body release, and β-oxidation increased

with increasing metabolic distance (see Fig. 4). Hence,

the values of these four metabolic ‘marker’ functions

may indicate how far the metabolic program in a given

HCC differs from that of the normal liver. However,

for the majority of metabolic functions no clear trend

was discernible. For example, TAG synthesis was

almost identical (17.2 and 15.9 µmol�g−1�h−1) in the

metabolically most distant tumors HCC4 and HCC6.

Hence, our analysis gave no indication for the exis-

tence of a metabolic master program.

Finally, we analyzed whether similar gene expression

profiles of tumors imply similarity of their metabolic

signatures. To this end, we plotted the proteomic dis-

tance between tumors, that is, the dissimilarity of their

protein intensity profiles, against the metabolic dis-

tance (see Fig. 5). Overall, the correlation was statisti-

cally insignificant (R = 0.03), indicating that the

metabolic similarity of tumors cannot be inferred from

the overall similarity of their protein expression pro-

files. This suggests that the regulation of metabolism

by variable gene expression is not democratic but oli-
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regulatory enzymes is sufficient to imply functional

dissimilarity despite large similarity in the expression

of the majority of proteins [21].

Effect of metformin treatment on energy

metabolism of human HCC

Effective cancer treatment should selectively damage

cancerous cells while sparing the healthy surrounding

tissue. The differences between the metabolism of

HCC and the normal liver parenchyma give rise to the

hope that metabolic enzymes could be a promising tar-

get for a selective anticancer therapy. Metformin, an

antidiabetic drug, has been shown to inhibit cancer

growth [22]. Metformin has at least two dose-depen-

dent effects on central hepatic metabolism. At low

concentrations, it inhibits the glycerol-3-phosphate

dehydrogenase, an enzyme important for cellular redox
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Fig. 2. Metabolic signatures of the control and tumors. The height of the bars represents the diurnal mean value of selected metabolic

functions for the control (black bars) and the HCCs. Red and green bars indicate values lower or higher than those of the control.
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balance by shuttling electrons from the cytosol to the

respiratory chain. This effect is supposed to be respon-

sible for the antidiabetic effect [23]. At higher concen-

trations, metformin is a potent inhibitor of complex I

of the respiratory chain [22]. We simulated the effect

of increasing plasma concentrations of metformin on

cellular viability for healthy hepatocytes and the differ-

ent HCCs.

We simulated the effect of metformin on the energy

metabolism of HCC and control (see Fig. 6) using the

reported inhibition constants of 0.5 mM for complex I

[22] and 0.055 mM for glycerol-3-phosphate dehydroge-

nase [23]. Increasing metformin concentration led to a

rise of the mitochondrial membrane potential (MMP)

and drop of the ATP level and the oxygen uptake rate.

It is known that an increase in the MMP to values

above −80 mV contributes to the formation of a per-

meability transition pore that enables the efflux of

cytochrome c, an initial event in the induction of

apoptosis [24,25]. For normal hepatocytes, this thresh-

old is reached at a critical metformin concentration of

about 0.8 mM. For the individual HCC, this critical

concentration varied largely. HCC9 was predicted to

be most sensitive to metformin treatment, reaching the

apoptotic threshold already at 0.2 mM metformin. On

the other hand, for five HCCs an effective treatment

with metformin should not be possible without

exerting significant side effects for the normal liver

parenchyma. Of note, vulnerability of tumors to met-

formin did not correlate with metabolic distance to the

control. In summary, the simulations predicted met-

formin to be a selective anticancer drug for four out

of the 10 HCCs.

Discussion

A personalized systems biology approach to the

characterization of tumor metabolism

A key challenge in cancer research is to establish meth-

ods that reliably report the metabolic features of intact

tumors, particularly in patients. Techniques to measure

metabolic functions in vivo are rare [26]. Estimating

fluxes in vivo by measuring time series of labeled nutri-

ents [27] is restricted to the analysis of very few path-

ways and not suited for monitoring metabolic fluxes

over a longer period of varying physical activity and

plasma profiles of nutrients. Therefore, we developed a

novel approach that combines proteomic analysis of

liver tissue with kinetic modeling of liver metabolism.

