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Synchronization between Keyboard Typing
and Neural Oscillations
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Abstract

B Rhythmic neural activity synchronizes with certain rhythmic
behaviors, such as breathing, sniffing, saccades, and speech. The
extent to which neural oscillations synchronize with higher-level
and more complex behaviors is largely unknown. Here, we inves-
tigated electrophysiological synchronization with keyboard typ-
ing, which is an omnipresent behavior daily engaged by an
uncountably large number of people. Keyboard typing is rhyth-
mic, with frequency characteristics roughly the same as neural
oscillatory dynamics associated with cognitive control, notably
through midfrontal theta (4-7 Hz) oscillations. We tested the
hypothesis that synchronization occurs between typing and mid-
frontal theta and breaks down when errors are committed. Thirty
healthy participants typed words and sentences on a keyboard
without visual feedback, while EEG was recorded. Typing rhyth-
micity was investigated by interkeystroke interval analyses and by

INTRODUCTION

In the past few decades, some sensory processes and
behaviors have been shown to be rhythmic. For instance,
visual processing oscillates between low and high percep-
tion stages (VanRullen, 2016), and behaviors such as
speech (Aiken & Picton, 2008), although not strictly rhyth-
mic per se, have also been associated with periodic tempo-
ral properties (Rosen, 1992). The phase of rhythmic neural
activity (i.e., neural oscillations) has been linked to sensory
and motor processes (Drewes & VanRullen, 2011; Gross
et al., 2001), and some studies have reported that neural
activity can become temporally aligned with rhythmic
behaviors (Haegens & Zion Golumbic, 2018; Késem
et al., 2018; Zoefel & VanRullen, 2016; Calderone,
Lakatos, Butler, & Castellanos, 2014). On the other hand,
neural activity can also provide temporal constraints to
behaviors and several cognitive functions have been pro-
posed to be inherently rhythmic in the sense that they are
organized according to the timing of neural oscillations.
Notably, this has been shown for attention (Fiebelkorn &
Kastner, 2019) and cognitive control (Duprez, Gulbinaite,
& Cohen, 2020).
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a kernel density estimation method. We used a multivariate spa-
tial filtering technique to investigate frequency-specific synchro-
nization between typing and neuronal oscillations. Our results
demonstrate theta rhythmicity in typing (around 6.5 Hz) through
the two different behavioral analyses. Synchronization between
typing and neuronal oscillations occurred at frequencies ranging
from 4 to 15 Hz, but to a larger extent for lower frequencies.
However, peak synchronization frequency was idiosyncratic
across participants, therefore not specific to theta nor to mid-
frontal regions, and correlated somewhat with peak typing fre-
quency. Errors and trials associated with stronger cognitive
control were not associated with changes in synchronization
at any frequency. As a whole, this study shows that brain—
behavior synchronization does occur during keyboard typing
but is not specific to midfrontal theta. |l

Most of the evidence of synchronization between
behavior or cognitive functioning with brain oscillatory
activity have been inferred from simple experimental psy-
chology tasks. Although the studies using such paradigms
are very informative, they lack the complexity of real-life
behaviors. Thus, it is important to understand whether
neural oscillations and behavior synchronization extend
to more naturalistic behavior. However, such naturalistic
behavior should also comply with the same experimental
rigor required in usual tasks, leading to difficulties in
finding a good compromise between rigor and behavioral
relevance.

Fortunately, technological advances also led to the
emergence of newly common human behaviors. A good
example of such recent and widespread behavior is
keyboard typing, which is omnipresent in our modern
societies, whether it is expressed on personal computers,
laptops, smartphones, or tablets. Studying this behavior
has several advantages such as an ease in laboratory use
(simultaneous recording of behavior and EEG with every
stimulus and keypress as an event marker) and in finding
performant typists. Furthermore, some evidence suggests
that typing is also a rhythmic behavior with mean interkey-
stroke intervals (IKIs) of approximately 135 msec corre-
sponding to a 7-Hz typing frequency, which is in the
theta range (Yamaguchi, Crump, & Logan, 2013). More im-
portantly, regarding brain activity, recent results suggest
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that typing has similar neural substrates to cognitive con-
trol and error monitoring. Indeed, typing errors are associ-
ated with stronger midline frontal theta power (Kalfaoglu,
Stafford, & Milne, 2018), which is commonly reported in
more standard cognitive control tasks (Cavanagh &
Frank, 2014; Cohen & van Gaal, 2014).

In this study, our goal was to test the hypothesis that
keystrokes during typing behavior would occur at consis-
tent midfrontal theta oscillatory phase, which would indi-
cate synchronization between keyboard typing and
midfrontal theta activity. We also expected that typing
errors would be associated with a decrease in phase con-
sistency over keystrokes, thus showing a decrease in
brain-behavior synchronization during typing. To this
end, we used a typing task that required participants to type
both real words/sentences, or pseudowords/sentences, in
which case the need for cognitive control would be greater.
We first focused on showing rhythmicity in typing and
then used frequency-specific spatial filters based on a mul-
tivariate guided source separation method (generalized
eigen decomposition [GED]; Cohen, 2017) to investigate
synchronization between typing and neuronal oscillations.

METHODS
Participants

Thirty healthy native Dutch speakers (16 women, 14 men,
mean age = 22 years old, SD = 3.12 years) were recruited
for this study through the Sona recruitment system of the
Donders Institute for Brain, Cognition and Behavior and
were compensated with €20 or course credit. Selected
participants self-reported being able to touch-type.
Twenty-six participants were right-handed, and eight par-
ticipants reported using four to eight fingers instead of 10
for typing. We chose not to exclude left-handers because
typing requires both hands, and we wanted to sample
from the general population. All participants signed writ-
ten informed consent, and this study was approved by the
Donders Institutes’ ethics committee. Following the pre-
processing steps detailed below, three participants were
excluded from the analyses.

