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Abstract

A precise link is derived between scalar-graviton S-matrix elements and expecta-

tion values of operators in a worldline quantum field theory (WQFT), both used

to describe classical scattering of a pair of black holes. The link is formally pro-

vided by a worldline path integral representation of the graviton-dressed scalar

propagator, which may be inserted into a traditional definition of the S-matrix in

terms of time-ordered correlators. To calculate expectation values in the WQFT a

new set of Feynman rules is introduced which treats the gravitational field hµν(x)

and position xµi (τi) of each black hole on equal footing. Using these both the next-

order classical gravitational radiation 〈hµν(k)〉 and deflection ∆pµi from a binary

black hole scattering event are obtained. The latter can also be obtained from the

eikonal phase of a 2→ 2 scalar S-matrix, which we show to correspond to the free

energy of the WQFT.
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1 Introduction

Black holes are fascinating objects intimately tied to the fundamental properties

of space, time and matter. Rightly they have been referred to as “the most per-

fect macroscopic objects in the universe” [1]. Their internal state is completely

determined by their mass, charge and spin; in this respect they strongly resemble

elementary particles, the equally fascinating constituents of matter and fundamental

forces. These microscopic cousins of black holes are described using quantum field

theory; their observables (such as cross sections) are derived from scattering ampli-

tudes, which in turn have been called “the most perfect microscopic structures in

the universe” [2].
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With the advent of gravitational wave astronomy able to observe the binary in-

spirals and mergers of black holes and neutron stars [3–5], the need for high-precision

theoretical predictions of their classical potentials and emerging gravitational radi-

ation has arisen [6]. This is similar to the need for high-precision predictions of

scattering cross section of elementary particles — a highly developed subject in

quantum field theory. A number of complementary classical theoretical approaches

to this central problem in general relativity have been established over recent years

[7–12]. Taking up the parallelism with elementary particles, quantum field theoret-

ical methods of perturbative quantum gravity have proven themselves very efficient

for determining the classical gravitational interactions of black holes.

The gravitational two-body problem has traditionally been approached in a per-

turbative post-Newtonian (PN) weak-field and low-velocity approximation, where

one simultaneously expands in powers of Newton’s constant κ and in the relative ve-

locity of the two bodies v/c that are linked by the virial theorem for a bound system

(v
2

c2
∼ κ2m

c232πr
). The non-relativistic general relativity formalism (NRGR) [13–15] uses

an effective field theory (EFT) to model the massive bodies as point-like massive

particles coupled to the gravitational field, and is valid for widely separated massive

objects. Integrating out the suitably non-relativistically decomposed graviton field

hµν(x) [16] in the path integral yields a Feynman diagrammatic expansion for the

classical effective potential of the black holes and associated gravitational radiation

— see e.g. refs. [17–21]. The suitably non-relativistically decomposed graviton field

hµν(x) is integrated out in the path integral while the worldline trajectories of the

black holes xµi (τi) are kept as classical background sources. The state of the art is

4PN level for the potential [22–32], parts of 5PN [33–35] and 6PN [36–41], and 3PN

[42–44] for the gravitational radiation emitted from a quasi-circular inspiral (see also

ref. [45]). Spin effects may also be taken into account [7, 8, 46, 47], in the conserva-

tive dynamics [48–50] (see refs. [51–57] for important early EFT work) and radiation

[58–63].

Inspired by the progress made calculating scattering amplitudes, approaches in-

volving a post-Minkowskian (PM) expansion in Newton’s constant, which re-sum

the entire PN expansion in velocity, have recently been gaining prominence. For in-

stance, the worldline EFT may also be deployed in a PM weak-field scenario as one

may naturally use perturbative quantum gravity to represent gravitons as a metric

fluctuation about flat Minkowskian space-time. This is also the right approximation

for black hole scattering events or N -body interaction scenarios. A worldline EFT

formalism for the PM expansion was recently established in ref. [64] for conservative

binary dynamics (including tidal effects, see also ref. [65–68]), and has now been

successfully applied to order 3PM (O(G3)) [69]. Earlier worldline-based PM calcula-

tions can be found in refs. [11, 12, 70–72] for the conservative sector, in refs. [73, 74]

for radiation, and in refs. [75–77] for spin effects.

A fruitful alternative approach to capture the classical interactions of massive

2



bodies in gravity has also been explored through a more direct examination of scat-

tering amplitudes in perturbatively quantized gravity. While there are early works

on the subject [78–80], this approach has blossomed in recent years upon employing

modern on-shell methods for scattering amplitudes [81–85]. These works have led

us to the 2PM [86, 87] and 3PM [37, 88, 89] results for the effective gravitational

potential, as well as early results including spin effects [90–96]. The computational

method established so far is somewhat intricate: starting from the scattering am-

plitude of two massive flavored scalar particles minimally coupled to gravity, and

taking a subtle classical limit [85, 97], one matches the amplitudes obtained to those

of an EFT of non-relativistic scalar particles in order to determine its conservative

two-body potential [86, 98]. The so-obtained effective potential is then used to com-

pute observables such as the scattering angle or the periastron advance in the bound

system [64, 99, 100].

Both approaches — involving the worldline EFT and modern scattering ampli-

tudes — agree on the final results for observables and conservative potentials in the

PM expansion; the question of efficiency is a matter of debate (and taste). What

has remained unclear, however, is whether there is a more direct connection between

the amplitude and worldline EFT approaches. The present work fills this gap.

Our key observation is that the Feynman-Schwinger or worldline representation

of the graviton-dressed scalar propagator [101, 102] provides this link. Inserting it

into a time-ordered correlation function of scalars and gravitons yields a precise map

to expectation values of operators in a worldline quantum field theory (WQFT).

This WQFT is the same worldline EFT discussed above [13–15, 64], but with the

important additional ingredient that the worldline trajectories are also quantized.

We write

xµ(τ) = bµ + τvµ + zµ(τ) , (1.1)

where zµ describes the perturbation of a black hole from its original straight-line

trajectory in a binary scattering process, and integrate out zµ in the WQFT path

integral together with the graviton hµν . So both the worldline and the graviton field

are treated on an equal footing in our approach.

Previous results for expressing observables of the black holes (such as their deflec-

tions and radiation) encountered through scattering amplitudes derived in ref. [85]

follow elegantly from correlators in our WQFT. The tedious procedure in the tradi-

tional worldline EFT approach of first finding the effective potential by integrating

out the graviton — and thereafter solving the resulting equations of motion in terms

of a perturbative ansatz for the zµ of eq. (1.1) — is streamlined through WQFT

Feynman rules, which provide a fast track to the integrands yielding the observables.

The classical eikonal of the scattering of two massive particles, encoding the classical

part of the 4-point amplitude, can be calculated directly from the WQFT1. So we

1Interestingly, a similar connection was indeed studied a long time ago in [103] recovering the
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expect our new formalism to not only be of foundational interest in clarifying the

connection between scattering amplitudes and the worldline theory, but also to be

of calculational advantage for precision calculations in the classical gravity two-body

problem. We demonstrate this by establishing the sub-leading corrections to the

deflection and radiation, the latter having not appeared in the literature.

The rest of our paper is organized as follows. In Section 2 we introduce the

Feynman-Schwinger representation of the gravitationally dressed scalar propagator,

and demonstrate how it may be inserted into time-ordered correlation functions.

Then in Section 3 we explain how to move from correlators to S-matrices, by cutting

the propagators of external legs. We also begin our discussion of the eikonal phase of

scalar scattering, demonstrating that it corresponds precisely to the free energy of the

WQFT. In Section 4 we introduce Feynman rules for the WQFT, which we can use to

conveniently calculate expectation values in Fourier space. Using these, in Sections 5

and 6 we respectively calculate the radiation k2〈hµν(k)〉 to 3PM and deflection ∆pµ1 to

2PM order from an inelastic scattering of two black holes, drawing a close comparison

with the equivalent amplitudes-based calculations. Finally, in Section 7 we revisit

the eikonal phase and demonstrate how useful observables, including the deflection

and scattering angle, can be obtained from it. In Section 8 we conclude.

2 Worldline actions versus S-matrices

In this section we show how expectation values of operators in a worldline theory,

corresponding to gravitational observables, can be directly obtained from S-matrices

in the classical limit. The link is formally provided by a worldline representation of

the massive scalar propagator in a fixed gravitational background, which we refer to

as the Feynman-Schwinger form. First we rewrite the worldline action.

2.1 Worldline action

We seek to describe the scattering of two (or more) unbound black holes. The spinless

black holes may be described in an effective field theory (EFT) framework [13] as

relativistic massive particles moving along their worldlines and coupled to gravity:

S = SEH + Sgf +
∑
i

S(i)
pm . (2.1)

SEH is the usual Einstein-Hilbert action (working in D dimensions):

SEH = −2mD−2
Pl

∫
dDx
√
−gR . (2.2)

Using the weak field approximation we expand

gµν = ηµν + κhµν , (2.3)

eikonal result [104, 105] for the ultra-relativistic limit of a string scattering computation.
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where κ = m
1−D/2
Pl , thereafter raising and lowering indices with the “mostly minus”

Minkowski metric ηµν = diag(+1,−1,−1,−1). Our gauge-fixing term Sgf is

Sgf =

∫
dDx

(
∂νh

µν − 1

2
∂µhνν

)2
, (2.4)

which imposes the usual de Donder gauge condition ∂νh
µν = 1

2
∂µhνν .

The point mass action for a single extended object (such as a black hole) moving

along a worldline xµ(τ) and with proper time dτ =
√
gµνdxµdxν reads

Spm = −m
∫

dτ + cR

∫
dτR(x) + cV

∫
dτRµν(x)ẋµẋν + . . . . (2.5)

The first term induces geodesic motion with respect to the metric gµν . In addi-

tion, we allow for non-minimal couplings of the point mass to the gravitational field

parametrized by a priori unknown Wilson coefficients cR/V . There is an infinite num-

ber of terms beyond these two organized in higher powers of the curvature tensor and

derivatives. These terms account for the internal structure of the extended object

to be described. It was argued in ref. [13] that the first two leading terms above do

not contribute to physical observables as they may be removed by a (singular) field

redefinition of hµν . We shall drop them for the time being, yet the cR term will have

a role to play shortly.

In a first-order formalism the point mass action takes the form

Spm = −
∫

dτ

(
pµẋ

µ − 1

2m

[
gµνpµpν −m2

])
, (2.6)

where xµ(τ) describes the position of a black hole along its worldline and we require

gµν ẋ
µẋν = 1 (τ is the proper time). The canonical momentum pµ(τ) is easily solved

for using its algebraic equation of motion: pµ = mgµν ẋ
ν , so it does not represent any

genuine degrees of freedom. Inserting this back into eq. (2.6) yields the first term in

eq. (2.5). Next we consider a shift in the momentum pµ by inserting pµ = p′µ+mgµν ẋ
ν

into the worldline action Spm of eq. (2.6):

Spm = −
∫ ∞
−∞

dτ

(
m

2
gµν ẋ

µẋν +
m

2
− 1

2m
gµνp′µp

′
ν

)
. (2.7)

The algebraic equation of motion for p′µ is trivial: p′µ = 0, so we can drop the third

term. This form of the particle action is superior to the initial one eq. (2.5) as it does

not involve any square roots and only displays a linear coupling of the worldline to

the graviton field hµν in the weak-field expansion.2

2It may equivalently be reached by introducing an einbein on the worldline to lift the point

particle action −m
∫

dτ of eq. (2.5) to the Polyakov form and thereafter picking the proper time

gauge [64].
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2.2 Dressed propagators in the Feynman-Schwinger representation

Next we consider a massive complex scalar field φ(x) coupled to Einstein gravity as

the QFT avatar of a single black hole. For a binary system one simply generalizes

to two differently flavored massive scalars φi(x). The relevant action reads

S ′ = SEH + Sgf +
2∑
i=1

Si ,

with Si =

∫
dDx
√
−g
(
gµν ∂µφ

†
i∂νφi −m2

i φ
†
iφi − ξ R φ

†
iφi

)
,

(2.8)

where we allow for a non-minimal coupling of the scalar field to the background

curvature controlled by the dimensionless parameter ξ. In a fixed gravitational back-

ground the associated Green’s function G(x, x′) of the scalar field obeys the partial

differential equation(
∇µ∇µ +m2 + ξ R

)
G(x, x′) =

√
−g δ(D)(x− x′) , (2.9)

where ∇µ denotes the gravitational covariant derivative, i.e. ∇µ∇µG = ∂µ∂
µG +

Γµµν∂
νG. There exists a worldline path integral representation for G(x, x′) that we

shall now review.