In a preceding work [28], we demonstrated that this

approach is capable of correctly predicting the meta-

bolic phenotype of liver tumors in a mouse model. In

this work, we used proteomics data on protein

Fig. 3. Heatmap of metabolic signatures of the control and tumors. Normalized values (0: minimal value; 1: maximal value) of selected

metabolic functions (rows) for tumors and control (columns) are represented by different colors (green: low values; red: high values). Both

columns and rows were arranged in the order of hierarchical clusters based on Ward’s method.
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abundances in human HCC and the surrounding liver

tissue to construct tumor-specific metabolic models

allowing us to monitor a larger panel of metabolites

and fluxes in response to a typical plasma profile of

metabolites and hormones.

Metabolic heterogeneity of individual HCCs

Our results revealed large variations of metabolic

capacities in individual HCCs. Possible reasons for this

heterogeneity may lie in the tissue environment of the

tumor [29], different mutation patterns in key signaling

pathways [30], and intratumor zonation arising from

regional hypoxia due to diffusion limitations in combi-

nation with altered and nonfunctional tumor

microvasculature [31,32]. The resulting metabolic zona-

tion may promote the growth capacity of tumors [33].

Although with considerable quantitative differences,

some metabolic functions deviated consistently from

those of the surrounding tissue. Both glycolysis and

gluconeogenesis were found to be downregulated in all

HCCs, while there was a clear trend toward increased

uptake and β-oxidation of free fatty acids. Urea syn-

thesis was also lowered in all tumors, paralleled by an

increase of ammonia fixation in glutamine. As glycoly-

sis and urea synthesis represent ATP-consuming path-

ways that the liver runs for the benefit of the organism

and not of its own, downregulation of these pathways

would save a lot of ATP that the tumor can favorably

spend on its biomass production.
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Importantly, only one HCC had the classical features

of the Warburg effect, which is commonly considered to

dominate metabolic reprogramming of HCC [34]. This

discrepancy might be due to the fact that the

metabolism of HCC can be shaped by the availability of

nutrients [29]. In an inflammatory and steatotic environ-

ment, a high fatty acid load may force HCC to become

more reliant on fatty acids as an energy source.
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Therefore, in vitro findings with isolated tumor cells

bathing in a medium that is rich in glucose but does not

contain free fatty acids bear the risk of inadequately

reflecting the in vivo situation. Furthermore, evidences

for the presence of the Warburg effect in HCC often rely

on transcriptomic data of selected enzymes or transcrip-

tion factors known to control the capacity of glycolysis

and oxidative phosphorylation. Such studies notori-

ously overlook the fact that variable gene expression is

only one mode of cellular regulation among a multitude

of other regulatory mechanisms that together determine

the metabolic phenotype [15]. This is convincingly

demonstrated by the capability of the liver to switch

from glucose uptake to glucose production without

changing the expression of a single enzyme. Anyway,

despite the small number of tumors included, our study

suggests that realization of the Warburg type should be

ruled out as a general principle governing metabolic

reprogramming of HCC.

Carbohydrate metabolism

Suppression of gluconeogenesis in HCC has been

accounted for by signal transducer and activator of

transcription 3 (STAT3)-mediated activation of micro-

RNA-23a [35]. Interleukin 6-induced activation of

STAT3 is a typical response of the liver to inflamma-

tion [36]. Hence, the level of STAT3 activation and the

suppression level of STAT3 may depend on whether

the tumor growth proceeds in an inflammatory envi-

ronment or not. Lower expression of fructose-1,6-bis-

phosphatase, the rate-limiting enzyme in

gluconeogenesis, was associated with advanced tumor

stage, poor overall survival, and higher tumor recur-

rence rates [37]. Of note, the reduction of gluconeogen-

esis was one of the leading metabolic features that

correlated well with the metabolic distance between

control and tumor (see Fig. 4A). Hence, it is tempting

to speculate that the metabolic distance between tumor

and hepatocyte delivered by our approach may help to

evaluate the malignant potential of a given HCC.