Task

The typing task was based on the one used in Kalfaoglu
and Stafford (2014). Participants were seated in front of
a 24-in. IRT monitor and had to type the presented stimuli
on a Dell gqwerty-keyboard as quickly and as accurately as
possible. In different blocks, we randomly presented real
words, real sentences, pseudowords, or pseudosentences.
Participants were instructed to type what they saw without
looking at the keyboard and to press the enter key when
finished. An intertrial interval of 2 sec separated subse-
quent trials. Each block lasted 5 min. There were also five
“free typing” trials during which participants responded to
open questions about their activities the day before, of
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book/film plots, for 3 min with no other restrictions than
typing correct Dutch sentences. These trials were not in-
cluded in the analyses. No visual feedback was provided to
the participants during typing. Participants were observed
via a video camera and verbally instructed not to look at
the keyboard when needed. The task was programmed
in MATLAB using functions from Psychtoolbox (Brainard,
1997) to integrate the stimuli with the hardware and to
send triggers for each keystroke to the EEG acquisition,
with high temporal precision.

Participants were instructed to correct typing errors by
pressing the backspace key until they recall being at the
position of the error. They were also informed that punc-
tuation and capital letters could be ignored. Throughout
the task, the average typing speed of the participants
was calculated and used as a threshold. Should they type
below the threshold, the participants would be asked to
type faster (except in the free typing condition) by a
“Type faster” message followed by a 1-sec intertrial inter-
val. Stimuli consisted of 200 real words (average of 10.35
characters, SD = 2.5), 200 pseudowords (average of 9.0
characters, SD = 1.8), 100 real sentences (average of
60.8 characters including spaces, SD = 13.6), and 100
pseudosentences (average of 59.6 characters including
spaces, SD = 9.6). Pseudowords were taken from a pseu-
doword generator (Wuggy; Keuleers & Brysbaert, 2010),
and sentences were taken from Drijvers, Mulder, and
Ernestus (2016). Pseudosentences were created by replac-
ing words with pseudowords (from the same generator) in
the sentences. Given that we had no independent typing
task, we estimated participants’ typing abilities based on
the sentence condition. Typing speed was calculated as
the number of words per minute. Participants had an aver-
age of 31.8 wpm (SD = 6.5) when speed was calculated on
five-letter words and higher, 46.6 wpm (SD = 8.9) when
calculated on four-letter words and higher, and 74.6 wpm
(8D = 14.2) when calculated on all words. Overall, 79.9 %
(SD = 7.3) of words contained no error in the sentence
condition and there was 94.6 % (SD = 1.9) correctly typed
characters.

EEG Acquisition and Preprocessing

EEG data were acquired at 1000 Hz using a cap with 64
active electrodes placed according to the “M10” equidis-
tant electrode layout. Four additional electrodes were
used to record horizontal and vertical eye movements.
The EEG signal was amplified by BrainAmp amplifiers
driven by a BrainVision Powerpack (Brain Products
GmbH). The signal was recorded using the Brain Vision
software. Keystrokes were recorded as event markers in
the EEG signal by sending transistor—transistor logic
pulses. For each participant, electrode locations were re-
corded as Polhemus x-y-z coordinates and were further im-
ported in EEGLAB (Delorme & Makeig, 2004), which was
used for all further preprocessing steps. EEG data were fil-
tered between 0.5 and 40 Hz. Continuous EEG was visually
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inspected to identify bad channels, which were removed
and interpolated. Three participants were excluded be-
cause of excessive EEG artifacts, leaving 27 participants
for further analyses. After these steps, EEG was rerefer-
enced to an average reference. Independent component
analysis was performed to identify artifacts such as eye-
blinks using the jader function of EEGLAB (Delorme &
Makeig, 2004). Visual inspection of the components’ topog-
raphy, activity, and power spectrum was performed to iden-
tify bad components that were then removed from the
signal (1.3 components on average were removed).
Specific ASCII code marker numbers were used to track im-
portant events, such as stimulus display, letter keystrokes,
backspace presses, and return button presses.

For all subsequent analyses, trials were subdivided into
four conditions: words, sentences, pseudowords, and
pseudosentences; and into three trial outcomes: correct
trials, corrected errors (which were defined by the occur-
rence of a backspace press), and other errors, which con-
tained all uncorrected errors that arose from character
omission/addition, wrong character typed, missing words
in sentences, and so forth. We dissociated corrected from
uncorrected errors because we expected behavioral and
EEG activity changes associated with error awareness
(Kalfaoglu et al., 2018). Punctuation errors were not in-
cluded in the analyses. Importantly, for the RT analyses,
trials were labeled as an error when they contained at least
one error. In the IKI and EEG signal analyses, correct
words in error (pseudo)sentences were treated as correct
in the analyses. However, as long as a (pseudo)word
contained at least one error, the entire word was treated
as an error.

Behavioral Analyses
RT and Accuracy

RT was defined as the time between stimulus presentation
and the first keystroke. All RTs faster than 200 msec or
slower than 3 SDs from the mean were excluded from
further analyses. RTs were then compared as a function of
the linguistic nature of the stimuli (real or pseudowords/
sentences), the type of stimuli (words/sentences), and out-
come of the trial (correct, corrected error, other error). All
statistical analyses were done using R (Version 3.6.1; R Core
Team, 2019). We performed linear mixed-model analyses
on participant-averaged Box Cox-transformed RT using
the /me function of the {n/me} package (Pinheiro, Bates,
DebRoy, Sarkar, & R Core Team, 2020) with a 2 (linguistic
nature) + 2 (nature of the stimuli) + 3 (trial outcomes)
design, with participant as a random intercept. We applied
this transform because graphical check of the models’
residuals showed better compliance with the models’
assumptions when data were transformed than when left
raw. We tested log, inverse, and square-root transforms
and found better compliance with the Box Cox transform
based on visual inspection of the models’ residuals. We

focused the analysis on participant-averaged RT because
we wanted a simple model accounting for unexplained
differences between participants and because modeling
all trials’ RT explained less variance as compared to
participant-averaged RT (based on the marginal and condi-
tional R values). We chose not to investigate the interaction
between linguistic nature, nature of the stimuli, and trial
outcome as further interpreting all the different contrasts
would prove difficult and would not be further relevant
for this study. Accuracy data (Box-Cox transformed) was
analyzed following the same statistical design as for RT with
a 2 (linguistic nature) + 2 (nature of the stimuli) + 3 (trial
outcomes) design, with participant as a random intercept.