Let us first consider the analogous situation in scalar QED. The Green’s function

GA(x, x′) = 〈Ω|T{φ(x)φ†(x′)}|Ω〉 for a massive charged scalar propagating in an

electromagnetic background Aµ(x) obeys(
DµD

µ +m2
)
GA(x, x′) = δ(D)(x− x′) (2.10)

with Dµ = ∂µ + ieAµ. It was first proposed by Feynman [106] in the birth phase of

QED that this Green’s function has a worldline path integral representation3

GA(x, x′) =

∫ ∞
0

ds e−ism
2

∫ x(s)=x′

x(0)=x

D[x] exp
[
−i
∫ s

0

dσ
(

1
4
ηµν

dxµ

dσ

dxν

dσ
+ eAµ ẋ

µ
)]
,

(2.11)

which reduces to the Schwinger proper time representation of the propagator in the

free (e = 0) case. Notice that σ (and therefore s) has dimensions of m−2, so we

distinguish it from the proper time τ with dimensions of m−1.

This worldline representation of the photon-dressed propagator — which we re-

fer to as the Feynman-Schwinger representation — is very efficient for computing

effective actions at one-loop order, e.g. to compute the Euler-Heisenberg action in

the case of constant electromagnetic field strengths. The generalization to the non-

abelian case is straightforward: simply insert a trace over color states in the path

integrand and replace the gauge field by Aaµ T
a with the generators T a in the repre-

sentation of the scalar. This representation of the Green’s function has been used for

3The derivation of this classic result is nicely reviewed in chapter 33 of ref. [107].
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efficient calculations of one-loop amplitudes and effective actions in gauge theories

[108], and it also arises through the point particle limit of open strings [109] — see

refs. [110, 111] for comprehensive reviews.

In gravity the problem is more intricate and subject to a longer discussion in

the literature. Naively one would expect to simply generalize eq. (2.11) to a curved

background upon promoting ηµν to gµν , plus including possible curvature couplings:

G(x, x′) ∼
∫ ∞

0

ds e−ism
2

∫ x(s)=x′

x(0)=x

D[x] exp
[
−i
∫ s

0

dσ

(
1
4
gµν

dxµ

dσ

dxν

dσ
+ ξ̃ R(x)

)]
.

(2.12)

The first claim of such a representation of the massive scalar Green’s function G(x, x′)

in a gravitational background as a worldline path integral goes back to De Witt [112]

and Parker [113, 114].4 One issue is that the path integral measure becomes metric

dependent, i.e. schematically one has

D[x] = D[x]
∏

0≤σ≤s

√
−detgµν [x(σ)] , (2.13)

where D[x] =
∏

σ dDx(σ) is the standard flat space path integral measure. This

metric dependence may be conveniently controlled through bosonic aµ and fermionic

bµ, cµ “Lee-Yang” ghosts [115]:5∏
0≤σ≤s

√
−detgµν [x(σ)] =

∫
D[a, b, c] exp

[
−i
∫ s

0

dσ
(

1
4
gµν(a

µaν + bµcν
)]
. (2.14)

With these ghosts included all divergences in the worldline QFT have been shown

to cancel, yet a finite counter term 1
4
R(x) remains [101].6

The upshot is the following representation of the scalar Green’s function in a

gravitational background that generalizes eq. (2.11) to the gravitational case [101,

102]:

G(x, x′) =

∫ ∞
0

ds e−ism
2

∫ x(s)=x′

x(0)=x

D[x]

∫
D[a, b, c] (2.15)

exp
[
−i
∫ s

0

dσ

(
1
4
gµν

(
dxµ

dσ

dxν

dσ
+ aµaν + bµcν

)
+ (ξ − 1

4
)R(x)

)]
.

4They wrongly claimed this result with ξ̃ = ξ− 1
3 , with ξ the non-minimal coupling of eq. (2.8).

5The fermionic path integral yields a factor of [−det g] while the bosonic one contributes

[−det g]−1/2 yielding the desired total [− det g]1/2 .
6In non-covariant regularization schemes, such as mode regularization, additional terms propor-

tional to Christoffel symbols appear, − 1
12g

µνgρκgσηΓσµρΓ
η
νκ.
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G(x, x′) = x x′ + x x′

h

+ x x′

h h

+ x x′

h hh

+ . . .

Figure 1: Graphical representation of the Green function G(x, x′) of eq. (2.16) for a

massive scalar moving in a weak gravitational background gµν = ηµν+κhµν . A closed

expression for the Green’s function in momentum space may be found in eq. (3.7).

Writing σ = τ
2m

(where τ is the proper time) and s = T
2m

yields an expression

excitingly close to the worldline action Spm we obtained in eq. (2.7):

G(x, x′) =

∫ ∞
0

dT

2m

∫ x(T )=x′

x(0)=x

D[x] exp
[
−i
∫ T

0

dτ
(m

2
gµν ẋµẋν +

m

2
+ 1

2m
(ξ − 1

4
)R(x)

)]
×
∫
D[a, b, c] exp

[
−i
∫ T

0

dτ
(

1
8m
gµν(a

µaν + bµcν
)]
, (2.16)

that is if we ignore the ghosts and the non-minimal coupling to R. The ghosts

are in fact non-propagating and their purpose in life is to cancel divergences of

coinciding worldline fields, i.e. 〈ẋµ(τ)ẋν(τ)〉 ∼ δ(0). A graphical representation of

the gravitationally dressed Green’s function in the weak-field approximation is given

in Figure 1.

2.3 From the S-matrix to the worldline

Using the gravitationally dressed Green’s function G we can now write S-matrix

elements as expectation values of operators in the worldline theory. Assuming a

fixed gravitational background we write G as a two-point function via a genuine

quantum field theoretical path integral:

Gi(x, x
′) = Z−1

i

∫
D[φi]φi(x)φ†i (x

′) eiSi . (2.17)

For the black hole scattering we are interested in we require the S-matrix element of

two scalars with or without a final state graviton φ1 φ2 → φ1 φ2(+h) in the classical

limit, i.e. suppressing virtual loops in the process. These processes may be computed

by inserting two gravitationally dressed Green’s functions Gi with masses mi into

the gravitational path integral. Consider the time-ordered correlator:

〈Ω|T{hµν(x)φ1(x1)φ†1(x′1)φ2(x2)φ†2(x′2)}|Ω〉

= Z̃−1

∫
D[hµν , φ1, φ2]hµν(x)φ1(x1)φ†1(x′1)φ2(x2)φ†2(x′2) eiS

′

= Z−1

∫
D[hµν ]hµν(x)G1(x1, x

′
1)G2(x2, x

′
2) ei(SEH+Sgf) .

(2.18)
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In the last step of integrating out the scalars φ1 and φ2 we have neglected virtual

scalar loops that are mediated via gravitons, which is acceptable in the classical limit.

For a pure 2→ 2 scattering without a radiated graviton simply drop hµν(x) above.

The S-matrix then follows via LSZ reduction and Fourier transforming to mo-

mentum space:

〈φ1φ2(+h)|S|φ1φ2〉 =Z−1

∫
dD[xi, x

′
i, x] eipi·xi−ip

′
i·xi′ (−ik·x) (2.19)∫

D[hµν ] (εµν(k)hµν(x)) G1(x1, x
′
1)G2(x2, x

′
2) ei(SEH+Sgf)

∣∣∣amputated
connected

.

Note that in the path integral above pure scalar loops never appear, which is why

this relation only holds in the ~→ 0 limit. The classical limit on the right-hand side

then additionally suppresses virtual gravitons in the loops, as well as mixed loops

of gravitons and worldline fluctuations that we will describe shortly. Now inserting

the worldline path integral representation of the Gi from eq. (2.16) on the right-

hand side of eq. (2.19) we see that the emerging action in the exponent of the path

integral — which should now be interpreted as a QFT on the worldline coupled to

the gravitational path integral — is very close to the worldline expression we arrived

at in eqs. (2.1) and (2.7). Yet, there are two decisive differences that we shall discuss

in turn. Firstly, the worldline action of eq. (2.7) calls for an integral over infinite

total proper time τ ∈ [−∞,∞], whereas in eq. (2.16) we integrate over an ensemble

of finite proper times τ ∈ [0, T ]. Secondly, there is the coupling to the Ricci scalar

along the worldline appearing in eq. (2.16), which was in principle also allowed in

eq. (2.5).

We shall deal with the first point in the following section as it requires a detailed

analysis of the LSZ reduction. Addressing the second point, we argue that the

non-minimal gravitational ξ-coupling of scalars in the action (2.8) is irrelevant for

the classical limit of the S-matrix φ1 φ2 → φ1 φ2(+h). For this consider the leading

Feynman vertex originating from the interaction term ξ
∫

dDx
√
−g Rφ†iφi in eq. (2.8):

µν

φi

φi

q
= iξ κ

(
q2ηµν − qµqν

)
. (2.20)

The important point is that it couples quadratically to the transfered momentum

q. As was pointed out in ref. [85] the classical limit of a φ1 φ2 → φ1 φ2 scattering

process amounts to taking the momentum transfer to zero (q = ~q̄ with ~ → 0).

Hence, there is no contribution of this term to the classical limit of the amplitude.7

7Note that here it is important that q appears quadratically: The linear terms in q in the

numerators turn out to be the leading contributions as the q-independent (“superclassical”) terms

cancel out, see [85] and an explicit demonstration in section 5.1.
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So we may conveniently set ξ = 1
4

in eq. (2.16) to remove it from the worldline action.

This argument is in line with the arguments presented in ref. [13] for disregarding

the Ricci scalar coupling on a worldline quantum field theory in the classical limit.

In summary: we have shown that there is a direct connection between scalar-

graviton S-matrices and the worldline QFT in the classical limit via the path integral

representation of the gravitationally dressed scalar propagator given in eq. (2.16).

3 Graviton-dressed propagator for a massive scalar field

In the previous section we showed how the Feynman-Schwinger representation of a

gravitationally dressed scalar propagator could be inserted into a QFT correlator,

yielding an expectation value in the worldline theory. However, to study S-matrices

we must still apply LSZ reduction. This will convert correlators into S-matrices by

cutting the propagators on their external legs, sending those states to the bound-

ary where they interact weakly. In this section we achieve this from the worldline

perspective by first deriving a momentum space representation of the gravitationally

dressed propagator. The overall effect of putting the scalar legs on-shell is to switch

from a worldline action integrated over a finite proper time domain to one over an

infinite domain τ ∈ [−∞,∞]. We will then compare with the expectation values one

would compute in a worldline QFT. As our first example we examine the eikonal

phase of a 2→ 2 S-matrix in the classical limit, which corresponds to the free energy

of the worldline theory.