The glycogen store was one of the metabolic param-

eters showing the largest variability among the 10

tumors. Glycogen has a crucial role to promote cell

survival under hypoxic conditions in normal and can-

cer cells [38]. Lea et al. [39] reported that glycogen

metabolism in slowly growing hepatoma resembles

more closely that in normal rat liver than does glyco-

gen metabolism in rapidly growing hepatoma in which

glycogen levels were very low. In our study, tumors

with the lowest glycogen store (HCC2, HCC4, and

HCC7) were those having the largest metabolic dis-

tance to the normal hepatocyte. This observation lends

further support to the presumption that the malignant

potential of HCC correlates with increasing metabolic

distance from the normal hepatocyte. It has to be

noted, however, that studies with different tumor cell

lines of hepatocellular origin did not show distinct cor-

relation between the degree of tumor cell dedifferentia-

tion and their ability to accumulate glycogen [40]. A

high glycolytic capacity and the ability to store large

amount of glycogen are often viewed as adaptation to

hypoxic conditions, but the correlation between glu-

cose uptake rates and glycogen content was insignifi-

cant (R2 = 0.073) in our study.

Lipid metabolism

Our analysis revealed a trend of HCC to increase the

uptake of free fatty acids as energy-delivering sub-

strates. It has been shown that a subclass of HCC car-

rying activating mutations in CTNNB1, encoding β-
catenin, is addicted to fatty acids [41]. In a mouse

model (ApcTumLIV mouse) mimicking CTNNB1-mu-

tated HCC tumorigenesis, the tumor had normal glu-

cose and lactate metabolism but a high rate of fatty

acid β-oxidation, which was correlated with increased

synthesis of ketone bodies and reduced fatty acid ester-

ification in triacylglycerols. Our data also revealed a

significant positive correlation between β-oxidation
and ketone body formation (see Fig. 4), but the glu-

cose metabolism was generally downregulated. Possi-

bly, the mouse model reflects only in part the

metabolic features of human HCC in vivo, which may

also be deregulated in several other signaling pathways

(RAS/ERK, P13K/AKT, IKK/NF-κB, TGF-β,
NOTCH, Hedgehog, and Hippo).

Several reports in the literature have indicated the

relevance of fatty acid synthesis in HCC [42–44].
Immunohistochemical staining showed that the key

regulatory enzyme, the fatty acid synthase, was posi-

tively expressed in all 20 HCC patients studied,

whereas the positive expression rate in tumor-adjacent

tissue was only 10% [43]. Notably, upregulation of

fatty acid synthesis and upregulation of β-oxidation
are not mutually exclusive in tumors [45]. In our

study, three tumors (2, 4, and 10) exhibited concomi-

tant upregulation of these two opposing pathways (see

Fig. 2).

Calvisi et al. [42] concluded from their study of

human HCC that transformation of normal liver tissue

to precancerous tissue and ultimately HCC is accom-

panied by a steady upregulation of prolipogenic

enzymes and increased accumulation of cholesterol

and TAG, irrespective of the etiology of HCC. Aver-

aged across all 10 HCC, our protein expression data
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do not confirm this finding. However, for a subset of

three HCC, we found significantly elevated levels of

TAG. In the publication by Calvisi et al. [42], the by

far highest activation of lipogenesis was observed in

HCC with poor prognosis (survival < 3 years) whereas

the differences of TAG and cholesterol in the tumor-

surrounding tissue and HCC with better prognosis

were marginal as in our study.

Finally, cholesterol synthesis was found to be signifi-

cantly reduced in nine HCCs. Downregulation of

cholesterol synthesis may be another strategy of HCC

to promote tumor progression by reducing the forma-

tion of cholesterol-enriched lipid rafts in the plasma

membrane. CD44, a protein crucial for cell migration

and cancer metastasis, is preferentially located in such

lipid rafts. High extracellular levels of cholesterol have

been demonstrated to effectively reduce the activity of

CD44 and thus HCC migration and invasion [46].