Graphical checks of the model’s residuals distribution
were performed to ensure compliance with the model’s
assumptions. For all mixed models, marginal and condi-
tional R* were calculated using the {MuMin} package
(Barton, 2009) and are reported in the results. The anova
function of the {car} package (Fox & Weisberg, 2019) was
used on the models to extract significance of the fixed
effects by the means of F tests. In the case of significant
main effects, post hoc comparisons were performed using
the glht function of the {muiltcomp} package that pro-
vides adjusted p values using individual z tests (Hothorn,
Bretz, & Westfall, 2008). The significance threshold was
settop = .05.

IKIs

As a first method to investigate rhythmicity in typing, we
focused on IKIs, which corresponds to the time between
consecutive keystrokes. For this analysis, we focused on
stimuli that contained at least four characters. Average
IKI for each condition, outcome, and participant was
calculated. Then, comparison between experimental con-
ditions were carried out using similar linear mixed models
as described for RT but applied on log-transformed IKI,
which showed better compliance with the models’
assumptions.

Kernel Density Estimation

We quantified behavioral rhythmicity in typing by the
mean of a kernel density estimation (KDE) analysis. This
method is a nonparametric calculation of a probability
density function. For each word, we computed the sum
of the convolution of each IKI with a Gaussian kernel.
The Gaussian kernel was defined as follows:

97411"(2)1‘2/52 (1)

where ¢ is a time vector and s is the kernel bandwidth that
was set at 1. At the IKI level, this was done by multiplying
the Fourier transform of the kernel with the Fourier trans-
form of the IKI signal and then taking the inverse Fourier
transform of the result. The IKI signal is a 0.1-Hz resolu-
tion vector ranging from 1 to 100 Hz containing only zeros
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except for the closest frequency of the IKI (which contains
1). For each word, the result of KDE is the sum of each IKI
convolution normalized by the number of letters compos-
ing the word. The average result of KDE was calculated for
each participant according to experimental conditions
and outcome. Further analyses involved identifying the
peak typing frequency for each condition and outcome
and comparing them at the group level. We used the same
linear mixed models as previously described. In that case,
peak frequencies were Box-Cox-transformed before
modeling because inspection of the model’s residuals in-
dicated better compliance with the model’s assumption in
that case.

Spatial Filtering of the Data

All preprocessed EEG signal analyses were performed in
MATLAB (The MathWorks, Version 2016a) using custom-
written code (Cohen, 2014). In order to investigate
frequency-specific synchronization between brain activity
and typing behavior, we applied spatial filters constructed
via GED: For each frequency, a spatial filter was used to
extract a single component that maximizes activity at that
specific frequency. This spatial filter maximizes the separa-
tion between the target frequency and broadband activity
with a specific topographical distribution. Critically, the
spatial filter does not eliminate other frequencies activity:
It selects a set of channel weights that identifies the max-
imum energy at the target frequency on the scalp. The
broadband data are then passed through this spatial filter,
and a time—frequency analysis can be applied to that com-
ponent time series. Designing the spatial filter involves
computing channel covariance matrices and finding a set
of channel weights that maximally differentiates the nar-
rowband covariance from the broadband covariance (de
Cheveigné & Arzounian, 2015; Nikulin, Nolte, & Curio,
2011). Calculation is done via Rayleigh’s quotient, finding
a set of channel weights in vector  that maximizes \:
w/'Sw

N = @

~ w/Rw

with § as the covariance matrix of the signal narrow-band
filtered at the studied frequency, and R the covariance
matrix from the broadband signal.

Equation 2 can be extended as a generalized eigenvalue
equation:

SW = RWA 3)

The column of W with the highest associated eigenvalue
in A corresponds to the spatial filter that maximally distin-
guishes § from R. The spatial filter can then be applied to
the data as follows:

y=w'X (4)

with w being the column of W corresponding to the
largest associated eigenvalue, and with X the Channel X
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Time data matrix. The resulting component time series
is then the row vector y on which all subsequent analyses
can be performed. This spatial filter method has the
advantage of increasing signal-to-noise ratio, taking into
account interindividual topographical differences, and
avoiding electrode selection bias (Cohen, 2017; Nikulin
etal., 2011).

In this study, we investigated frequencies from 3 to
15 Hz with a 0.5-Hz resolution. For each GED, narrow-
band filtering of the data to create the § matrix was done
using these frequencies. We limited the studied frequency
to 15 Hz because we can reasonably assume that it is
unlikely that one could type faster than 15-Hz frequency.

The selection of the best spatial filter v in the W result
matrix was done through a combination of a statistical
criterion (the size of the eigenvalues) and visual inspection
of the topographical maps of the spatial filters’ activation
pattern. We inspected the 15 spatial filters associated with
15 highest eigenvalues and then removed the filters that
were clearly artifactual (for instance, showing clear eye-
blink activity, or one/several electrode issues). After these
steps, the component with the highest eigenvalue was
chosen as the spatial filter regardless of the topographical
activation pattern.

Finally, one should note that GED spatial filtering does
not allow us to make inferences at the cortical level and all
further analyses and interpretations are limited to topo-
graphical, channel-level distributions.

