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SUPPLEMENTARY NOTE 1: DERIVATION OF THE EFFECTIVE SPIN HAMILTONIAN

We here provide additional details on the derivation of the effective spin Hamiltonian describing the correlated
d-electrons in the large U limit. We start from an electronic Hamiltonian of s- and d-orbitals given by H(t) =
Hs(t) +Hs−d +Hd with

Hs(t) =
∑
iσ

εsiσ(t)n̂siσ −B ·
∑
i

ŝi +
∑
〈ij〉σσ′

eiθij(t)c†iσ(−ts1 +αsij · τ )σσ′cjσ′ (1)

Hd(t) = U0

∑
i

n̂di↑n̂di↓ +
∑
〈ij〉

(V0
2
n̂din̂dj − J0Ŝi · Ŝj

)
+
∑
〈ij〉σσ′

eiθij(t)d†iσ(−td1 +αdij · τ )σσ′djσ′ −B ·
∑
i

Ŝi (2)

Hs−d = ts−d
∑
iσ

(
c†iσdiσ + d†iσciσ

)
+ Us−d

∑
iσσ′

n̂siσn̂diσ′ − Js−d
∑
iσ

ŝi · Ŝi. (3)

In Supplementary Equations (1-3), c†iσ (d†iσ) creates an s- (d-) electron at site i with spin projection σ, and n̂aiσ is the
spin density operator for orbital a ∈ {s, d} at site i. The orbital energy is given by εaiσ, ta is the hopping amplitude
between nearest-neighbor sites i and j, and αaij accounts for Rashba spin-orbit interactions. The s- and d-electron

spin operators are given by ŝi = c†iστσσ′ciσ′ and Ŝi = d†iστσσ′diσ′ , where τ denotes the vector of Pauli matrices and
repeated spin indexes are summed over.

In Hd, both a local interaction U0 as well as nearest-neighbor direct and exchange interactions V0 and J0 are
included1. In the s− d interaction term [Supplementary Equation (3)], ts−d is the hybridization strength, and Us−d
and Js−d the direct and exchange interactions. For 〈n̂di〉 = 1 (as assumed in the rest of this work), the direct term just
renormalizes the orbital energy εiσ. Finally, both s- and d- electron spins interact with an external static magnetic
field B via Zeeman coupling.

Assuming the d-electron system is at half-filling, doubly occupied sites will be penalized by an energy ∼ U , and the
effective Hilbert space can be defined by projecting out the doubly occupied sites. This is achieved by the projection
operator P =

∏
i Pi, where Pi = 1− n̂di↑n̂di↓. In the following we decompose the Hamiltonian as H(t) = H0(t) +H1,

where H1 is the interacting part of Hd defined in the main text. For virtual excitations out of the subspace defined
by P, where exactly one doubly occupied site is involved, we can write (up to an irrelevant constant2)

H1 = U0

∑
i

n̂di↑n̂di↓ +
V0
2

∑
〈ij〉

n̂din̂dj = U
∑
i

n̂di↑n̂di↓, (4)

where U = U0 − V0. We note that H1 only acts in the high energy subspace defined by Q = 1− P.
The time-dependent Schrieffer-Wolff transformation is defined as the unitary transformation that at each time

t removes the coupling between the low and high energy subspaces? . Given a state |Ψ(t)〉 that evolves under

the original Hamiltonian H(t), the unitary transformation |Ψ̃(t)〉 = eiS(t)|Ψ(t)〉 corresponds to a Hamiltonian H̃ =
eiS(t)[H−i∂t]e−iS(t). Assuming that S(t) can be written as S(t) = γS1(t)+γ2S2(t)+O(γ3), with γ a small parameter,
we find to second order in γ that

H̃ = H0 +H1 + γ (i[S1, H0] + i[S1, H1]− ∂tS1) + γ2
(

[S2, H1]− 1

2
[S1, i∂tS1 + [S1, H1]]− ∂tS2

)
. (5)

