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Abstract

We study a class of quantum integrable systems derived from dimer graphs
and also described by local toric Calabi-Yau geometries with higher genus mir-
ror curves, generalizing some previous works on genus one mirror curves. We
compute the spectra of the quantum systems both by standard perturbation
method and by Bohr-Sommerfeld method with quantum periods as the phase
volumes. In this way, we obtain some exact analytic results for the classical and
quantum periods of the Calabi-Yau geometries. We also determine the differen-
tial operators of the quantum periods and compute the topological string free
energy in Nekrasov-Shatashvili (NS) limit. The results agree with calculations
from other methods such as the topological vertex.

∗minxin@ustc.edu.cn
†sugimoto@ustc.edu.cn
‡wxin@mpim-bonn.mpg.de

ar
X

iv
:2

00
6.

13
48

2v
2 

 [
he

p-
th

] 
 1

3 
O

ct
 2

02
0

mailto: minxin@ustc.edu.cn
mailto: sugimoto@ustc.edu.cn
mailto: wxin@mpim-bonn.mpg.de


Contents

1 Introduction and Summary 1

2 Dimer models and integrable systems 3
2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Perturbative computations of quantum spectra 9

4 From topological strings to energy spectra 14
4.1 General aspects of classical/quantum curves . . . . . . . . . . . . . . 14
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 C3/Z5 model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Y 3,0 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Y 3,1 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.4 Y 3,2 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.5 Y 3,3 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Discussions 35

A An eigenvalue formula 35

References 36

1 Introduction and Summary

The developments of various prosperous topics in mathematics and physics often in-

tersect with each other. Topological string theory on Calabi-Yau manifolds has been

a fruitful branch of superstring theories that encompass many recurring themes in

mathematical physics, see e.g. [1]. In the seminal work [2], Nekrasov and Shatashvili

(NS) proposed a connection between the partition function of Seiberg-Witten gauge

theory on Ω background and certain quantum integrable systems. In the NS limit,

we set one of the two Ω deformation parameters to vanish and identify the other as

the Planck constant of the quantum system. This relation can be uplifted to five

dimensions, where the partition functions are computed by refined topological string

theory on corresponding Calabi-Yau spaces. The topological string free energy in

the NS limit can be viewed as a quantum deformation of the prepotential and is

computed similarly by promoting the periods of the Calabi-Yau geometries to quan-

tum periods [3, 4, 5, 6]. More examples in Seiberg-Witten theories can be found

in [7, 8, 9, 10, 11]. The quantization conditions of the quantum system are formu-

lated as the Bohr-Sommerfeld quantization conditions where the phase volumes are

computed by quantum periods. In the five-dimensional case, the quantum systems

are often known as relativistic models due to the exponential kinetic and potential

1



terms in the Hamiltonians from quantizing the mirror curves of the local Calabi-Yau

spaces. Inspired by earlier works [12, 13, 14], some novel non-perturbative contribu-

tions to the quantization conditions are conjectured in [15, 16]. Various aspects of the

quantization conditions, including complex value Planck constant, resurgence, wave

functions, etc are further explored in, e.g., [17, 18, 19, 20, 21]. The non-perturbative

parts of the two types of exact quantization conditions in [15, 16] are related by cer-

tain constrains on the BPS invariants known as the blowup equations [22, 23]. The

blowup equations originally come from studies of Seiberg-Witten gauge theories [24]

(see also [25, 26]), but have now become a very effective tool for computing topologi-

cal string amplitudes on various Calabi-Yau manifolds [27, 28, 29, 30, 31]. The exact

quantization conditions have also been applied to related condensed matter systems,

e.g., in [32, 33, 34, 35].

Most examples of the early studies focus on geometries with mirror curves of

genus one. The quantum periods and quantization conditions for quantum systems

corresponding to mirror curves of the higher genus were subsequently considered

in, e.g., [22, 36, 37, 38, 39]. A particularly interesting class of quantum integrable

systems can be constructed by dimer models on torus [40], and the quantization

conditions are studied in [41, 42]. The dimer models in this paper also correspond

to local toric Calabi-Yau geometries and the mirror curves are encoded in the data

of the bipartite dimer graphs. Some of Calabi-Yau spaces geometrically engineer 5d

supersymmetric gauge theories, which are uplifts of the 4d SU(N) Seiberg-Witten

theories considered in [7]. There are a number of commuting Hamiltonians, and the

multiple quantization conditions can be similarly derived from topological string free

energy in the NS limit on the corresponding Calabi-Yau spaces. The studies in [41,

42] mostly focus on numerical tests of the non-perturbative quantization conditions.

However, in order to have a more insightful understanding of the interconnections

between various subjects here, it is better to have some analytical results. In this

paper, we develop some analytic approaches to the problem, though mostly focusing

on the perturbative aspects.

The paper is organized as follows. In Section 2 we review the constructions of

dimer models, and derive Hamiltonians of the quantum integrable systems based on

previous literature. We shall study some examples with genus two mirror curves

and correspondingly two commuting dynamical Hamiltonians. In Section 3 we study

the perturbative quantum spectra of the Hamiltonians around minimal points of the

phase space. A useful technical ingredient is the symplectic transformations of the

quantum canonical coordinates, which are necessary to determine the energy eigenval-

ues of the quadratic terms. We find the symplectic transformations for the examples

with simple classical minima, and further calculate the higher-order spectra with

standard perturbation methods in quantum mechanics. In Section 4 we systemati-

cally compute the classical/quantum periods and topological string free energies for
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the Calabi-Yau geometries, summarizing the results in previous literature. We then

compute the differential operators which exactly determine quantum corrections to

classical periods, generalizing earlier works [5, 6] to the situation of higher genus mir-

ror curves. Similarly, the topological free energy in the NS limit is determined by the

quantum periods, and we show that this agrees with results from, e.g., method of the

topological vertex. An interesting feature is that the differential operators are the

same for different cycles of the higher genus mirror curves. Following earlier works

[14], we perform some satisfying tests of our calculations by comparing the quantum

spectra from direct perturbation and Bohr-Sommerfeld quantization conditions us-

ing quantum periods as phase volumes. These exercises provide some exact analytic

results for the classical and quantum periods of the Calabi-Yau spaces, which are

difficult to directly obtain.

2 Dimer models and integrable systems

In [40], the authors proposed an infinite class of cluster integrable systems.1 The most

interesting ones among them are the cluster integrable systems for the dimer models

on a torus. The dimer model is the study of the set of perfect matching of a graph,

where the perfect matching is a subset of edges that covers each vertex exactly once.

For a bipartite graph, the vertices are divided into two sets, the black set, and the

white set. Every edge connects a white vertex to a black vertex. For a more detailed

introduction to dimer models, see [45].

The dimer model can be connected to a toric diagram by Kasteleyn matrix

K(X, Y ) [45], which is the weighted adjacency matrix of the graph. The determinant

of the Kasteleyn matrix happens to be the mirror curve of the corresponding toric

Calabi-Yau three-fold [46][47], the adjacency matrix can be computed as follows:

• Multiply each edge weight of the graph a sign ±1, so that around every face,

the product of the edge weights over edges bounding the face is

sgn(
∏
i

ei) =

{
+1, if (# edges) = 2 mod 4

−1, if (# edges) = 0 mod 4
(2.1)

• Construct two loops γX , γY along the two cycles of the torus, we draw them as

red dash lines in the diagram.

• Fix an orientation, from black to white, as the positive orientation.

• Multiply each edge with a factor X or Y , if the loop γX or γY get through the

edge with positive orientation. Multiply each edge with a factor 1/X or 1/Y ,

if the loop γX or γY get through the edge with positive orientation.

1For A type Toda systems, [43][44] have an equivalent but different description.
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Figure 1: An illustration of δv(ω1, ω2). If ω1 and ω2 are in the counterclockwise
order, and with the same direction, δv(ω1, ω2) = 1

2
as in (c). Any change in the

clockwise order or direction gives an extra sign, e.g., (a)(b). The arrows represent
the orientations of the loops ωi.