Time-Frequency Decomposition

After spatial filtering of the data, time—frequency decom-
position was performed to inspect time—frequency power
of the components defined by GED. To this end, we used
complex Morlet wavelet convolution: The Fourier trans-
form of the data (GED component) was multiplied by
the Fourier transform of a set of complex Morlet wavelet
and then taking the inverse Fourier transform of the result.
Complex Morlet wavelets were defined as follows:

el'ZTFﬁe*l‘Z/ZSZ (5)

where ¢ is time, f'is frequency ranging from 1 to 50 Hz (in
60 logarithmically spaced steps), and s is the width of each
frequency band, defined as n/(2«f), with 7 increasing
logarithmically from 4 to 12. We then took the squared-
magnitude of the resulting signal (Z) as real [Z(t)*] +
imaginary [Z(f)*] to obtain power at each frequency.
Power was then baseline-corrected using a decibel (dB)
transform: dB power = 10 X log10( power / baseline).
Time—frequency decompositions were applied either on
the data epoched from —700 to 1500 msec around stimu-
lus presentation. Baseline power was defined as the
average power across all conditions in the period ranging
from —500 to —200 msec before stimulus onset. When
plotting time—frequency power results, we deliberately
used a different colormap than for the topographical maps
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of the spatial filters activation (see Figure 5C—SF and
5A-5D) in order to differentiate between power and acti-
vation of the spatial filter, which are completely different
measures. Significant power changes from baseline were
investigated by using permutation analyses. The null
hypothesis was constructed by cutting the time—frequency
map of power at a random time point and placing the
second part before the first part, thus misaligning the time
of stimulus onset. This operation was carried out 500 times
and resulted in a distribution of time—frequency maps
under the null hypothesis. Then, the real time—frequency
map was z-scored by subtracting the average power value
under the null hypothesis from real power and dividing it
by the standard deviation. The significance threshold was
setat p = .05.

Brain-Behavior Synchronization Measures

We tested for brain—keystroke synchronization by extracting
the phase angle time series via the filter-Hilbert transform
method. We computed the consistency of brain phase
angles extracted from the time points of the keystrokes over
all trials in a condition-specific manner. Regarding errors, we
extracted the phases of all the keystrokes in erroneous
words in the (pseudo)word and (pseudo)sentence condi-
tions. The phases of the keystrokes of correctly typed words
in error (pseudo)sentences were not used to compute error
phase synchronization. Phase consistency was computed
as follows:

w = |n_1Zeﬂe" I ©)
r=1

n is the number of keystrokes, e* is the complex represen-
tation of the phase angle & of keystroke 7. Values close to 0
indicate random distribution of the phase angles, whereas
values close to 1 indicate strong phase consistency.

At the participant level, the significance of phase consis-
tency was calculated using the following equation:

p=e" @
with N being the number of keystrokes and ¢ the consis-
tency as calculated using Equation 6.

To compare phase consistency between frequency,
condition, and outcome, we applied a z-score normaliza-
tion based on permutation analyses to the data. At each
iteration, a phase angle time series vector was created
using a cut-and-swap procedure that cuts the original time
series at a random point and puts the second part before
the first part, thus misaligning keystrokes and phases’
timing. Following this, phase consistency was calculated
as described in Equation 4. This procedure was carried
out 500 times separately for each condition and outcome,
providing a distribution of phase consistency under the
null hypothesis that phase angles are randomly distributed.
Z-score normalization was then applied to real consistency
values by subtracting the average consistency of the null

hypothesis distribution and dividing the result by its stan-
dard deviation.

To investigate frequency-specific effects of outcome
and experimental condition on phase consistency, linear
mixed models with a 2 (linguistic nature) + 2 (nature of
the stimuli) + 3 (outcomes) design, and with participant
as a random effect, were performed at each frequency on
box-cox transformed consistency values (using the same
functions as described in the RT and Accuracy section).

Data and Code Availability

All EEG and behavioral data are posted on the Donders
data repository. All the codes used for EEG analyses, statis-
tical analyses, and figures are openly available at github
.com/jduprez.

RESULTS

Behavioral Results—Is There Rhythmicity
in Typing?
RT and Accuracy

As shown in Table 1, accuracy depended on the type of
stimulus, with overall lower accuracy for (pseudo)sen-
tences than (pseudo)words, F(1, 70) = 394.5, p < .0001;
conditional R* = .84, marginal R* = .67. However, whether
the stimulus had a linguistic nature or not did not influ-
ence accuracy, F(1, 70) = 1.5, p = .22. The low accuracy
for (pseudo)sentences is explained by the fact that the en-
tire sentence was labeled as an error if at least one word
had an error. Indeed, sentences and pseudosentences
had respectively an average of 2.3 and 2.2 errors per trial
when erroneous (Table 1). Figure 1 displays the group-
average and distribution of RT showing that RT increases
when the stimuli was either nonlinguistic or a sentence.
This pattern was confirmed by the statistical analyses with
a significant Linguistic Nature effect, F(1, 293) = 19, p <
.0001; conditional R* = .9, marginal R* = 2, as well as a
significant Type of Stimulus effect, F(1, 293) = 645, p <
.0001. Real stimuli had lower RT (795.4 msec, SD =
132.6) than pseudostimuli (825.4 msec, SD = 170.7),
and words had shorter RT (749.7 msec, SD = 134.3) than
(pseudo)sentences (871.1 msec, SD = 147.4). Although
graphical interpretation would suggest that corrected
and other errors had shorter RT than correct trials, this
was not supported by the statistical analyses, which
showed no significant Trial Outcome effect, F(2, 292) =
0.07, p = .933. As a whole, these data show an increase in
RT between nonlinguistic stimuli and (pseudo)sentences
as compared to linguistic stimuli and (pseudo)words.