3.1 Momentum space representation

Let us now introduce a master formula for the gravitationally dressed two-point

function of a massive scalar field coupled to N external gravitons with all legs off-

shell, i.e. the momentum space version of G(x, x′) in Figure 1. We work in the non-

minimally coupled theory with ξ = 1/4 in eqs. (2.8) and (2.15). To our knowledge

only the single-graviton N = 1 case has been established so far [116].

Starting from the position space propagator G(x, x′) in eq. (2.15) we insert a

weak gravitational background of the form

hµν =
N∑
l=1

ε(l)µνe
i kl·x(σl) (3.1)

into the path integral representing N (off-shell) gravitons — we do not require k2
l = 0

or kl ·εl = 0. In order to deal with the boundary conditions of the xµ(σ) path integral

we perform a background field expansion about straight line trajectories (which solve

the flat space equations of motion):

xµ(σ) = xµ + ∆xµ
σ

s
+ qµ(σ) , ∆xµ = x′µ − xµ . (3.2)
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Inserting this and Fourier transforming eq. (2.15) in x and x′ to the momentum space

variables p and p′ for the scalar particles yields8

D(p, p′, {ε(l),kl}) =

(
−iκ

4

)N ∫ ∞
0

ds e−is(m
2−iε)

∫
dDx

∫
dDx′ei(p·x−p

′·x′)− i
4s

∆x2 (3.3)

〈 N∏
l=1

∫ s

0

dσl ε
(l)
µν

(
ẋµ(σl)ẋ

ν(σl) + aµ(σl)a
ν(σl) + bµ(σl)c

ν(σl)
)
eikl·x(σl)

〉
.

We take p as ingoing and p′ as outgoing. The expectation value above is defined as

an unnormalized path integral over the fluctuations q and the ghost fields:

〈O(a, b, c, q)〉 :=

∫
D[q, a, b, c]O(a, b, c, q) e−i

∫ s
0 dσ 1

4
(q̇2+a2+b·c) . (3.4)

All fluctuating fields now have vanishing boundary conditions.

Our task now is to evaluate the correlator in eq. (3.3), and then take the Fourier

transform. For this we insert the relevant two-point functions on the worldline:

〈qµ(σ)qν(σ′)〉 = 2iηµν ∆(σ, σ′) ,

〈aµ(σ)aν(σ′)〉 = −2iηµν δ(σ − σ′) ,
〈bµ(σ)cν(σ′)〉 = 4iηµν δ(σ − σ′) ,

(3.5)

where the Feynman propagator on a worldline of finite length s is (see e.g. ref. [110])

∆(σ, σ′) = 1
2
|σ − σ′|+ σσ′

s
− σ + σ′

2
, with σ, σ′ ∈ [0, s] . (3.6)

It is a straightforward exercise to evaluate the path integrals, though as the details

are somewhat involved a full discussion is relegated to Appendix A. The final result

is a compact master formula for the gravitationally dressed scalar propagator:

D(p, p′, {ε(l),kl}) =

(
−iκ

4

)N
δ(D)(p− p′ +

N∑
l=1

kl)

∫ ∞
0

ds eis(p
′ 2−m2+iε)

N∏
l=1

∫ s

0

dσl ε
(l), µν

[
∂εµl ∂ε

ν
l

+ ∂αµl ∂α
ν
l

+ ∂βµl ∂γ
ν
l

]
exp

[
−(p+ p′) ·

N∑
l=1

(iklσl + εl)

− i
N∑

l,l′=1

{ |σl − σl′|
2

kl · kl′ − i sign(σl − σl′) εl · kl′ (3.7)

+ δ(σl − σl′)(εl · εl′ + αl · αl′ − 4γl · βl′)
}]∣∣∣∣∣

εl=αl=βl=γl=0

.

8We include the iε prescription to make the s integral well-defined. It leads to the bulk Feynman

propagator in the final result.
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Here we have introduced fiducial “polarization” vectors εµl and αµl , as well as anti-

commuting vectors βµl and γµl . The expression is remarkably similar (in the double

copy sense) to the one obtained for the N -photon-dressed [117, 118] propagator :

to insert a photon leg in lieu of a graviton one simply takes a single ∂εµl derivative

there9.

To better understand this formula it is instructive to work out the single graviton

(N = 1) case. Noting sign(0) = 0 and the cancellation of the δ(0) terms when all

polarization derivatives hit the same leg l = l′, i.e.

ε(l), µν
[
∂εµl ∂ε

ν
l

+ ∂αµl ∂α
ν
l

+ ∂βµl ∂γ
ν
l

]
(εl · εl + αl · αl − 4γl · βl) = (2 + 2− 4)ε(l), µµ = 0

one straightforwardly works out

D(p, p′, k; ε) =
i

p2 −m2 + iε

i

p′ 2 −m2 + iε
(− iκ

4
) δ(D)(p−p′+k) (p+p′)µ (p+p′)ν εµν ,

(3.8)

reproducing ref. [116]. Amputating the scalar legs and stripping off the momentum-

conserving δ(D)(P ) function and polarization tensor we obtain the three-point vertex

− iκ

4
(p+ p′)µ (p+ p′)ν . (3.9)

Let us compare this result to the QFT three-point vertex of two scalars and a gravi-

ton. For a general ξ coupling there are two vertices: the three-point interaction

vertex between two scalars ϕ and a graviton hµν from the minimal coupling (all

scalar momenta ingoing):

q

p p′
= −iκ

[
p(µp′ν) − ηµν

2

(
p · p′ −m2

)]
(3.10)

To this we need to add the non-minimal ξ coupling vertex of eq. (2.20)

µν

p

p′

q
+ µν

p

p′

q
=− iκ

[
p(µp′ν) − ηµν

2

(
p · p′ −m2

)
− ξ

(
q2ηµν − qµqν

)]
=− iκ

[
1
4
(p+ p′)µ(p+ p′)ν + (1

4
− ξ)

(
q2ηµν − qµqν

)]
(3.11)

where — crucially — in the last line we have used the on-shell condition p2 = m2 = p′2

on the scalar legs. We have a match for ξ = 1
4
, but only if we put the scalar legs

on-shell.10

9It would be interesting to work out the double copy relation to the N -gluon dressed propagator

found in [119] in detail.
10This might be in fact the simplest derivation of the ξ̃ = ξ − 1

4 relation in eq. (2.15).
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It is a simple exercise to also include the ξ̃R[x(τ)] term in the worldline action

and perform the path integral for N = 1 as well. One quickly arrives at the above

expression for the general ξ case.

3.2 Putting the scalar legs on shell

Now that we have a momentum space representation of the gravitationally dressed

scalar propagator we can proceed to put the scalar legs on-shell. As we have al-

ready seen, this is necessary in order to match to the QFT expression which is then

effectively a form factor F (p, p′; {ki, εi}) with off-shell graviton legs:

F (p, p′|{ki, εi}) = 〈−p′|
N∏
i=1

εi · h(ki)|p〉 = p p′

ε1, k1 ε2, k2
. . . εn, kn

. (3.12)

Let us perform the LSZ reduction on D(p, p′, {ε, k}) of eq. (3.7) now. First we put

the outgoing p′ scalar leg on shell:

− i(p′ 2 −m2 + iε)D(p, p′, {ε, k})
∣∣∣
p′ 2=m2−iε

. (3.13)

Therefore we pull the inverse propagator into the s integral in eq. (3.7) and use

− i(p′ 2 −m2 + iε)

∫ ∞
0

ds eis(p
′ 2−m2+iε)Ω(s) = −

∫ ∞
0

ds
d

ds

(
eis(p

′ 2−m2+iε)
)

Ω(s)

(3.14)

where we have introduced

Ω(s) :=

(
−iκ

4

)N
δ(D)(p− p′ +

N∑
l=1

kl)
N∏
l=1

∫ s

0

dσl ε
(l), µν

[
∂εµl ∂ε

ν
l

+ ∂αµl ∂α
ν
l

+ ∂βµl ∂γ
ν
l

]
exp

[
−(p+ p′) ·

N∑
l=1

(iklσl + εl)− i
N∑

l,l′=1

{ |σl − σl′ |
2

kl · kl′ − i sign(σl − σl′) εl · kl′

+ δ(σl − σl′)(εl · εl′ + αl · αl′ − 4γl · βl′)
}]∣∣∣∣∣

εl=αl=βl=γl=0

. (3.15)

Partially integrating eq. (3.14) and using Ω(0) = 0 yields

− i(p′ 2 −m2 + iε)D(p, p′, {ε, k})
∣∣∣
p′ 2=m2−iε

= Ω(∞)
∣∣∣
p′ 2=m2−iε

. (3.16)

The overall effect is therefore to send s→∞.11.

11See also the recent [120] making the same argument
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It remains to put the incoming p scalar leg on shell. For this we first go to “center

of mass” proper time coordinates:

σ̃l := σl − σ+ with σ+ =
1

N

N∑
l=1

σl , (3.17)

and we pick up the constraint
∑

l σ̃l = 0. The N -fold integral over the σl’s may then

be rewritten as

N∏
l=1

∫ ∞
0

dσl . . . =
N∏
l=1

∫ ∞
−∞

dσ̃l

∫ ∞
0

dσ+ δ

(
N∑
l=1

σ̃l

)
. . . (3.18)

Note the change of the integration region to R in the new proper-time coordinates σ̃l
matching the one performed in the worldline QFT. Moreover, as σl−σl′ = σ̃l− σ̃l′ the

variable σ+ only couples to the exp[−i(p+p′) ·
∑

l klσl] term in Ω(∞) from eq. (3.15).

One then easily performs the σ+ integral:∫ ∞
0

dσ+e
−i(p+p′)·

∑N
l=1 klσl = e−i(p+p

′)·
∑N
l=1 klσ̃l

∫ ∞
0

dσ+e
i(p+p′)·(p−p′)σ+ =

ie−i(p+p
′)·

∑N
l=1 klσ̃l

p2 −m2 + iε
,

where we have used total momentum conservation and the mass-shell condition for

p′. But this precisely extracts the incoming scalar propagator!

Hence the net effect of LSZ reducing the graviton dressed propagator of eq. (3.7)

to a form factor is very mild and can be done explicitly: drop the overall s integral,

insert a total proper-time delta function and take the proper time integrals to run

over R.12 The final result is (dropping the tildes on σ)

F (p, p′|{ε(l), kl}) =

(
−iκ

4

)N
δ(D)(P )

N∏
l=1

[∫ ∞
−∞

dσl ε
(l), µν

(
∂εµl ∂ε

ν
l

+ ∂αµl ∂α
ν
l

+ ∂βµl ∂γ
ν
l

)]
δ

(
N∑
l=1

σl

)
exp

[
−(p+ p′) ·

N∑
l=1

(iklσl + εl)− i
N∑

l,l′=1

{ |σl − σl′ |
2

kl · kl′ (3.19)

− i sign(σl − σl′) εl · kl′ + δ(σl − σl′)(εl · εl′ + αl · αl′ − 4γl · βl′)
}]∣∣∣∣∣εl = αl = βl = γl = 0;

p2 = m2 − iε = p′ 2

with P = p − p′ +
∑

l kl. This is a surprisingly compact result for an N -graviton

emission expression.

