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AUTHORS’ RESPONSE

“Entraining” to speech, generating language?
Lars Meyera,b, Yue Sunc and Andrea E. Martind,e

aResearch Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; bDepartment of Phoniatrics
and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany; cDepartment of Neuroscience, Max Planck Institute
for Empirical Aesthetics, Frankfurt am Main, Germany; dLanguage and Computation in Neural Systems Group, Max Planck Institute for
Psycholinguistics, Nijmegen, Netherlands; eDonders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands

ABSTRACT
Could meaning be read from acoustics, or from the refraction rate of pyramidal cells innervated by
the cochlea, everyone would be an omniglot. Speech does not contain sufficient acoustic cues to
identify linguistic units such as morphemes, words, and phrases without prior knowledge. Our
target article (Meyer, L., Sun, Y., & Martin, A. E. (2019). Synchronous, but not entrained:
Exogenous and endogenous cortical rhythms of speech and language processing. Language,
Cognition and Neuroscience, 1–11. https://doi.org/10.1080/23273798.2019.1693050) thus
questioned the concept of “entrainment” of neural oscillations to such units. We suggested that
synchronicity with these points to the existence of endogenous functional “oscillators”—or
population rhythmic activity in Giraud’s (2020) terms—that underlie the inference, generation,
and prediction of linguistic units. Here, we address a series of inspirational commentaries by our
colleagues. As apparent from these, some issues raised by our target article have already been
raised in the literature. Psycho– and neurolinguists might still benefit from our reply, as
“oscillations are an old concept in vision and motor functions, but a new one in linguistics”
(Giraud, A.-L. 2020. Oscillations for all A commentary on Meyer, Sun & Martin (2020). Language,
Cognition and Neuroscience, 1–8).
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Introduction

Speech does not mark the boundaries of every linguistic
segment, be it morpheme, word, or phrase, in an injec-
tive fashion with what we as comprehenders perceive.
In our target article (Meyer, Sun, & Martin, 2019), we
argued that the alleged entrainment of neural oscil-
lations with such symbolic units is thus implausible. We
suggested that synchronicity between oscillations gener-
ated in sensory cortices by the physical nature of the
sensory stimulus is combined with signals from cortical
areas that encode symbolic units, such as morphemes,
words, and phrases. In short, and though not fully formal-
ised here (see Martin, 2020), such a claim implies a
system architecture where the resulting combined popu-
lation-level rhythmic activity (Giraud, 2020) fluctuates in
step with higher-level linguistic structure. Such intrinsic
synchronicity, then, can be said to reflect the inference,
generation, and prediction of symbolic units like mor-
phemes, words, and phrases. We are honoured and
thankful that our article yielded a series of commentaries
from auditory neuroscience to neurolinguistics (Ghitza,
2020; Giraud, 2020; Gwilliams, 2020; Haegens, 2020;

Kandylaki & Kotz, 2020; Klimovich-Gray & Molinaro,
2020; Lewis, 2020) ranging from helpfully skeptical to
further expansions of the premises put forth in our
target article. Below, we discuss the following leitmotifs
from these commentaries:

(1) A narrow definition should be met when invoking
“entrainment”

(2) If it’s not entrainment, call it tracking?
(3) Is intrinsic synchronicity the same as top-down

modulation of entrainment?
(4) How do entrainment and intrinsic synchronicity

interact?
(5) Periodic linguistic processing without entrainment?
(6) Synchronicity with symbolic units: periodic ERPs?

We did not intend to underemphasise the importance
of recent opinion and review articles that focus on the
role of endogenous neural oscillations in the top-down
modulation of speech entrainment (Haegens & Zion-
Golumbic, 2018; cited by Haegens, 2020; Lakatos et al.,
2019; Obleser & Kayser, 2019; Rimmele et al., 2018;
Zoefel et al., 2018; cited by Haegens, 2020). Publication
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of these overlapped in time with revisions of our article
and we still believe to present timely and interesting
perspectives on speech processing that are comp-
lementary to our account of language processing. In
contrast to the “bottom-up” processing of the speech
signal alone, we focused on the generation of linguistic
inferences and predictions rather than their possible
function in the top-down physiological modulation of
“entrainment” proper separate from linguistic
representation.

