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Variational minimization of tensor network states enables the exploration of low energy states of lattice
gauge theories. However, the exact numerical evaluation of high-dimensional tensor network states remains
challenging in general. In [E. Zohar and J. I. Cirac, Phys. Rev. D 97, 034510 (2018)] it was shown how, by
combining gauged Gaussian projected entangled pair states with a variational Monte Carlo procedure, it is
possible to efficiently compute physical observables. In this paper we demonstrate how this approach can
be used to investigate numerically the ground state of a lattice gauge theory. More concretely, we explicitly
carry out the variational Monte Carlo procedure based on such contraction methods for a pure gauge Kogut-
Susskind Hamiltonian with a Z3 gauge field in two spatial dimensions. This is a first proof of principle to
the method, which provides an inherent way to increase the number of variational parameters and can be
readily extended to systems with physical fermions.
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I. INTRODUCTION

Tensor network states, especially matrix product states
(MPSs), have changed our understanding of solid state
systems dramatically. Describing states with an area-
law entanglement, i.e., ground states of local, gapped
Hamiltonians [1,2], MPSs provide an ansatz class for a
wide range of problems due to their favorable numerical
scaling. Instead of an exponential scaling, MPS algorithms
scale polynomially with the system size. The computational
power in combination with a solid analytical understanding
allowed a variety of applications, including ground state
searches [3,4] and the description of dynamics of many-
body systems. Similar studies have been performed with
tensor networks in two spatial dimensions, projected
entangled pair states (PEPSs) [5].
Motivated by the success of tensor networks in con-

densed matter physics, such methods have been generalized
and applied to particle physics problems too, in particular to
lattice gauge theories (LGTs) [6]. Gauge theories appear in
many fundamental physical contexts, e.g., the standard
model of particle physics, where gauge fields act as force

carriers. In particular, it includes quantum chromodynamics
(QCD), the theory of the strong nuclear force, which, as a
non-Abelian gauge theory [7] has a running coupling. In
QCD, asymptotic freedom [8] gives rise to asymptotically
weak couplings for high energy scales (e.g., collider
experiments), and therefore perturbation theory could be
used in these physical regimes. On the other hand, low
energy QCD is a strongly coupled model, requiring non-
perturbative treatment.
One approach to regimes where nonperturbative methods

break down is lattice gauge theories. They provide a gauge
invariant regularization of gauge theories, discretizing either
spacetime [9] or only space (leaving time continuous) [10].
Simulations based on hybrid Monte Carlo [11,12] have
given many interesting insights into the physics in the
nonperturbative regime. While having been extremely
successful and fruitful for static studies (such as studies
of the hadronic spectrum), this method faces two major
difficulties. First, the inability to directly observe time
dependent phenomena in Wick-rotated, Euclidean space-
times, as done in this context; the second is the well-known
sign problem [13] which appears in scenarios with finite
fermionic chemical potential, where the statistical interpre-
tation allowing one to performMonteCarlo sampling breaks
down, blocking the way to important phases of the QCD
phase diagram [14].
In ð1þ 1ÞD, MPSs have been very successful describing

LGTs (see Ref. [6] and references therein). In higher
dimensions, MPSs are generalized to PEPSs, whose
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contraction is in general very costly. This hinders the
application of variational PEPS algorithms in higher dimen-
sions, although state of the art algorithms can handle all the
terms in a gauge theory [15] and a first numerical study for a
pure gauge theory has been recently presented in [16].
Earlier numerical studies used less general tensor networks
for two-dimensional lattice gauge theories, either purely
gauge [17] or including fermions [18]. In contrast, analytical
approaches have developed faster, with the formulation of
gauge invariant pure gauge PEPSs [19], and more general
gaugingmechanisms includingmatter for arbitrarily dimen-
sional PEPSs [20,21].
In these works, the global symmetry of a matter-only

PEPS is lifted to a local one by introducing a gauge field, in
a way analogous to minimal coupling. The latter gauging
method has been used for the construction of gauged
Gaussian fermionic PEPSs [22,23], where the matter state
to be gauged is a free (Gaussian) fermionic state, in a
manner analogous to minimal coupling of a Hamiltonian
[24]. The restriction to this subclass of PEPSs enables
the efficient contraction of the states with Monte Carlo
techniques [25]. Since the sampling probability of the
algorithm depends only on the norm of the state, the
Monte Carlo algorithm cannot suffer from the sign prob-
lem. Furthermore, the construction allows for a natural and
efficient extension to higher bond dimensions which is
numerically very expensive in general PEPS calculations.
However, until now, these states have only been used to
compute observables of toy models—either exact contrac-
tions, showing relevant physical behavior [22,23] or a
demonstration of the feasibility of the Monte Carlo con-
traction of the PEPS, but for given states, without varia-
tional techniques [25].
The next step, required for demonstrating the credibility

and feasibility of the method, is the actual variation
(energy minimization) procedure of a real lattice gauge
theory Hamiltonian: a numerical verification that such
ansatz states can converge to true ground states. In this
paper, we present the application of fermionic gauged
Gaussian PEPSs [21–23,25] as ansatz states in a variational
Monte Carlo (VMC) procedure [26–28]. We apply the
algorithm to a Hamiltonian pure Z3 gauge theory [29] and
make explicit use of the possibility to extend the ansatz
efficiently by adding more layers of virtual parameters.
The Z3 theory is a relatively simple ð2þ 1ÞD theory, but

it is known to exhibit a (first-order) phase transition
between a confining and nonconfining phase, and thus
constitutes a nontrivial testbench for the ansatz [30].
Furthermore, extensive Monte Carlo studies have been
performed on ZN theories, which allow us to benchmark
our results against known results [31]. Our goal is to
demonstrate the expressibility of the ansatz presented in
Ref. [25] and how it can be applied to study gauge theories.
Adding more layers to the construction is essential to
improve convergence, especially in the low coupling

regime of the theory. However, precisely locating the phase
transition remains challenging, even with an increased
number of layers. The main obstacle is the expensive
evaluation of a Pfaffian that appears in the calculation of the
electric energy. Thus, it has to be calculated in every
Monte Carlo step during the energy minimization.
The rest of the manuscript is structured as follows: In

Secs. II and III, we introduce ZN gauge theories and
construct our ansatz states. These states are minimized with
the numerical methods described in Sec. IV. The numerical
results are presented in Sec. V. Finally, we conclude
in Sec. VI.