IKIs

Overall IKI had an average of 156.2 msec (SD = 52.6), cor-
responding to 6.4 Hz. Figure 2 shows that IKIs changed
according to condition. An increase in IKI (thus a decrease
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Table 1. Average Number of Trials and Accuracy According to Experimental Conditions and Trial Outcome

% of Correct

Number of Number of % Corrected Number of n of Erroneous Words in
Correct Trials % Correct Trials — Corrected Errors Errors Other Errors % Other Errors Words Sentences
Pseudowords 72 (SD = 18) 685D =122) 13 D=5 132D =56) 19 @D =11) 183 (SD = 105)
Pseudosentences 9 (SD = 6) 202 (@D =171) 266D =8) 498 (D =151) 17 (D =8) 325D =143) 22D =07, 757 (SD = 10.4)
range: 0.1-3.6)
Words 71 (SD = 20)  64.8 (SD = 13) 136D =6) 133D =76 21@D=12) 20D = 10.9)
Sentences 14 (SD = 8) 279 (SD = 17.1) 21 (SD = 5) 41 (SD = 115) 18 (SD =8) 334 (SD = 122) 23 (SD =08; 70.8 (SD = 10.5)
range: 0.2-3.7)
Average number of 1.5 (D = 0.2)

backspaces per word
in corrected errors

Overall average number 115.9 (SD = 36.3)
of backspaces

Average backspace IKI ~ 383.3 (SD = 48.7)

The lower part of this table contains backspace data details.
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and other errors (lighter colors)
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Figure 1. RT of the first keystroke after stimulus display according to condition and trial outcome. Violin plots show the distribution of the data with
an inset boxplot. Each data point corresponds to the average RT of a participant. The right part of the figure shows asymmetrical violins that present
both corrected errors data (in darker colors) and other errors data (in lighter colors).

in typing frequency) can be observed nonlinguistic
(178.2 msec, SD = 30.1) compared to linguistic stimuli
(157.3 msec, SD = 31.5) and for (pseudo)words (172.1 msec,
SD = 29) compared to (pseudo)sentences (164.4 msec,
SD = 34.8). These differences were supported by the statis-
tical analyses with a significant Linguistic Nature effect, F(2,
282) = 225.6, p < .0001; conditional R* = .83, marginal
R* = .58, and a significant Type of Stimulus effect, F(2,
282) = 38.04, p < .0001. Figure 3 also suggests that IKI
varied between trial outcomes with shorter IKI for correct

trials than for corrected and other errors. We found a signif-
icant Trial Outcome effect, F(2, 282) = 407.95, p < .0001,
and post hoc analyses confirmed that correct trials had
shorter IKI (145.4 msec, SD = 19.5) than other errors
(161 msec, SD = 24.5), which had shorter IKI than cor-
rected errors (196.8 msec, SD = 27; all p < .0001).
However, given that backspace IKI were greater than other
IKIs (383.3 msec, SD = 48.7; Table 1), we reran the analysis
to check whether the difference between corrected errors
and other outcomes was not driven by backspace IKIs.

Correct trials

300 A

XY,

100 A

IKI (msec)

Corrected errors (darker colors)
and other errors (lighter colors)

Frequency (Hz)

T T T T
Words Pseudowords Sentences  Pseudosentences

T T T T
Words Pseudowords Sentences Pseudosentences

Figure 2. IKI according to condition and trial outcome. Violin plots show the distribution of the data with an inset boxplot. Each data point
corresponds to the average IKI of a participant. The right part of the figure shows asymmetrical violins that present both corrected errors data
(in darker colors) and other errors data (in lighter colors). A second y-axis has been added on the right to indicate the typing frequency

corresponding to the IKI
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Figure 3. (A) Participant-specific spectrum of KDE results (averaged over all conditions for each participant - grand average of all stimuli IKI
probability density function); (B) Peak frequency extracted from the KDE result according to condition and trial outcome. Violin plots show the
distribution of the data with an inset boxplot. Each data point corresponds to the peak typing frequency of a participant. The right part of the figure
shows asymmetrical violins that present both corrected errors data (in darker colors) and other errors data (in lighter colors).

When excluding backspace IKIs, the Outcome effect re-
mained, F(2, 282) = 84.71, p < .0001, although corrected
errors had a shorter IKI (167.5 msec, SD = 25.2) than in the
previous analysis (196.8 msec, SD = 27). The post hoc com-
parison showed that the difference between correct errors
and other errors remained significant as well (p = .00006).
As a whole, typing frequency was faster for real than pseu-
dostimuli and for (pseudo)words than (pseudo)sentences
stimuli. It is worth noting that typing frequency was also
faster for other errors than for corrected errors.

KDE Analyses

Using KDE on IKI data provided similar results as raw IKI
analyses regarding typing frequency. Inspection of the
KDE spectrum (Figure 3A) shows that typing mostly
occurs around 6 Hz. In order to better assess typing fre-
quency at the group level, we extracted the peak fre-
quency for each participant according to condition and
trial outcome (Figure 3B). In that case, results were less
clear than when focusing on IKI. Indeed, although graph-
ical inspection seems to show similar typing frequency
regardless of condition and trial outcome, statistical anal-
yses revealed significant differences for the Linguistic Na-
ture effect (Linguistic Nature: F(1, 293) = 37.9, p < .0001;
conditional R* = .45, marginal R* = .10) with higher fre-
quencies for real stimuli (6.8 Hz, SD = 1) than pseudo-
stimuli (6.3 Hz, SD = 1.1). We also found a significant
outcome effect, F(2, 293) = 9.02, p = .0002, but the type
of stimulus did not significantly influenced frequency,
F(1, 293) = 3.4, p = .064. It is worth noting that, in this
analysis, conditional and marginal R* were lower than for
RT or IKI, indicating less variance explained by the

894  Journal of Cognitive Neuroscience

model. When applying post hoc tests, we found that cor-
rect trials had faster frequency (6.8 Hz, SD = 0.8) than
corrected errors (6.4 Hz, SD = 0.9; p < .001) and other
errors (6.5 Hz, SD = 1.3; p = .003). The comparison
between corrected errors and other errors was not signif-
icant (p = .74). Overall average peak frequency was at
6.5 Hz (SD = 1.1), which is consistent with the typing
frequency obtained in the IKI results (6.4 Hz).

EEG—Does Typing Synchronize with Brain
Oscillatory Activity?