Then the Kasteleyn matrix is a matrix with rows labeled by black vertices and columns

labeled by white vertices, with the entry as the weight between the connected black

and white vertices. The entry is 0 if two points are not connected. In this paper, we

are interested in Y p,q system, which is originally introduced in [48], the determinant

of the Kasteleyn matrix has the form

Y +
Xq

Y
+Xp+2 + · · ·+X + 1 = 0. (2.2)

Following [40][49], the commutation relations and the Hamiltonians of the cluster

integrable systems can be read from the loops of the graph. Let ωi be the oriented

loops on the graph, the Poisson bracket between cycles are defined as

{ωi, ωj} = εωi,ωjωiωj, (2.3)

where

εωi,ωj :=
∑
v

sgn(v)δv(ωi, ωj). (2.4)

Here sgn(v) = 1 for the white vertex v, and −1 for the black vertex. δv is a skew

symmetric bilinear form with δv(ωi, ωj) = −δv(ωj, ωi) = −δv(−ωi, ωj) ∈ 1
2
Z, as illus-

trated in Figure 1. Though more general vertex is possible, for our examples of dimer

models we will only encounter cubic vertices.

As described in [40], the subtraction of two different perfect matchings2 forms a

cycle. To construct the basis ti of all the loops, we can first fix an arbitrary perfect

matching as the reference perfect matching, and select the independent basis from

the subtraction of other perfect matchings. For example, Figure 2 is the unit of brane

tiling for the Y 3,3 system, we chose the collection of red edges as the reference perfect

matching M1. Denote the collection of blue and green edges as the perfect matching

M2 and M3 respectively, then [M2] − [M1] and [M3] − [M1] give the independent 1-

loops t1, · · · , t6 in (2.5). Given the coordinate basis, the Hamiltonians Hn are defined

2More precisely, it is a subtraction of 1-chains defined from two perfect matchings. The 1-chain
[M ] is a sum of oriented edges in the perfect matching M .
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Figure 2: An illustration of a reference perfect matching (red) and loops defined from
two other perfect matchings (blue and green).

from the sum of all n-loops, where the n-loop is the product of n disjoint 1-loops in

a coordinate expression.

2.1 Examples

In this subsection, we give some examples for the dimer models of 5d N = 1 SU(3)

gauge theories with various Chern-Simons levels m = 0, 1, 2, 3. The graphs of these

theories appear during the study of 4d N = 1 quiver gauge theories, where the graphs

of the dimer models are brane tiling for the quiver gauge theories. For the Y p,p system,

the brane tiling is the well-known Hexagon tiling [49]. In the quiver gauge theories,

we can get Y p,q, q < p theories by introducing impurities in the Y p,p quiver. Then

we can get the brane tiling from the dual graph of the planer quiver. More technical

details and examples can be found in [47, 48, 50]. The procedure in the quiver side can

be alternatively understood by merging some points in the tiling for the Y p,p system

to get the tiling for a Y p,q, q < p system. For example, the tiling for Y 3,3 system is

depicted in Figure 3a. One can get the brane tiling of Y 3,2 systems in Figure 3b by

merging the point 8, 11 and 2, 5 in Figure 3a. By further merging 9, 12 and 3, 6, we

get Y 3,1 3c. By doing this further, we get Y 3,0 in Figure 3d. In the following, we list

their Poisson brackets and Hamiltonians for these models.

Y 3,3 model

We choose the loops to be3

t1 = 7→ 1→ 10→ 4→ 7, t2 = 7→ 2→ 11→ 4→ 7,

t3 = 8→ 2→ 11→ 5→ 8, t4 = 8→ 3→ 12→ 5→ 8,

t5 = 9→ 3→ 12→ 6→ 9, t6 = 9→ 1→ 10→ 6→ 9.

(2.5)

3There is an independent but irrelevant zig-zag path 1 → 7 → 2 → 8 → 3 → 9 → 1 which
commutes with other loops we choose. Since it is irrelevant for dynamical Hamiltonians, we don’t
mention it in other examples.
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(d) Y 3,0

Figure 3: Brane tiling for Y 3,q, q = 3, 2, 1, 0, the unit cells are divided by the red
dashed lines, which are the loops γX,Y on the torus
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Only loops that are overlapped have non-vanishing Poisson brackets, they are

{t1, t6} = −t1t6, {t1, t2} = t1t2, {t2, t3} = t2t3,

{t3, t4} = t3t4, {t4, t5} = t4t5, {t5, t6} = t5t6.
(2.6)

The Hamiltonians can be read from the graph directly from the rules in previous

section, as the sum of one, two and three loops in the graph:

H1 = t1 + t2 + t3 + t4 + t5 + t6,

H2 = t1t3 + t1t4 + t1t5 + t2t4 + t2t5 + t2t6 + t3t5 + t3t6 + t4t6,

H3 = t1t3t5 + t2t4t6.

(2.7)

Note that the number of independent Hamiltonians is equal to the genus of the mirror

curves or the number of inner points in the toric diagram. HereH3 is a Casimir instead

of a Hamiltonian. It is important since there is a non-trivial instanton counting

parameter, corresponding to the extra mass parameter among Kähler parameters.

The Poisson brackets (2.6) can be enhanced to the quantum level as the commu-

tation relations, in terms of canonical variables {qi, pi = −i~ ∂
∂qi
}, we find a possible

coordinates relation

t1 = R2eq1 , t2 = ep1+q1 , t3 = R2eq2−q1 ,

t4 = ep2+q2 , t5 = R2e−q2 , t6 = e−p1−p2−q1−q2 .
(2.8)

The R is the radius of the compactification circle from 5d to 4d, which gives a non-

trivial deformation to the integrable systems. It is related to the instanton counting

parameter or mass parameters in the 5d gauge theory point of view.

Y 3,2 model

We choose the loops in Figure 3b

t1 = 6→ 1→ 9→ 4→ 6, t2 = 6→ 2→ 7→ 4→ 6,

t3 = 7→ 2→ 7, t4 = 7→ 3→ 10→ 2→ 7,

t5 = 8→ 3→ 10→ 5→ 8, t6 = 8→ 1→ 9→ 5→ 8.

(2.9)

The non-vanishing Poisson brackets are

{t1, t6} = −t1t6, {t1, t2} = t1t2, {t2, t3} = t2t3, {t2, t4} = t2t4,

{t3, t4} = t3t4, {t4, t5} = t4t5, {t5, t6} = t5t6.
(2.10)

In terms of canonical variables,

t1 = R2eq1 , t2 = ep1+q1 , t3 = R2eq2−q1 ,

t4 = ep2+q2−q1 , t5 = R2e−q2 , t6 = e−p1−p2−q1 .
(2.11)

With the Hamiltonians

H1 = t1 + t2 + t3 + t4 + t5 + t6,

H2 = t1t3 + t1t4 + t1t5 + t2t5 + t2t6 + t3t5 + t3t6 + t4t6,

H3 = t1t3t5.

(2.12)
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Y 3,1 model

We choose the loops in Figure 3c

t1 = 5→ 1→ 8→ 4→ 5, t2 = 5→ 2→ 6→ 4→ 5,

t3 = 6→ 2→ 6, t4 = 6→ 3→ 7→ 2→ 6,

t5 = 7→ 3→ 7, t6 = 7→ 1→ 8→ 3→ 7.

(2.13)

The non-vanishing Poisson brackets are

{t1, t6} = −t1t6, {t1, t2} = t1t2, {t2, t3} = t2t3, {t2, t4} = t2t4,

{t3, t4} = t3t4, {t4, t5} = t4t5, {t4, t6} = t4t6, {t5, t6} = t5t6.
(2.14)

In terms of canonical variables,

t1 = R2eq1 , t2 = ep1+q1 , t3 = R2eq2−q1 ,

t4 = ep2+q2−q1 , t5 = R2e−q2 , t6 = e−p1−p2−q1−q2 .
(2.15)

With the Hamiltonians

H1 = t1 + t2 + t3 + t4 + t5 + t6,

H2 = t1t3 + t1t4 + t1t5 + t2t5 + t2t6 + t3t5 + t3t6,

H3 = t1t3t5.

(2.16)

Y 3,0 model

We choose the loops in Figure 3d

t1 = 4→ 1→ 4, t2 = 4→ 2→ 5→ 1→ 4,

t3 = 5→ 2→ 5, t4 = 5→ 3→ 6→ 2→ 5,

t5 = 6→ 3→ 6, t6 = 6→ 1→ 4→ 3→ 6.