II. HILBERT SPACE OF ABELIAN LATTICE
GAUGE THEORIES

In a Hamiltonian lattice gauge theory, space is discre-
tized and represented on a lattice while time remains
continuous [10]. This is in contrast to the action formu-
lation, where both space and time are discretized [9]. The
(fermionic) matter of the theory resides on the vertices x of
a lattice, and the interactions are mediated by gauge fields,
whose quantum Hilbert spaces reside on the links (compare
Figure 1). In the following, we will focus on Abelian lattice
gauge theories with finite gauge groups (ZN), without
dynamical matter, i.e., pure gauge theories. We will
consider a two-dimensional L × L lattice with periodic
boundary conditions. Thus, the only degrees of freedom of
the theory reside on the links.
One problem of numerically simulating a lattice gauge

theories with compact Lie groups [even the Abelian Uð1Þ]
is the infinite dimension of the Hilbert spaces on the links.
This can be approached by truncating the local Hilbert
spaces, either by introducing a cutoff to the electric field,
allowing one to restore the full theory by extending the
cutoff [22] or integrating over an extra dimension [32–34],
or by sampling group elements [29] from the gauge group,
which form a subgroup. Due to the construction of our
states (see Sec. III), we chose the second approach, i.e.,
instead of simulating the full Uð1Þ theory, we consider a

FIG. 1. Arrangement of fermions and gauge fields in a lattice
gauge theory. Fermions are indicated in red, gauge fields are
shown in green. The convention for labeling links around a vertex
x is indicated in blue.
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ZN subgroup that serves as an approximation for Uð1Þ. As
described in Ref. [29], the N → ∞ limit of ZN reproduces
Uð1Þ, and hence ZN lattice gauge theories flow, in the large
N limit, to compact QED [35], a lattice gauge theory with
Uð1Þ symmetry.
We write the Hamiltonian of a pure ZN gauge theory as

H ¼ HE þHB

¼ g2

2

X
l

½2 − ðPl þ P†
lÞ�

þ 1

2g2
X
p

½2 − ðQ†
p1
Q†

p2
Qp3

Qp4
þ H:c:Þ�; ð1Þ

where l ¼ ðx; iÞ is a link on the lattice emanating from
vertex x horizontally (i ¼ ê1) or vertically (i ¼ ê2) and p is
a plaquette [29]. The indices pj refer to one of the four links
of one plaquette as indicated in Fig. 2. The terms HE and
HB are referred to as electric and magnetic part of the
Hamiltonian, respectively [10].
The operators in (1) obey the ZN algebra given by

PN
l ¼ QN

l ¼ 1 P†
lPl ¼ Q†

lQl ¼ 1

P†
lQlPl ¼ eiδQl δ ¼ 2π

N
: ð2Þ

Operators that act on different links commute with
each other.
The Hamiltonian (1) is invariant under the action of the

local unitary operators,

ΘðxÞ ¼ Px;rPx;uP
†
x−ê1;rP

†
x−ê2;u: ð3Þ

The links are addressed according to their vertex x and their
direction right (r) or up (u). This local gauge invariance
implies that ΘðxÞ commutes with the Hamiltonian on
each site

½ΘðxÞ; H� ¼ 0 ∀ x: ð4Þ

Due to the generators of local symmetry [given in (3)],
we know that the physical states of the system obey the
symmetry

ΘðxÞjΨi ¼ jΨi ∀ x: ð5Þ

Equation (5) holds since we do not consider static charges
in this work.
Given the ZN group, we define a set of group element

states jqðlÞi labeled by integers q ¼ 0;…; N − 1, which
span the local gauge field Hilbert space on link l. They
correspond to group elements with the discrete angles
ϕðlÞ ¼ qδ [δ is defined in (2)]. The group element states
form an orthonormal basis for the local Hilbert
space hqjq0i ¼ δq;q0 .
These states are eigenstates of the Q operators, with

Qjqi ¼ eiδqjqi: ð6Þ

They are lowered by the P operators, periodically:

Pjqi ¼ jq − 1i: ð7Þ

III. PEPS CONSTRUCTION WITH
ABELIAN SYMMETRY

Products of local group element states define the
configuration of gauge fields on the lattice. Such product
states, jGi ¼ ⊗l jqðlÞi form an orthonormal basis, using
which we can expand every state in the gauge field Hilbert
space:

jΨi ¼
X
G

ΨðGÞjGi; ð8Þ

where the sum runs over all possible gauge field configu-
rations on the links and ΨðGÞ is a gauge field dependent
wave function of the configuration G. This expression is a
special case of the more general formulation presented in
[25], where ΨðGÞ can be a quantum state of the dynamical
(fermionic) matter, jΨðGÞi, instead of the wave function we
have in our current pure gauge case.
Not every state that can be expressedwith (8) is physically

relevant, i.e., fulfills the local symmetry (3). Thus, the wave
function ΨðGÞ has to be chosen such that the full state jΨi
obeys the correct symmetries. Additionally, the state that we
pick should allow for efficient numerical calculations of
observables and gradients. Following the general construc-
tion in [25], we choose a gauged Gaussian projected
entangled pair state (GGPEPS) as an ansatz. For details
and further motivation, we refer to Refs. [22,24].

A. Construction with a single layer

Following the idea of a PEPS construction, we build the
GGPEPS out of local constituents which help us to impose
the symmetry. The local parts are entangled during the
construction to form the final wave function.
The elementary building blocks for the wave function are

auxiliary (or virtual) fermionic modes that are attached to

FIG. 2. Convention for labeling the links of a plaquette. The red
arrows indicate the orientation of the plaquette. The blue arrows
show the convention for the calculation of a divergence on the
lattice.
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each outgoing and ingoing leg of each vertex of the lattice.
They are chosen to be fermionic to enable a consistent
coupling to fermionic matter which obeys the correct
statistics [25]. Although, for the description of a pure
gauge theory, the coupling to matter is not necessary.
The construction of a GGPEPS consists of three essential

parts (cmp. Fig. 3). First, the fiducial operatorsAðxÞ create
virtual fermionic states out of the modes associated with
each site. They are constructed in a way that guarantees
virtual gauge invariance (used in general PEPS construc-
tions for imposing global symmetries). This step of the
construction can be readily extended to include more
virtual fermions, in a similar spirit that the bond dimension
of a PEPS can be increased. The details of the construction
with multiple layers are given below. Then, some of the
virtual modes on each site are rotated with respect to the
physical gauge fields of the theory, in a particular way that
lifts the virtual symmetries to physical ones [25]. This is
done by gauging operators UG acting on the virtual
fermions and controlled by the gauge field configuration.
Finally, the pairs of virtual fermionic modes on the two
sides of each link are projected onto maximally entangled
states by projection operators ωl. That contracts the state
from its local constituents and introduces correlations to
the state.
The wave function can thus be written as