1. A narrow definition should be met when invok-
ing “entrainment”

Haegens’ (2020) commentary underlines the necessity
to reflect on the loose use of the entrainment term
before coining new terms in uncertainty or negation.
Because our psycho– and neurolinguistic readership
may not be familiar with the need for a narrower
definition of entrainment, we made the Entrainment
Checklist below, copying and explaining (a) to (c) from
Obleser & Kayser (2019) and Haegens (2020). For
psycho– and neurolinguists who want to study symbolic
computations instead of acoustics, we added (d) and (e).

a. Oscillatory activity in the absence of rhythmic
stimulation

Oscillatory activity in the absence of rhythmic stimu-
lation is a prerequisite for entrainment (Haegens, 2020;
Obleser & Kayser, 2019). Resting-state data may
provide a data-driven test of this criterion. For example,
a magnetoencephalography study by Keitel and Gross
(2016) has shown oscillatory activity across the cerebral
cortex in the absence of rhythmic stimulation. Their
report of spectral differences between cortical areas
entails the use of such data for sanity-checking
whether speech–brain synchronicity during rhythmic
stimulation modulates the activity of a preexisting oscil-
lator or whether it spuriously occurs in an area that does
not exhibit an oscillator that operates at the stimulation
frequency to start with. Researchers could restrict ana-
lyses of data recorded during stimulation to spectro–
temporal regions of interest that display preexisting
resting-state activity at or near the frequency of rhythmic
acoustic stimulation. We note however, that while
endogenous eigenfrequencies should play a role—if
only to reflect the fact that the brain is a living organ
whose metabolic and computational infrastructure is
composed of periods of excitation, refraction, and inhi-
bition (Lakatos et al., 2019)—their presence is not incon-
sistent with electrophysiological responses to speech
and language processing being composed of evoked
responses, even if the events evoking those responses
simply do not exist in speech, but are symbolic.

b. Frequency-selective phase alignment with a rhythmic
external physical stimulus

An oscillator that comes with its genuine eigenfre-
quency should not entrain to arbitrary stimulation
rhythms. Instead, the magnitude of entrainment should
depend on the proximity between the stimulation fre-
quency and the oscillator’s eigenfrequency (i.e. the so-
called Arnold Tongue; Hahn et al., 2019; Hyafil et al.,
2015; Lakatos et al., 2019; Obleser & Kayser, 2019;
Pikovsky et al., 2002). Arnold Tongues are emerging in
the domain of speech entrainment, where oscillatory
activity at phoneme– and syllable rates prevails at rest
in auditory brain regions (Daube et al., 2019; Giraud
et al., 2007; Peelle et al., 2013). Moreover, reduced
frontal delta-band activity at rest has been linked to
reduced delta-band entrainment (Arns et al., 2007;
Hämäläinen et al., 2012; Molinaro et al., 2016; Pagnotta
et al., 2015). Of potential interest to linguists, evidence
for Arnold Tongues during speech processing could be
used to study biological links between speech as an
object of cortical information processing and language
as a cognitive and cultural system.

c. Rhythmic activity transiently continues at the stimulus
rate after stimulus offset