(2.17)

The non-vanishing Poisson brackets are

{t1, t6} = −t1t6, {t1, t2} = t1t2, {t2, t3} = t2t3, {t3, t4} = t3t4, {t4, t5} = t4t5,

{t5, t6} = t5t6, {t2, t4} = t2t4, {t4, t6} = t4t6, {t2, t6} = −t2t6.
(2.18)

In terms of canonical variables,

t1 = R2eq1 , t2 = ep1+q1 , t3 = R2eq2−q1 ,

t4 = ep2−q1 , t5 = R2e−q2 , t6 = e−p1−p2 .
(2.19)

With the Hamiltonians

H1 = t1 + t2 + t3 + t4 + t5 + t6,

H2 = t1t3 + t1t4 + t1t5 + t2t5 + t3t5 + t3t6,

H3 = t1t3t5.

(2.20)
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3 Perturbative computations of quantum spectra

In this section, we consider the perturbative energy spectra of the quantum integrable

systems described by genus two mirror curves, including the Y 3,m models with m =

0, 1, 2, 3, and C3/Z5 model. Each model has two dynamical Hamiltonians, which are

derived from dimer models. In the Section 2, we derived the Hamiltonians for the Y 3,m

models, where the case ofm = 0 was also considered in [41]. The Hamiltonians of some

orbifold models including C3/Z5 are available in [42]. We also note that the Y 3,3 model

is equivalent to the orbifold C3/Z6 model in [42]. We quantize the Hamiltonians by

promoting the dynamical variables to operators with canonical commutation relations

[qi, qj] = [pi, pj] = 0, [qi, pj] = i~δi,j with i, j = 1, 2.

The Hamiltonians are bounded below in the phase space (q1, p1, q2, p2). First

we consider the Y 3,0, Y 3,3,C3/Z5 models, for which the classical minima are simply

located at the origin q1 = q2 = p1 = p2 = 0. We expand the Hamiltonians around the

minimal point.

First we study in details the C3/Z5 model, whose Hamiltonians are

H1 = eq1 + ep1 + e−q1+q2 + ep2 + e−q2−p1−p2 , (3.1)

H2 = eq2 + eq1+p2 + ep1+p2 + e−p2−q2 + e−q1−p1−p2 . (3.2)

We expand the Hamiltonians up to quadratic order

Hi = 5 +
1

2

(
q1 q2 p1 p2

)
Si


q1
q2
p1
p2

+O(~
3
2 ), i = 1, 2, (3.3)

where the S1, S2 are real symmetric matrices

S1 =


2 −1 0 0
−1 2 1 1
0 1 2 1
0 1 1 2

 , S2 =


2 0 1 2
0 2 0 1
1 0 2 2
2 1 2 4

 . (3.4)

We would like to write the quadratic Hamiltonians as linear combinations of two

harmonic oscillators. We consider a linear transformation
q1
q2
p1
p2

 = M


x1
x2
y1
y2

 , (3.5)

where M is a 4×4 real matrix. To preserve the same canonical commutation relation,

the matrixM must be a symplectic matrixMΣMT = Σ, where Σ is the antisymmetric

9



matrix

Σ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 . (3.6)

It turns out due to the special property that the Hamiltonians commute with each

other, we can find symplectic transformation M so that the quadratic terms can be

written as linear combinations of the two harmonic oscillators

H1 = 5 +
1

2
[c1(x

2
1 + y21) + c2(x

2
2 + y22)] +O(~

3
2 ),

H2 = 5 +
1

2
[c3(x

2
1 + y21) + c4(x

2
2 + y22)] +O(~

3
2 ). (3.7)

There is a continuous 2-parameter family of solutions for the matrix M . Without loss

of generality, we can use a particular solution

MC3/Z5
=


− (5−2

√
5)

1
4√

10
− (10−2

√
5)

1
4√

5
( 1
4 + 1

2
√
5
)

1
4 0

−
√

2
5 (5− 2

√
5)

1
4 −( 13

40 + 29
40
√
5
)

1
4 0 1

23/4
(1 + 1√

5
)

1
4

− (10+2
√
5)

1
4√

5
( 1
20 + 1

10
√
5
)

1
4 0 − 1√

2
(1− 2

√
5

5 )
1
4

( 1
8 + 11

40
√
5
)

1
4 − (25−11

√
5)

1
4

23/4
√
5

− 1
23/4

(1−
√
5
5 )

1
4 − 1

23/4
(1 +

√
5
5 )

1
4

 , (3.8)

with the linear coefficients

c1 = (
5 +
√

5

2
)
1
2 , c2 = (

5−
√

5

2
)
1
2 ,

c3 = (5− 2
√

5)
1
2 , c4 = (5 + 2

√
5)

1
2 . (3.9)

Denoting the quantum levels of the harmonic oscillators (x1, y1) and (x2, y2) by

two non-negative integers n1, n2, the quantum spectrum up to order ~ is(
E1

E2

)
= 5

(
1
1

)
+

(
c1 c2
c3 c4

)(
n1 + 1

2

n2 + 1
2

)
~ +O(~2). (3.10)

We can further compute the higher-order corrections to the energy spectra. We use

the time-independent perturbation theory well-known in quantum mechanics, which

separates a Hamiltonian into a zero-order part and a perturbation part

H = H0 +H′, (3.11)

where the zero-order part H0 corresponds to the Hamiltonians up to quadratic order

in (3.3), while the perturbation part H′ corresponds to the higher-order terms.

We denote the harmonic quantum states of the zero order Hamiltonians as |n1, n2〉.
Then the first few order corrections to energy spectra are

E(n1,n2) = E
(0)
(n1,n2)

+ 〈n1, n2|H′|n1, n2〉

+
∑

(m1,m2)6=(n1,n2)

|〈m1,m2|H′|n1, n2〉|2

E
(0)
(n1,n2)

− E(0)
(m1,m2)

+ · · · . (3.12)
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To compute the next ~2 order corrections, we need to expand the exponentials in the

Hamiltonians (3.1) to cubic and quartic orders, and rewrite the canonical coordinates

in terms of the standard creation and annihilation operators. For the first correction

〈n1, n2|H′|n1, n2〉, the cubic terms have no contribution since there is an odd num-

ber of creation and annihilation operators, while the quartic terms make an order ~2

contribution. The cubic terms have a ~2 order contribution in the more complicated

second correction term in the above equation (3.12). After some complicated calcu-

lations, we find the ~2 order contributions to the quantum spectra. For the C3/Z5

model, the results are

E1 = 5 + [(
5 +
√

5

2
)
1
2n1 + (

5−
√

5

2
)
1
2n2 +

1

2
(5 + 2

√
5)

1
2 ]~

+[7 + 2(3 +
√

5)n1(1 + n1) + 2(3−
√

5)n2(1 + n2)]
~2

40
+O(~3), (3.13)

E2 = 5 + [(5− 2
√

5)
1
2n1 + (5 + 2

√
5)

1
2n2 + (

5 +
√

5

2
)
1
2 ]~ + [3 +

√
5 + 4n1

+2(2−
√

5)n2
1 + 4(1 +

√
5)n2 + 2(2 +

√
5)n2

2 + 4
√

5n1n2]
~2

20
+O(~3).

It is well known that the eigenvalues of a matrix do not change under a similarity

transformation of the matrix. Here analogously we find that the spectra in (3.13) are

independent of the choice of symplectic transformation, up to the trivial freedom of

exchanging the two quantum numbers n1 ↔ n2. This is easy to understand from the

physics point of view since the Hamiltonians are the same regardless of the choices

of the canonical coordinates. Furthermore, the linear coefficients (3.9) are indeed

related to the eigenvalues of certain matrices. We note that for a general even-

dimensional real symmetric matrix S, since det(SΣ−λI) = det(ΣS−λI) = det(SΣ+

λI) = det(ΣS + λI), the eigenvalues of SΣ and ΣS are the same and always come in

pairs with opposite signs. In our context, we find that for the matrices (3.4) in the

quadratic Hamiltonians, the eigenvalues of S1Σ and S2Σ are always purely imaginary

and the positive imaginary parts are exactly the linear coefficients (3.9). Namely, the

eigenvalues of S1Σ are ±ic1,±ic2 and the eigenvalues of S2Σ are ±ic3,±ic4. This is

also true for the Y 3,0 and Y 3,3 models discussed below. In Appendix A we give a

simple general mathematical proof of this property.