Ammonia/amino acid metabolism

In the healthy liver, ammonia detoxification is divided

into urea formation (preferentially in periportal hepa-

tocytes) and glutamine/glutamate synthesis (preferen-

tially in pericentral hepatocytes). Our simulations

revealed that rate of urea synthesis was downregulated

in all HCCs because of downregulation of the car-

bamoyl phosphate synthetase 1. Liu et al. [47] showed

that the drastically lowered expression of carbamoyl

phosphate synthetase 1 in HCC results from DNA

hypermethylation near the transcription start site of

the corresponding gene. Intriguingly, in eight HCCs,

the uptake rate of ammonia was not lowered because

the reduced conversion of ammonia to urea was com-

pensated by an increased rate of glutamine synthesis.

In the normal liver, glutamine synthetase expression is

restricted to pericentral hepatocytes, but in adenoma-

like neoplasms and in HCC, a strong and diffuse glu-

tamine synthetase expression was seen. Glypican3, a

regulatory protein involved in Wnt signaling, is associ-

ated with glutamine synthetase expression, and glypi-

can3 immunopositivity is a highly specific and sensitive

indicator for HCC [48]. As glutamine is one of the

major energy and nitrogen sources of tumor cells, it is

tempting to speculate that redirecting the fixation of

ammonia from urea synthesis to glutamine synthesis is

a strategy of HCC to increase the abundance of this

important carbon and nitrogen source.

Energy metabolism as target of anticancer drugs

Except HCC3, all HCCs displayed a stable MMP

below −100 mV, a value that is clearly below the

critical value of about −80 mV where opening of the

mitochondrial transition pore may start. Six HCCs

had an even more negative MMP than the normal

hepatocyte. The MMP is a crucial model parameter

because it largely determines the sensitivity of HCC to

mitochondrial inhibitors such as corilagin, a natural

plant polyphenol belonging to the class of hydrolyz-

able tannins, that may induce apoptosis of HCC by

effectively depolarizing the MMP [49]. Our simulations

suggested that four HCCs might be particularly sus-

ceptible to metformin-induced energy impairment.

Limitations of our approach

The most difficult problem in studying metabolic dif-

ferences between normal and diseased human tissue is

the definition of the ‘normal’ control. In this work,

we equated the protein intensity profiles of the

tumor-adjacent tissue with ‘normal’ enzyme activities

of a generic healthy liver [17], thereby neglecting indi-

vidual deviations from this generic reference state.

Some justification of this setting comes from the per-

sistently high correlation of protein intensity profiles

among nontumorous liver samples (see Fig. 1A).

Another issue is the incomplete network coverage

with protein data. For gap filling, we applied an

imputation method that rests on the plausible but

debatable assumption that proteins with measured,

strongly correlating expression levels in a subset of

tumors should also have similar expression levels in

tumors for which experimental data are not available.

Given the sometimes erratic expression changes in

malignant cells due to the high number of metabo-

lism-related mutations, this assumption may fail and

improvement of the proteomics analysis as well as

more appropriate gap-filling methods is needed. A

third problem is the definition of boundary conditions

for an individual tumor. In our approach, we con-

fronted all tumors with the same 24-h plasma profile

of metabolites and hormones. If it would be possible

in future studies to monitor the plasma profile of

individual patients, these could be used as patient-

specific model input. It also has to be noted that our

model simulations were performed with unaltered

hormonal signaling pathways that are responsible for

the interconversion of metabolic enzymes. While the

first three issues lie in the limited data quality avail-

able for human patients, it remains a future task to

extend the metabolic model by a more detailed

kinetic model of hormone-dependent signaling that is

amenable to tumor-specific parametrization.

Finally, it has to be emphasized that the findings of

our study must be taken cautiously given the small
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number of patients included. Application of our

approach to a much larger number of tumors will be

needed to arrive at a reliable assessment of the proba-

bility with which a specific metabolic subtype of HCC

may occur at a given stage of development and known

driver mutations and etiology of the underlying liver

disease.