The workhorse of entrainment in speech and
language processing research is the recording of electro-
physiological signals while presenting continuous
speech. As most of our readers know, frequency-
domain speech–brain synchronicity in such experiments
could as easily be mimicked by sequences of evoked
responses as it could be driven by "true" oscillations
(e.g. Ding & Simon, 2014; Haegens, 2020; Klimesch
et al., 2007; Obleser & Kayser, 2019). Critical for
psycho– and neurolinguists, this holds not only for
acoustic speech rhythms, but for internal computations
as well (e.g. N400, P600, and CPS; Frank et al., 2015;
Kuperberg et al., 2019; Steinhauer & Friederici, 2001).
Alternative experimental designs employ two-phase
trial structures involving initial playback of an acoustic
rhythm and subsequent presentation of a target stimu-
lus; the rationale is to affect target processing through
prior entrainment (e.g. Bosker, 2017; Hickok et al., 2015;
Kösem et al., 2018). While, as noted by Haegens (2020),
spectral smearing can still jeopardise analysis in the
target phase, behavioural effects in the target phase
depending on manipulations of the first-phase carrier
can nevertheless be interpreted to indicate entrainment.
Such designs may thus be preferable.

d. The stimulus feature under study is physical, not
symbolic

As stressed in our target article, entrainment is a
phenomenon that is best understood in relation to phys-
ical stimuli, but it is unclear how symbols would drive
entrainment proper1 (e.g. Lewis, 2020). If the phase of
an electrophysiological oscillator is supposed to inherit
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the phase of a stimulus, the stimulus needs a phase to
start with. To support an experimenter’s assumption
that stimuli exhibit acoustic rhythms that could possibly
drive entrainment, experimenters should append the
result of spectral analysis of their stimuli. Examples of
symbols that cannot cause entrainment in ecologically
valid settings are morphemes, words, phonetic features,
parts of speech, and information-theoretic complexity
metrics, mostly because their onsets and offsets need
not be predictable in order to be perceived. Causally
speaking, proficient listeners generate associated linguis-
tic symbols on encountering familiar patterns in the elec-
trophysiological imprint served by their auditory
periphery. We refer the interested reader to the com-
mentary by Giraud (2020) for an inspiring discussion of
the possible neurobiological underpinnings.

e. Rhythmic stimulation is ecologically valid
Experimenters sometimes operationalise speech

through the temporal straightjacket of isochrony (for dis-
cussion, see Cummins, 2012; Goswami & Leong, 2013; for
examples of affected linguistic levels, see also Gwilliams,
2020). We trivially note that when introducing acoustic
rhythmicity into an experiment, the odds for observing
electrophysiological rhythmicity are good. Before labelling
such results entrainment and concluding that the associ-
ated processing mechanism is oscillatory, experimenters
should motivate their choice of introducing rhythmicity
via statistical assessments of natural speech as such (for
a good example, see Ding et al., 2017). Critically, the use
of naturalistic stimuli (cf. Kandylaki & Kotz, 2020) does
not lift this analytical burden: Methodologically speaking,
speech–brain synchronicity with natural speech can be
significant in spite of lacking stimulus rhythmicity (see
Kaufeld et al., 2020).2 As an example, consider the assump-
tion that speech prosody is rhythmic enough for entrain-
ing an electrophysiological oscillator (e.g. Ghitza, 2020), as
well as reports of entrainment to natural prosody (Bour-
guignon et al., 2013; Kaufeld et al., 2020; Mai et al., 2016;
Meyer & Gumbert, 2018; Meyer et al., 2016). While there
are physiological, environmental, and possibly electro-
physiological constraints that may lead to a non-uniform
distribution of prosodic events in speech (cf. Kreiner &
Eviatar, 2014; Rochet-Capellan & Fuchs, 2014), corpus ana-
lyses still suggest substantial variance in the duration of
prosodic units (Vollrath et al., 1992). It would be very
important to assess whether this variance fits the band-
width of an electrophysiological oscillator assumed to
be devoted to prosody processing.

