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Text S1. Data preprocessing 

The raw monthly mean output of every participating climate model and observation-driven 
dataset is regridded to a 2° by 2° grid and masked with a common mask to remove all oceans 
and Antarctica. For Step 2a (target variable: absolute GPP at the end of the 21st century), 
monthly climatologies are calculated for every dataset by averaging over all available years for 
every month. For Step 2b (target variable: fractional GPP change over the 21st century), 
temporal means are calculated for every dataset by averaging over the full time dimension. In 
addition, values greater than 300% in the target variable in Step 2b (fractional GPP change over 
the 21st century) are masked to avoid numerical inconsistencies caused by the division of small 
numbers in the derivation of the target variable. In the next step, the multidimensional data is 
flattened and all the training data from the different climate models is stacked into a single 
large training array. Finally, to account for the varying magnitudes of the different features, all 
of them are linearly scaled by their respective means and standard deviations so that they have 
a mean of zero and unit variance. In total, 237’852 (16’503) training data points, 79’284 (5’501) 
hold-out test data points, and 46’344 (3’727) points for the prediction are used in the machine 
learning model for Step 2a (Step 2b). 

Text S2. Gradient Boosted Regression Trees (GBRT) 

The basic elements of GBRT are decision trees. These models create decision rules based on 
binary splits to predict a target variable 𝑦 (“label”) from a set of predictors 

𝒙 = (𝑥(1), 𝑥(2), … , 𝑥(𝐾)) (𝐾 is the number of “features”). These features do not need to be of 
the same type: GBRT allows the simultaneous input of numerical and categorical features, 
which is a great advantage for our use case. There is no need to encode the categorical 
variables in any way. Due to their simple nature, machine learning models based on decision 
trees are easy to interpret and explain but cannot be used to create satisfying predictions for 
complex datasets. This issue can be overcome by a technique called “boosting”. Boosting 
improves the performance of “weak learners” (in our case decision trees) by combining a large 
number of them (Freund & Schapire, 1996). The regression function used to predict �̂� = 𝐹(𝒙) 
can be written as a linear combination of simple decision trees ℎ(𝒙) 

𝐹(𝒙) = ∑ 𝛽𝑚ℎ(𝒙; 𝛼𝑚)

𝑀

𝑚=0

, (1) 

where 𝑀 is the total number of decision trees, 𝛽𝑚  expansion coefficients and 𝛼𝑚 parameters of 
the trees. Using all 𝑁 training data points (𝒙𝑖, 𝑦𝑖) (“classic” gradient boosting), the expansion 

coefficients and parameters are jointly fitted by minimizing a loss function 𝐿(𝑦, 𝐹(𝒙)) in a 

forward iteration: 

(𝛽𝑚, 𝛼𝑚) = argmin
𝛽,𝛼

∑𝐿(𝑦𝑖 , 𝐹𝑚−1(𝒙𝑖) + 𝛽ℎ(𝒙𝑖; 𝛼))

𝑁

𝑖=1

 (2) 

In practice, this iteration step only uses a randomly selected subsample of the training data 
(drawn without replacement), i.e. the sum does not cover all 𝑁 training points. Starting with an 
initial guess 𝐹0(𝒙), the model is recursively built by 

𝐹𝑚(𝒙) = 𝐹𝑚−1(𝒙) + 𝛽𝑚ℎ(𝒙; 𝛼𝑚). (3) 
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The minimization procedure of the loss function (regular least squares function with additional 
sample weights determined by the grid cell areas) is called “stochastic gradient boosting” and is 
explained in detail by Friedman (2001); (Friedman, 2002). Fitting the GBRT model involves 
building the decision trees by splitting the data at points with maximum information gain. 
Boosting those simple trees greatly improves the overall predictive power of the machine 
learning algorithm: poorly modeled training points in the early stages of the algorithm will 
gradually improve throughout the training process. 

A crucial criterion for the successful application of any GBRT algorithm is the choice of several 
hyperparameters. The three main control parameters of the learning procedure are the total 
number of decision trees 𝑀, the complexity of the individual trees (for example measured by 
the maximum tree depth) and the learning rate 𝜈 ≪ 1. The latter parameter is used for 
regularization and dramatically reduces the risk of overfitting by scaling down the contribution 
of each added weak learner (De'ath, 2007; Elith et al., 2008; Friedman, 2001). A common way to 
optimize the algorithm is 𝐾-fold cross-validation (Bishop, 2006): The data is randomly divided 
into a training and a validation dataset and the GBRT model is fitted on the training data only. 
After that, the performance of this model can be evaluated on the validation dataset by a 
suitable metric (e.g. the mean squared error). This process is repeated 𝐾 times so that every 
input point is part of the validation set at least once. The optimal hyperparameters are the set 
of hyperparameters with optimal performance on the validation datasets (e.g. (Elith et al., 
2008)). 