Conclusion

Taken together, our study revealed a large heterogene-

ity of metabolic changes in HCC, which do not follow

a single ‘master program’ but instead may result from

a plethora of simultaneously operative influencing fac-

tors, such as the availability and quality of nutrients,

the medication history of the patient, comorbidities

(e.g., diabetes), random mutations in proteins of regu-

latory pathways, metabolic responses to virus load,

humoral signals received from inflammatory immune

cells, cell–cell and cell–matrix contacts, and the exten-

sion and differentiation of the tumor. This situation

calls for personalized treatment options that are based

on a careful analysis of the tumor-specific metabolic

capabilities. Our approach may serve as a promising

step in this direction.

Materials and methods

Major parts of the following methods have also been

described in an earlier publication [16].

Outline of the approach

We combined experimentally determined protein abun-

dance profiles of metabolic enzymes and membrane trans-

porters with kinetic modeling of liver metabolism (see

Fig. 7).

Hepatocellular carcinoma tissue and adjacent noncancer-

ous tissue were taken from patients undergoing curative

liver resection. Label-free LC-MS/MS shotgun proteomics

was used to generate quantitative protein intensity profiles

of the paired tissue samples.

The maximal activity of an enzyme (vmax) is related to

the protein concentration (E) by

vmax ¼ kcatE, (1)

where kcat is the catalytic rate constant (or turnover

number) of the enzyme/transporter. The shotgun pro-

teomics yields only the protein intensity (E0) which

depends on the flight behavior of the peptides used as

protein identifiers. Hence, the protein intensity is

related to the absolute protein concentration by an

unknown factor γ,

E¼ γE0: (2)

If the maximal activity vrefmax is already known for a refer-

ence state of the metabolic system, then the vmax value of

another metabolic state (here the metabolic state of the

tumor) can be calculated by exploiting the relations (1) and

(2):

vtumor
max ¼ vrefmax

E0tumor

E0ref : (3)

Usage of relation (3) circumvents the problem of con-

verting the protein intensities to absolute protein abun-

dances. The vector constituted by the ratios E0tumor/E0ref of
enzyme intensities defines the enzyme expression signature

of the tissue under investigation (see Table S1).

The tumor-specific maximal activities defined in (3) were

used in Hepatokin1, a kinetic model of central liver meta-

bolism comprising the main pathways of energy, carbohy-

drate, lipid, and amino acid metabolism [17]. The model

simulations were performed by using a typical 24-h plasma

profile of hormones and exchangeable metabolites as model

input [17]. The protein intensities of the noncancerous tis-

sue adjacent to the tumor were treated as representing the

proteome of normal liver tissue associated with the vmax

values used in the generic model for the healthy liver (for

the estimation of vrefmax , see [17]).

The abundance of model proteins with lacking protein

intensities was estimated by means of a statistical imputa-

tion method used in Ref. [16]. In brief, we compiled a list

of reference proteins, for which measured intensities were

available for all 10 controls and 10 tumors. For each model

protein with missing protein intensity value in a given

tumor, we determined all reference proteins exhibiting a

Spearman correlation larger than a critical threshold value

Rcrit = 0.8. Linear regression analysis with each of these

highly correlating reference proteins yielded a group of esti-

mates for the missing value. The group mean was then used

as substitute for the missing protein intensity.

Acquisition of tissue samples

Hepatocellular carcinoma tissues and adjacent noncancer-

ous tissues were collected from 10 patients, which under-

went curative resection (R0) at the Department of Surgery

of the Charité. Ethical approval for tissue sampling and

analysis was obtained from the ethics committee at Charité

—Universitätsmedizin Berlin (EA1/140/15). The patients

gave informed consent in writing and in accordance with

the declaration of Helsinki to the scientific use of their

resected tissue specimen for molecular analyses. Macro-

scopically, the analyzed HCC tissues were graded according

to the tumor–nodes–metastasis classification [18]. No dis-

tant metastases or spreading to lymph nodes were found.
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The resected tissue was used for tumor grading according

to Hamilton and Aaltonen (Eds.) (2000) [50].