2. If it’s not entrainment, call it tracking?
In line with Obleser & Kayser (2019), Haegens (2020)

suggests that phenomena that do not meet a narrow
definition of entrainment—including cases of synchroni-
city with symbolic units—should rather be labelled

tracking or entrainment in the broad sense. While tracking
and entrainment are sometimes used interchangeably to
label synchronicity with both acoustic and symbolic units
(Brennan & Martin, 2020; Cogan & Poeppel, 2011; Daube
et al., 2019; Gross et al., 2013; Hämäläinen et al., 2012;
Jochaut et al., 2015; Kaufeld et al., 2020; Kayser et al.,
2015; Luo & Poeppel, 2007; Luo et al., 2010; Mai et al.,
2016; Meyer & Gumbert, 2018; Molinaro et al., 2016;
Park et al., 2018; Weissbart, Kandylaki, Reichenbach,
et al., 2019; Zoefel & VanRullen, 2016), some authors
use tracking to label synchronicity with symbolic units
alone (Bourguignon, Molinaro, et al., 2020; Brennan &
Martin, 2020; Ding et al., 2016; Kaufeld et al., 2020;
Zhang & Ding, 2016).

We still worry that tracking of symbolic units is not
fully consistent: As noted by Lewis (2020), symbolic
units cannot be tracked in the literal sense, because
the physicality of speech does not feature a one-to-one
mapping to symbolic units for an electrophysiological
observer to track (Martin, 2016, 2020). For a concrete
example, the seminal study by Ding et al. (2016) pre-
sented isochronous word sequences in a language that
was either native to their participants or not. Each pair
of words denoted a syntactic phrase and each quadru-
plet of words denoted a sentence—which non-native lis-
teners could not recognise. Frequency components in
the magnetoencephalogram mirrored the paces of
phrases and sentences in native listeners only. Hence,
while not physically present in acoustics, these symbolic
units were present in listeners’ electrophysiology, poss-
ibly in a cyclic fashion. Our worry with applying the track-
ing label here: If electrophysiology tracked syntactic
structures, one would logically entail that electrophysi-
ology tracked itself.

Giraud (2020) and Gwilliams (2020) come to our termi-
nological rescue, discussing that synchronicity with sym-
bolic units might not reflect their tracking, but their
generation proper (see also Martin, 2016, 2020; Martin
& Doumas, 2017). This suggestion draws a clear line
between electrophysiological functions that perceive
and process acoustic stimuli and functions that invoke
or infer the symbolic units. See below for the implications
that this terminological dissociation has for capturing the
exogenous–endogenous interplay.

3. Is intrinsic synchronicity redundant with top-
down modulation of entrainment?

Klimovich-Gray and Molinaro (2020) worry that the
separation of endogenous oscillatory activity from the
top-downmodulation of entrainment may be overly ana-
lytic: Without being at pace with perceptual sampling,
the inference, generation, and prediction of linguistic
units would be of little use for comprehension. We cer-
tainly agree; our target article did not intend to question
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interactions between entrainment and intrinsic synchro-
nicity. We acknowledge the role of oscillatory coupling in
the functional connectivity between auditory regions
and frontal cortices (e.g. Molinaro et al., 2016; Park
et al., 2015) as substrate of top-down amplification (e.g.
Schroeder et al., 2008; for review, see Vanrullen et al.,
2011) and temporal binding (e.g. Giraud & Poeppel,
2012; Morillon et al., 2012). Also, as discussed by Giraud
(2020), exogenous and endogenous oscillators may not
always be neuroanatomically distinct; instead, a single
network might show entrainment while still acting as a
pacemaker. Yet, Giraud (2020) also proposes that oscil-
lators that fulfil abstract purposes might lean towards
serving as pacemakers, whereas less abstract processes
might be dominated by entrainment. Along these lines,
both Giraud (2020) and Lewis (2020) suggest that the
separation between entrainment and pacemaking
might conceptually depend on abstraction and neuroa-
natomically entail an increasing network size.