Topograpbhies of the Spatial Filters

Although we investigated frequencies ranging from 3 to
15 Hz, we only report EEG results from 4 to 15 Hz because
3-Hz activity was dominated by eye-level activity and
because no participant typed at 3 Hz. Figure 4A shows
the size of the largest eigenvalue according to frequencies
at the group level. The highest values were observed at
8.5 Hz, which indicates that this frequency was more easily
differentiated from broadband activity than other frequen-
cies, especially from frequencies above 12 Hz. Inspection
of the spatial filters created by GED revealed clear activa-
tion patterns (Figure 4B). Greater activation was centered
around midfrontal electrodes from 4 to 7 Hz. A shift from
midfrontal to occipital activation occurred from 8 to 11 Hz,
which became more occipito-parietal from 12 to 15 Hz.

ERP and Time—Frequency Analyses

In order to further evaluate the quality of the components
created by GED, we inspected the ERP and time-
frequency decompositions of the components. Here, we

Volume 33, Number 5

(/286006 1/288/G/€€/4Pd-8]01E/UD0INPS }WI0BIP//:dRY WOl papeojumOQ

) & U9O|

sonsinBuloyoAsd 1oy Ininsul youeld xe|\ Aq ypd-z6910

1202 ABIN 90 UO Jasn



Figure 4. (A) Spectrum of
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report the results of two frequency components: the 6-Hz
component, because of our hypothesis on theta synchro-
nization with typing, and the 8.5-Hz component (Figure 5)
given that it is the one associated with the highest
eigenvalues.

Analyzing the 6- and 8.5-Hz components revealed that
the spatial filtering designed by GED resulted in physiolog-
ical signals that have a clear topography, as well as time-
resolved and time—frequency characteristics. Figure 5B
and SE show the group-level ERP with clear positive and
negative variations after stimulus onset. Figure 5C and
SF reveal the time—frequency power dynamics. A signifi-
cant increase in power can be observed around 600 msec
after stimulus presentation for the 6-Hz component (thus
before mean RT) in the theta band. An important signifi-
cant decrease in power in the beta band for the 6-Hz com-
ponent, and that spans the alpha and beta band for the
8.5-Hz component, was also present from roughly 300 to
1200 msec. Very low- and high-frequency changes can
also be observed. The topographical map and ERP are very
different from one target frequency to the other. Time—
frequency power dynamics, although sharing overall
similar features, also show different characteristics such
as stronger alpha decrease and delta increase for the
8.5-Hz component. As a whole, GED allowed to isolate
frequency-specific components that each had its particular
activation pattern and oscillatory characteristics.

Frequency-specific Phase Clustering of All Keystrokes

Our main hypothesis was that typing synchronizes with
brain activity around the typing frequency. More specifically,
we expected that typing in theta frequency would synchro-
nize with midfrontal theta oscillations. For frequencies
ranging from 4 to 15 Hz, phase-behavior synchronization
was calculated for the corresponding GED component.
Z-score normalization based on permutation analyses was
then performed in order to ensure frequencies, experi-
mental conditions, and trial outcomes are comparable.
According to Figure 64, it seems that average synchro-
nization between typing and brain activity peaked at 8 Hz.
However, inspection of the participant-specific spectra of
synchronization revealed that the peak synchronization
frequency was idiosyncratic across participants and ranged
from 4 to 15 Hz (Figure 6B). Since brain—-behavior syn-
chronization could vary according to experimental condi-
tions, we applied linear mixed models for each frequency
to investigate the effect of the linguistic nature of the
stimuli, the type of stimuli, and trial outcome on synchro-
nization. This analysis did not reveal any significant exper-
imental condition, or trial outcome effect at any frequency
@all p > .05), except for the linguistic nature effect at 13,
F(1,326) = 5.2, p = .024; conditional R* = 0.02, marginal
R*=.02,and 13.5Hz, F(1, 326) = 6.4, p = .012; conditional
R* = .02, marginal R* = .02, with higher consistency for
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Figure 5. (A) Topographical
map showing the activation
pattern of the 6-Hz spatial filter;
(B) group-averaged event-
related potential; (C) group-
averaged time—frequency plot
of decibel-transformed power
(white contour lines indicate
significant changes from
baseline at p < .05 based on
permutation testing). Stimulus
onset occurred at time = 1
0 msec, and the vertical dashed -400 0 400 800 1200 -400 0 400 800 1200

line corresponds to the group- Time (msec) Time (msec)
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Figure 6. (A) Outcome-specific and group-averaged z-scored synchronization according to frequency; (B) participant-specific z-scored synchronization
according to frequency sorted according to peak synchronization frequency (upper participants have a lower peak frequency). The white pixels indicate
nonsignificant synchronization ( p > .05) at the participant level (calculated over all trials); all other pixels have participant-level synchronization atp < .05;
(C) scatterplot showing the relationship between peak synchronization frequency and behavioral peak frequency estimated by the IKI and KDE analyses.
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nonlinguistic (13 Hz: 0.02, SD = 0.96; 13.5 Hz: 0.06, SD =
0.97) than linguistic stimuli (13 Hz: —0.2, SD = 0.85;
13.5Hz: 0.18,SD = 0.81), and for the type of stimulus effect
at 9 Hz with lower consistency for words (—0.15,SD = 0.98)
than sentences (—0.1,SD = 0.91; F(1,326) = 3.9, p = .047;
conditional R = .03, marginal R* = .01). However, it is
important to note that for all frequencies, conditional and
marginal R* were lower than 0.1, indicating only a small
amount of variance was explained by the models.
Furthermore, although peak synchronization frequency
was highly variable across participants, inspection of syn-
chronization significance at the participant level revealed
that most significant synchronizations occurred at frequen-
cies lower than 9 Hz (Figure 6B). Figure 6C displays the
relationship between peak synchronization frequency and
behavioral peak frequency. If typing and brain activity syn-
chronizes the most at the typing frequency, a strong corre-
lation should appear between typing frequency and the
synchronization between typing and brain activity. The cor-
relation between peak frequency estimated through IKI
analysis with the peak synchronization was not significant
(p = 0.35,p = .069), whereas it was the case for correlation
between the KDE-estimated frequency and peak synchroni-
zation frequency (p = 0.49, p = .008). Critically, this analysis
was not circular given that neural oscillation’s phase
(extracted at the time of the keystrokes) and IKI/KDE values
are independent. As a whole, our results suggest that the
brain—behavior synchronization mostly occurs at low fre-
quencies during typing but is more nuanced than originally
expected.