Quantitative proteomics of tissue samples

Frozen liver tissue was cut into pieces of ~ 10 mg with

cooled tweezers and scalpel in a precooled mortar. They

were transferred into screw lid vials, which contained a pre-

cooled disruption bead and 1 mL lysis buffer. Additionally,

samples were kept on dry ice to prevent thawing. To avoid

proteolytic activity, tissues were homogenized immediately

with a FastPrep. Tissues were homogenized under denatur-

ing conditions with a FastPrep (three times for 60 s,

6.5 m�s−1) in a lysis buffer containing 1% sodium deoxy-

cholate, 10 mM Tris(2-carboxyethyl)phosphine, 40 mM

chloroacetamide, and 100 mM Tris, pH 8.5. The homoge-

nates were then lysed at 95 °C for 10 min followed by 5-

min sonication. The 50 µL aliquots of lysates were digested

and purified using the preOmics in-Stage Tip Kit (iST Kit

96x, Martinsried, Germany). Samples were eluted sequen-

tially in three fractions using the SDB-RPS-1 and SDB-

RPS-2 buffers [51] and the elution buffer provided by

preOmics for subsequent analysis on a Nano LC-MS.

LC-MS/MS was carried out by nanoflow reverse-phase

liquid chromatography (Dionex Ultimate 3000; Thermo

Scientific, Waltham, MA, USA) coupled online to a Q

Exactive HF Orbitrap mass spectrometer (Thermo Scien-

tific). The LC separation was performed using a PicoFrit

analytical column (75 μm ID × 55 cm long, 15 µm Tip ID;

New Objectives, Woburn, MA, USA) in-house packed with

3-µm C18 resin (ReproSil-Pur C18-AQ, 3 µm, Dr. Maisch,

Ammerbuch-Entringen, Germany), as reported previously

[52]. Briefly, peptides were eluted using a gradient from

3.8% to 50% solvent B in solvent A over 121 min at

266 nL�min−1 flow rate. Solvent A was 0.1% formic acid,

and solvent B was 79.9% acetonitrile, 20% water, and

0.1% formic acid. Nanoelectrospray was generated by

applying 3.5 kV. A cycle of one full Fourier transformation

scan mass spectrum (300–1750 m/z, resolution of 60 000 at

m/z 200, AGC target 1e6) was followed by 12 data-depen-

dent MS/MS scans (resolution of 30 000, AGC target 5e5)

with a normalized collision energy of 25 eV. In order to

Fig. 7. Main steps in the generation of tumor-specific metabolic signatures. (1) Tissue samples from the tumor (HCC) and the tumor-

surrounding noncancerous tissue (control) are taken during curative surgery. (2) Quantitative shotgun proteomics of enzymes and

transporters yields protein intensity profiles. (3) Tumor-specific calibration of the kinetic model based on the difference (fold change)

between the protein intensity profiles of tumor and control. (4) Model simulations over a 24-h cycle using the plasma profile of

exchangeable metabolites and hormones (insulin and glucagon) as model input [17]. (5) 24-h mean values of 21 metabolic functions define

the metabolic signature of the tumor.
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avoid repeated sequencing of the same peptides, a dynamic

exclusion window of 30 s was used. In addition, only the

peptide charge states between two and eight were

sequenced.

Raw MS data were processed with MAXQUANT software

(1.5.7.4) [51] with the Andromeda search engine [53] and

the human UniProtKB with 70 228 entries released in 02/
2016. A false discovery rate of 0.01 for proteins and pep-

tides, a minimum peptide length of seven amino acids, a

mass tolerance of 4.5 p.p.m. for precursor, and 20 p.p.m.

for fragment ions were required. A maximum of two

missed cleavages was allowed for the tryptic digest. Cys-

teine carbamidomethylation was set as fixed modification,

while N-terminal acetylation and methionine oxidation

were set as variable modifications.
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