ΨðGÞ ¼ hΩvj
Y
l

ωl

Y
l

UGðlÞ
Y
x

AðxÞjΩvi; ð9Þ

where the products are over all links l of the lattice and
jΩvi is the fermionic Fock vacuum. In the following, we
will treat the three main components of the construction A,

UG, and ω in more detail, and see how to make sure that
ΨðGÞ obeys the right symmetry properties. Furthermore,
aiming at an efficient computation of the wave function, we
would like it to be Gaussian, and thus all its constituents
will be Gaussian too.
On each vertex x of the two-dimensional lattice, we

define eight virtual fermionic modes, two associated to
each leg—left, right, up and down. On each leg we label the
two modes by �, and sort them into two groups: ai ¼
flþ; r−; u−; dþg (which we call the negative modes) and
bi ¼ fl−; rþ; uþ; d−g (positive modes). The modes obey
the Dirac anticommutation relation fcðxÞ; c†ðyÞg ¼ δx;y
and fcðxÞ; cðyÞg ¼ fc†ðxÞ; c†ðyÞg ¼ 0, where x, y are
vertices on the lattice and c is a fermionic mode.
We define the virtual electric fields

E0ðx; kÞ ¼ ð−1Þxðk†þðxÞkþðxÞ þ k†−ðxÞk−ðxÞÞ ð10Þ

with k ∈ fr; l; u; dg as well as the generator of the gauge
transformation on the virtual degrees of freedom,

G0ðxÞ ¼ E0ðx; rÞ þ E0ðx; uÞ − E0ðx; lÞ − E0ðx; dÞ: ð11Þ

This can be seen as a version of a Gauss law operator: the
divergence of the virtual electric fields at the vertex. The
staggering is introduced to accommodate the general case
with physical fermions [25] (aiming at the problem of
physical fermion doubling [36] which we do not encounter
in the pure gauge case). It is taken care of already on the
level of electric fields [cmp. (10)] and thus the rest of the
equations can be stated without explicit reference to
staggering.
The fiducial operator AðxÞ which creates the modes

out of the vacuum has to be Gaussian, and be invariant
under transformation generated byG0ðxÞ. Hence, it is given
by [22,24]

AðxÞ ¼ exp

�X
ij

Tija
†
i ðxÞb†jðxÞ

�
; ð12Þ

where Tij is a 4 × 4 matrix containing all parameters of the
ansatz. A is a Gaussian operator by construction, and one
can easily inspect that since positive modes are only
coupled to negative ones, the symmetry property,

expðiαG0ðxÞÞAðxÞ expð−iαG0ðxÞÞ ¼ AðxÞ; ð13Þ

is satisfied for every angle α, hence forming a Uð1Þ
parametrization. As such, it holds also for the ZN cases,
with a discrete choice of angles. Due to other symmetry
considerations (e.g., lattice rotation invariance), only two
independent parameters in Tij of initially sixteen remain,
y and z. They couple different modes in a given vertex:
y couples right (up) and left (down) modes in a vertex,
z couples modes that are building corners, e.g., right and up

FIG. 3. Illustration of the state’s construction. The interior of
the grey squares is created by the fiducial operator A. Blue
squares mark virtual modes in the different directions. The bent
lines between the virtual modes illustrate the unnormalized
projectors ω. The gauge fields on the links between the sites
are depicted as green circles. Their coupling to the virtual
respective modes is shown as bent lines as well.
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modes. The exact form of T and a motivation of the
symmetries can be found in Appendix A.
For now, we will formulate the ansatz with eight virtual

fermions per vertex. One set of eight virtual fermions is
referred to as one layer. In a second step, we will enlarge
the number of variational parameters by adding more
layers, i.e., more virtual fermions to the links. Each layer
gets an independent set of parameters y and z. Increasing
the number of layers is the analog to increasing the virtual
bond dimension in a nonfermionic PEPS.
In a second step, we entangle the virtual fermions on the

links with physical gauge fields on the links. The gauging
operator for a given gauge field configuration G takes the
form

UGðlÞ ¼
�
eið−1ÞxqðlÞδE0ðx;rÞ l horizontal

eið−1ÞxqðlÞδE0ðx;uÞ l vertical;
ð14Þ

where qðlÞ parametrizes the group element on the link
l in the configuration G. The local gauge transformation
changes only the modes pointing up and right. Modifying
the left and bottom modes as well would undo the
gauge transformation due to the staggering. For a detailed
overview of the gauging procedure in terms of PEPS
operators, i.e., in graphical notation, we refer to
Refs. [21,22,24].
In order to create more than a product state, we

project the virtual, fermionic modes adjacent to each link

onto maximally entangled states. The unnormalized
projectors,

ωx;1 ¼ exp ðl†þðxþ ê1Þr†−ðxÞ þ l†−ðxþ ê1Þr†þðxÞÞΩl

× exp ðr−ðxÞlþðxþ ê1Þ þ rþðxÞl−ðxþ ê1ÞÞ ð15Þ

ωx;2 ¼ exp ðu†þðxÞd†−ðxþ ê2Þ þ u†−ðxÞd†þðxþ ê2ÞÞΩl

× exp ðd−ðxþ ê2ÞuþðxÞ þ dþðxþ ê2Þu−ðxÞÞ;
ð16Þ

connect the left (upper) and right (lower) modes of
neighboring sites. Here, Ωl is the projector to the virtual
vacuum on link l and êi is the unit vector in direction i.
Similar to the fiducial operators A, the projectors ω are
Gaussian and commute among each other since they are
products of fermionic modes on different links. The
projectors link the virtual modes of one site with the virtual
modes of the next site in the horizontal and the vertical
direction, respectively. It is essential that the projectors are
unnormalized since the norm of a state will serve as a
transition probability between different gauge field con-
figurations later.
Combining A, ω, and UG, we get the wave function in

Eq. (9). Now, we can show that the construction is indeed
gauge invariant and fulfills (5). We act with ΘðxÞ on jΨi
explicitly, on some given vertex x:

ΘðxÞjΨi ¼
X
G

ΨðGÞPx;uPx;rP
†
x−ê1;rP

†
x−ê2;ujGi

¼
X
G

ΨðGÞjqðl1Þ − 1; qðl2Þ − 1; qðl3Þ þ 1; qðl4Þ þ 1i ⊗ jq̃i

¼
X
G

Ψðqðl1Þ þ 1; qðl2Þ þ 1; qðl3Þ − 1; qðl4Þ − 1; q̃|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡G0

ÞjGi; ð17Þ

where q̃ are all gauge fields that are not affected by the gauge transformation, i.e., that are not adjacent to x.
To shorten notation, we named the different links according to the labels defined in Fig. 2. The third line is linked to
the second one by a change of variables in q. The gauge invariance holds if ΨðGÞ ¼ ΨðG0Þ. We can write the wave
function ΨðG0Þ as

ΨðG0Þ ¼ hΩvj
Y
l

ωl

Y
l̃

UGðl̃Þe�iδðq1þ1ÞE0ðx;rÞe�iδðq2þ1ÞE0ðx;uÞe∓iδðq3−1ÞE0ðx−ê1;rÞe∓iδðq4−1ÞE0ðx−ê2;uÞ
Y
x

AðxÞjΩvi

¼ hΩvj
Y
l

ωl

Y
l̃

UGðl̃Þe�iδðE0ðx;rÞþE0ðx;uÞ−E0ðx;lÞ−E0ðx;dÞÞ
Y
x

AðxÞjΩvi

¼ ΨðGÞ; ð18Þ

where l̃ are all links that are unaffected by the gauge transformation and Ωv is the vacuum of all virtual modes.
The notation of multiple signs shows the transformation for an even (top sign) and an odd (bottom sign) vertex
at the same time. We used the invariance of the fiducial operator (13) at the last line. In order to transform the
virtual electric field from the adjacent vertices x − ê1 and x − ê2 to vertex x, we use the invariance of the
projectors ω:
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ωx−ê1;1e
iδE0ðx−ê1;rÞ ¼ ωx−ê1;1e

−iδE0ðx;lÞ

ωx−ê2;2e
iδE0ðx−ê2;uÞ ¼ ωx−ê2;2e

−iδE0ðx;dÞ: ð19Þ

All operators employed in the construction (A, ω, and
UG) are Gaussian operators. Since products of Gaussian
operators are still Gaussian [37], the wave function ΨðGÞ
can be efficiently described with covariance matrices. As
detailed in [25], there are multiple ways of combining the
operators to covariance matrices. We choose to group the
gauging operators and the projectors together into ΓinðGÞ, a
covariance matrix that depends on the gauge. The fiducial
operators are summarized in a second covariance matrix D.
The relation between the covariance matrices and the
gauged ansatz state can be summarized as

ΨðGÞ ¼ hΩvj
Y
x

ωðxÞ
Y
l

UGðlÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΓinðGÞ

Y
x

AðxÞjΩvi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
D

: ð20Þ

For further details about the formulation of Gaussian oper-
ators in terms of covariance matrices, see Appendix C.
The covariance matrices or parts of them allow the efficient
calculation of the Monte Carlo transition probability
[cmp. Eq. (25)].

B. Construction with multiple layers

Although the ansatz wave function with a single layer,
i.e., two variational parameters, captures the high coupling
regime very well, the low coupling regime is challenging
for a single layer (cmp. Fig. 5). Upon increasing the number
of layers, the agreement between exact diagonalization data
and the variational PEPS approach improves dramatically.
In order to increase the number of variational parameters,
we add more virtual fermions to the construction. Each
layer carries an independent set of parameters, i.e., the
matrix T in the fiducial operator A is different for each
layer, while the states are coupled to the same gauge field.
This ensures that all states fulfill the Gauss law. The virtual
fermions of different layers on the links do not interact. The
complexity of the computation scales linearly in the
number of layers because the state can be contracted as
independent layers of equally sized PEPSs. Further details
about the contraction and the changes to the calculation of
observables are explained in Appendix B.

IV. COMPUTATIONAL EVALUATION

The ansatz defined above characterizes a family of states
that depends on two parameters. In order to find the ground
state of the Hamiltonian (1) for N ¼ 3, we have to adapt the
parameters such that the energy is minimized. By comput-
ing expectation values of observables and derivatives with
respect to the parameters via sampling, we circumvent the
unfavorable scaling of PEPS contractions. The variational
Monte Carlo technique works in a two step procedure: first,

the energy and the gradients are sampled for a given set of
parameters α. In the second step, the parameters are
changed α → α0 according to the gradients and a minimi-
zation algorithm.

A. Calculation of expectation values

The Hamiltonian (1) consists of two terms, the electric
energy and the magnetic energy. Due to translational
invariance of the states and the Hamiltonian, it is sufficient
to calculate the energy of a single plaquette and a single link,

hHi ¼ nlinksð2 − hPl þ P†
liÞ

þ nplaqð2 − hQp1
Qp2

Q†
p3
Q†

p4
þ H:c:iÞ; ð21Þ

where nplaq ¼ L2, nlinks ¼ 2nplaq andL is the linear extent of
the quadratic lattice (number of vertices). In the equation
above, l is a freely chosen link. If not stated otherwise, we
choose the link at x ¼ 0 in the horizontal direction.
Calculating the magnetic energy is a special case of the
expectation value of a Wilson loop. We define the Wilson
loop operator as

WðR1; R2Þ ¼
Y
l∈C

Ql; ð22Þ

whereC is an oriented, rectangular curve of length R1 in the
horizontal andR2 in thevertical direction. The operatorQl is
picked as is or daggered according to whether the link is
traversed in the direction of the blue arrows (cmp. Fig. 4) or
against them. TheWilson loop operator does not only play a
role for the calculation of the energy, but can be used as an
indicator for confinement in the theory (cmp. Sec. V). Given
the state defined in (8), the expectation value of a Wilson
loop reads

hWðR1; R2Þi ¼
X
G

FWðR1;R2ÞðGÞpðGÞ

¼ hFWðR1;R2ÞiMC; ð23Þ

where the estimator FWðR1;R2Þ ¼
Q

l∈C expð�iϕðlÞÞ is a
complex number and the sampling probability is

FIG. 4. Illustration of a Wilson loop. The operatorQl is chosen
as is if the red path follows the direction of the blue arrows and
daggered if it traverses the blue arrows in the opposite direction.
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pðGÞ ¼ jΨðGÞj2P
G0 jΨðG0Þj2 : ð24Þ