12These steps to put the scalar legs on shell apply generically to any Feynman-Schwinger repre-

sentation of a gluon, photon or graviton dressed propagator, and have to the best of our knowledge

not been observed before.
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3.3 Link to position space expression

Let us see how this form factor relates to the analogous expressions one would com-

pute in a worldline QFT (WQFT). Here the starting point is that of eq. (2.15), except

with an integral over infinitely extended proper times:

Ξ(b, v; {ε(l), kl}) :=

∫
D[x]

∫
D[a, b, c] exp

[
−i
∫ ∞
−∞

dσ
(

1
4
gµν (ẋµẋν + aµaν + bµcν)

)]
,

(3.20)

where again we begin with a collection of plane waves for the graviton with momenta

kl and polarizations ε(l): eq. (3.1). This is equivalent to

Ξ(b, v;{ε(l), kl}) = (3.21)(
−iκ

4

)N ∫
D[x]

∫
D[a, b, c]

∞∏
l=1

[∫ ∞
−∞

dσl ε
µν
l

(
ẋµ(σl)ẋ

ν(σl) + aµ(σl)a
ν(σl)

+ bµ(σl)c
ν(σl)

)
eikl·x(σl)

]
exp
[
−i
∫ ∞
−∞

dσ

(
1

4

(
ẋ2(σ) + a2(σ) + b(σ) · c(σ)

))]
.

We note from the action appearing in the last exponential that the momentum

associated to xµ is pµ = −1
2
ẋµ, which is somewhat unconventional. Inserting the

proper time τ = 2mσ as done above eq. (2.16) would yield the canonical relation.

We now consider the background field expansion for xµ(σ):

xµ(σ) = bµ + vµ σ + zµ(σ) . (3.22)

In order to integrate out the zµ field and the ghosts we use generic translation-

invariant propagators:

〈zµ(σ)zν(σ′)〉 = 2iηµν ∆(σ − σ′) ,
〈aµ(σ)aν(σ′)〉 = −2iηµν δ(σ − σ′) ,
〈bµ(σ)cν(σ′)〉 = +4iηµν δ(σ − σ′) .

(3.23)

Concerning ∆(σ) we shall at this point only assume that ∂σ∂σ′∆(σ−σ′) = −δ(σ−σ′),
which holds true for the Feynman as well as retarded (or advanced) propagator on

the infinitely extended worldline. With this one straightforwardly finds (again going
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to “center of mass” proper time coordinates as we did in eq. (3.17)):

Ξ(b, v; {ε(l), kl}) = Ξ0 δ

(
N∑
l=1

kl · v

)
ei

∑N
l=1 kl·b (3.24)

(
−iκ

4

)N N∏
l=1

[∫ ∞
−∞

dσl ε
(l), µν

(
∂εµl ∂ε

ν
l

+ ∂αµl ∂α
ν
l

+ ∂βµl ∂γ
ν
l

)]
δ

(
N∑
l=1

σl

)
exp

[
v ·

N∑
l=1

(iklσl + εl)− i
N∑

l,l′=1

{
∆(σl − σl′) kl · kl′

− i ∂σl∆(σl − σl′) εl · kl′ + δ(σl − σl′)(εl · εl′ + αl · αl′ − 4γl · βl′)
}]∣∣∣∣∣

εl=αl=βl=γl=0

.

Here Ξ0 is an overall measure factor

Ξ0 := lim
T→∞

[ i

(2πT )d/2
e−iTv

2/2
]

(3.25)

that we may drop as it falls out of normalized correlation functions. Now if we

identify the boundary conditions in terms of the momenta as (recall pµ = −1
2

dxµ
dσ

)

pµ = −1

2
ẋ(−∞) = −v

µ

2
+
qµ

2
, p′µ = −1

2
ẋ(+∞) = −v

µ

2
− qµ

2
, (3.26)

where q is the total momentum transfer of the scattered scalar particle, we see that

(3.24) is dauntingly close to the form factor expression (3.19) upon noting that

−v = p+ p′! Concretely, if we pick the worldline propagator to be of Feynman type,

∆(σ) =
|σ|
2
, (3.27)

we arrive at our central relation linking the QFT form factor to the WQFT correlator:

Ξ(b, v; {ε(l), kl})
Ξ0

= δ

(
N∑
l=1

kl · v

)
ei

∑N
l=1 kl·b F (p, p′|{ε(l), kl}) , (3.28)

where the use of Feynman propagators is understood in the form factor. Note the

emergence of the total momentum transfer q =
∑N

l=1 kl in the above.

So that the significance of eq. (3.28) is properly understood, let us briefly recap

the steps that have led us here. We started with the scalar Green’s function G(x, x′)

in a gravitational background (2.15), which can be inserted into time-ordered correla-

tion functions containing pairs of distinctly flavored scalars — see eq. (2.18). Moving

from time-ordered correlators to S-matrices required us to obtain a momentum space

representation of G(x, x′) — D(p, p′, {ε(l), kl}), given in eq. (3.7) — and then cut into

its external scalar legs, yielding the form factor F (p, p′|{ε(l), kl}). What eq. (3.28)
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therefore tells us — provided the external legs are on shell — is that we can identify

S-matrices with expectation values in the WQFT using the classical ~ → 0 limit.

The expectation values in the n-body case are13

〈
O(h, {xi})

〉
WQFT

= Z−1
WQFT

∫
D[hµν ]

∫ n∏
i=1

D[zi, ai, bi, ci]O(h, {xi})ei(SEH+Sgf)

exp
[
−i

n∑
i=1

∫ ∞
−∞

dτi
mi

2
gµν (ẋµi ẋ

ν
i + aµi a

ν
i + bµi c

ν
i )
]
, (3.29)

where gµν(x) = ηµν + κhµν(x) and xi(τi) = bi + viτi + zi(τi). ZWQFT is the partition

function

ZWQFT := const×
∫
D[hµν ]

∫ n∏
i=1

D[zi, ai, bi, ci] e
i(SEH+Sgf)

exp
[
−i

n∑
i=1

∫ ∞
−∞

dτi
mi

2
gµν (ẋµi ẋ

ν
i + aµi a

ν
i + bµi c

ν
i )
]
, (3.30)

and const ensures that ZWQFT = 1 in the non-interacting case (κ = 0).

3.4 Towards the eikonal phase

Equipped with eq. (3.28) we discover an intriguing relation between the free energy

of the WQFT and the eikonal phase of a 2→ 2 scalar S-matrix in the classical limit.

The exponentiated eikonal phase is defined as a Fourier transform of the S-matrix

into impact parameter space transverse to the (D − 2)-dimensional scattering plane

[105, 121]:

eiχ :=
1

4m1m2

∫
dDq

(2π)D−2
δ(q · v1) δ(q · v2) eiq·b 〈φ1φ2|S|φ1φ2〉 . (3.31)

where b = b2 − b1 and q = p′1 − p1 = p2 − p′2 is the momentum transfer from particle

1 to 2 (pi momenta ingoing and p′i momenta outgoing).

An immediate corollary of eq. (2.19) and eq. (3.28) and a central result of our

work is then the simple relation (holding in the classical limit)

ZWQFT = eiχ , (3.32)

i.e. the free energy of the WQFT is to be identified with the eikonal phase. This is

a rather direct link between the worldline theory and the QFT S-matrix.14 We shall

evaluate the eikonal phase to 2PM in Section 7 and establish a relationship to the

classical impulse ∆pµi = qµ and scattering angle θ.

13Factors of Ξ0 are absorbed into the path integral measure D[zi].
14Note that there is a factor 1

2mi
for each worldline, which comes from inserting σi = 1

2mi
τi as

described above.
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3.5 Feynman vs. retarded propagators

Let us finally comment on the use of Feynman propagators above versus retarded (or

advanced) ones in the WQFT. The retarded (or advanced) worldline propagators on

an infinite worldline read

∆r/a(σ) =
|σ|
2
± σ

2
. (3.33)

We claim that switching between these propagators simply amounts to performing

shifts in the background parameters bµ and vµ. This is best seen in a classical

setting where one seeks to solve an inhomogeneous second-order ordinary differential

equation for xµ(σ). Writing the solution as xµ(σ) = bµ + vµσ + zµ(σ), the bµ and

vµ terms represent a solution to the homogeneous (force-free) equation, whereas the

perturbatively constructed zµ is a specific solution to the inhomogeneous solution.

The choice of propagator is equivalent to picking a specific inhomogeneous solu-

tion. Hence all choices for worldline propagators are valid and physically equivalent,

but the meaning of the background constants changes. To emphasize this we will

denote them as follows: for a retarded propagator bµ and vµ describe the initial

worldline trajectory (σ → −∞), for an advanced propagator b′µ and v′µ give the

final worldline (σ → +∞), and for a Feynman propagator b̂µ and v̂µ an in-between

state (σ = 0). So we identify pµ = mvµ, p′µ = mv′µ and p̂µ = 1
2
(pµ + p′µ) = m̂v̂µ as

the ingoing, outgoing, and average momenta respectively, where m̂2 = m2

2
(1 + v · v′)

is chosen to ensure v̂2 = 1. One may directly compute the shifts in bµ and vµ for

transitions between the propagators from their definitions in eqs. (3.27) and (3.33).

The choice of Feynman vs. retarded propagators is also meaningful for the gravi-

tons, but in a different way. Feynman propagators (as one uses when calculating

scattering amplitudes) are symmetric under time reversal, which is consistent with

purely conservative scattering. For a classically radiating system one instead should

use retarded propagators. This will affect observables like the impulse ∆pµi , which

after integration will have a different form. This important subtlety was recently dis-

cussed in the context of the 3PM deflection in ref. [122], resolving a tension with the

high-energy limit [89, 97]. It was argued earlier that, from an amplitudes perspective,

this tension would be resolved by including the full soft region [123].

4 WQFT Feynman rules

In the previous section we saw a clear link between gravitational S-matrices and

expectation values of operators evaluated in the WQFT. These involve path integrals

over not only the gravitational field hµν , but also the deflection zµ and ghosts aµ,

bµ, cµ. In this section we develop a set of Feynman rules which allow us to calculate

these expectation values directly. By taking a diagrammatic approach we invite

comparisons with the diagrams used to describe scattering amplitudes.
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We treat the gravitational field hµν(x) and deflection zµ(τ) on an equal footing.

As we are not interested in quantum corrections we will work at tree level, so we can

ignore the ghosts. The graviton is most naturally described in momentum space; the

deflection in energy space (or frequency, using E = ~ω):

hµν(x) =

∫
k

e−ik·xhµν(k) , zµ(τ) =

∫
ω

e−iωτzµ(ω) , (4.1)

where we have introduced the shorthands∫
k

:=

∫
d4k

(2π)4
,

∫
ω

:=

∫
dω

2π
. (4.2)

From this point onwards we specialize to D = 4. We will also absorb factors of (2π)

into the δ-functions:

δ−(k) := (2π)4δ(4)(k) , δ−(ω) := (2π)δ(ω) . (4.3)

The Einstein-Hilbert action (2.2) being integrated over all positions x implies the

usual momentum conservation at those interaction vertices; vertices arising from

Spm in (2.7) instead conserve the energy ω.

First consider the Einstein-Hilbert action. The Feynman rules arising from here

are the usual ones involving only the graviton hµν , with propagator

k

hµν(x) hρσ(y) = iPµν;ρσ

∫
k

e−ik·(x−y)

k2
, (4.4)

where Pµν;ρσ = ηµ(ρησ)ν − 1
2
ηµνηρσ. We are flexible about the iε prescription: either

write the denominator as k2 + iε, making it a time-symmetric Feynman propagator,

or (k0 ± iε)2 − k2, making it retarded/advanced. In the retarded case the poles in

k0 occur at k0 = ±
√

k2 − iε: as both are below the real axis the integration contour

must be closed in the lower-half plane. So the integral is non-zero only when x0 > y0,

thus ensuring causality.