To eliminate the leading order off-diagonal term (in P and Q), we take S2 = 0 and require that iγ[S1, H1]− γ∂tS1 =
−PH0Q − QH0P. Since the projection operators P and Q act in the subspace of d-electrons, only the d-electron
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kinetic term Td and the coupling Hamiltonian Hs−d contribute to S1. Projecting the expression for H̃ onto the low
energy subspace, we have

H̃ = PH0P +
iγ

2
PS1QQH0P −

iγ

2
PH0QQS1P. (6)

It now remains to solve the differential equation for S1. This can be achieved by introducing the retarded and
advanced Green’s functions

GR(t, t′) = −ie−i(H1−iη)(t−t′)θ(t− t′) (7a)

GA(t, t′) = iei(H1−iη)(t′−t)θ(t′ − t), (7b)

in terms of which the projections of the operator S1 are given by

QS1(t)P = i

∫
dt′GR(t, t′)QH0(t′)P (8a)

PS1(t)Q = −i
∫
dt′ PH0(t′)QGA(t′, t). (8b)

Since we work at half-filling the operator H1 appearing in the exponential of the Green’s function always acts after a
single excitation has been created, and can therefore by replaced by U in the exponential. The effective Hamiltonian
is then

H̃ ≈ i

2

∫
dt′ θ(t− t′)

[
ei(U+iη)(t−t′)PH0(t′)QQH0(t)P − e−i(U−iη)(t−t

′)PH0(t)QQH0(t′)P
]

+H0. (9)

where η is a real infinitesimal introduced to regularize the integral as t′ → −∞. In this and following equations
containing η, it should be understood the the evaluation of the integral is followed by the limit η → 0 from the
positive side. The operator products can be evaluated following the procedure detailed in Section below, and leads
to a time-dependent spin Hamiltonian

H̃(t) = H0 +
∑
〈ij〉

[
Jij(t)Ŝi · Ŝj + Dij(t) · (Ŝi × Ŝj) + ŜiµΓiµ,jν(t)Ŝjν

]
+Hs−d, (10)

with the parameters Jij(t) = 4t2dIij(t) − Jx, Dij(t) = 8itdαdijIij(t) and Γiµ,jν(t) = (8αµdijα
ν
dij + 4|αdij |2δµν)Iij(t).

Here we use Greek letters to denote the components of the spin-orbit vector αd. The time-dependent function Iij(t)
is given by

I(t) = Im

∫
dt′ ei(U+iη)(t−t′) cos(θij(t)− θij(t′)). (11)

Similarly the s− d exchange interaction (obtained from the time-independent part of Supplementary Equation 9) is
found to be of the form

Hs−d = −g
∑
i

ŝi · Ŝi, (12)

where g = Js−d − 4t2s−d/U .

SUPPLEMENTARY NOTE 2: EVALUATION OF THE OPERATOR PRODUCTS OF THE EFFECTIVE
HAMILTONIAN

Given the formal expression for H̃ in Supplementary Equation 9, we can evaluate the operator products following
the procedure in Ref.3. At half-filling only virtual transitions that involve two sites contribute to the Hamiltonian,
and thus the projection operators Q always give unity and can be removed. The products arising from the kinetic
energy of the d-electrons are then of the form

Td(t
′)Td(t) =

∑
〈ij〉

M ij
σ1σ2

(t′)(δσ2σ3
− d†jσ3

djσ2
)M ji

σ3σ4
(t)d†iσ1

diσ4
, (13)
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where summation over repeated spin indexes is implied and the projection operators P have been left out for notational

simplicity. We now use that the electronic bilinears can be represented in terms of Pauli matrices as d†iσdiσ′ =

(1/2 + Ŝi · τ )σ′σ. Similarly, the products arising from the s− d exchange term are of the form

Hs−dHs−d = t2s−d
∑
i

(δσ1σ2 − c
†
iσ2
ciσ1)d†iσ1

diσ2 , (14)

where we can represent the s-electron bilinear by c†iσciσ′ = (1/2 + ŝi · τ )σ′σ.
To this order in the Schrieffer-Wolff expansion no other terms can arise, and in particular, terms of the form

PTdHs−dP = 0 since they contain an odd number of d operators. Therefore, they necessarily create (or destroy) a
doubly occupied state, which takes the system out of the low-energy Hilbert space.