Text S3. Evaluation of prediction uncertainty 

We estimate the standard prediction error (SPE) of the GBRT model itself as the root mean 
squared error (RMSE) of the predicted �̂�′ and true values 𝑦′ of a hold-out test dataset, the so-
called root mean square error of prediction (RMSEP) (Bishop, 2006) (assumed to be constant 
for all prediction input points): 

𝜎𝐺𝐵𝑅𝑇 = 𝑅𝑀𝑆𝐸(�̂�′, 𝑦′) (4) 

For this, we randomly selected 25% of the input data prior to training, so that this part of the 
data neither enters the training of the GBRT model nor the hyperparameter optimization 
process. Moreover, the test dataset allows an assessment of the prediction residuals, which is 
useful to detect overfitting, see Figure S2. 

A second source of uncertainty is the error in the re-scaling of the target variable in Step 1 of 
our approach. Analogous to Equation (2) in the main paper, we estimate this error as 

𝜎𝑗,𝑅𝐸𝑆𝐶 = �̅�𝑗 ∙
𝜎𝑓′

𝑓̅
, (5) 

for each prediction input point 𝑗 (𝑗 runs over all grid cells and months). �̅�𝑗  is the CMIP5 multi-

model mean of the target variable (Step 2a: absolute GPP at the end of the 21st century; Step 
2b: fractional GPP change over the 21st century), 𝜎𝑓′ the standard error in the global GPP 

fractional change given by the emergent constraint from Step 1 and 𝑓 ̅the CMIP5 multi-model 
mean global fractional change in GPP over the 21st century. 

The final source of uncertainty is the error of the prediction input data 𝜎𝑗,𝑘 (𝑘 corresponds to the 

feature and 𝑗 again to the prediction input point). These are only available for the FLUXNET-
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MTE product (Jung et al., 2011). To account for this, we use the LIME technique (Ribeiro et al. 
(2016); see Section 2.2. in the main paper) to build a local linear model for every sample point, 
which yields the linear coefficients 𝑏𝑗,𝑘. Using error propagation for all predictors and assuming 

independence of all individual errors, the SPE due to observational uncertainty 𝜎𝑗,𝑂𝐵𝑆 can then 

be calculated as 

𝜎𝑗,𝑂𝐵𝑆
2 = ∑𝑏𝑗,𝑘

2 𝜎𝑗,𝑘
2

𝐹

𝑘=1

. (6) 

The total SPE at a prediction input point 𝑗 is the sum of the squared errors presented above 
(assuming all of them are independent): 

𝜎𝑗
2 = 𝜎𝐺𝐵𝑅𝑇

2 + 𝜎𝑗,𝑅𝐸𝑆𝐶
2 + 𝜎𝑗,𝑂𝐵𝑆

2  (7) 

The specified error ranges for the multi-model mean approaches are calculated in a similar way: 
the constant SPE per grid cell is estimated by the mean RMSEP given in the pseudo-reality 
experiment. For the plain multi-model mean, this is the only source of uncertainty. For the re-
scaled multi-model mean, the total error can be calculated similarly to Equation (7) without the 
last term (observational uncertainty). 

Text S4. Evaluation of residuals 

A convenient way to gain information about statistical models is to analyze the residuals 𝜀𝑖  
which are defined as the difference between the true values of the target variable 𝑦𝑖  and the 
predicted value �̂�𝑖  at a sample point 𝑖 with known ground truth: 

𝜀𝑖 = 𝑦𝑖 − �̂�𝑖  (8) 