While the expression h·i is the expectation value of an
operator, the expression h·iMC is a pðGÞ-weighted average
over complex numbers. Since the norm of a state is always
real and larger than zero, this formulation of a Monte Carlo
procedure cannot suffer from the sign problem.
Using the covariance matrices defined in (20) in the

formulation of Majorana fermions (cmp. Appendix C), we
can write the squared norm of the wave function as

jΨðGÞj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1 − ΓinðGÞD

2

�s
: ð25Þ

It serves as the transition probability between different
configuration states of the gauge field.
In our Monte Carlo scheme, we use the Metropolis

algorithm [38] with Eq. (24) as a transition probability. In
each step, one gauge field is randomly selected and updated
according to the transition probability. The gauge field is
initialized with state j0i everywhere and warmed up
without measurements for a fixed number of iterations.
After the warm-up phase, each iteration includes a meas-
urement of the observables.
The electric energy is not diagonal in the gauge field

basis. Instead of evaluating the full electric energy, we
focus on the expectation value hPli. Pl acts as a lowering
operator on the gauge field states. Thus, we have to evaluate
an expression that has a modified gauge field on one link.
We can transfer that modification to the covariance matrices
by evaluating the integrals in Grassmann variables directly.
The estimator for hPli in a Z3 gauge theory is

F elðGÞ ¼
1

4

PfðΓ̃in −D−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðD−1 − ΓinÞ

p ; ð26Þ

where Γ̃in is a modified version of Γin that differs from the
original one on link l. Details about the calculation are
provided in Appendix D.

B. Evaluation of gradients

The evaluation of gradients with respect to the param-
eters in T enables the efficient minimization of observables.
Instead of directly tracking the derivative of the parameters
through the state construction, we derive the matrix
equations obtained for the covariance matrices with respect
to the variational parameters. The covariance matrix of the
fiducial state D does not change during the Monte Carlo
computation and is the only one that contains variational
parameters α ∈ fy; zg. Thus, we can calculate the gradient
for an arbitrary observable O whose estimator FOðDÞ may
depend on the covariance matrix D of the fiducial operator
explicitly:

∂
∂α hOi ¼ ∂

∂α hFOðDÞiMC

¼
� ∂
∂αFOðDÞ

�
MC

þ
�
FOðDÞ

∂
∂α jΨðGÞj2
jΨðGÞj2

�
MC

− hFOðDÞiMC

� ∂
∂α jΨðGÞj2
jΨðGÞj2

�
MC

: ð27Þ

Since we are interested in finding the best ground state
approximation with our ansatz, we calculate the gradients
of the energy. They consist of two parts, the gradient of the
magnetic and the gradient of the electric energy. In the case
of the magnetic energy, the first term on the right-hand side
of (27) vanishes since the gauge field has no explicit
dependence on the parameters. It remains to calculate the
expression ∂

∂α jΨðGÞj2 since we know the form of jΨðGÞj2
from the evaluation of the transition probability (24)
already. Using Jacobi’s formula

d
dα

detAðαÞ ¼ Tr
�
AdjðAðαÞÞ dAðαÞ

dα

�
; ð28Þ

we obtain

∂
∂α jΨðGÞj

2 ¼ ∂
∂α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1 − ΓinðGÞD

2

�s

¼ −
1

2Nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1 − ΓinðGÞDÞ

p
× TrðΓinðGÞ

∂D
∂α ð1 − ΓinðGÞDÞ−1Þ: ð29Þ

Combining (25) and (29), we find

∂
∂α jΨðGÞj2
jΨðGÞj2 ¼

∂
∂α jΨðGÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1−ΓinðGÞD

2
Þ

q
¼ −

1

2
Tr

�
ΓinðGÞ

∂D
∂α ð1 − ΓinðGÞDÞ−1

�
; ð30Þ

where ∂D
∂α is the explicit derivative of the covariance matrix

of the virtual modes with respect to parameter α. This
expression can be derived analytically.
In contrast to the magnetic energy, the electric energy

depends explicitly on the parameters of the ansatz. Thus,
the first term on the right-hand side of (27) does not vanish.
The explicit form of the gradient is stated in Appendix D.

C. Variational minimization

For small systems (L ¼ 2), we can substitute the
Monte Carlo step with an exact contraction (EC) of the
PEPS. Each possible gauge field configuration on the lattice
is sampled and the individual contributions of the different
states are summed up. In the case of exact calculations of the
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gradients and observables, we used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [39] to adapt the
parameters of the state. If the gradients and the observables
are calculatedwithMonte Carlo sampling, the inherent error
of the estimates makes the use of a line-search based
algorithm like BFGS difficult. The fluctuations of the
estimate lead to inconsistencies during the line search which
cause the termination of the algorithm. Thus, we decided to
work with a simple gradient descent algorithm if the
expectation values are estimated with Monte Carlo. After
estimating the energy and the gradients, we adapt the set of
parameters in the opposite direction of the gradient,

α0 ¼ α − ξðiÞ ∂hHi
∂α ; ð31Þ

where ξðiÞ is theweight for the gradient in dependence of the
step. We used ξðiÞ ¼ 0.01 · 0.99i in our simulation. The
choice of parameters and the schedule of ξðiÞmay be further
optimized.

V. RESULTS

Applying the ansatz developed in Ref. [25] to a physical
Hamiltonian, we want to ensure that we are able to capture
relevant physics despite the small number of parameters of
the states. In particular, we want to demonstrate that a
higher number of layers leads to an improved expressibility.
As a first step, we compare to a small system with L ¼ 2,

i.e., four plaquettes, which can be solved with exact
diagonalization (cmp. Fig. 5). Due to the small lattice size,
we can contract the GGPEPS exactly and do not have to use
Monte Carlo. The figure and the inset show good agree-
ment for states at high couplings where the electric energy
is the dominant contribution in the Hamiltonian (1). The
ground state of the electric Hamiltonian is the state with no

electric excitations, i.e., the electric field is zero on all links.
We expect to approximate it well because it is the state that
we obtain if the operator A is equal to the identity. This
happens if both parameters y¼z¼0: Tðy ¼ 0; z ¼ 0Þ ¼ 1.
We observed that the values of y and z approach zero as the
coupling increases.
While the high coupling regime matches well to the