With the above representation of the electronic operators the expression for H̃ takes the form of a trace, explicitly
given by

H̃ ≈ H0 +
∑
〈ij〉

Tr

[
Mij(t′)Mji(t)

(
1

2
+ Ŝi · τ

)]
−
∑
〈ij〉

Tr

[
Mij(t′)

(
1

2
+ Sj · τ

)
Mji(t)

(
1

2
+ Si · τ

)]
(15)

+ t2s−d
∑
i

Tr

[
1

2
+ Ŝi · τ

]
− t2s−d

∑
i

Tr

[(
1

2
+ ŝi · τ

)(
1

2
+ Ŝi · τ

)]
We evaluate these traces using a representation of M in terms of the Pauli matrices, M = −td1 + αd · τ , together
with the property (a · τ )(b · τ ) = (a ·b)1+ i(a×b) · τ and the trace identities Tr1 = 2 and Tr τ = 0. The first term

in H̃ (for given i and j) can be shown to be independent of the spin vectors for real hoppings t∗d = td and imaginary
spin-orbit couplings α∗d = −αd, which holds when the spin-orbit interaction is of the Rashba form. This term can
therefore be neglected. The same argument holds for the terms proportional to the identity matrix in the second,
third and fourth term, which can thus be omitted too. The remaining part of the trace is then

Tr
[
Mij(t′)(Sj · τ )Mji(t)(Si · τ )

]
= ei(θij(t

′)−θij(t)) ×
[
2t2dSi · Sj + 2i(tdα

∗
d − tdαd) · (Si × Sj)

− 2(αd × Si) · (α∗d × Sj) + 2(αd · Si)(α∗d · Sj)] .

for the kinetic part, and

Tr
[
t2s−d(si · τ )(Si · τ )

]
= 2t2s−dsi · Si. (16)

for the s − d exchange part. Inserting these results in the expression for H̃, and noting that the term with i and j
swapped gives an analogous contribution to the kinetic part but with the phase e−i(θij(t

′)−θij(t)), we find the effective
spin Hamiltonian of Supplementary Equation (10). The final expression for Iij(t) comes from combining the terms in
Supplementary Equation (9) relating to the retarded and advanced Green’s functions. Similarly, the extra factor of
two in Supplementary Equation 12 for the s−d exchange comes from the Hermitian conjugate of the term considered
above.

SUPPLEMENTARY NOTE 3: INEFFICIENCY OF THE INVERSE FARADAY EFFECT FOR
ATOMICALLY THIN SAMPLES

A mechanism proposed to underlie the optical excitation of skyrmions is the direct coupling between the material
magnetization and the laser electric field via the inverse Faraday effect (IFE)4,5. However, a straightforward estimate
of the interaction energies involved in the IFE shows that it can not be responsible for skyrmion excitation in quasi
two-dimensional systems. The interaction energy for the IFE in a volume a3 can be written as6

U = −
iθF c
√
εrε0a

3

2ω

M(r)

Ms
· [E∗(r)×E(r)], (17)

