Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Efficient epoxidation over dinuclear sites in titanium silicalite-1

MPG-Autoren
/persons/resource/persons206736

Tragl,  Amadeus Samuel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons200441

Plodinec,  Milivoj
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons41515

Lunkenbein,  Thomas
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

manuscript_final(1).pdf
(beliebiger Volltext), 281KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gordon, C. P., Engler, H., Tragl, A. S., Plodinec, M., Lunkenbein, T., Berkessel, A., et al. (2020). Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature, 586(7831), 708-713. doi:10.1038/s41586-020-2826-3.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-53F9-3
Zusammenfassung
Titanium silicalite-1 (TS-1) is a zeolitic material with MFI framework structure, in which 1 to 2 per cent of the silicon atoms are substituted for titanium atoms. It is widely used in industry owing to its ability to catalytically epoxidize olefins with hydrogen peroxide (H2O2), leaving only water as a byproduct; around one million tonnes of propylene oxide are produced each year using this process. The catalytic properties of TS-1 are generally attributed to the presence of isolated Ti(iv) sites within the zeolite framework. However, despite almost 40 years of experimental and computational investigation, the structure of these active Ti(iv) sites is unconfirmed, owing to the challenges of fully characterizing TS-1. Here, using a combination of spectroscopy and microscopy, we characterize in detail a series of highly active and selective TS-1 propylene epoxidation catalysts with well dispersed titanium atoms. We find that, on contact with H217O2, all samples exhibit a characteristic solid-state 17O nuclear magnetic resonance signature that is indicative of the formation of bridging peroxo species on dinuclear titanium sites. Further, density functional theory calculations indicate that cooperativity between two titanium atoms enables propylene epoxidation via a low-energy reaction pathway with a key oxygen-transfer transition state similar to that of olefin epoxidation by peracids. We therefore propose that dinuclear titanium sites, rather than isolated titanium atoms in the framework, explain the high efficiency of TS-1 in propylene epoxidation with H2O2. This revised view of the active-site structure may enable further optimization of TS-1 and the industrial epoxidation process.