exact values, the low coupling regime, which is dominated
by the magnetic energy, is more challenging. States with
few layers show a divergent behavior at low couplings. The
quadratic divergence is caused by a lack of expressibility of
states with few layers: The parameters approach a constant
for low coupling and the 1=g2 term in the Hamiltonian leads
to the divergence. An increase in the number of layers helps
to systematically improve the states while only linearly
affecting the run-time.
The error around the transition g ≈ 1 does not decrease

when additional layers are used. We attribute this behavior
to the specific ansatz that we are using. We do not expect a
Gaussian PEPS based ansatz to hold at criticality.
Figure 6 shows the energy density of the system for

different lattice sizes for three layers of the parameters. Due
to the larger system sizes, we cannot contract the GGPEPS
exactly. The Monte Carlo estimation uses 104 steps for the
warm-up phase that is performed without measurement and
105 steps for the sampling. Since the Monte Carlo has to be
performed for each variational minimization step, the
number of Monte Carlo steps with measurements is kept
rather small. Especially the calculation of the electric
energy, which features a Pfaffian, is expensive.
The estimates agree very well with the ED data for an

L ¼ 2 system over a large range of the coupling. The
deviations at the phase transition due to the ansatz as
described above. The deviation at very low coupling for
large system sizes originates from the fact that the mini-
mization becomes increasingly costly. Especially the cal-
culation of the Pfaffian in the electric energy is
computationally expensive. While all determinants that

FIG. 5. Convergence of the energy for a L ¼ 2 system. The
solid blue line is the exact diagonalization (ED) result. The
colored dots are exact contractions (ECs) of the ansatz state with
varying number of layers of virtual fermions on the links. The
inset displays the relative error ϵr of the energy with respect to the
exact diagonalization results at high coupling.

FIG. 6. Finite size effects for different system sizes. The blue
line is the exact data for an L ¼ 2 system. All data points are
computed with VMC for different system sizes with three layers
in the construction of the state.
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appear in the calculation of norms can be calculated by
updating previous results if the gauge field is changed, the
Pfaffian has to be recalculated in every step. The Pfaffian is
the singlemost expensive step in the algorithm. Sincewe are
plotting the energy density in relation to a L ¼ 2 system,
deviations can be either finite size effects (in which case the
MC points would be more correct than ED) or errors due to
the Monte Carlo sampling procedure.
Following previous works, we expect the theory to have

two phases [29,35]. According to Elitzur’s theorem [40],
the expectation value of any operator that is not gauge
invariant will vanish, and thus a local order parameter is
ruled out. Instead, following Wegner and Wilson [9,41], we
can analyze the correlation in the different phases by
studying the Wilson loop. The corresponding operator is
gauge invariant and shows different scaling in the different
phases ofZN theories. In the low-coupling regime, which is
dominated by the magnetic partHB of the Hamiltonian, the
expectation value of the Wilson loop follows a perimeter
law which, to lowest order in perturbation theory [35],
reads

hWðR1; R2Þi ∼ expð−κp2ðR1 þ R2ÞÞ: ð32Þ

Here, κp is a constant and 2ðR1 þ R2Þ is the perimeter of
the Wilson loop. The scaling changes in the high coupling
regime, where the electric energy is the dominant contri-
bution to the total energy and the Wilson loop operator
scales with the area of the curve. The area scaling reads to
lowest order in perturbation theory [35],

hWðR1; R2Þi ∼ expð−σR1R2Þ; ð33Þ

where σ is the string tension. Since the potential of static
charges, i.e., charges that are not dynamically coupled to
the gauge fields in the Hamiltonian, increases linearly with
the distance in this phase, it costs an infinite amount of
energy to separate two static charges. The two static
charges are confined.
We can use the states that we obtained using the VMC

procedure for an L ¼ 6 lattice to evaluate the scaling
behavior in the different regimes (cmp. Fig. 7). As before,
we used three layers in the minimization. The Wilson loop
expectation values are recomputed for the minimal param-
eters with 104 warm-up steps and 106 sampling steps. By
fitting (33) to different Wilson loops WðR1; R2Þ of a
maximal size of L=2 and jR1 − R2j < 1, we can obtain
the string tension of the states. The result of the fits for
different couplings is shown in Fig. 7. The Z3 gauge theory
can be mapped to a three state Potts model [30] and the first
order phase transition has been studied with Monte Carlo
[31]. The plot shows that the string tension is almost zero in
the low-coupling phase and rises to a finite value in the
high-coupling, confining phase. Around the transition
region, the minimization becomes difficult due to the

Ansatz we are using. Thus, results in direct vicinity to
the transition region might not be obtained for the ground
state and one has to be careful to use them for an
interpretation of confining or nonconfining behavior
[42]. The range of accessible couplings is limited from
above since the Wilson loop decays exponentially with size
and coupling. The Monte Carlo procedure cannot reliably
resolve the expectation value of the Wilson loop in the high
coupling regime.

VI. CONCLUSION

We show that GGPEPSs are promising ansatz states for
ZN lattice gauge theories in two spatial dimensions. Since
the transition probability between two configurations of the
gauge field is given by the squared norm of a state, the
sign problem is avoided. The norm as well as the gradients
for a given set of parameters can be efficiently computed
with the covariance matrix formalism leading to a scalable
algorithm.
By contracting small systems exactly we show that the

states themselves capture the relevant physics well although
they are based only on a small number of parameters. We
demonstrate a systematic improvement of the energy by
increasing the number of virtual fermions on the links while
impacting the run-time only linearly.
The variational optimization with Monte Carlo is very

successful for large couplings, but gets increasingly diffi-
cult for smaller couplings and larger lattices. In this regime,
the states have to approximate states dominated by the
magnetic interaction in the Hamiltonian. Since the ansatz is
based on the electric vacuum on the links, this regime is
challenging. Additionally, larger lattices lead to higher run-
times, especially in the calculation of the Pfaffian in the
electric energy.
We expect to be able to improve the results of the

Monte Carlo simulation further by changing to a more
advanced sampling scheme. Currently, the algorithm

FIG. 7. String tension for different value of the coupling. The
string tension is extracted by fitting the area law expectation to
Wilson loops of different size. The state is constructed with three
layers of virtual fermions.
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updates only one spin at a time, which leads to a smaller
relative change if the system size increases. The usage of
collective cluster updates [43,44] or hybrid Monte Carlo
techniques [11] may lead to better convergence.
Additionally, the ansatz introduced in Ref. [25] allows for

static charges and dynamic fermions. The introduction of
static charges allows tomeasure the string tension directly as
an observable between two opposite charges and leads to
another measure of confinement which is especially ben-
eficial at large couplings. Simulating dynamic fermions
presents the interesting possibility to study the behavior of
mesonic strings.
Finally, the optimization in the weak coupling regime

could be improved by starting from a different initial state
on the links. If the state on the links is more suited for the
magnetic Hamiltonian, the physics of the magnetic phase
might be easier to capture with fewer layers.
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APPENDIX A: DERIVATION OF T