Our proposal of intrinsic synchronicity aims to con-
ceptualise these pacemakers as such. Here, we suggest
a clinical approach to dissociate entrainment and pace-
making while acknowledging their mutual interactions.
As a first example, Broca’s aphasia could be a case of
intact speech entrainment in spite of abnormal periodic
chunking—potentially allowing for the dissociation of
exogenous entrainment proper and endogenous linguis-
tic processing. Patients suffering from Broca’s aphasia
after left-hemispheric precentral lesions exhibit altered
auditory chunking time windows in spite of structurally
intact auditory regions (Szelag et al., 1997). While we
are not aware of reports of intact prosody entrainment
in Broca’s aphasia, we note that such patients are cer-
tainly able to shadow speech (Fridriksson et al., 2012; Fri-
driksson et al., 2015). In healthy subjects, prosody
entrainment associates with auditory, but not precentral
activity (Bourguignon et al., 2013). In line with this
picture, we found repetitive transcranial magnetic stimu-
lation of left inferior frontal cortex in healthy subjects to
affect linguistic chunking while leaving prosody percep-
tion intact (Meyer et al., 2018). In principle, lesion data
could thus dissociate prosody entrainment from intrinsic
synchronicity with endogenously generated linguistic
chunks, helping to address the question of whether
multi-word chunking relies on prosody entrainment, an
internal oscillatory pacemaker, or both (Ghitza, 2020).

As a second example, linguistic dysfunction in schizo-
phrenia (Kircher et al., 2018; Sterzer et al., 2018) has been
argued to reflect an imbalance between speech percep-
tion and the internal generation of linguistic predictions
(Brown & Kuperberg, 2015). In schizophrenia patients
suffering from auditory hallucinations, overly strong
predictions can trigger the hallucination of words

that do not exist outside of the patient’s brain (Alder-
son-Day et al., 2017). Auditory stimulation in schizo-
phrenia patients associates with abnormal beta– and
delta-band oscillations (Lakatos et al., 2013), previously
proposed to subserve the prediction of content and
timing, respectively (Lewis & Bastiaansen, 2015;
Schroeder & Lakatos, 2009; Stefanics et al., 2010). In
the case of auditory hallucinations, there is no stimulus
to entrain to, and thus no entrainment proper to be
modulated—could endogenous oscillatory activity
underlie the hallucination as such? This hypothesis is
supported by the observation of auditory activity to
visual-only stimulation with lip movements (Bour-
guignon et al., 2020; cited by Klimovich-Gray & Moli-
naro, 2020).

4. How do entrainment and intrinsic synchronicity
interact?

Lewis (2020) points out that our target article lacks a
proposal as to how entrainment and intrinsic synchroni-
city might interact. We are thankful for Giraud’s (2020)
insightful suggestion that the generation of symbolic
units may involve a matching between quasi-periodic
speech segments and internally stored or generated
symbols—such that generative rhythms impose their
preferred pace onto perceptual systems to enforce an
according segmentation of speech. This is entirely con-
sistent with the analysis-by-synthesis type of proposal
laid out in recent models of language processing
(Martin, 2016, 2020) which have also been realised in
an abstracted computational instantiation (Martin &
Doumas, 2017). Such a view is based on claims about
how sensory systems make contact with action systems
writ large (Buzsáki, 2019; Ernst & Bülthoff, 2004; Olshau-
sen, 2013), but also on classic and core ideas in psycho-
linguistics (Halle & Stevens, 1962; Marslen-Wilson &
Welsh, 1978). Lewis’ (2020) concerns resonate with the
proposal of a now-or-never bottleneck, according to
which abstraction must occur before speech segments
corresponding to phonemes, syllables, words, and syn-
tactic structures are forgotten (e.g. Christiansen &
Chater, 2015; but note that perceptual memory and
memory in language processing may not only be a func-
tion of time; see Brown, 1958; McElree, 2006; Peterson &
Peterson, 1959; Sperling, 1983). This may also partially
answer Lewis’ (2020) question of the exact weighting
between entrainment and intrinsic synchronicity: Ulti-
mately, the weighting should depend on temporal com-
patibility between stimulus and inference—balance
when the stimulus pace matches the preferred linguistic
pace, imbalance when there is a mismatch. Gain and
inhibition, and as a result, the phase of the signals that
emerge when neural assemblies form dynamically
across the language network, likely play crucial roles in
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titrating how sensory and abstract neural signals are
combined (Martin, 2020).