Similarly we find the symplectic transformations and the perturbative energy spec-

tra for the Y 3,0 and Y 3,3 models in (2.20, 2.7). Again there is a continuous 2-parameter

family of solutions for symplectic transformations. For the Y 3,0 model, we can use

for example a solution

MY 3,0 =
1

√
2R3

1
4 (4 +R2)

1
4

 −R −2R −
√
3R 0

−2R −R 0 −
√
3R

√
R2 + 4−R −

√
R2+4+R

2
0 −

√
3

2
(
√
R2 + 4 +R)

3R−
√
R2+4

2

√
R2 + 4 −

√
3

2
(
√
R2 + 4 +R)

√
3R

 ,
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and the perturbative energy spectra are(
E1

E2

)
= 3(1 +R2)

(
1
1

)
+

√
3R

2
[
√

4 +R2(n1 + n2 + 1)

(
1
1

)
+R(n1 − n2)

(
1
−1

)
]~

+
{[

4(11 + 15n1 + 6n2
1 + 15n2 + 6n2

2 + 18n1n2) + [5 + 6(n1 + n2
1 + n2 + n2

2)]R
2

− 72

4 +R2
(2 + 3n1 + n2

1 + 3n2 + n2
2 + 4n1n2)

](1
1

)
+6R

√
4 +R2(n1 + n2

1 − n2 − n2
2)

(
1
−1

)}~2
72

+O(~3). (3.14)

We see there is an apparent symmetry of the spectra. The spectra of the two Hamil-

tonians E1 ↔ E2 are exchanged if the quantum levels are exchanged n1 ↔ n2.

For the Y 3,3 model, the results are

MY 3,3 = 2 · 3
1
4

√
R


−R −2R −

√
3R 0

−2R −R 0 −
√

3R

R + 2 2R− 1
√

3R −
√

3

2R− 1 R + 2 −
√

3
√

3R

 ,

E1 = 3(1 +R2) +
√

3R(n1 + n2 + 1)~ + [
1 +R2

9
+
n1

12
(1 + n1)(1 +R +R2)

+
n2

12
(1 + n2)(1−R +R2)]~2 +O(~3), (3.15)

E2 = 3(1 +R2 +R4) +
√

3R[(n1 + n2 + 1)(1 +R2)− (n1 − n2)R]~
+
{

[4 + 3(n1 + n2
1 + n2 + n2

2)](1 +R4)− 9(n1 − n2)(1 + n1 + n2)R(1 +R2)

+2(8 + 15n1 + 6n2
1 + 15n2 + 6n2

2 + 18n1n2)R
2
}~2

36
+O(~3).

There is also an apparent symmetry that under a T-duality like transformation R→
1
R

, the energy spectra transforms as E1 → E1

R2 , E2 → E2

R4 .

We need to be careful with a potential subtlety of perturbation theory here. For

the first Hamiltonian of the Y 3,3 model, we see that the energy E1 is degenerate up to

~ order for quantum states with the same n1+n2. It turns out that this does not affect

the calculations in the formula (3.12), as we check that the off-diagonal elements of the

perturbation in the degenerate space actually vanish, i.e. 〈n1+k, n2−k|H′|n1, n2〉 = 0

for k = ±1,±2. The vanishing is trivial for cubic terms in the perturbation H′, while

we check by an explicit computation that it is also true for quartic terms.

For the remaining Y 3,1 and Y 3,2 models (2.16, 2.12), we need to determine the

classical minima by solving for the critical points of Hamiltonians ∂qiH = ∂piH = 0

for i = 1, 2. We find that the minima are located at the same points for the two

Hamiltonians of the quantum system due to the special property that the Hamil-

tonians commute with each other. In these models, it is much more complicated

12



to find the symplectic transformations that diagonalize the quadratic terms of the

Hamiltonians expanded around the minima. However, we can still use the formula in

Appendix A to compute the ~-order contributions to the quantum spectra in terms

of the eigenvalues of certain matrices from the quadratic terms.

For the Y 3,1 model, the minima are at

q1 = −3 log(r), q2 = −6 log(r), p1 = − log(r), p2 = − log(r +R2), (3.16)

where r is the only positive root of the polynomial equation,

r9 +R2r8 = 1, (3.17)

with numerical value, e.g., r = 0.921599 for R = 1. The quantum spectra are

E1 =
3r + 4R2

r6(r +R2)
+ r2R[(3r + 2R2 + 2R

√
r +R2)

1
2 (n1 +

1

2
)

+(3r + 2R2 − 2R
√
r +R2)

1
2 (n2 +

1

2
)]~ +O(~2), (3.18)

E2 =
3r + 2R2

r4
+ r

9
2R(r +R2)

1
2 [(3r + 4R2 − 4R

√
r +R2)

1
2 (n1 +

1

2
)

+(3r + 4R2 + 4R
√
r +R2)

1
2 (n2 +

1

2
)]~ +O(~2).

For the Y 3,2 model, the minima are at

q1 = −3 log[r(r +R2)], q2 = − log[r2(r +R2)],

p1 = − log(r), p2 = − log(r +R2), (3.19)

where r is now the only positive root of the equation

r9 + 4R2r8 + 6R4r7 + 4R6r6 +R8r5 = 1, (3.20)

with numerical value, e.g., r = 0.665055 for R = 1. The quantum spectra are

E1 =
3r + 5R2

r7(r +R2)6
+
r3R(r +R2)2√

2
[(6r + 5R2 +R

√
4r + 5R2)

1
2 (n1 +

1

2
)

+(6r + 5R2 −R
√

4r + 5R2)
1
2 (n2 +

1

2
)]~ +O(~2), (3.21)

E2 =
3r2 + 7rR2 + 5R4

r4(r +R2)4
+
r2R(r +R2)√

2
{[r3(r +R2)2(6r3 + 25r2R2 + 30rR4 + 10R6)

−R(5r2 + 10rR2 + 4R4)
√
r(4r + 5R2)]

1
2 (n1 +

1

2
) + [r3(r +R2)2(6r3 + 25r2R2

+30rR4 + 10R6) +R(5r2 + 10rR2 + 4R4)
√
r(4r + 5R2)]

1
2 (n2 +

1

2
)}~ +O(~2).

Without solving the symplectic transformations for these two Y 3,1 and Y 3,2 models,

there is an ambiguity of exchanging the quantum numbers n1 ↔ n2 in the spectra.

This can be fixed by comparing with the derivatives of periods of the corresponding

Calabi-Yau geometries.
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4 From topological strings to energy spectra

In this section, we will show that spectrum problems can be solved by utilizing the

well-known methods in the topological string theory. More precisely, we calculate

energy spectra by imposing the Bohr–Sommerfeld quantization conditions on the

quantum B-periods of the mirror curves. First, we summarize some basic facts about

classical/quantum mirror curves and general relations between the topological strings

and the energy spectra. After that, we will demonstrate how we calculate the energy

spectra from the quantum periods in some concrete models.

4.1 General aspects of classical/quantum curves

We consider B model topological string theories on toric Calabi-Yau three-folds, where

their topological information is captured by mirror curves. A genus g mirror curve is

defined by an algebraic equation for x, y ∈ C,

W (ex, ey; z) = 0, (4.1)

where z = (z1, z2, ..., zs), s ≥ g are the complex structure moduli parameters. Gen-

erally, there are g dynamical moduli corresponding to g compact A- and B-cycles of

the Riemann surface, and the s−g remaining ones are known as non-dynamical mass

parameters. We can define two kinds of classical periods called as A- and B-periods

by integrating y = y(x; z) around compact A-cycles and their dual B-cycles,

Πi(z) =

∮
Ai

y(x; z)dx, Πi,d(z) =

∮
Bi

y(x; z)dx, i = 1, ..., g, (4.2)

where y(x; z) is the solution of (4.1).