Next we consider the worldline action Spm given in eq. (2.7):

Spm = −m
2

∫ ∞
−∞

dτ
(
gµν ẋ

µẋν + 1
)
. (4.5)

For now ignoring the parts containing hµν , we expand ẋµ(τ) = vµ + żµ(τ) to obtain

Spm|hµν=0 = −
∫ ∞
−∞

dτ
(
m+mηµνv

µżν +
m

2
ηµν ż

µżν
)
, (4.6)

having used ηµνv
µvν = 1. Both the first term (a constant) and the second term (a

boundary term) we can ignore; the third gives us our propagator for zµ:

ω

zµ(τ1) zν(τ2) = −iη
µν

m

∫
ω

e−iω(τ1−τ2)

(ω ± iε)2
=
iηµν

2m
(|τ1 − τ2| ± (τ1 − τ2)) . (4.7)
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These are the retarded/advanced versions of the propagator, which are non-zero

when τ1 > τ2 or τ1 < τ2 respectively. Using σ = τ
2m

we see a precise match for the

same propagator given earlier (3.23). We define the Feynman propagator as simply

the averaged combination of the retarded/advanced propagators.15 As we explained

in Section 3.4, the correct interpretation of bµ and vµ is sensitive to the choice of

worldline propagator.

Finally we proceed to consider worldline interactions, all of which involve the

gravitational field hµν . As Spm depends on the gravitational field only through gµν =

ηµν +m−1
Pl hµν (and not the inverse metric gµν) this conveniently ensures that all such

vertices are linear in hµν . We extract the τ dependence from hµν when it is evaluated

on the worldline of a black hole:

hµν(x(τ)) =

∫
k

eik·(b+vτ+z(τ))hµν(−k) =
∞∑
n=0

in

n!

∫
k

eik·(b+vτ) (k · z(τ))n hµν(−k)

=
∞∑
n=0

in

n!

∫
k,ω1,...,ωn

eik·bei(k·v+
∑n
i=1 ωi)τ

(
n∏
i=1

k · z(−ωi)

)
hµν(−k) .

(4.8)

The product on zµ(−ωi) produces a tower of vertices which are fed into the interacting

part of the action Sint
pm = Spm − Spm|hµν=0:

Sint
pm = − m

2mPl

∫ ∞
−∞

dτ hµν(x(τ))ẋµ(τ)ẋν(τ)

= − m

2mPl

∫ ∞
−∞

dτ hµν(x(τ))
(
vµvν + 2v(µżν)(τ) + żµ(τ)żν(τ)

)
.

(4.9)

We obtain

Sint
pm = − m

mPl

∞∑
n=0

in

n!

∫
k,ω1,...,ωn

eik·bδ−
(
k · v +

n∑
i=1

ωi

)
hµν(−k)

(
n∏
i=1

zρi(−ωi)

)
×(

1

2

(
n∏
i=1

kρi

)
vµvν +

n∑
i=1

ωi

(
n∏
j 6=i

kρj

)
v(µδν)

ρi
+

n∑
i<j

ωiωj

(
n∏

l 6=i,j

kρl

)
δ(µ
ρi
δν)
ρj

)
,

(4.10)

having integrated over τ to extract the energy-conserving δ-function. When n = 0

only the first term in the second line is included; when n = 1 only the first two terms.

Let us see how the Feynman rules are read off using some explicit examples. At

zeroth order in zµ:

Sint
pm

∣∣
z0

= − m

2mPl

∫
k

eik·bδ−(k · v)hµν(−k)vµvν . (4.11)

15For the graviton such an averaging procedure would produce only the real part of its Feynman

propagator. The missing imaginary part corresponds to dissipation; however, on the worldline there

is no dissipation and hence no imaginary part.
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This term gives rise to the stress-energy tensor T µν(k) = meik·bδ−(k · v)vµvν (see e.g.

ref. [92]) which we interpret as a classical source for hµν . The Feynman rule is

hµν(k)

= −i m

2mPl

eik·bδ−(k · v)vµvν , (4.12)

with k outgoing. It is a tadpole: the dotted line represents the worldline, and is

intended only as a visual aid. The linear terms in zµ are

Sint
pm

∣∣
z

= −i m

2mPl

∫
k,ω

eik·bδ−(k · v + ω)hµν(−k)zρ(−ω)
(
2ωv(µδν)

ρ + vµvνkρ
)
, (4.13)

from which we read off the two-point vertex:

hµν(k)

zρ(ω)

=
m

2mPl

eik·bδ−(k · v + ω)
(
2ωv(µδν)

ρ + vµvνkρ
)
. (4.14)

The energy ω is also taken as outgoing. Finally, to quadratic order in zµ:

Sint
pm

∣∣
z2

=
m

2mPl

∫
k,ω1,ω2

eik·bδ−(k · v + ω1 + ω2)hµν(−k)zρ1(−ω1)zρ2(−ω2)×(
1

2
kρ1kρ2v

µvν + ω1kρ2v
(µδν)

ρ1
+ ω2kρ1v

(µδν)
ρ2

+ ω1ω2δ
(µ
ρ1
δν)
ρ2

)
.

(4.15)

The associated trivalent Feynman vertex is

hµν(k)

zρ1(ω1)
zρ2(ω2)

= i
m

mPl

eik·bδ−(k · v + ω1 + ω2)× (4.16)(
1

2
kρ1kρ2v

µvν + ω1kρ2v
(µδν)

ρ1
+ ω2kρ1v

(µδν)
ρ2

+ ω1ω2δ
(µ
ρ1
δν)
ρ2

)
.

While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2−n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m−1
Pl . To rectify this we might

try rescaling zµ → m−1
Pl z

µ, similar to how we write gµν = ηµν + m−1
Pl hµν for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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The three vertices given above will be sufficient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:

V WL,µν
ρ1···ρn (k;ω1, · · · , ωn) = in−1 m

mPl

eik·bδ−
(
k · v +

n∑
i=1

ωi

)
× (4.17)(

1

2

(
n∏
i=1

kρi

)
vµvν +

n∑
i=1

ωi

(
n∏
j 6=i

kρj

)
v(µδν)

ρi
+

n∑
i<j

ωiωj

(
n∏

l 6=i,j

kρl

)
δ(µ
ρi
δν)
ρj

)
.

An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:

V WL,µν
ρ1...ρn+1

(k;ω1, . . . , ωn, 0) =
∂

∂bρn+1
V WL,µν
ρ1...ρn

(k;ω1, . . . , ωn) . (4.18)

This will be important when we return to the eikonal phase in Section 7.

5 Radiation

Having set up the worldline Feynman rules we begin with our first application: cal-

culating the radiation far away from a source. For simplicity, let us first consider a

single black hole. We calculate k2〈hµν(k)〉WQFT for k2 = 0, where the expectation

value of an operator in the WQFT was defined in eq. (3.29). This requires us to

draw diagrams with a single outgoing graviton line, which is equivalent to solving

Einstein’s equation for hµν(x). For a single black hole

−ik2〈hµν(k)〉WQFT = −i m

2mPl

eik·b δ−(k · v)vµvν , (5.1)

which is simply the tadpole in eq. (4.12).16 In other words, hµν is directly sourced

by the stress-energy tensor.

Like in Section 3.1, we compare this with the three-point interaction vertex

between two complex scalars ϕ and a graviton hµν :

k

p p′
= −iκ

[
p(µp′ν) − ηµν

2

(
p · p′ −m2

)]

= −iκ
[
p̂µp̂ν +

1

4

(
ηµνk2 − kµkν

)]
.

(5.2)

In the second equality we have inserted p = p̂+ k
2
, p′ = p̂− k

2
, and using the mass-shell

conditions p2 = p′2 = m2 we find that p̂2 = m2 − k2

4
and p̂ · k = 0. In the classical

16Contracting with Pµν;ρσ on an outgoing on-shell graviton line is unnecessary due to the trace-

lessness of the polarization tensor.
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limit we write kµ = ~k̄µ and send ~ → 0, so we can discard the k-dependent terms.

Finally inserting p̂µ = mvµ,17 we see that

k2〈hµν(k)〉WQFT =
i

2m
eik·bδ−(k · v) lim

~→0
Mµν

GR(p, k) . (5.3)

The graviton from a single black hole is therefore identified with the three-point

amplitude (with the polarization tensor εµν stripped away).

This identity follows naturally from our discussion in Sections 2 and 3. The ex-

ponential and δ-function factors come from the central relationship in eq. (3.28); the

factor of 1
2m

from replacing σ = τ
2m

. The interpretation of a single black hole radiat-

ing a graviton as a massive three-point amplitude has been widely studied elsewhere,

including for higher spins [91, 92]. The non-spinning black hole is associated with

the Schwarzschild solution; a spinning black hole with the Kerr solution [124]. The

corresponding double copies are closely related to the so-called Kerr-Schild double

copy [125–127].

5.1 Leading order (2PM)

Let us now examine the radiation emitted from the inelastic scattering of a pair of

non-spinning black holes at leading order (2PM). To begin with consider the five-

point scattering amplitude:

εµνMµν
GR(pi, p

′
i, k) =

p1 p′1

p2 p′2

k (5.4)

= +

 + + + (1↔ 2)

 ,

where εµν is the polarization of the emitted graviton with momentum k, and p′i =

pi − qi. The on-shell conditions (p̂i ± qi
2

)2 = m2
i imply p̂i · qi = 0; momentum

conservation gives k = q1 + q2. Inserting the established relation (3.28) between an

n-graviton form factor and a WQFT correlator into a generic φ1 φ2 → φ1 φ2(+h)

scattering amplitude à la eq. (2.19) yields a direct link to the WQFT:

k2
〈
hµν(k)

〉
WQFT

=
i

4m1m2

∫
q1,q2

µ̂1,2(k) lim
~→0
Mµν

GR(pi, p
′
i, k) . (5.5)

We have introduced the integral measure emerging from eq. (3.28):

µ̂1,2(k) = ei(q1·b̂1+q2·b̂2)δ−(q1 · v̂1)δ−(q2 · v̂2)δ−(k − q1 − q2) . (5.6)

17Strictly speaking, we should write p̂µ = m̂v̂µ to represent the average momentum. However, at

this low PM order the difference is inconsequential.
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This connection was already established in refs. [83, 128]; here we show how individual

diagrams may be identified between the two methods. There are three diagrams in

the WQFT, all with a single outgoing graviton line.

The first diagram contributing to k2〈hµν(k)〉WQFT is

µ,νk
q1 ↓

q2 ↑

1

2

= −m1m2

8m3
Pl

∫
q1,q2

µ̂1,2(k)V
(µν)(ρσ)(λτ)

3

Pρσ;αβ

q2
1

Pλτ ;γδ

q2
2

v̂α1 v̂
β
1 v̂

γ
2 v̂

δ
2 , (5.7)

where (i/2)m−1
Pl V

(µν)(ρσ)(λτ)
3 (k,−q1,−q2) is the three-graviton vertex. The delta func-

tions in the measure µ̂1,2(k) are picked up from the vertices; we integrate over the

intermediate momenta qi. The counterpart to this diagram in Mµν
GR is the first dia-

gram in eq. (5.4), so we simply re-interpret the worldlines as scalars. Showing that

the two expressions match in the ~ → 0 limit is trivial: the graviton propagators

and three-graviton vertex are the same in either case, and we have already shown

in eq. (5.2) that when ~→ 0 the scalar-scalar-graviton vertex maps onto the stress-

energy tensor.