Giraud (2020) discusses that gamma-band oscillations
have been associated both with acoustic processing at
the sub-syllabic rate (Daube et al., 2019; Gross et al.,
2013) and with the invocation of phonemic categories
(Di Liberto et al., 2015; Lehongre et al., 2011; Mesgarani
et al., 2014; Nourski et al., 2015). We thank Giraud
(2020) for pointing us to literature on endogenous
timing constraints on phoneme perception, suggesting
that sounds can only be dissociated in time when
paced within the period range of lower-gamma-band
cycles (Joliot et al., 1994). This observation is consistent
with lower-gamma-band cycles acting as pacemakers
to sub-syllabic sampling, imposing a preferred pace of
invocation of phonemic categories onto auditory
sampling. In other words: The endogenous generation
of phonemic units sets a pace for the entrainment by
the sub-syllabic acoustic rhythm. This should be investi-
gated further.

As a second example from the slow end of the fre-
quency axis, multi-word chunks cannot exceed a dur-
ation of about 2–3 s, after which auditory short-term
memory fades (Baddeley et al., 1975); in parallel, chunk-
ing-related event-related potentials occur without
having been triggered by prosodic cues (Schremm
et al., 2015). Functional neuroimaging results are consist-
ent with endogenous operation time windows in the
order of seconds that are devoted to the processing of
multi-word sequences (Hasson et al., 2008; Lerner et al.,
2011). Our readers know that it is debated whether
delta-band oscillations are exogenously entrained by
speech prosody alone to support linguistic chunking
(Bourguignon et al., 2013; Gross et al., 2013; Mai et al.,
2016) or whether they also underlie the endogenous
generation of multi-word chunks (Boucher et al., 2018;
Ding et al., 2016; Meyer et al., 2016) or temporal predic-
tions on the time scale of seconds (Arnal et al., 2015;
Breska & Deouell, 2017; cited by Haegens, 2020; Donhau-
ser & Baillet, 2019; Lakatos et al., 2008; Lakatos et al.,
2013; Meyer & Gumbert, 2018; Stefanics et al., 2010;
Weissbart et al., 2019). We concur with Ghitza’s (2020)
suggestion that all of these can be true, such that
speech prosody could exogenously entrain delta-band
oscillations, the cycles of which then act as endogenous
temporal limiters of chunk duration. This could help
explaining why multi-word chunks can be generated
without the presence of prosodic cues (i.e. «every proso-
dic unit is a syntactic unit» does not entail that «every
syntactic unit is a prosodic unit»; e.g. Drury et al., 2016;
Steinhauer & Friederici, 2001).

5. Periodic linguistic processing without
entrainment?

As mentioned in (d) of the Entrainment Checklist,
rhythmic acoustic cues may be necessary for entrain-
ment. Yet, as discussed in our target article, there could
still be periodic linguistic processing without acoustic
cues. In general, periodicity may be the standard,
rather than the exception of electrophysiology (Buzsáki,
2006, 2019; Lakatos et al., 2019; Palva et al., 2005; VanRul-
len, 2016; see also (a) of the Entrainment Checklist). As
discussed above, there are endogenous timing con-
straints on phoneme perception and multi-word chunk-
ing (Joliot et al., 1994; Schremm et al., 2015). Auditory
neuroscience may inspire psycholinguists to reconsider
such evidence in terms of neural oscillations (e.g.
Martin, 2020; Tilsen, 2018).