A common way to visualize the residuals is to plot their probability distribution (see Figure S2). 
The two panels (for Steps 2a and 2b) show that the machine learning model is not overfitting in 
both cases: the distributions of the training data and the independent hold-out data are very 
similar. Moreover, the distributions do not show significant biases, as the residuals are 
approximately unbiased (zero mean) for the training and the test dataset. This justifies the use 
of the RMSEP to estimate the SPE, since for unbiased residuals the RMSEP is equal to the 
standard deviation of the residuals. 
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Figure S1. (a) Monthly-mean atmospheric CO2 concentrations at Cape Kumukahi, Hawaii 
(KUM; 19.5 °N, 154.8 °W) from 1979 to 2019. The thin colored lines show the individual CMIP5 
models (emission-driven historical simulations for the years 1979–2005 and emission-driven 
RCP 8.5 simulations for the years 2006–2019; the latter is not available for HadGEM2-ES). The 
thick black line shows the observations. For the CMIP5 models, the grid cell closest to KUM is 
considered. The curves show an increase of the atmospheric CO2 concentration superimposed 
by a pronounced seasonal cycle. (b) Annual amplitude of the seasonal cycle of CO2 (defined as 
the difference between the maximum and the minimum monthly mean atmospheric CO2 
concentration for each year) against the annual mean atmospheric CO2 concentration at KUM. 
Colored dots show the CMIP5 models (similar time ranges as in (a)); thick black dots the 
observations. The lines show the corresponding linear regression fits for each dataset. The 
slopes of these linear fits define the sensitivity of the seasonal CO2 cycle amplitude to 
atmospheric CO2 concentrations, which is used as predictor for the emergent constraint step of 
our approach.  



6 

 

Figure S2. Distribution of the residuals for the two different target variables used in Step 2a 
(absolute GPP at the end of the 21st century) and Step 2b (fractional GPP change over the 21st 
century). The distributions are derived by Kernel Density Estimation (KDE) using training (blue) 
and test (green) data. The plots show approximately unbiased distributions for the training and 
the test datasets, which are very similar to each other. This indicates that the machine learning 
model does not overfit the data.  
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Figure S3. Geographical distributions of the historical GPP averaged between 1991 and 2000. 
(a) CMIP5 multi-model mean. (b) FLUXNET-MTE product (Jung et al., 2011).   
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Figure S4. Geographical distributions of the absolute GPP at the end of the 21st century in the 
RCP 8.5 scenario (Step 2a) for different statistical models. (a) CMIP5 multi-model mean. (b) Re-
scaled CMIP5 multi-model mean using Equation (2) from the main paper. (c) LASSO model 
using only the historical GPP as single predictor. (d) GBRT model using only the historical GPP 
as single predictor. (e) LASSO model using all predictors. (f) GBRT model using all predictors.  
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Figure S5. Geographical distributions of the standard prediction errors (SPEs) of the absolute 
GPP at the end of the 21st century in the RCP 8.5 scenario (Step 2a) for different statistical 
models. Details on the calculation of the SPE are given in Text S3. (a) CMIP5 multi-model mean. 
(b) Re-scaled CMIP5 multi-model mean using Equation (2) from the main paper. (c) LASSO 
model using only the historical GPP as single predictor. (d) GBRT model using only the historical 
GPP as single predictor. (e) LASSO model using all predictors. (f) GBRT model using all 
predictors. The SPE is minimal for the GBRT model using all predictors.  



10 

 

Figure S6. Geographical distributions of the standard prediction errors (SPEs) of the fractional 
GPP change over the 21st century in the RCP 8.5 scenario (Step 2b) for different statistical 
models. Details on the calculation of the SPE are given in Text S3. (a) CMIP5 multi-model mean. 
(b) Re-scaled CMIP5 multi-model mean using Equation (2) from the main paper. (c) LASSO 
model. (d) GBRT model. The SPE is minimal for the GBRT model.  
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Climate model Land model Main reference 

CanESM2 CLASS2.7 + CTEM1 (Arora et al., 2011) 

CESM1-BGC CLM4 (Gent et al., 2011) 

GFDL-ESM2M LM3 (Dunne et al., 2012) 

HadGEM2-ES JULES + TRIFFID (Collins et al., 2011) 

MIROC-ESM MATSIRO + SEIB-DGVM (Watanabe et al., 2011) 

MPI-ESM-LR JSBACH + BETHY (Giorgetta et al., 2013) 

NorESM1-ME CLM4 (Iversen et al., 2013) 

Table S1. Overview over all seven CMIP5 models used in this study. More details are given by 
Anav et al. (2013). We chose all CMIP5 models which provide all necessary variables (co2, gpp, 
lai, pr, rsds and tas) for all used experiments (esmHistorical, esmrcp85 and esmFixClim1). For all 
models, we only used the first ensemble member available. 