A more interesting comparison is with this diagram:

µ,ν

−→ω
kq2 ↑

1

2

(5.8)

= −m1m2

8m3
Pl

∫
q1,q2

µ̂1,2(k)
(2ωv̂

(µ
1 δ

ν)
ρ − v̂µ1 v̂ν1kρ)(2ωv̂

(σ
1 η

λ)ρ − v̂σ1 v̂λ1 q
ρ
2)

ω2

Pσλ;αβ

q2
2

v̂α2 v̂
β
2 ,

where ω = v̂1 · k = v̂1 · q2 from the δ-function constraints. We have have massaged

the integral measure into µ̂1,2(k) by performing the trivial ω integration:∫
ω,q2

ei(b̂1·(k−q2)+b̂2·q2)δ−(v̂2 · q2)δ−(ω − v̂1 · q2)δ−(ω − v̂1 · k) =

∫
q1,q2

µ̂1,2(k) . (5.9)

This expression arises from the classical limit of three diagrams inMµν
GR, again drawn

in eq. (5.4). We can intuitively see where the 1/ω2 factor comes from by studying

the classical limit of the scalar propagators:

i

(p̂1 + q1
2

+ q2)2 −m2
1

=
i

2p̂1 · q2 + q2 · k
=

i

2p̂1 · q2

(
1− q2 · k

2p̂1 · q2

+ · · ·
)
, (5.10a)

i

(p̂1 − q1
2
− q2)2 −m2

1

=
−i

2p̂1 · q2 − q2 · k
=

−i
2p̂1 · q2

(
1 +

q2 · k
2p̂1 · q2

+ · · ·
)
, (5.10b)
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having used (p̂1± q1
2

)2 = m2
1. The leading terms cancel when added; the sub-leading

terms give rise to the desired 1/ω2 propagator.

The third diagram is related to the previous one by symmetry. Adding up the

contributions and dropping unnecessary terms we get18

k2〈hµν(k)〉WQFT =
m1m2

4m3
Pl

∫
q1,q2

µ̂1,2(k)× (5.11)[
P̂

(µ
12

(
P̂
ν)
12 + γ̂Q̂

ν)
12

)
q2

1q
2
2

+
2γ̂2 − 1

8

(
Q̂µ

12Q̂
ν
12

q2
1q

2
2

− P̂ µ
12P̂

ν
12

(k · v̂1)2(k · v̂2)2

)]
,

where γ̂ = v̂1 · v̂2 and we have recycled some notation from ref. [83]:

P̂ µ
12 = k · v̂1v̂

µ
2 − k · v̂2v̂

µ
1 , (5.12a)

Q̂µ
12 = (q1 − q2)µ − q2

1

k · v̂1

v̂µ1 +
q2

2

k · v̂2

v̂µ2 . (5.12b)

These vectors satisfy P̂12 · k = Q̂12 · k = 0, which makes gauge invariance manifest.

As Mµν
GR consists of Feynman propagators (both for internal gravitons and

scalars) using the established link to compute k2〈hµν(k)〉WQFT gives rise to Feynman-

type propagators in the classical ~→ 0 limit. This is also true for the 1/ω2 worldline

propagators: in eq. (5.10), by carefully tracking the iε’s through the calculation

one can show that the result is an average of the advanced/retarded propagators

given in eq. (4.7). This is consistent with our use of b̂µi and v̂µi : as we discussed at

the end of Section 3.4, the choice of propagators corresponds to picking a specific

inhomogeneous solution to the equations of motion.

In a genuine physical setting one might also wish to describe the radiation in

terms of bµi and vµi , corresponding to the initial trajectories of the black holes. This

would require the use of retarded propagators for the worldline fluctuations in the

above calculation, which should always point towards the outgoing graviton and

thus provide a clear flow of causality. In the WQFT one could simply adopt these

propagators from the start; if using an amplitude and taking the classical limit one

should take care and change the iε prescription before integration.

While for the worldlines the integration constants bµi , vµi mediate between differ-

ent propagator choices, this possibility is not available for the gravitons: a retarded

propagator is demanded by the physical setup. Strictly speaking, the expectation

value k2〈hµν(k)〉WQFT as defined above in terms of a path integral (3.29) leads to

Feynman graviton propagators19 — but of course the iε prescription can also be

adapted for the gravitons before integration by identifying the flow of causality.

18In the full metric gµν = ηµν +m−1Pl hµν the radiation occurs at O(m−4Pl ) = O(G2), i.e. 2PM.
19This is rooted in the fact that this expectation value uses a state fixed by boundary conditions

(“in-out”) instead of initial conditions (“in-in”) — see refs. [129, 130] for a discussion in the worldline

EFT context. See also ref. [85] for a derivation of radiation reaction effects from amplitudes, which

involves terms quadratic in the Feynman-propagator based amplitudes.
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ω→

Figure 2: An example of a self-energy diagram, which we exclude from the 2-body

calculation. On support of the δ-function constraints we have ω = 0, which gives

rise to a singularity in the 1/ω2 propagator.

5.2 Sub-leading order (3PM)

At order 3PM we find it convenient to first study the three-body problem, then

specialize to the two-body problem as a special case. The two-body waveform at

this order has previously been obtained in refs. [131, 132] (see also ref. [133]). A

three-body starting point was also used in ref. [134] to study radiation in dilaton

gravity, and proved helpful when considering the double copy. It allows us to identify

additional symmetries of the diagrams, and exclude self-energy graphs which would

otherwise give singularities. Such an unwanted graph is given in Figure 2.

The radiation is fully described by the seven diagrams in Figure 3:

k2〈hµν(k)〉WQFT =
m1m2m3

m5
Pl

∑
S3

∑
i∈{a,...,g}

∫
q1,q2,q3

µ1,2,3(k)
1

S i

Nµν
i

Di

, (5.13)

where we now use retarded propagators both for the gravitons and worldline (but

omit the propagator on the outgoing line with momentum kµ). As the diagrams

must connect with all three worldlines, self-energy diagrams of the kind in Figure 2

are avoided. We sum over 3! permutations of the worldlines, swapping qµi , bµi and vµi
in each case. By design these permutations preserve the integral measure emerging

from eq. (3.28):

µ1,2,3(k) = ei(q1·b1+q2·b2+q3·b3)δ−(v1 · q1)δ−(v2 · q2)δ−(v3 · q3)δ−(k − q1 − q2 − q3) , (5.14)

which (after an appropriate rearrangement) is the same for all seven diagrams. Each

symmetry factor Si corrects for an “overcount” in the sum — for example, diagram

(a) is invariant under all 6 permutations, so dividing by Sa = 6 accounts for this.

The propagator factors are

Da = q2
1q

2
2q

2
3 , Db = q2

1q
2
2q

2
3q

2
23 ,

Dc = q2
2q

2
3q

2
23(ω1 + iε)2 , Dd = q2

2q
2
3q

2
12(ω12 + iε)2 ,

De = q2
2q

2
3(ω1 + iε)2(ω12 + iε)2 , Df = q2

2q
2
3(ω12 + iε)2(ω13 + iε)2 ,

Dg = q2
2q

2
12(ω12 + iε)2(ω3 + iε)2 ,

(5.15)
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1

2 3

(a) Sa = 6

1

2 3

(b) Sb = 2

1

2 3

(c) Sc = 2

1

2 3

(d) Sd = 1

1

2 3

(e) Se = 1

1

2 3

(f) Sf = 2

1

2 3

(g) Sg = 1

Figure 3: The seven diagrams contributing to the radiation k2〈hµν(k)〉WQFT at order

3PM, and their respective symmetry factors. All seven graphs represent tree-level contri-

butions, the worldlines being drawn only as a visual aid. The outgoing momentum from

each worldline is qµi .

where qij = qi + qj and we have introduced new variables:

ωi = vi · k , ωij = vi · qj . (5.16)

On support of µ1,2,3(k), ωi =
∑3

j=1 ωij and ωii = 0 (no sum on i).

To confirm this result we have checked the off-shell (k2 6= 0) Ward identity

kµ〈hµν(k)〉WQFT = 0 , (5.17)

which holds already at the integrand level. To specialize to the two-body problem

we simply identify two of the worldlines, i.e. set b3 = b2 and v3 = v2. This implies

ω31 = ω21; however, as we also now have ω23 = ω32 = 0, this gives rise to self-energy

diagrams. As they are physically irrelevant, we exclude them from the final result.

The Ward identity is still satisfied after these contributions have been dropped.

Our final result for k2〈hµν(k)〉WQFT is presented in an ancillary file attached to the

arXiv submission of this paper, with expressions given for each of the seven numer-

ators Nµν
i in Figure 3. In a separate Mathematica file we also explicitly demonstrate

the off-shell Ward identity.20 The on-shell graviton can easily be obtained by setting

k2 = 0, and the result for the two-body problem is obtained as we have explained

above. We claim that the same integrand (with bµi → b̂µi , vµi → v̂µi ) can also be

obtained from a seven-point scalar-graviton amplitude with three pairs of distinctly

flavored scalars:

k2
〈
hµν(k)

〉
WQFT

=
i

8m1m2m3

∫
q1,q2,q3

µ̂1,2,3(k) lim
~→0
Mµν

GR(pi, p
′
i, k) , (5.18)

20Our demonstration file relies on the tensor computer algebra package xAct [135].
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but checking this explicitly we save for future work.

6 Deflections

Let us now switch to a purely conservative setting. We compute the impulse on a

single black hole in a binary scattering, which classically can be expressed as

∆pµi = mi∆ẋ
µ
i = mi

∫
dẋµi (τi) = mi

∫ ∞
−∞

dτi
d2zµi (τi)

dτ 2
i

. (6.1)

Even though this is a total derivative, in the present context it does not integrate to

zero. In the WQFT (where zµi (τi) is promoted to an operator) our task is therefore

to calculate the expectation value

∆pµi = mi

∫ ∞
−∞

dτi

〈d2zµi (τi)

dτ 2
i

〉
WQFT

. (6.2)

Inserting the Fourier space definition of zµ (4.1) the impulse becomes

∆pµi = mi

∫
ω

(−iω)2〈zµi (ω)δ−(ω)〉WQFT = −miω
2〈zµi (ω)〉WQFT

∣∣
ω=0

. (6.3)

Hence the impulse follows from drawing tree-level graphs with a cut external zµi
line, multiplied by a factor of i for the correct normalization. This is analogous

to how we computed k2〈hµν(k)〉WQFT with k2 = 0 in Section 5. By using retarded

worldline propagators we ensure a flow of causality towards the outgoing line; time-

symmetric Feynman propagators for the gravitons imply a purely elastic scattering of

the black holes. To include radiative effects one could instead use retarded graviton

propagators, but in the integrals that follow we shall assume the former.

As a demonstration, we shall now compute the conservative deflection ∆pµ1 up

to order 2PM, specifically reproducing the integrands by Kälin and Porto [64] whose

integrated result matches earlier work by e.g. Westpfahl [12]. Our method does not

require the determination of an effective action for the black holes.

6.1 Leading order (1PM)

At leading order ∆pµ1 is described by a single diagram:

ω = 0

q↑

1

2

= i
m1m2

4m2
Pl

∫
q

eiq·bδ−(q · v1)δ−(q · v2)(−vν1v
ρ
1q
µ)
Pνρ;σλ

q2
vσ2 v

λ
2 , (6.4)

where bµ = bµ2 − b
µ
1 (b2 < 0). Cleaning this up we deduce that

∆pµ1 =
m1m2

8m2
Pl

(2γ2 − 1)
∂

∂b1,µ

∫
q

δ−(q · v1)δ−(q · v2)

q2
eiq·b , (6.5)
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where γ = v1 · v2 > 1. This matches eq. (4.9) in ref. [64].

The integral above can be performed in a variety of ways (see also e.g. ref. [136]);

to maintain covariance we find it convenient to decompose q = q‖+q⊥, where q‖ = P‖q

is parallel and q⊥ = P⊥q is perpendicular to the plane described by the two-form

P = v1 ∧ v2.21 The projectors P‖ and P⊥ are

P µν
‖ =

P µρPρ
ν

|P |2
= − 1

γ2 − 1

[
vµ1 v

ν
1 − 2γv

(µ
1 v

ν)
2 + vµ2 v

ν
2

]
, (6.6a)

P µν
⊥ = ηµν − P µν

‖ , (6.6b)

where |P |2 ≡ −1
2
PµνP

µν = γ2 − 1. P‖µν is the induced metric of the parallel plane,

so we adopt the notation ηµν‖ ≡ P µν
‖ ; the corresponding volume form is ε‖µν = −ε‖νµ.