The mirror maps connecting the Kähler parameters with the complex structure

moduli parameters can be written as linear combinations of the A-periods and the

mass parameters

tj(z) =

g∑
i=1

CijΠi(z) + mass terms, j = 1, 2, · · · s, (4.3)

where the mass terms depend only on logarithms of mass parameters and will not

appear in quantum corrections. Here Cij is an intersection matrix of compact divisors

and the base curves we have chosen. With a suitable choice of the base curves, parts

of the g × s matrix Cij happen to be the Cartan matrix of the gauge group in the

context of geometric realizations of gauge theories.

The dual B-periods give the derivatives of the genus zero topological string am-

plitude with respect to the Kähler parameters, so-called prepotential F0(t),

Πd,i(z) =
∂F0(t(z))

∂Πi(z)
=

s∑
j=1

Cij
∂F0(t(z))

∂tj(z)
, i = 1, 2, · · · g, (4.4)
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where t = (t1, ..., ts). From the prepotential, we define the Bohr-Sommerfeld volumes

as the derivatives of prepotential with respect to ti with appropriate shift 4π2bNSi

voli(z) =
s∑
j=1

Cij

(
∂F0(t)

∂tj
+ 4π2bNSj

)
. (4.5)

This shift can be derived from the S-dual like invariance of the classical volumes [51].

It can be absorbed into the genus zero free energy by adding a ti-linear term [22]. In

gauge theory point of view, bNSi comes from the one loop contribution. For 5d N = 1

pure SU(N) gauge theories with Chern-Simons level, denoting the ti, i ≤ N − 1 the

node of AN group, and tN the instanton counting parameter. By setting bNSN = 0, we

have bNSi = bNSN−i = − (N−i)i
12

, for i = 1, 2, · · · , N
2

. For the SU(3) models we consider,

we always have bNS1 = bNS2 = −1
6
, bNS3 = 0.

For toric Calabi-Yau three-folds, an efficient way to calculate the A- and B-periods

is to solve the Picard–Fuchs equations defined by

LαΠi = 0, LαΠd,i = 0,

Lα =

 ∏
Qαi >0

(
∂

∂xi

)Qαi
−
∏
Qαi >0

(
∂

∂xi

)Qαi  , (4.6)

where Qα
i are the charge vectors and xi are the homogeneous coordinates of the toric

variety. The differential operators Lα are known as the Picard–Fuchs operators. The

variables xi relate to z through the Batyrev coordinates,

zα =
k+3∏
i=1

x
Qαi
i . (4.7)

The A- and B-periods correspond to logarithmic and double-logarithmic solutions.

Now we promote the classical variables x, y to the quantum operators x, y with

the canonical commutation relation,

[x, y] = i~. (4.8)

Accordingly, the mirror curve is replaced by the difference equation,

W (ex, ey)Ψ(x) = 0, (4.9)

where Ψ(x) is a wave function of the quantum system. We can solve the difference

equation by utilizing the WKB analysis,

Ψ(x) = exp

(
i

~

∫ x

w(x′; ~)dx′
)
. (4.10)
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Then, we can define quantum version of two periods, called as quantum A- and B-

periods,

Πi(z)→ Πi(z; ~) =
∞∑
n=0

Π
(n)
i ~n, Π

(n)
i =

∮
A

w(n)(x)dx, (4.11a)

Πd,i(z)→ Πi,d(z; ~) =
∞∑
n=0

Π
(n)
i,d ~

n, Π
(n)
i,d =

∮
B

w(n)(x)dx, (4.11b)

where we expand w(x; ~) as a series in ~,

w(x; ~) =
∞∑
n=0

w(n)~n. (4.12)

In our example, w(2n−1), n ∈ Z>0 can be expressed as the total derivative of a

simple function with no monodromy. Thus, its contour integral vanishes, and only

~2n-corrections survive.

The quantum corrected prepotential F (t; ~), so-called NS free energy, is defined

by the NS limit of the refined topological string free energy,

F (t, ~) =
∞∑
n=0

Fn(t)~2n. (4.13)

Similar to the prepotential, the NS free energy satisfies following equation,

Πd,i(z; ~) =
s∑
j=1

Cij
∂F (t(z; ~), ~)

∂tj(z, ~)
, (4.14)

where ti(z; ~) are the quantum corrected mirror maps, so-called quantum mirror

maps. Comparing both sides of (4.14), we can obtain the recursion relations which

enable us to fix Fi(t) up to irrelevant constants and mass parameters.

The Bohr–Sommerfeld volumes (4.5) also have quantum corrections,

voli(z)→ voli(z; ~) =
∑
n≥0

vol
(2n)
i (z)~2n. (4.15)

In quantum mechanics, the phase volume should be quantized. In our case, the

B-periods are quantized,∮
Bi

w(x, ~)dx = 2π~
(
ni +

1

2

)
. ni ∈ Z≥0. (4.16)

From (4.5) with the quantum corrections, we can rewrite the quantization conditions

as follows,

voli(z; ~) = 2π~
(
ni +

1

2

)
, i = 1, 2, ..., g. (4.17)
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The dynamical complex structure moduli will correspond to Hamiltonians of quantum

systems as we will see in concrete examples. As in the case of NS free energy, by

expanding the quantum B-periods in ~, we can determine the quantum corrections to

the energy eigenvalues recursively. The classical B-periods have to vanish at a classical

minimal energy where this corresponds to the conifold point in the topological string

moduli space. Thus, to solve the spectral problems from the topological strings, we

have to calculate the phase volumes at the conifold point. It turns out that there is

no logarithmic cut for the classical volumes (B-periods) at the conifold point, so they

are the same as the quantum mirror maps up to numerical factors,

voli(Coni; ~) ∼ ti,c(Coni; ~), (4.18)

where Coni denotes the conifold point, and ti,c(zc; ~) are the quantum mirror maps

expanded around the conifold point. The numerical factors in the coefficients of

ti,c(zc; ~) can be determined by comparing with the derivatives of the classical volumes

at conifold point or the perturbative computations that we have done in the previous

section. Therefore, we can calculate the eigenvalues only by applying the quantum

mirror maps near the conifold point.

Now we calculate the quantum periods. It is straightforward to calculate the

quantum A-periods from the definition by taking residues, whereas the direct compu-

tations of B-periods are usually not so easy. Here we utilize the differential operator

method proposed in [3], and developed in [5].

The important fact is that the quantum A-periods can be given by acting differ-

ential operators on the classical periods,

Πk(z; ~) =

(
∞∑
n=0

~2nD2n

)
Πk(z), k = 1, 2, · · · , g, (4.19)

where

D2n = D2n(θz1 , θz2 , ...θzs), θzi = zi
∂

∂zi
. (4.20)

and the coefficients of θzi are given by rational functions of zi. This means that we

can obtain the differential operators in the conifold frame by transforming from large

radius frame to the conifold frame, zi → zc,i. Then, by acting the differential opera-

tors on the classical A-periods expanded near the conifold point, we can obtain the

quantum corrections in the conifold frame. Since the mass parameters are annihilated

by the differential operators, they do not receive the quantum corrections.

From (4.3) and (4.19), the quantum mirror maps are determined by the same

differential operators as

ti(z; ~) =

(
∞∑
n=0

~2nD2n

)
ti(z), i = 1, 2, · · · , s. (4.21)
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Interestingly, the differential operators that we treat in this paper do not depend on

the choice of the cycles4. Also, the classical mirror maps can be calculated from the

Picard–Fuchs operators. Therefore, it is enough to calculate one of the quantum A-

periods to derive the differential operators and determine the quantum mirror maps.

By combining (4.18) with (4.21), the quantum corrections to the volumes and

their derivatives with respect to the eigenvalues are given by

∂p1E1
∂p2E2
· · · ∂psEsvol

(2n)
j ∼ ∂p1E1

∂p2E2
· · · ∂psEs(D2ntc,j), (4.22)

where pi ∈ Z≥0, n ∈ Z>0, and j = 1, 2, ..., s. To calculate the right hand side, we use

∂Ei =
∑g

j=1(∂Eizc,j)∂zc,j .

Remarkably, this structure holds in the quantum B-periods; the quantum correc-

tions to the B-periods can be calculated by acting above operators on the classical

B-periods,

Πd,i(z; ~) =

(
∞∑
n=0

~2nD2n

)
Πd,i(z). (4.23)

This means that once we derive the differential operators D2n from the quantum A-

periods that we know how to calculate systematically, we can obtain the quantum B-

periods which are not easy to obtain by the direct computations of the cycle integrals.