DISCUSSION

The rhythmic nature of brain electrophysiological activity
has been shown to be associated with rhythmic behaviors
through various mechanisms (synchronization, entrain-
ment, changes in behavioral performances). In this study,
we tested the hypothesis that keyboard typing, a real-life
behavior that has been suggested to be rhythmic, synchro-
nizes with neuronal oscillations, which would manifest as
phase consistency of oscillatory activity over keystrokes
during typing behavior. More specifically, we expected
that synchronization would preferentially occur with
midfrontal theta oscillations, which have been reportedly
associated with cognitive control, and recently with key-
board typing. We further hypothesized that phase consis-
tency over keystrokes would decrease during errors. Our
results partly support our hypothesis by showing that
typing is indeed rhythmic and that it does mostly synchro-
nize with brain activity in low frequencies, although with
no strong specificity for midfrontal theta.

Typing is Rhythmic

Keyboard typing is a highly expressed behavior in our mod-
ern societies, which makes it an ecologically valid behavior
to investigate. Furthermore, studying typing is facilitated by

the ease in collecting huge amounts of data in a short
amount of time and without any special requirements in
experimental setup and experimenter training. Typing
speed has been the focus of ample research, notably
regarding keyboard design and typing performance
(Soukoreff & Mackenzie, 1995; Kinkead, 1975).
Performances are usually assessed by investigating the
number of words per minute, or through the IKI, with some
studies suggesting that typing occurs in the theta frequency
range (Kalfaoglu et al., 2018; Kalfaoglu & Stafford, 2014;
Yamaguchi et al., 2013). In this study, we used two different
approaches to investigate rhythmicity in typing: either by
focusing on raw IKI or by calculating their probability den-
sity function using KDE. Both approaches led to results
showing that typing rhythmicity occurred in the theta fre-
quency range on average (6.4 and 6.5 Hz for the IKI and
KDE analyses, respectively). Our results also suggest that
typing RT and typing frequency depended to some extent
on the need for cognitive control, on the type of stimulus,
and on whether errors were committed. Indeed, pseudo-
stimuli were associated with longer RTs and lower typing
frequency and sentences were associated with longer RTs
and higher typing frequency. Regarding trial outcome,
lower typing frequency was observed for errors compared
to correct trials. Corrected errors showed lower typing fre-
quency compared to other errors, which could be explained
by behavioral adjustments such as posterror slowing
because of error awareness and monitoring (Schroder &
Moser, 2014; Ullsperger, Fischer, Nigbur, & Endrass,
2014). However, this interpretation is mitigated by the fact
that overall backspace IKIs were greater than other IKIs.
Removing backspace IKIs from the analyses decreased cor-
rected errors IKIs, indicating that backspaces accounted for
at least some part of lower typing frequency associated with
corrected errors. Nonetheless, removal of these IKIs still
resulted in lower typing frequency in corrected errors com-
pared to other errors. Thus, error monitoring effects might
also contribute to this effect. For instance, monitoring pro-
cesses might have been even more elicited given the ab-
sence of visual feedback (Pinet & Nozari, 2020). Following
this, the absence of visual feedback might account for lower
correction rates compared to other studies (Pinet & Nozari,
2021; Kalfaoglu et al., 2018). Finally, it is important to note
that these results were stronger in the IKI analysis. This
could be, at least partly, explained by the fact that IKI anal-
yses were based on participant-averaged IKI, whereas KDE
analyses were based on participants’ peak typing frequency,
which could arguably be more consistent across conditions
than average IKI. Nonetheless, the lack of the same effects
for the KDE analysis leads to caution in interpreting exper-
imental condition and outcome effects on typing frequency
and demands further replications.

Unmixing Frequency-specific Signals

In this study, we hypothesized a synchronization between
typing and midfrontal theta oscillations. In order to
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increase the signal-to-noise ratio, to avoid bias in electrode
selection and to account for variability in participant’s
topography, we chose to apply a multivariate guided
source separation method, namely, GED (de Cheveigné
& Arzounian, 2015; Nikulin et al., 2011). This method
allows us to create a single component that best reflects
target features of the signal (in this case, a narrow-band
frequency-specific signal) and has been shown to be very
helpful in maximizing low-frequency features in the EEG
signal ( Cohen, 2017). Our results showed that this method
successfully isolated different narrow-band frequency-
specific components. Indeed, theta frequency components
showed a midfrontal-centered activation topography,
which is highly similar to topographies observed during
cognitive control tasks, and were associated with compa-
rable time—frequency dynamics such as preresponse theta
power bursts (Duprez et al., 2020; Pastotter, Dreisbach, &
Bduml, 2013; Cohen & Cavanagh, 2011; Nigbur, Ivanova, &
Stiirmer, 2011). Focusing on higher frequencies, topog-
raphies shifted to more posterior, occipital, and occipito-
parietal activations and components showed distinct
time—frequency dynamics with strong alpha suppression.
These topographies and power dynamics are usually associ-
ated with visual attention (Zhang, Zhang, Cai, Luo, & Fang,
2019; Bauer, Stenner, Friston, & Dolan, 2014; Fries,
Womelsdorf, Oostenveld, & Desimone, 2008) and have
already been reported during typing (Scaltritti, Suitner, &
Peressotti, 2020).