where θF is the Faraday angle, εr the relative permittivity of the material, a the lattice parameter, ω the frequency
of the laser and Ms the saturation magnetization. The Faraday angle can be written as θF = VB where V is the
so-called Verdet constant, which is smaller than ∼ 100 rad/Tm. Taking a large value E = 109 V/m, a = 5 Å and
λ = 800 nm, giving ω ≈ 2360 THz, we find the energy density U = gS · e with g ≈ 1.2 · 10−7 eV, S = M/Ms and
e = (E∗×E)/E2. Since typical values of spin parameters are on the order of ∼ 1 meV, the IFE coupling is at least a
factor 10−3 smaller than the direct Zeeman term. The reason for this small coupling is that the strength of the IFE is
proportional to the propagation length through the system6, and is therefore strongly suppressed for atomically thin
systems. In these systems, the IFE is to a very good approximation negligible.
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Supplementary Figure 1. Dynamics of skyrmion nucleation. Snapshots of the spin configuration around the time of
skyrmion nucleation. The time between the snapshots is 3.3 fs and show the interval between t = 121.8 and t = 138.2 fs. The
skyrmion is created in the upper right panel at approximately t = 127 fs. The coloring shows the out-of-plane component of
the spin vector ranging from Sz = −1 (blue) to Sz = 1 (red). The system has 30× 30 sites and the spin parameters are J = 50
meV, D = 25 meV and B = 10 meV. The parameters of the s-electrons are t = 1 eV and α = 0.5 eV, and the s− d exchange
coupling is g = 2.5 eV. The laser has a field strength E = 109 V/m, frequency ~ω = 0.5 eV, pulse length τ = 30 fs, and spot
size of ≈ 14 nm.

SUPPLEMENTARY NOTE 4: SKYRMION NUCLEATION DYNAMICS

The skyrmion nucleation process displayed in Supplementary Figure 1 of the main text shows snapshots of the spin
configuration shortly after the skyrmion has nucleated, and at some later times to illustrate the oscillation of the
skyrmion radius. Here, we supplement this figure by showing snapshots of the spin configuration across the skyrmion
nucleation process. As can be seen from Supplementary Figure 1, the skyrmion nucleates by a single spin-flip and
then expands to a size determined by the magnetic parameters. This is in line with previous work on current induced
skyrmion nucleation7.

SUPPLEMENTARY NOTE 5: PARAMETRIZATION OF RELAXED SKYRMIONS

The parameterization of the relaxed skyrmion state employed in the main text is given n(r) = (−xf(u),−yf(u), 1−
2e−u

2

), where f(u) = (2/Ru)(e−u
2 − e−2u

2

)1/2, u = r/R and r is measured from the center of the system. In
Supplementary Figure 2 this parameterization is compared to a relaxed skyrmion configuration obtained from the
spin Hamiltonian

Hd =
∑
〈ij〉

[
JijŜi · Ŝj + Dij · (Ŝi × Ŝj)

]
−B ·

∑
i

Ŝi (18)
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Supplementary Figure 2. Parameterization of a relaxed skyrmion. The left panel shows a relaxed skyrmion configu-
ration containing two skyrmions obtained from the ground state of Supplementary Equation 18. The central and right panels
show cross-sections of the z- and x-components of the spins along the line y = 0 through the skyrmion center. The blue lines
give the cross-section of the skyrmion texture in the left panel, while the dashed orange lines show the parameterization n(r)
used in the main text.

by simulated annealing with the Metropolis Monte Carlo algorithm and subsequently relaxed by time-propagation
with a small Gilbert damping. The parametrization is seen to give an excellent description of the relaxed skyrmion
configuration.

SUPPLEMENTARY NOTE 6: SPIN EQUATION OF MOTION IN THE LARGE s− d EXCHANGE LIMIT

To better understand the influence of itinerant electrons on the dynamics of the spin system, we derive an effective
equation of motion for the spins in the limit of large s− d exchange8–12. To simplify the algebraic manipulations we
adopt a continuum description ψσ(ri) = ciσ/a and n(ri) = ni, where the Lagrangian for the itinerant electrons is
given by

L =

∫
d2r

(
ψ†σ

[
i~∂t +

~2

2m
∇2 − i

2
(αi · τ )

↔

∇i
]
ψσ + gψ†σ(τ · n)ψσ′

)
. (19)

Here ψ†σ
↔

∇ψσ = ψ†σ(∇ψσ) − (∇ψ†σ)ψσ, and the spin-orbit interaction has been written in a general form in order to
facilitate the algebraic manipulations. We note that here αai is a matrix with i denoting the spatial and a the spin
component, which reduces to the standard Rashba spin-orbit coupling at an interface, Hso = αêz · (∇× τ ), by taking
αx = αêy, αy = −αêx and αz = 0.