It holds that det‖ η‖ = −1 and εµν‖ ε
αβ
‖ = −ηµα‖ η

νβ
‖ + ηµβ‖ η

να
‖ . The Dirac deltas impose

q‖ · v1 = q‖ · v2 = 0, and upon eliminating them we get an additional factor from the

Jacobian determinant:

δ−(v1 · q‖︸ ︷︷ ︸
x

)δ−(v2 · q‖︸ ︷︷ ︸
y

) =

∣∣∣∣∂(x, y)

∂q‖

∣∣∣∣−1

︸ ︷︷ ︸
det−1
‖ (v1,v2)=|P |−1

δ−
(
qµ‖
)
, (6.7)

where det‖(v1, v2) = 1
2
εµν‖ Pµν and (εµν‖ Pµν)

2 = −2PµνP
µν = 4|P |2. Therefore∫

q

δ−(q · v1)δ−(q · v2)

q2
eiq·b =

1

|P |

∫
q⊥

eiq⊥·b

q2
⊥

=
log |b|
2π|P |

+ const , (6.8)

and when plugged into eq. (6.5) this yields the final result:22

∆pµ1 = 2Gm1m2
(2γ2 − 1)√
γ2 − 1

bµ

|b2|
, (6.9)

where m−1
Pl =

√
32πG. This result can also be found in (for example) refs. [77, 92].

6.2 Sub-leading order (2PM)

At O(G2) there are four contributing diagrams, with two each proportional to m1m
2
2

and m2
1m2. As they carry different integral measures we treat them separately. In

the first category:

ω̃→ ω=0

k↑ ↓k−q

1

2

= i
m1m

2
2

64m4
Pl

∫
k,q

(qµ − kµ)δ−(q · v1)δ−(q · v2)δ−(k · v2)

k2(k − q)2(k · v1 + iε)2
eiq·b× (6.10)

[
(2γ2 − 1)2k · (k − q) + 8γ2(k · v1)2

]
.

21We thank Gregor Kälin and Rafael Porto for sharing details of this method with us.
22The overall sign is consistent with an attractive gravitational force: ∆pµ1 aligns with bµ = bµ2−b

µ
1 ,

which points from the first to the second black hole.
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The integral measure is
∫
k,q,ω̃

δ−(k · v2)δ−(ω̃− k · v1)δ−(ω̃− (k− q) · v1)δ−((q− k) · v2) in its

initial form; ω̃ integration yields ω̃ = k ·v1 and leaves the three remaining δ-functions

in eq. (6.10). This diagram matches eq. (4.14) of ref. [64], up to terms that vanish

upon integration (those that do not contribute to long-range interactions). The other

diagram with the same integral measure is

ω=0

q↑

k↗ ↘k−q

1

2

= −im1m
2
2

16m4
Pl

∫
k,q

qµδ−(q · v1)δ−(q · v2)δ−(k · v2)

k2q2(k − q)2
eiq·b× (6.11)

[
γ2q2 + (k · v1)2 + (2γ2 − 1)k · (k − q)

]
.

This agrees with eq. (4.15) of ref. [64] (up to a symmetry factor of 1/2). In the

second category we have

ω̃→

ω=0

k↑ ↓k−q

1

2

= i
m2

1m2

64m4
Pl

∫
k,q

(qµ − kµ)δ−(q · v1)δ−(q · v2)δ−(k · v1)

k2(k − q)2(k · v2 − iε)2
eiq·b× (6.12)

[
(2γ2 − 1)2k · (k − q) + 8γ2(k · v2)2

]
,

which (except for the outgoing ω = 0 line) is related to (6.10) by symmetry; the

δ-function constraint yields ω̃ = −k · v2. Finally,

ω=0

q↑

k↖ ↙k−q
1

2

= i
m2

1m2

16m4
Pl

∫
k,q

(kµ − qµ)δ−(q · v1)δ−(q · v2)δ−(k · v2)

k2q2(k − q)2
eiq·b× (6.13)

[
γ2q2 + (k · v2)2 + (2γ2 − 1)k · (k − q)

]
.

Not included are diagrams involving self-interactions of gravitons on a single world-

line, which also do not contribute to the final integrated result.

Taken together, these four diagrams make up the 2PM deflection. As the inte-

gration was already discussed at length in ref. [64] we will not reiterate the details;

instead we simply present the final result for the conservative impulse at this order:

∆pµ1 =
Gm1m2b

µ

|b2|

(
2(2γ2 − 1)√

γ2 − 1
+

3π

4

(5γ2 − 1)√
γ2 − 1

G(m1 +m2)

|b|

)

− 2G2m1m2
(2γ2 − 1)2

(γ2 − 1)2|b2|
((γm1 +m2)vµ1 − (γm2 +m1)vµ2 ) .

(6.14)

This includes the 1PM result already given in eq. (6.9), and agrees with Westpfahl’s

result [12]. It also satisfies

p2
1 = (p1 + ∆p1)2 (6.15)
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up to terms O(G3), using b · vi = 0. This is consistent with our use of retarded

worldline propagators: pµi = miv
µ
i are the incoming momenta.

Should we flip the sign on iε throughout our calculation above, i.e. use advanced

instead of retarded worldline propagators, then the result (6.14) in terms of b′i
µ and

v′i
µ is identical except with the signs on v′i

µ reversed. This is consistent with the

impulse instead obeying p′1
2 = (p′1 −∆p1)2, where p′i

µ = miv
′
i
µ are the outgoing mo-

menta. Similarly, if we use Feynman propagators (which, for the worldline, means a

symmetric combination of advanced/retarded propagators) then the terms propor-

tional to v̂µi vanish altogether (more on this in the next section). The impulse obeys

(p̂1 + ∆p1
2

)2 = (p̂1 − ∆p1
2

)2, i.e. p̂1 ·∆p1 = 0.

7 Eikonal phase

Having now computed the deflection ∆pµ1 up to 2PM order, let us finally explain

its connection to scattering amplitudes. Unlike with the emitted graviton k2〈hµν(k)〉
computed in Section 5, it is not immediately obvious how to obtain ∆pµi from an am-

plitudes perspective. The reason is simple: unlike hµν(x), the worldline fluctuations

zµi (τ) do not live in the amplitudes; instead we have the scalars φi(x). So the trick

we used in eq. (5.5) to integrate out the scalars in a five-point amplitude, leaving

behind the expectation 〈hµν(k)〉, does not work. Instead we need to make use of the

four-point scalar amplitude Mφ1φ2→φ1φ2 .

From an amplitudes perspective the eikonal phase of eq. (3.31) is a very useful

scalar quantity, as it captures the impulse and other classical observables. Writing

the S-matrix in terms of a scattering amplitude eq. (3.31) gives rise to

eiχ = 1 +
i

4m1m2

∫
q

eiq·bδ−(v1 · q)δ−(v2 · q) lim
~→0
Mφ1 φ2→φ1 φ2(q)

= 1 + i

∫
q⊥

eiq⊥·b
Mφ1 φ2→φ1 φ2(q)

4m1m2

√
γ2 − 1

,

(7.1)

where χ is the eikonal phase and q is the transferred momentum. It was demonstrated

in refs. [84, 94] (see also ref. [64]) that the 2PM deflection in the center-of-mass system

is obtained via

∆p⊥ =
∂χ

∂b
, (7.2)

where p⊥ = P⊥p2 = −P⊥p1. A similar relation holds for the scattering angle [84]

— see also eq. (4.5) in ref. [97]. It is suggestive that such a relation can be ex-

tended to higher orders and changes in spins [93, 94]. That is, the eikonal phase χ

appears to be a generator for all observables of conservative classical scattering. It

can also be related to bound orbits via analytic continuation [137], analogously to

the investigation in refs. [99, 100].
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From our WQFT perspective we have shown in Section 3.4 that the classical

part of the eikonal phase χ is given by the free energy of the WQFT at tree level

(integrating out the zµ and hµν fields). We therefore use Feynman time-symmetric

propagators for both the gravitons and worldlines (which also occur naturally in

the QFT S-matrix). So b̂µi and v̂µi are identified with the average of the incom-

ing/outgoing momenta p̂µi . Recalling eqs. (3.30) and (3.32), the eikonal phase is

then

eiχ(b̂i,v̂i) = ZWQFT (7.3)

= const×
∫
D[hµν , z

µ
1 , z

µ
2 ] exp

[
i
(
SEH + Sgf −

n∑
i=1

∫ ∞
−∞

dτi
mi

2
gµν ẋ

µ
i ẋ

ν
i

)]
,

where we have dropped the Lee-Yang ghost contributions which are irrelevant for

the classical limit. Instead of eq. (7.2) we will demonstrate that

∆p1,µ = i
∂

∂b̂µ1
logZWQFT = − ∂χ

∂b̂1,µ

(7.4)

holds in our formalism to all orders as a consequence of eq. (4.18). This should

satisfy (p̂1 + ∆p1
2

)2 = (p̂1 − ∆p1
2

)2, i.e. p̂1 · ∆p1 = 0. Note how connected ampli-

tudes get mapped into WQFT diagrams in ZWQFT that are disconnected in general,

and finally exponentiate into connected WQFT diagrams in χ. This manifests the

exponentiation of amplitudes in the classical limit.

Let us now prove eq. (7.4). On the one hand, from eq. (6.3) we have that

∆pσ1 = −m1ω
2〈zµ1 (ω)〉WQFT

∣∣
ω=0

= −m1

〈
ω2zσ1 (ω) exp

[ =:(WL1)︷ ︸︸ ︷∫ ∞∑
n=0

1

n!
V WL,µν

1,ρ1...ρn
(k;ω1, . . . , ωn)hµν(k)zρ11 (ω1) . . . zρn1

+ (WL2) + (GR)

]〉
free WQFT

∣∣∣∣∣
ω=0

, (7.5)

with 〈. . .〉free WQFT denoting the vacuum expectation value of the non-interacting

theory and (GR) the graviton vertices. This expression involves only connected

diagrams, or Wick contractions. We perform all Wick contractions involving the

external zσ1 (ω), noting that contractions with an n-vertex on the worldline give an

overall factor of n. Thereafter we set ω = 0, essentially canceling the external

propagator:

∆pσ1 = i

〈(∫ ∞∑
n=1

1

(n− 1)!
V WL,µν

1,ρ1...ρn
(k;ω1, . . . , ωn−1, ω)hµνz

ρ1
1 . . . z

ρn−1

1 ησρn

)

e(WL1)+(WL2)+(GR)

〉
free WQFT

∣∣∣∣∣
ω=0

. (7.6)
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On the other hand, again considering connected contractions only (leaving the log

implicit), it holds that

∆pσ1 = i
∂iχ

∂b1,σ

= i

〈
∂

∂b1,σ

e(WL1)+(WL2)+(GR)

〉
free WQFT

(7.7)

= i

〈(∫ ∞∑
n=0

1

n!

∂

∂b1,σ

V WL,µν
1,ρ1...ρn

(k;ω1, . . . , ωn)︸ ︷︷ ︸
VWL,µν
1,ρ1...ρn+1

(k;ω1,...,ωn,0)ησρn+1

hµνz
ρ1
1 . . . zρn1

)
e(WL1)+(WL2)+(GR)

〉
free WQFT

,

making crucial use of eq. (4.18). This is the same as the preceding equation when

shifting n and using ω = 0, thus showing eq. (7.4).