We thank Kandylaki and Kotz (2020) for sketching
further directions for such research. In particular, they
raise the fascinating possibility that the formation of sen-
tences’ verb–argument structure (i.e. those syntactic
phrases denoting the who and whom involved in an
action, plus the verb denoting the action; Chomsky,
1965) could be a periodic process, pointing to an under-
lying endogenous oscillatory generator. Indeed, a
number of correlations between the phase of delta-
band oscillations and syntactic structures (Brennan &
Martin, 2020; Ding et al., 2016; Kaufeld et al., 2020;
Meyer et al., 2016) or information-theoretic metrics of
sequential and syntactic complexity (Meyer & Gumbert,
2018; Weissbart, Kandylaki, Reichenbach, et al., 2019)
have been published. In principle, it is still unknown
whether these findings reflect verb–argument structure,
implicit prosodic phrases (Drury et al., 2016; Frazier et al.,
2006; Kreiner & Eviatar, 2014; Schremm et al., 2015), or
even information structure (i.e. given–new, theme–
rheme, topic–comment alternations over time; for an
introduction, see Krifka, 2008; Hagoort, personal com-
munication). Referring to (e) of the Entrainment Check-
list, we encourage corpus linguists to haunt for
periodicity across these diverse levels of theoretical lin-
guistic description.

6. Synchronicity with symbolic units: periodic
ERPs?

We thank Gwilliams (2020) for highlighting one of the
biggest challenges for testing whether linguistic proces-
sing involves endogenous oscillators: the ambiguity of
evoked responses and oscillations (e.g. (c) of the Entrain-
ment Checklist). Linguistic processes with a deterministic
time lag can phase-lock endogenous oscillations across
trials, masquerading as an evoked response in the
average (e.g. Klimesch et al., 2007). In turn, linguistic pro-
cesses occurring at every given linguistic segment (e.g.
syllable, word, or phrase) of a sentence or narrative will
give rise to speech–brain synchronicity at the segment
frequency. The plot thickens, because, in the limit, it
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may be the case that systems of oscillators and series of
evoked responses can approximate each other.3 Here,
we discuss exemplary evoked responses for which this
might be the case. Afterwards, we provide strategies
for assessing whether these have endogenous oscillatory
substrates.

In the time domain, linguistic prediction relates to the
N400 (Bornkessel-Schlesewsky & Schlesewsky, 2019;
Cowles et al., 2007; Fitz & Chang, 2018; Frank et al.,
2015; Kuperberg et al., 2019; Rabovsky et al., 2018). In
the frequency domain, delta-band oscillations have
been linked to computational metrics of linguistic predic-
tion (Meyer & Gumbert, 2018; Weissbart et al., 2019). Fre-
quency decomposition of the N400 shows a dominant
delta-band component (Roehm et al., 2009). This
pattern leaves it unclear whether linguistic prediction
has an evoked or oscillatory substrate.

A second example, the P600, is thought to reflect a
revision of the current syntactic structure or overall
interpretation (Bornkessel-Schlesewsky & Schlesewsky,
2008, 2019; Kaan & Swaab, 2003; Kuperberg et al.,
2019). Noteworthy, the P600 may be elicited by every
single word in continuous narratives, depending on the
amount of revision or reinterpretation that is required
(Hale et al., 2018). While we are not aware of a published
frequency decomposition of the P600, a sequence of
single-word P600s would likely surface as oscillatory syn-
chronicity between revision or integration demands and
the EEG.

Our third example is chunking. The boundaries of
multi-word chunks are accompanied by the CPS (Stein-
hauer et al., 1999). While the CPS can be triggered by
prosody (Gilbert et al., 2015; Holzgrefe et al., 2013; Stein-
hauer, 2003), it can also be triggered by visual cues
during reading (Drury et al., 2016; Steinhauer, 2003).
Strikingly, the CPS appears with an endogenous period
of 2–3 s even in the absence of prosody (Roll et al.,
2012; Schremm et al., 2015). Frequency-domain analyses
show delta-band phase in the CPS window to predict
chunking decisions (Meyer et al., 2016). In principle, the
CPS could thus reflect a phase reset of endogenous
delta-band oscillations that are devoted to chunking
(Boucher et al., 2018; Ding et al., 2016).