We assume the magnetization is described by a normalized spin texture n(r, t) = (sin θ cosφ, sin θ sinφ, cos θ) where
the angles θ = θ(r, t) and φ = φ(r, t) are functions of space and time. Exploiting the gauge invariance of the theory,
we perform a local SU(2) transformation ψσ(r, t) → Uσσ′(r, t)ψσ′(r, t) of the electronic field operators to align the
electronic spins with the underlying magnetic texture. The transformation corresponds to a local rotation and is
implemented by the operator U = m · τ for SU(2) vectors and by the matrix Rab = 2mamb − δab for SO(3) vectors,
where m(r, t) = (sin θ

2 cosφ, sin θ
2 sinφ, cos θ2 ).

Under the above gauge rotation the derivatives transform like ∂µψσ = U(∂µ + iAµ)ψσ, where Aµ = −iU†∂µU acts
like an emergent electromagnetic field. The Lagrangian for the itinerant electrons then becomes

L =

∫
d2r

(
i~ψ†σ(∂t + iA0)ψσ + gψ†στ

zψσ′ (20)

+
∑
i

[ ~2
2m

ψ†σ(∇2
i + iAi

↔

∇i −A2
i )ψσ′ − i

2
ψ†σ(α′i · τ )

↔

∇iψσ′ +
1

2
ψ†σ(α′i · τ )Aiψσ

])
,

and we note that the exchange interaction is now diagonal. Instead the coupling between the spins and electrons is
mediated via the gauge fields and the rotated spin-orbit interaction α′ai =

∑
aRabα

b
i .

We can decompose the Lagrangian into a part independent of the local magnetization and a part which depends
on Aµ and αi. The first part is

L0 =

∫
d2r

[
ψ†σ

(
i~∂t +

~2

2m
∇2
)
ψσ + gψ†στ

zψσ′

]
, (21)
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which describes free electrons in presence of a magnetic field B = gêz. The second part of the Lagrangian is

LA = −
∫

d2r
[
~a0ρσ +

i

2

∑
i

(
ψ†σ(α′i · τ )

↔

∇iψσ′ − i~2

2m
ψ†σ(ai · τ )

↔

∇iψσ′ − 1

2
(α′i · ai)ρσ +

~2

2m
a2i ρσ

)]
, (22)

where ρσ = ψ†σψσ is the electronic spin density operator and we have written A0 = a01 and Ai = ai · τ .
We note that the last three terms of LA can be combined into a coupling between the electronic spin current ji and

the emergent electromagnetic field ai, written on the form

Lc = −
∫
d2r

∑
i

ji · ai (23)

ji = − i~
2

2m
ψ†στ

↔

∇iψσ′ +
( ~2

2m
ai −

1

2
α′i

)
ρσ (24)

Due to the gauge transformation the spin components of the current are given in the local frame specified by the
operator U . Rotating Lc back to the laboratory frame and using the fact that Raba

b
i = (∇in× n)a + naazi

10, we find
the coupling

Lc = −
∫
d2r

∑
i

(
Di · (∇in× n) + j

‖
i a
z
i

)
. (25)

The first term describes a Dzyaloshinskii-Moriya (DM) coupling between the localized spins, with a DM vector given
by Di = j⊥,i = ji − j‖,i. Here ji is the current in the laboratory frame and j‖,i = n · ji is the spin component of the
current parallel to the magnetic texture. The parallel component can be subtracted from Di since n · (∇in× n) = 0.