Brain-Behavior Synchronization during Typing

Synchronization between brain activity and sensory infor-
mation or behavior has been repeatedly observed in vari-
ous situations. Brain oscillations can become entrained
and phase-aligned to (quasi)rhythmic stimuli with conse-
quences on cognitive performances (see Hanslmayr,
Axmacher, & Inman, 2019, for a review on memory), or
they can provide a more or less constrained time frame
for specific cognitive processes or behavior to occur
(Duprez et al., 2020; Fiebelkorn & Kastner, 2019; Miller,
Lundgqyvist, & Bastos, 2018). The similarities between key-
board typing and cognitive control in terms of topograph-
ical theta activity and time—frequency power (Kalfaoglu
etal., 2018; Cavanagh & Frank, 2014) led us to hypothesize
the existence of synchronization between midfrontal theta
and typing behavior, and that breakdown in this synchro-
nization would explain typing errors. However, it is impor-
tant to note that our hypothesis does not presuppose
whether brain oscillations would become phase-aligned
with typing as a rhythmic sensory information, or whether
brain oscillations would cyclically orchestrate processes
resulting in rhythmic typing. Our results do not clearly
support our hypothesis. Indeed, phase consistency (i.e.,
synchronization) of keystrokes did occur significantly
in all participants and at various frequencies for all partic-
ipants, suggesting that there is some broadband (non-
frequency-specific) synchronization between typing and
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neural oscillations. Analyses showed that peak synchroni-
zation seemed to occur around 8 Hz at the group level.
Since the 8-Hz component was associated with midfrontal
topography, this would support midfrontal theta synchro-
nization with typing. However, inspection of participant-
specific data showed that synchronization peak frequency
was participant specific and ranged from 4 to 15 Hz, thus
associated with components with various topographies.
Therefore, although significant synchronization mostly
occurred at low frequencies (and thus around midfrontal
regions) at the participant level, our results do not point to
a clear specificity for the theta band and for midfrontal
activity. We further reasoned that if synchronization
between typing and neuronal oscillation was strong, the
peak synchronization frequency and the peak typing
frequency should correlate at the group level. We only
observed such correlation when focusing on typing fre-
quency determined by the KDE method.

Moreover, no significant changes in phase consistency
were observed between the different experimental condi-
tions, and between the different trial outcomes, at any fre-
quency. This suggests that the need for cognitive control
did not modulate synchronization and that erroneous tri-
als (whether they were corrected or not) were not neces-
sarily associated with a decrease in synchronization. The
average number of errors in erroneous sentences was only
two, which prevented us from investigating the effect of
the number of errors on synchronization. This could have
influenced error-related results. Investigating such an
effect would be interesting in a subsequent study but would
likely require focusing on less experienced participants.

To summarize, although our results show synchroniza-
tion between typing and neuronal oscillations, it does not
seem to be limited to the theta band or to midfrontal
regions, and typing behavior does not seem to depend
on the strength of this synchronization.

Limitations and Perspectives

This study is the first, to our knowledge, to investigate
synchronization between brain activity and typing. As a
result, interpretations should remain cautious and take
into account some limitations.

Our results show that there was a clear variability in
typing frequency across participants, with some partici-
pants showing 4.5-Hz typing frequency whereas others
went up to 7.5 Hz. Such differences could participate in
enhancing variability when investigating synchronization.
Focusing on a group of participants sharing more similar
typing frequencies could help in diminishing interindivid-
ual typing differences. However, it is important to note
that our results show that, even for similar typing frequen-
cies, the peak synchronization frequency varied from 4 to
15 Hz. This suggests that typing frequency variability prob-
ably does not entirely account for synchronization differ-
ences. Another linked limitation is that we cannot rule
out that variability in typing expertise across participants
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might have influenced our results. Although including
random intercept for participant in the statistical models
accounts for part of interindividual variability, it is possible
that brain—behavior synchronization during typing varies
depending on expertise. Further work including precise
typing expertise information of participants will be needed
to investigate this hypothesis.

With this study, we aimed at testing a specific hypothesis
on midfrontal theta synchronization with typing. Thus, we
chose to use a spatial filtering technique (GED) specifically
designed to enhance narrow-band frequency-specific fea-
tures of the signal. Although GED successfully isolated target
components, it also potentially masked broader topograph-
ical networks, which do not necessarily operate in narrow-
band frequencies but rather by the means of cross-frequency
dynamics. An interesting perspective of this work could be
to investigate such cross-frequency networks by using
participant-specific peak synchronization frequency as the
low frequency timing higher frequency characteristics.

Our hypothesis was based on the fact that keyboard typ-
ing is associated with the same frequency characteristics
(midfrontal oscillatory dynamics) as cognitive control.
These associations are often described for perception
mechanisms (Zoefel & VanRullen, 2016), and an interest-
ing contribution of our study is in showing that a compa-
rable association is relevant for high-level real-world
behavior. However, our data do not allow us to interpret
the meaning of such frequency association and synchroni-
zation between behavior and neural activity.

Another aspect to bear in mind is that this study was lim-
ited to the investigation of cortical brain-behavior synchro-
nization. The synchronization we expected might be more
prominent between typing and activity in the basal ganglia
or the cerebellum, which are hardly accessible through
EEG. For instance, in the case of cognitive control, theta
oscillations in the subthalamic nucleus have been associ-
ated with conflict resolution and inhibition and subtends
functional connectivity with midfrontal cortical regions
(Zavala, Zaghloul, & Brown, 2015), making it an interesting
candidate structure for synchronization with typing.
Another potential structure for synchronization might be
the cerebellum, which is involved in the subsecond timing
of voluntary movements (Bares et al., 2019), thus in the
frequency range of keyboard typing. Finally, given the com-
plex interplay between cortical regions, the basal ganglia
and the cerebellum for goal-directed behavior, it is highly
unlikely that synchronization would be exclusive to one
structure. Comparing the strength of synchronization
between these brain regions and typing would therefore
provide interesting insights on the role of brain—-behavior
synchronization during keyboard typing.
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