The fiducial operator (12) used in the GGPEPS con-
struction (9) determines the symmetries of the state jΨi. We
demand rotational invariance by π=2, translational invari-
ance when shifting by two sites due to the staggering and
charge conjugation invariance if we shift by one site. Since
the parametrization was originally developed to accom-
modate a Uð1Þ gauge theory [22], the formulation obeys,
additionally, a global Uð1Þ symmetry. Here, we state only
the result:

T¼

0
BBBBB@

0 y z=
ffiffiffi
2

p
z=

ffiffiffi
2

p

−y 0 −z=
ffiffiffi
2

p
z=

ffiffiffi
2

p

−z=
ffiffiffi
2

p
z=

ffiffiffi
2

p
0 y

−z=
ffiffiffi
2

p
−z=

ffiffiffi
2

p
−y 0

1
CCCCCA; ðA1Þ

with y, z ∈ C. y and z are the only two independent
parameters that remain. The matrix is given in the mode
order fl; r; u; dg. The rows correspond to the modes

flþ; r−; u−; dþg, and the columns to fl−; rþ; uþ; d−g. In
this work, we restrict ourselves to y, z ∈ R.

APPENDIX B: FORMALISM WITH
MULTIPLE LAYERS

We achieve a higher expressibility of the ansatz states by
increasing the number of virtual fermions on the links.
Different layers of virtual fermions do not interact with
each other and have independent sets of parameters yðiÞ and
zðiÞ, where i is the index of the layer. They can be seen as
different PEPSs coupled to the same gauge field. Thus, the
norm of the state jΨi is the product of the norms of its
layers jΨii:

hΨjΨi ¼
Y
i

hΨijΨii; ðB1Þ

where i is the index of the layer and runs from 1 to
the number of layers. This construction leads to a linear
scaling with the bond dimension. The matrix size of the
covariance matrices stays unchanged because we do not
add the parameters to the T matrix. Instead, we consider
multiple covariance matrices generated by different matri-
ces Ti. Thus, we have to perform parts of the calculation
multiple times with varying covariance matrices of the
same size.
Since we layer only the virtual fermions, the computation

of diagonal observables in the gauge field does not change.
Observables like the electric energy, however, need more
consideration. Due to the product structure of the ansatz
state, we can write the estimator of the electric energy as a
product F el ¼

Q
iF

ðiÞ
el , where i is again the index of the

layer. Each F ðiÞ
el involves only the covariance matrices of

layer i and can be calculated with Eq. (D9).
Finally, the gradients for the squared norm and the

explicit derivative of the electric energy have to be adapted.
The derivative of the squared norm enters the equations
only as a fraction of the squared norm [cmp. Eq. (27)], we
only have to adapt the expression

∂
∂αi

Q
jhΨjðGÞjΨjðGÞiQ

jhΨjðGÞjΨjðGÞi

¼
P

i

Q
i≠jhΨjðGÞjΨjðGÞi ∂

∂αi hΨiðGÞjΨiðGÞiQ
jhΨjðGÞjΨjðGÞi

¼
∂
∂αi hΨiðGÞjΨiðGÞi
hΨiðGÞjΨiðGÞi

: ðB2Þ

Here, we move the derivative with respect to parameter
αi ∈ fy; zg of layer i to the respective layer i since all other
parameters are independent of αi.
The gradient of the electric energy is adapted in a similar

fashion because the derivative acts only on one of the
layers.
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APPENDIX C: GAUSSIAN FORMALISM

Given a Dirac mode c, we can construct the correspond-
ing Majorana operators γð1Þ and γð2Þ as

γð1Þ ¼ cþ c†

γð2Þ ¼ iðc − c†Þ: ðC1Þ

The Majorana modes obey the anticommutation relation
fγa; γbg ¼ 2δa;b. The construction (9) uses only Gaussian
operators, thus, we can formulate it in terms of covariance
matrices. We define the covariance matrix of a Gaussian
state jΦi in terms of Majorana modes as

Γa;b ¼
i
2
h½γa; γb�i ¼

i
2

hΦj½γa; γb�jΦi
hΦjΦi : ðC2Þ

The construction of the Gaussian state is divided into two
covariance matrices. We separate the covariance matrix
of the fiducial operators D from the covariance matrix of
the gauged projectors ΓinðGÞ. This allows us to calculate the
squared norm of the state with Eq. (C3). During one
Monte Carlo run, D stays constant and can be calculated
during the initialization. Changing the gauge field value on
a link only alters ΓinðGÞ. We refer to Ref. [25] for more
details on the Gaussian mapping.
In order to calculate the squared norm of the wave

function, we use the following identities [37]:Z
Dθexp

�
i
2
θTMθ

�
¼ inPfðMÞZ

Dθexp

�
ηTθþ i

2
θTMθ

�
¼ inPfðMÞexp

�
−
i
2
ηTM−1η

�

TrðXYÞ¼ð−2Þn
Z
DθDμeθ

Tμ½X�G;θ½Y�G;μ;

ðC3Þ

where M is a complex antisymmetric 2n × 2n matrix and
½X�G;θ is the Grassmann representation of the operator X in
terms of Grassmann variables θ. Equation (25) follows
directly from (C3).