So far the algebraic manipulations have been exact and the Lagrangian L = L0 + LA gives an exact reformulation
of the initial problem. To derive an effective Lagrangian for large values of g we note that for g → ∞ the electronic
spin component antiparallel to the local magnetization will be strongly suppressed. In this limit we can write the
spin-orbit interaction like α′ · τ ≈ (α × n)τz. Noting that a2i = 1

4 (∂in)2 + (azi )
211, and writing azi = a, the effective

spin Lagrangian can be written

Ls = −
∫

d2r
[2S~
a2

a0 +Hs + ~a0ρ+
~2ρ
8m

(∂in)2 +
∑
i

Di · (∇in× n) + j‖ · a +
i

2
(α× n) · ψ†τz

↔

∇ψ
]
. (26)

Here the first two terms give the Lagrangian of the isolated spin system, and ψ and ρ are the field operator and
density operator for the spin component parallel to the local magnetization. We note that in the strong coupling limit
the emergent vector potential is given by aµ = (a0,a) = 1

2 (1− cos θ)∂µφ.
The equations of motion for the spin system are obtained by replacing the electronic operators by their averages

and varying the Lagrangian. Using the relation δaµ/δn = 1
2 (∂µn)× n11 we find(~S

a2
+

~ρ
2

)
(∂tn)× n +

δH
δn

+ ([js · ∇]n)× n = 0, (27)

where the contribution from the effective spin Hamiltonian is

δH
δn

=
δ

δn

(
Hs +

~2ρ
8m

(∂µn)2 + Di · (∂in× n)

)
+

1

2
α× je. (28)

Here je = ψ†
↔

∇ψ and the second and third terms in the first line renormalize the exchange and DM interactions to
J → J + ~2ρ/(4m) and Di → Di + j⊥,i. The current js is given by

js = − i~
2

2m
ψ†

↔

∇ψ +
(~2
m

a +
1

2
α× n

)
ρ. (29)

Multiplying from the right by ×n we arrive at the modified Landau-Lifshitz equation

∂tn = −
(
~S
a2

+
~ρ
2

)−1(
n× δH

δn
+ ~(js · ∇)n

)
. (30)

We see that apart from the renormalization of the exchange and DM interactions discussed above, the electrons
affect the spin dynamics in the following ways: (i) The prefactor describes the total magnetization density (instead
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of the density of local moments), with ρ = 〈ψ†ψ〉 the density of electrons with spins parallel to the local moments.
This can be understood by observing that in the g →∞ limit the electronic spins and localized moments get locked
in a parallel configuration, forming a magnetic moment of magnitude M = S/a2 + ρ/2. (ii) The spin-orbit coupling
contributes an effective magnetic field Bso = (1/2)α× je to the spin Hamiltonian, which for a Rashba type interaction
is parallel to the plane of the spins. (iii) The localized moments couple to the parallel component of the spin current
via the last term in Supplementary Equation 30.

If we start from a ferromagnetic state n = êz the last term of Supplementary Equation 30 is zero. Unless the system
spontaneously reorders due to the renormalization of the spin parameters (which happens on long time scales), it is
therefore necessary with a non-zero spin-orbit coupling in order to tilt the spins away from their ferromagnetic
alignment.

We end this section by calculating the equilibrium renormalization of the DM interaction. Assuming that the first
two terms of the spin current ji vanish in the ground state, we have Di = −(ρ/2)αi (remembering that the spin
current is given in the laboratory frame). We thus find Dx = −Dêy, Dy = Dêx and Dz = 0 with D = ρα/2, and the
DM term in the effective Hamiltonian can be written as

Di · (∂in× n) = D(n · ∂)nz −Dnz(∂ · n), (31)

where ∂ = (∂x, ∂y, 0). This is the continuum version of a DM Hamiltonian of the Néel type. The renormalized DM
interaction in equilibrium is therefore obtained by the replacement D → D + ρα/2.

SUPPLEMENTARY NOTE 7: MULTIPLE SKYRMION CONFIGURATIONS

Supplementary Figure 3 in the main text involves spin configurations with multiple skyrmion excitations. Some of
these multiple skyrmion configurations are shown in Supplementary Figure 3.
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Supplementary Figure 3. Light-induced multiple skyrmion states. Spin configurations at the end of the time-evolution
(t = 330 fs) corresponding to skyrmion states with a total topological charge Q = 2, 2, and 3 for the top row (left to right),
and for Q = 4, 5 and 7 for the bottom row (left to right).
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