Let us now work out the eikonal to 2PM order. The corresponding diagrams in

the eikonal phase are

iχ = + + +O(G3) , (7.8)

where mirror diagrams are left implicit. Assembling the contributions in (7.8) and

performing the integrals one finds

χ = Gm1m2

(
−2(2γ̂2 − 1)√

γ̂2 − 1
log |b̂|+ 3π

4

(5γ̂2 − 1)√
γ̂2 − 1

G(m1 +m2)

|b̂|

)
+O(G3) , (7.9)

in agreement with ref. [84]. Taking the derivative with respect to b̂µ1 we obtain the

impulse:

∆pµ1 =
Gm1m2b̂

µ

|b̂2|

(
2(2γ̂2 − 1)√

γ̂2 − 1
+

3π

4

(5γ̂2 − 1)√
γ̂2 − 1

G(m1 +m2)

|b̂|

)
+O(G3) . (7.10)

As it depends on b̂µi and v̂µi , this expression is different from eq. (6.14) derived earlier

(which depended on bµi and vµi ). It satisfies p̂1 ·∆p1 = 0 as expected.

One may naturally ask whether, having obtained the conservative deflection in

eq. (7.10) in terms of b̂µ and v̂µi , one could subsequently extract the (arguably more

useful) result in eq. (6.14) involving involving bµ and vµi . At this PM order we make

certain simplifying assumptions: v̂µi = vµi + O(G) implies γ̂ = γ + O(G2). Also,

b̂µ = bµ + x1v
µ
1 + x2v

µ
2 where xi ∼ O(G) and b · vi = 0 implies |b̂| = |b| + O(G2).

So there is no need to distinguish between different versions of |b| and γ at 2PM.

To reproduce the result in eq. (6.14) we simply need to find the terms in the vµi
directions: it was demonstrated in ref. [69] that by demanding p2

1 = (p1 + ∆p1)2 (to

all orders in G) the missing terms are reproducible by iteration from lower orders.
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From the deflection ∆pµ1 we can also find the scattering angle θ (see e.g. refs. [84,

138, 139]). In the center-of-mass (COM) frame p1 = (E1,p), p2 = (E2,−p) and

|∆p| = 2|p| sin
(
θ

2

)
. (7.11)

In the COM frame one can also deduce that

|p| = m1m2

√
γ2 − 1√

m2
1 +m2

2 + 2m1m2γ
. (7.12)

The total angular momentum is given by J = |b × p| = |b||p|. Putting the pieces

together, we find that

sin

(
θ

2

)
=
Gm1m2

J

(
(2γ2 − 1)√
γ2 − 1

+
3π

8

Gm1m2(m1 +m2)(5γ2 − 1)

J
√
m2

1 +m2
2 + 2m1m2γ

)
+O(G3) (7.13)

fully describes the scattering angle to order 2PM.

8 Discussion

In this paper we have examined the link between scattering amplitudes and ob-

servables in a worldline quantum field theory (WQFT). The link is manifested by

a worldline path integral representation of the graviton-dressed scalar propagator,

which can be inserted into a formal definition of the S-matrix in terms of time-

ordered correlators — formally integrating out the scalars on external lines. By

taking the classical ~→ 0 limit we can interpret the results as expectation values of

operators in the WQFT. Performing LSZ reduction on the time-ordered correlators,

i.e. cutting the propagators on their external lines, corresponds with allowing the

worldlines of each black hole to span an infinite proper time domain τ ∈ [−∞,∞].

We also derived the crucial relationship in the classical ~→ 0 limit:

ZWQFT = eiχ , (8.1)

i.e. the free energy of the WQFT corresponds precisely with the eikonal phase of a

2→ 2 scalar S-matrix.

Path integrals in the WQFT involve not only the graviton hµν(x) but also the

deflection of each black hole zµi (τi), where xµi (τi) = bµi +τiv
µ
i +zµi (τi) is the full unbound

trajectory. We therefore developed a set of Feynman rules to compute expectation

values of WQFT operators directly in Fourier space. For the graviton hµν(k) this

of course means momentum space; for the deflection zµi (ω) it instead means energy

space. Feynman vertices arising from the purely-gravitational Einstein-Hilbert action

conserve four-momentum as usual; vertices arising from a worldline conserve only

the energy along that worldline. So even though in these classical calculations we
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remain at tree level, we see “loop integrals” arising due to the lack of momentum

conservation at worldline vertices. These are precisely the integrals one would obtain

when working to higher orders in G from an amplitudes perspective.

Of particular significance was our choice of iε prescription for the propagators,

being either retarded or Feynman. For the worldline, using retarded propagators

identifies the background parameters bµi and vµi with the incoming momenta pµi =

miv
µ
i at τi = −∞; Feynman propagators identify b̂µi and v̂µi with the intermediate

momenta p̂µi at τi = 0. For the gravitons, using Feynman propagators implies a

time-reversal symmetric dynamics, hence we are dealing with a purely conservative

scattering scenario; retarded propagators are applicable to a radiating system and

incorporate radiation-reaction effects.

For the scattering of two non-spinning black holes we considered two main ob-

servables: the radiation, k2 〈hµν(k)〉|k2=0, and the impulse on one of the black holes,

∆pµi = −miω
2zµi (ω)|ω=0. The former we computed to order 3PM; the latter to 2PM,

reproducing the recent conservative results of Kälin and Porto [64]. In both cases

we drew tree-level graphs with a single outgoing line — in the former case an out-

going graviton line, in the latter an outgoing deflection mode zµ — and cut the

energy/momentum on that line.

The connection with amplitudes is straightforward for radiation. As was ob-

served in ref. [83], at leading order (2PM) k2 〈hµν(k)〉|k2=0 is straightforwardly ob-

tained from a five-point amplitude with two pairs of distinctly flavored external

scalars by integrating over internal momenta (with an appropriate integral mea-

sure). This formula we derived by integrating out the scalars, leaving the emitted

graviton hµν(k) unaffected. For the deflection deflection ∆pµi there is no clear am-

plitudes analog; however, from the eikonal phase χ we derived ∆pµi up to 2PM by

differentiating with respect to the impact parameter bµi — a relationship which we

showed extends to higher PM orders.

Setting aside the link to amplitudes, the WQFT offers a number of advantages

over other methods for obtaining post-Minkowskian (PM) integrands:

1. One has the benefits of a fully diagrammatic approach without needing to take

the classical ~→ 0 limit.

2. Generating tree-level graphs is simple to achieve algorithmically — for instance

using Berends-Giele recursion [140].

3. There is no need to obtain an effective action by integrating out the gravitons.

4. The iε prescriptions are flexible: with different choices corresponding to re-

tarded or Feynman worldline propagators one can identify the background pa-

rameters bµi and vµi with either the incoming or intermediate momenta. Simi-

larly, for the graviton one can incorporate radiation by using retarded propa-

gators.
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Our approach complements ongoing work in the PM regime on tackling the integrals

required to compute different gravitational observables (see e.g. ref. [138]).

There are numerous opportunities for follow-up work. Of course, we would like

to compute observables to higher PM orders: the eikonal phase χ and deflection ∆pµi
at order 4PM are obvious targets. We also believe that spin can be incorporated in a

natural way, by including classical spin vectors Sµi for each black hole with their own

propagators and worldline vertices. In fact, the WQFTs of supersymmetric spinning

particles already exist [141, 142]. It will be interesting to see how this relates to

ongoing work on amplitudes in higher-spin field theories (see e.g. ref. [94]). Finally,

as the link to amplitudes is now readily apparent, it may be worth revisiting the

double copy to see how it translates into this new formalism — hopefully clarifying

the observed breakdown in ref. [143].
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A Derivation of the momentum space propagator

In this Appendix we further elaborate on the derivation of a momentum space repre-

sentation of the massive scalar propagator coupled to gravitons, eq. (3.7). The basic

ingredient for us to evaluate is

〈 N∏
l=1

∫ s

0

dτle
ikl·(x+∆x

τl
s

)ε(l)µνD̃(l)
µν(x, x

′, {kl})
〉
, (A.1)

with

D̃(l)
µν(x, x

′, {kl}) =
[(∆xµ

s
+q̇µ(τl)

)(∆xν

s
+q̇ν(τl)

)
+aµ(τl)a

ν(τl)+bµ(τl)c
ν(τl)

]
eikl·q(τl) .

(A.2)

We also note that

Z =

∫
D[q]e−i

∫ s
0 dτ 1

4
q̇2 =

1

(−4πis)D/2
, (A.3)

which is the free partition function.
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To evaluate the correlation function we use a number of tricks. Firstly, we

introduce a scalar function F of the polarization vectors ε, α, β, γ, the latter two of

which are anti-commuting:

F (ε, α, β, γ) :=
〈

exp
[ N∑
l=1

εl · q̇(τl)+αl ·a(τl)+βl ·b(τl)+γl ·c(τl)+ ikl ·q(τl)
]〉
. (A.4)

Then we may write

(A.1) =
N∏
l=1

∫ s

0

dτl

[
(∆xµ

s
+∂εµl )(∆xν

s
+∂ενl )+∂αµl ∂α

ν
l
+∂βµl ∂γανl

]
F (ε, α, β, γ)

∣∣∣
α=β=γ=ε=0

.

To compute F (ε, α, β, γ) we use the fact that for operators O linear in quantum fields

one has the free-field correlation function relation

〈eO〉 =
1

(−4πsi)D/2
exp[1

2
〈OO〉] . (A.5)

Hence we find

F (ε, α, β, γ) =
1

(−4πsi)D/2
exp[1

2
〈

N∑
l,l′=1

OlOl′〉] , (A.6)

with Ol = εl · q̇(τl) + αl · a(τl) + βl · b(τl) + γl · c(τl) + ikl · q(τl). We then compute

using eq. (3.6)

i〈OlOl′〉 =2δ(τl − τl′) [εl · εl′ + αl · αl′ − 2γl · βl′ − 2γl′ · βl]

− 2

s
[iklτl + εl] · [ikl′τl′ + εl′ ] + ikl · [ikl′τl′ + εl′ ] + ikl′ · [iklτl + εl]

− i(εl · kl′ − εl′ · kl) sign(τl − τl′) + kl · kl′|τl − τl′| .

(A.7)

For this it is helpful to note the derivatives of the propagator given in eq. (3.6):

∂τ∆(τ, τ ′) = 1
2
sign(τ − τ ′) +

τ ′

s
− 1

2
,

∂τ ′∆(τ, τ ′) = −1
2
sign(τ − τ ′) +

τ

s
− 1

2
,

∂τ∂τ ′∆(τ, τ ′) =
1

s
− δ(τ − τ ′) ,

∂2
τ∆(τ, τ ′) = δ(τ − τ ′) .

(A.8)

The second trick lies in promoting also the ∆xµ/s terms in eq. (A.2) into the exponent

of the evaluated F (ε, α, β, γ) by manually adding
∑N

l=1 εl ·
∆x
s

to the exponent on the

right-hand side of eq. (A.5). Then we perform the space-time integrals over x and

x′, giving a total momentum-conserving delta function and a Gaussian integral.
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[8] G. Schäfer and P. Jaranowski, Hamiltonian formulation of general relativity and

post-Newtonian dynamics of compact binaries, Living Rev. Rel. 21 (2018) 7

[1805.07240].

[9] T. Futamase and Y. Itoh, The post-Newtonian approximation for relativistic

compact binaries, Living Rev. Rel. 10 (2007) 2.

[10] M. E. Pati and C. M. Will, PostNewtonian gravitational radiation and equations of

motion via direct integration of the relaxed Einstein equations. 1. Foundations,

Phys. Rev. D 62 (2000) 124015 [gr-qc/0007087].

[11] L. Bel, T. Damour, N. Deruelle, J. Ibanez and J. Martin, Poincaré-invariant
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