Similar to previous paper [5], we can derive recursion relations for the NS free

energy by expanding the equations (4.13, 4.14, 4.21) in ~. We can explicitly do

this for the first and second correction terms F1,2(t), which are determined by the

differential operators D2,D4. In our examples, the differential operators will be a

linear combinations of first and second derivatives of the complex structure moduli.

Suppose

D2 =
∑
i

s
(2)
i θi +

∑
i,j

s
(2)
i,j θiθj, (4.24)

where the coefficients si, si,j are rational functions of complex structure moduli zi’s.

Denote the classical mirror maps as ti, then it is straightforward to compute

θk(∂tiF0) =
∑
j

θk(tj)(∂ti∂tjF0), (4.25)

θkθl(∂tiF0) =
∑
j

θkθl(tj)(∂ti∂tjF0) +
∑
j,m

θk(tj)θl(tm)(∂ti∂tj∂tmF0).

So we have

D2(∂tiF0) =
∑
j

D2(tj)(∂ti∂tjF0) +
∑
j,k,l,m

s
(2)
l,mθl(tj)θm(tk)(∂ti∂tj∂tkF0). (4.26)

4It would be interesting to confirm this property in a general setup.
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Combining the ~2 equations of (4.13, 4.14, 4.21), we find the linear coefficients s
(2)
i

cancel out. The equation for first order NS free energy is then

s∑
i=1

Cni[∂tiF1 −
∑
j,k,l,m

s
(2)
l,mθl(tj)θm(tk)(∂ti∂tj∂tkF0)] = 0, n = 1, 2, · · · , g. (4.27)

If s = g and the matrix Cij is invertible, it cancels out in the above equation. Oth-

erwise, in general we need to solve the equations including the Cij matrix. Similarly,

repeating the same computation to the next order, we have

s∑
i=1

Cni[∂tiF2 −
∑
j,k,l,m

s
(4)
l,mθl(tj)θm(tk)(∂ti∂tj∂tkF0)−

∑
j

D2(tj)(∂ti∂tjF1)

− 1

2

∑
j,k

D2(tj)D2(tk)(∂ti∂tj∂tkF0)] = 0, n = 1, 2, · · · , g.
(4.28)

Again, the linear coefficients s
(4)
i cancel out. By using (4.27), if the matrix Cij is

invertible, we can eliminate F1, and obtain the relation between F2 and F0.

4.2 Examples

In this section, we demonstrate the previous computations in some concrete models.

In our examples, we focus on the genus two mirror curves: C3/Z5 and Y 3,m with

m = 0, 1, 2, 3. Most of the classical computations have already been done in, e.g.,

[22, 36, 41, 42, 52], and we gather the results to make the paper self-contained. In

the following, we may omit some arguments in functions for short notation.

4.2.1 C3/Z5 model

The mirror curve of C3/Z5 is defined by

ex + e−x+p + e−p + z
1/3
1 z2e

2x + z
−1/3
1 = 0. (4.29)

The Picard–Fuchs operators are

L1 = −2θ21θ2 + θ31 + z1(−2θ2 + 3θ22 − θ32 + 6θ1 − 18θ1θ2 + 9θ1θ
2
2 + 27θ21 − 27θ21θ2 + 27θ31),

L2 = θ22 − 3θ1θ2 + z2(−2θ2 − 4θ22 + θ1 + 4θ1θ2 − θ21),
L3 = θ21θ2 + z1z2(−2θ22 + 2θ32 + 7θ1θ2 − 13θ1θ

2
2 − 3θ21 + 24θ21θ2 − 9θ31).

(4.30)

To provide the solutions of the Picard–Fuchs equations, first we define following

function,

ω0(ρi) =
∑
l,m≥0

c(l,m;ρ)zl+ρ11 zm+ρ2
2 , (4.31)
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where

c(l,m;ρ) =
Γ(ρ1 + 1)2Γ(ρ2 + 1)Γ(ρ1 − 2ρ2 + 1)Γ(−3ρ1 + ρ2 + 1)

Γ(l + ρ1 + 1)2Γ(m+ ρ2 + 1)Γ(l − 2m+ ρ1 − 2ρ2 + 1)Γ(−3l +m− 3ρ1 + ρ2 + 1)
.

(4.32)

We further define derivatives of ω0(ρi),

ωi =
∂ω0

∂ρi

∣∣∣∣
ρ1,2=0

, ωij =
∂2ω0

∂ρi∂ρj

∣∣∣∣
ρ1,2=0

. (4.33)

Then, the mirror maps are given by

t1(z) = ω1 = log z1 − 6z1 − z2 + 45z21 −
3

2
z22 +O(z3i ),

t2(z) = ω2 = log z2 + 2z1 + 2z2 − 15z21 + 3z22 +O(z3i ).
(4.34)

The derivatives of the prepotential are

∂F0

∂t1
= 2ω1,1 + 2ω1,2 + 3ω2,2,

∂F0

∂t2
= ω1,1 + 6ω1,2 + 9ω2,2.

(4.35)

The classical B-periods Πd,i (i = 1, 2) are given by the formula (4.4), where the matrix

Cij in this model is

C =

[
3 −1
−1 2

]
. (4.36)

From the prepotential, the Bohr-Sommerfeld volumes are

vol
(0)
1 (z) = 3

∂F0

∂t1
− ∂F0

∂t2
− π2

2
,

vol
(0)
2 (z) = −∂F0

∂t2
+ 2

∂F0

∂t2
− 2π2

3
,

(4.37)

where the complex structure moduli parameters z1, z2 are related to the eigenvalues

of the quantum systems by

z1 = −E1

E3
2

, z2 =
E2

E2
1

. (4.38)

The classical volumes should vanish at a conifold point, z1 = −1/25, z2 = 1/5, or

E1 = E2 = 5. We check this numerically.

Now let us consider the quantization of the mirror curve. Accordingly, the classical

mirror curve is replaced by following difference equation,

Ψ(x+ i~) + e−xe
i~
2 Ψ(x− i~) +

(
z

1
3
1 z2e

2x + ex + z
− 1

3
1

)
Ψ(x) = 0. (4.39)
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According to [4], we can calculate the quantum A-periods by taking the residue,

Π(z; ~) =
1

5
log(z21z2) +

∮
x=−∞

dxw(x; ~)

=
1

5
log(z21z2)− 6z21z2 + 15z21 − 2z1 −

(
5z21z2 −

15z21
2

+
z1
4

)
~2 +O(~4, z3i ).

(4.40)

We note that as familiar from literature, the logarithmic term is not captured by the

residue calculations and is added by hand.

Let us express the coefficients Π(n) as the classical A-periods with the differential

operators. Since the differential operators giving Π(n≥4) are tedious long expressions,

here we provide the differential operator giving the leading correction to the classical

periods as an example5,

D2 =
1

8
θ21 +

1

6
θ1θ2. (4.41)

By using the operator, we can obtain the leading correction to the quantum mirror

maps t
(2)
i (z; ~) and the quantum B-periods Π

(2)
d,i (z; ~),

t
(2)
i (z; ~) = D2ti(z), Π

(2)
d,i (z; ~) = D2Π

(0)
d,i (z), (4.42)

with i = 1, 2.

To check the consistency, we calculate the NS free energy near the large radius

point. By solving the recursion relations (4.27) and (4.28) with the matrix (4.36)

which is invertible, we find the NS free energy whose instanton parts [Fn]inst. are

given by

[F1]
inst.

= −127Q2
1Q

2
2

12
− 1

6
65Q2

1Q2 −
129Q2

1

16
+

7Q1Q
2
2

8
+

5Q1Q2

6
+

7Q1

8
− Q2

2

12
− Q2

6
+O(Q3

i ),

[F2]
inst.

= −2561Q2
1Q

2
2

720
− 263Q2

1Q2

72
− 207Q2

1

64
+

29Q1Q
2
2

640
+

67Q1Q2

1440
+

29Q1

640
+
Q2

2

180
+
Q2

360
+O(Q3

i ).

(4.43)

They agree with the topological vertex computations.