APPENDIX D: CALCULATION OF
THE ELECTRIC ENERGY AND

ITS GRADIENT FOR ZN

1. Calculation of the expectation
value of the electric energy

Since the electric energy is not diagonal in group
element basis, we cannot use the equivalent of (23) directly.
Due to the translational invariance of the states and the
Hamiltonian, it is sufficient to calculate the expectation
value of the electric energy over one link l. The notation
for ΨðGÞ introduced in (9) is changed to distinguish

between the group element q on link l and all other
group elements G to Ψðq;GÞ. In the following, we
focus on the calculation of the expectation value hPli;
the extension to hPl þ P†

li which appears in the
Hamiltonian (1) follows directly. Since we are only con-
sidering a single, fixed link for the rest of the calculation,
we drop the index l:

hPi ¼ hΨjPjΨi
hΨjΨi

¼
X
q;q0;G

hg0jPjqiΨ
�ðG; q0ÞΨðG; qÞ

jΨðGÞj2 pðG; gÞ

¼
X
q;G

Ψ�ðG; q − 1ÞΨðG; qÞ
jΨðGÞj2 pðG; qÞ

¼
X
q;G

F elðG; qÞpðG; qÞ; ðD1Þ

where F elðGÞ is the Monte Carlo estimator of the electric
energy. From the second line to the third line we use that P
acts as a lowering operator on the gauge field states. The
remaining expression is the product of two wave functions
that differ in terms of the gauge field on one link. Using the
explicit formulation of the state, we obtain [product
symbols as in (9)]

Ψ�ðG; q0ÞΨðG; qÞ
¼ hΩvjA†U†

ðq0;GÞωUðq;GÞAjΩvi
¼ hΩvjA†U†

ðq;GÞUðq̃ÞωUðq;GÞAjΩvi: ðD2Þ

Thus, we calculate the expectation value of the new
operator Uðq̃Þω with the density matrix resulting from
the original wave function ΨðGÞ. Since we gauge only
the right and upper modes, we can focus on the gauging
transformation Uðq0Þ ¼ expðiΦr†þrþÞ ¼ expðiΦr†rÞ with
Φ ¼ �δ. Without loss of generality, we choose a right
mode for the computation. We consider only positive
modes rþ for simplicity. The negative modes r− are gauged
with the same expression whereΦ is substituted by−Φ. For
increased readability, we will skip the plus and minus signs
of the modes in the following calculation:

Uðq̃Þω ¼ eiΦr†rð1þ l†lÞrr†ll†ð1þ lrÞ
¼ rlþ rr†ll† þ eiΦl†lr†rþ eiΦl†r†:

We use the Majorana modes (C1) to rewrite Uðq̃Þω with
p ¼ 1þ eiΦ and m ¼ eiΦ − 1:
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Uðq̃Þω ¼ 1

4
p

	
1 −

m
p
r1l1 − ir1l1 þ

m
p
r2l2 − ir2l1 þ i

m
p
r1r2 þ i

m
p
l1l2



þ 1

4
p½−r1r2l1l2�: ðD3Þ

Following [37], we replace the Majorana operators with Grassmann variables, to calculate the overlap:

½Uðq̃Þω�G¼
�
−
m
p
θr1θl1

��
m
p
θr2θl2

�
þð−iθr1θl2Þð−iθr2θl1Þþ

�
i
m
p

�
2

θr1θr2θl1θl2 : ðD4Þ

Finally, we can formulate (D4) as a matrix for the full operator Uðq̃Þω:

Uðq̃Þω ¼ 1

4
ð1þ eiΦÞ exp

0
BBBBBBBB@
i
2
ðθr1θr2θl1θl2Þ

0
BBB@

0 it −t −1
−it 0 −1 t

t 1 0 it

1 −t −it 0

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MðΦÞ

0
BBB@

θr1
θr2
θl1
θl2

1
CCCA

1
CCCCCCCCA
; ðD5Þ

where t ¼ tanðΦ
2
Þ. The covariance matrix MðΦÞ in (D5) of

the r and l modes replaces a part of the original covariance
matrix Γin that belongs to the link that Uðq̃Þ acts on. Since
one link consists of positive and negative modes, we will
have to substitute the single link with the direct sum
MðΦÞ ⊕ Mð−ΦÞ.
Due to the modification of the original covariance matrix

for the projectors, we have to adapt the calculation for the
overlap of two wave functions. While the identities (C3)
still hold, formula (25) cannot be used. Instead we calculate
the overlap using

TrðXYÞ ¼ 2−nPfðΓXÞPfðΓY − Γ−1
X Þ ðD6Þ

which follows from (C3). Here, X and Y are operators
and ΓX and ΓY are the covariance matrices of X and Y
in terms of Grassmann variables. If the operators are
Gaussian, these representations coincide with the covari-
ance matrices in terms of Majorana fermions.
The Grassmann representation of the involved

operators is

½ρ�G;μ ¼
1

2n
exp

�
i
2
μTDμ

�
ðD7Þ

½U†
qω�G;θ¼

1

2
ð1þcosðΦÞÞ 1

2n
exp

�
i
2
θT
�

⨁
nlinks−2copies

l
ΓinðlÞ

�
θ

�

×exp

�
i
2
θTMðΦÞθ

�
exp

�
i
2
θTMð−ΦÞθ

�
: ðD8Þ

Here, ΓinðlÞ is the covariance matrix of link l. Thus, we
have to use an adapted prefactor for (D6):

TrðU†
qωρÞ ¼ 1

2
ð1þ cosðΦÞÞ2−nPfðDÞPfðΓ̃in −D−1Þ;

where Γ̃in is the modified covariance matrix of the links as
defined in (D8). In the case of a Z3 gauge, we know that
cosðΦÞ ¼ − 1

2
and obtain

TrðU†
gωρÞ ¼ 1

4
2−nPfðDÞPfðΓ̃in −D−1Þ: ðD9Þ

This expression can be further simplified since the
Monte Carlo estimator (D1) divides by the square of the
norm and we obtain

F elðGÞ ¼
1

4

PfðΓ̃in −D−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðD−1 − ΓinÞ

p : ðD10Þ

This is the expression stated in the main text as Eq. (26). In
the case of a pure gauge theory, (D10) can be further
simplified with D−1 ¼ −D.

2. Calculation of the gradient of the
electric energy

In contrast to the calculation of the gradient of
the Wilson loop, we cannot neglect the first term in
(27). The estimator of the electric energy depends
explicitly on the parameters of the ansatz. Thus, we
have to build the derivative of F el (D10), the estimator
of the electric energy, with respect to the parameters
α ∈ fy; zg:
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∂
∂αF elðG; DÞ ¼ 1

2
F elðG; DÞ

	
Tr

�
D−1 ∂D

∂α
�
þ Tr

�
ðΓ̃in −D−1Þ−1D−1 ∂D

∂α D−1
�
þ Tr

�
Γin

∂D
∂α D−1ðD−1 − ΓinÞ−1

�

:

ðD11Þ

As above, the expression for ∂D∂α is an analytical expression. SinceD is a covariance matrix of Majorana fermions in a pure
gauge theory, D−1 ¼ D† ¼ −D holds. Thus, the first trace of (D11) is zero.
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