To understand the relationship between these evoked
responses and endogenous oscillatory activity, single-
trial phase should be assessed concurrently to averaging
across trials. Averaging is often advocated as prerequisite
of sufficient signal-to-noise ratio (Luck, 2014), but multi-
variate approaches question this assumption (e.g. Sas-
senhagen & Fiebach, 2019; Sassenhagen et al., 2014).
Averaging is also still thought to yield temporally invar-
iant electrophysiological counterparts of discrete proces-
sing steps—the boxes and arrows of cognitive

(neuro)science (e.g. Luck, 2014). Still, it is unclear
whether evoked responses reflect singular stimulus-
driven amplitude events rather than the average modu-
lation of ongoing oscillatory activity (Klimesch et al.,
2007). In contrast, phase is an indicator of neuronal excit-
ability that directly predicts behavioural responses, thus
providing a parsimonious substrate of cognitive proces-
sing (Henry & Obleser, 2012; Meyer & Gumbert, 2018;
Schroeder et al., 2008; Stefanics et al., 2010). While
phase-locking must surface as an evoked response in
the average, an association between single-trial phase
and a downstream behavioural task can still point to
an oscillatory substrate. As related recommendation
raised in (e) of the Entrainment Checklist, artificial rhyth-
micity of endogenous linguistic processing should not be
induced by the experimental operationalisation. To close,
Giraud (2020) posits that symbolic representations are
not extended in time. While we agree that one of the
benefits of symbolising a representation is that it need
no longer be tied to the vagaries or particulars of the
stimulus, environment, or instance, there is no reason
that the brain could not generate expectations or gather
statistics about when and in what contexts symbolic rep-
resentations are likely to occur or should be inferred.
Thus, decoupling symbols from time is not a necessary con-
dition. Martin and Doumas (2017) showed that a symbolic-
connectionist model that uses time to encode functionally
symbolic representations in the state dynamics of a neural
network could approximate the pattern of neural oscil-
lations found by Ding et al. (2016). The model relies on
symbols being extended in time; the rhythmic activity in
the neural network, and the ability to separate patterns in
the network by when they occur, is what leads to function-
ally symbolic representations.

Conclusion

Entrainment is a useful concept to describe auditory
speech processing. Neural oscillations might also have
a role in the inference, generation, and prediction of lin-
guistic units, but this should not be termed entrain-
ment. In turn, the assessment of electrophysiological
periodicity of linguistic processing requires dedicated
experimental paradigms. In addition, linguists should
test for periodicity in speech and text corpora to
assess whether such a hypothesis is ecologically valid.
Once periodicity has been established, the electro-
physiological basis and according limitations of exogen-
ous–endogenous interactions can be pursued. Speech
acoustics entrain neural oscillations, but neural oscil-
lations—or population rhythmic activity—likely gener-
ate language.
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Notes

1. One can imagine an experiment where a participant is
asked to monitor a masked visual stream of images for
an object, and that if that object were to appear periodically
and predictably, perhaps entrainment over and above
entrainment to the presentation rate could be observed.

2. To complicate things further, it is not well understood
how much isochrony is required for entrainment to
occur—in principle, oscillators can tolerate some tem-
poral variability of their entraining stimuli; that is, aniso-
chrony does not necessarily rule out entrainment
(Lakatos et al., 2019).

3. Trains of evoked responses and oscillations might not
even be mutually exclusive—consider the frequent
observation that specific phase intervals raise the prob-
ability of evoked responses to occur (e.g., Henry &
Obleser, 2012; Lakatos et al., 2019; Stefanics et al., 2010).
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