Now we are ready to calculate the quantum corrections to the energy spectra.

The all-order Bohr–Sommerfeld quantization conditions in this case are given by

voli(E1, E2; ~) = 2π~
(
ni +

1

2

)
, i = 1, 2, (4.44)

where voli(E1, E2; ~) are the quantum corrected phase volumes. To obtain the quan-

5We provide the results of differential operators giving higher order quantum corrections in the
mathematica file. The results contain the differential operators of C3/Z5 and Y 3,m with m = 0, 1, 2, 3.
One can find it in the source file on the arXiv.
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tum corrected spectra, we define Ei and voli(E1, E2; ~) as a series in ~,

Ei =
∞∑
n=0

E
(n)
i ~n,

voli(E1, E2; ~) =
∞∑
n=0

vol
(2n)
i (E1, E2)~2n.

(4.45)

From the classical limit ~ = 0 of (4.44), the Bohr–Sommerfeld volumes vanish at the

classical minimum energies,

E
(0)
1 = 5 =: Em1 , E

(0)
2 = 5 =: Em2 , (4.46)

which corresponds to the conifold point. By expanding (4.68) in ~, we can obtain

E
(n)
i as functions of vol

(n)
i (Em1 , Em2), e.g.,

E
(1)
1 =

2π
{

(n1 + 1
2
)∂E2vol

(0)
2 − (n2 + 1

2
)∂E2vol

(0)
1

}
{
∂E1vol

(0)
1 ∂E2vol

(0)
2 − ∂E2vol

(0)
1 ∂E1vol

(0)
2

} ,

E
(1)
2 =

2π
{

(n1 + 1
2
)∂E1vol

(0)
2 − (n2 + 1

2
)∂E1vol

(0)
1

}
{
∂E1vol

(0)
1 ∂E2vol

(0)
2 − ∂E2vol

(0)
1 ∂E1vol

(0)
2

} ,

(4.47)

where we omit the arguments (Em1 , Em2) of vol
(n)
i

6. By comparing (4.47) with per-

turbative calculations (3.10), we find the exact values of the E1,2-derivatives of phase

volumes at the classical minimum energies,(
∂E1vol

(0)
1 ∂E2vol

(0)
1

∂E1vol
(0)
2 ∂E2vol

(0)
2

)
=
π

5

(
−2
(
5− 2

√
5
)1/2 (

2
(√

5 + 5
))1/2

2
(
2
√

5 + 5
)1/2 −

(
10− 2

√
5
)1/2
)
. (4.48)

With the change of variables (4.38), we find(
∂z1vol

(0)
1 (z) ∂z2vol

(0)
1 (z)

∂z1vol
(0)
2 (z) ∂z2vol

(0)
2 (z)

)
= π

(
−10

√
5 + 2

√
5

√
130− 58

√
5

−10
√

5− 2
√

5 −
√

130 + 58
√

5

)
. (4.49)

We check this is indeed true numerically.

The classical mirror maps near the conifold point can be obtained by solving the

Picard–Fuchs equations (4.30) in the conifold frame,

tc,1 = −2π
(

5
(

2
√

5 + 5
))1/2

zc,1 − π
(

26− 38√
5

)1/2

zc,2 + 24π

(
1− 2√

5

)1/2

zc,1zc,2 +O(z2c,i),

tc,2 = −2π
(

50− 10
√

5
)1/2

zc,1 − 2π

(
13 +

22√
5

)1/2

zc,2 + 24π

(
2 +

2√
5

)1/2

zc,1zc,2 +O(z2c,i),

(4.50)

6We will use this expression for other models, where the arguments of vol
(n)
i in these models are

(Em1 , Em2 , R).
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where

z1 =
1

25
+ zc,1, z2 = −1

5
+ zc,2. (4.51)

The coefficients of zc,1, zc,2 in the classical mirror map are fixed by the relation (4.22).

We can calculate the next leading corrections to the energy spectra E
(2)
1,2 by look-

ing at ~2-order terms in (4.44). To obtain them, we need to calculate the second

derivatives of the volumes and leading corrections to the energy spectra. The latter

ones can be calculated from the formula (4.22) and explicit form of the differential

operator (4.41). After some computations, we find

E
(2)
1 =

1

40

(
−2
(√

5− 3
)
n1 (n1 + 1) + 2

(√
5 + 3

)
n2 (n2 + 1) + 7

)
,

E
(2)
2 =

1

20

(
2
(√

5 + 2
)
n21 − 2

(√
5− 2

)
n22 + 4

(√
5 + 1

)
n1 + 4n2 + 4

√
5n1n2 +

√
5 + 3

)
.

(4.52)

These results agree with the perturbative computations (3.13).

4.2.2 Y 3,0 model

The mirror curve of Y 3,0 is given by

ep + z1z
2
2z3e

−p+3x + z1z
2
2e3x + z2e

2x + ex + 1 = 0. (4.53)

The Picard–Fuchs operators are

L1 = (θ1 − θ3)(θ1 − 2θ2)− z1(−2θ1 + θ2 − 1)(−2θ1 + θ2),

L2 = (θ2 − θ3)(θ2 − 2θ1)− z2(−2θ2 + θ1 − 1)(−2θ2 + θ1),

L3 = θ23 − z3(θ1 − θ3)(θ2 − θ3),
L4 = θ23 − z1z2z3(θ1 − 2θ2)(θ2 − 2θ1).

(4.54)

Note that these operators are symmetric under exchange of z1 and z2. To give the

solutions of the Picard–Fuchs equations, we define following function,

ω0(ρi) =
∑

l,m,n≥0

c(l,m, n; ρi)z
l+ρ1
1 zm+ρ2

2 zn+ρ33 , (4.55)

where

c(l,m, n; ρi) =
1

Γ(n+ ρ3 + 1)2Γ(−n+ l + ρ1 − ρ3 + 1)Γ(−n+m+ ρ2 − ρ3 + 1)

× 1

Γ(l − 2m+ ρ1 − 2ρ2 + 1)Γ(−2l +m− 2ρ1 + ρ2 + 1)
.

(4.56)

Then, the classical mirror maps and the derivatives of the prepotential are given by

t1(z) = ω1 = log z1 + 2z1 + 3z21 − z2 −
3

2
z22 + z1z

2
2 − 2z21z2 − 4z21z2z3 + 2z1z

2
2z3 +O(z3i ),

t2(z) = ω2 = t1|z1↔z2 ,
t3(z) = ω3 = log z3,

(4.57)
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and
∂F0

∂t1
= ω11 + ω12 +

1

2
ω22 +

2

3
ω13 +

1

3
ω23 +

2π2

3
,

∂F0

∂t2
= ω22 + ω12 +

1

2
ω11 +

2

3
ω23 +

1

3
ω13 +

2π2

3
,

(4.58)

where

ωi =
∂ω0

∂ρi

∣∣∣∣
ρ1,2,3=0

, ωij =
∂2ω0

∂ρi∂ρj

∣∣∣∣
ρ1,2,3=0

. (4.59)

The classical B-periods Πd,i (i = 1, 2) are given by the formula (4.4) with the matrix

C =

[
2 −1 0
−1 2 0

]
, (4.60)

where the first 2× 2 block is the Cartan matrix of SU(3). From the prepotential, the

Bohr-Sommerfeld volumes are given by

vol
(0)
i (z) =

3∑
j=1

Cij
∂F0

∂tj
− 2π2

3
, i = 1, 2, (4.61)

where the complex structure moduli parameters z1, z2, z3 are related to the quantum

systems by

z1 =
E2

E2
1

, z2 =
E1

E2
2

, z3 = −R6. (4.62)

The Bohr-Sommerfeld volumes should vanish at the conifold point, z1 = z2 = 1
3(1+R2)

.

We check numerically this is indeed true for, e.g., R = 1.

Now let us consider the quantum mirror curve defined by

Ψ(x− i~) + z1z
2
2z3e

3xe
3i~
2 Ψ(x+ i~) +

(
z1z

2
2e3x + z2e2x + ex + 1

)
Ψ(x) = 0. (4.63)

By taking the residue of w(x; ~), we find a quantum A-period,

Π(z; ~) = −1

3
log(z1z

2
2) +

∮
x=∞

dxw(x; ~)

= −1

3
log(z1z

2
2) +

(
−z2 −

3z22
2
− 10z32

3
+ z1z

2
2 + 4z1z

3
2 + 2z1z

2
2z3 + 12z1z

3
2z3

)
−
(

1

4
z1z

2
2z3 +

7

2
z1z

3
2z3

)
~2 +O(~4, z4i ).

(4.64)

The differential operator giving the first quantum correction is

D2 =
1

12
z1z2(5z3 + 4)θ21 +

1

12
z1z2(5z3 + 4)θ22 +

1

24
(−20z1z2 − 25z1z2z3 + 4)θ1θ2.

(4.65)
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Then, we can obtain the ~2-correction to the quantum mirror maps and the quantum

B-periods by acting above differential operator on the classical periods,

t
(2)
i = D2ti, Π

(2)
d,i = D2Π

(0)
d,i , i = 1, 2. (4.66)

We note that in this model, the t3 depends only on mass parameter R and does not

receive quantum corrections.

To check the consistency, we calculate the NS free energy near the large radius

point. As in the C3/Z5 model, we can obtain the NS free energy by solving the

recursion relations (4.27) and (4.28) whose instanton parts [Fn]inst. are given by

[F1]
inst.

= −1

6
Q1 −

1

6
Q2 −

1

12
Q2

1 −
1

12
Q2

2 −
1

6
Q1Q2 −

1

24
Q1Q2Q3

− 1

12
Q2

1Q
2
2 +

7

8
Q2

1Q2Q3 +
7

8
Q1Q

2
2Q3 +

5

6
Q2

1Q
2
2Q3 −

1

48
Q2

1Q
2
2Q

2
3 +O(Q3

i ),

[F2]
inst.

=
1

360
Q1 +

1

360
Q2 +

1

180
Q2

1 +
1

180
Q2

2 +
1

360
Q1Q2 +

7

5760
Q1Q2Q3

+
1

180
Q2

1Q
2
2 +

29

640
Q2

1Q2Q3 +
29

640
Q1Q

2
2Q3 +

37

1440
Q2

1Q
2
2Q3 +

7

2880
Q2

1Q
2
2Q

2
3 +O(Q3

i ).

(4.67)

They agree with the topological vertex computations. Accidentally, it turns out that

the derivatives with respect to the mass parameter ∂t3F1 also satisfy a similar equation

although it does not formally appear in (4.27) for this model.

Now we are ready to calculate the quantum corrections to the energy spectra.

The all-order Bohr–Sommerfeld quantization conditions are given by

voli(E1, E2, R; ~) = 2π~
(
ni +

1

2

)
, i = 1, 2, (4.68)

where voli(E1, E2, R; ~) are the quantum corrected phase volumes. To obtain the

quantum corrected spectra, we define Ei and voli(E1, E2, R; ~) as a series in ~,

Ei =
∞∑
n=0

E
(n)
i ~n,

voli(E1, E2, R; ~) =
∞∑
n=0

vol
(n)
i (E1, E2, R)~2n.

(4.69)

From the classical limit ~ = 0 of (4.68), the Bohr–Sommerfeld volumes vanish at the

classical minimum energies,

E
(0)
i = 3(1 +R2) =: Em, (4.70)

which correspond to the conifold point. In the following, we demonstrate the com-

putations for R = 1. The leading corrections to the spectra are given by (4.47).
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By comparing them with direct perturbative calculations (3.14), we obtain the exact

values of E1,2-derivatives of the volumes,(
∂E1vol

(0)
1 ∂E2vol

(0)
1

∂E1vol
(0)
2 ∂E2vol

(0)
2

)
= π

((
2
15

(√
5 + 3

))1/2 − ( 2
15

(
3−
√

5
))1/2(

2
15

(
3−
√

5
))1/2 (

2
15

(
3 +
√

5
))1/2

)
. (4.71)

With the changes of variables, we find(
∂z1vol

(0)
1 (z) ∂z2vol

(0)
1 (z)

∂z1vol
(0)
2 (z) ∂z2vol

(0)
2 (z)

)
= − 8

√
3π

3−
√

5

(
1−
√

5 −5 + 2
√

5

−5 + 2
√

5 1−
√

5

)
, (4.72)

They agree with the direct computations numerically.

To obtain the derivatives of the volumes, we use the classical periods near the

conifold point,

tc,1 =− 4π(5 + 9
√

5)

5
√

3
zc,1 +

4π(5− 9
√

5)

5
√

3
zc,2 + zc,3 +

1312π

25
√

15
zc,1zc,2 +

8π(125 + 117
√

5)

1125
√

3
zc,1zc,3

− 8π(125− 117
√

5)

1125
√

3
zc,2zc,3 −

4544π

1125
√

15
zc,1zc,2zc,3 +O(z2c,i),

tc,2 =tc,1|zc,1↔zc,2 ,

tc,3 = log(−1 + zc,3),

(4.73)

where

z1 =
1

6
+ zc,1, z2 =

1

6
+ zc,2, z3 = −1 + zc,3. (4.74)

The coefficients of zc,1 and zc,2 are fixed by the relation (4.22).

From them, we can obtain the next leading order of the quantum corrections to

the energy spectra by looking at ~2-order of (4.68). After some computations, we

find

E
(2)
1 =

1

360

(
6(19 + 5

√
5)n1 + 6(19− 5

√
5)n2 + 6(13 + 5

√
5)n21 + 6(13− 5

√
5)n21 + 72n1n2 + 101

)
,

E
(2)
2 =E

(2)
1 |n1↔n2

.

(4.75)

They agree with the perturbative computations (3.14).

4.2.3 Y 3,1 model

In this example, we sometimes use some of the notations and definitions in Section

4.2.2. The mirror curve of Y 3,1 is given by

ep + z3e
2x−p + z1z

2
2e3x + z2e

2x + ex + 1 = 0. (4.76)
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The Picard–Fuchs operators are

L1 = θ1(θ1 − 2θ2 − 2θ3)− z1(−2θ1 + θ2 − 1)(−2θ1 + θ2),

L2 = θ2(−2θ1 + θ2)− z2(θ1 − 2θ2 − 2θ3 − 1)(θ1 − 2θ2 − 2θ3),

L3 = θ23 − z3(θ1 − 2θ2 − 2θ3 − 1)(θ1 − 2θ2 − 2θ3),

L4 = θ1θ2θ
2
3 − z1z2z3(−2θ1 + θ2)(θ1 − 2θ2 − 2θ3 − 2)(θ1 − 2θ2 − 2θ3 − 1)(θ1 − 2θ2 − 2θ3).

(4.77)

Then, the classical mirror maps and the derivatives of the prepotential are given by

t1(z) = ω1 = log z1 + 2z1 − z2 − z3 + 3z21 −
3z22
2
− 3z23

2
− 6z2z3 − 2z21z2 + 6z21z3 + z1z

2
2

− 30z22z3 − 30z2z
2
3 − 315z22z

2
3 + 12z1z

2
2z3 + 90z1z

2
2z

2
3 +O(z3i ),

t2(z) = ω2 = log z2 − z1 + 2z2 + 2z3 −
3z21
2

+ 3z22 + 3z23 + 12z2z3 + z21z2 − 3z21z3 − 2z1z
2
2

+ 60z22z3 + 60z2z
2
3 + 630z22z

2
3 − 24z1z

2
2z3 − 180z1z

2
2z

2
3 +O(z3i ),

t3(z) = ω3 = log z3 +
1

3
{2 (t1(z)− log z1) + 4 (t2(z)− log z2)} ,

(4.78)

and
∂F0

∂t1
=

1

9
(4ω11 − 2ω12 − 2ω22 + 6ω13 + 3ω23) ,

∂F0

∂t2
=

1

9
(−ω11 − 4ω12 − 4ω22 + 3ω13 + 6ω23) ,

∂F0

∂t3
=

1

3
(ω11 + ω22 + ω12) ,

(4.79)

where ωi and ωij are defined in (4.59), and ω0 are defined in (4.55) with the coefficients

c(l,m, n; ρi)

c(l,m, n; ρi) =
Γ (ρ1 + 1) Γ (ρ2 + 1) Γ (ρ3 + 1)2

Γ (l + ρ1 + 1) Γ (m+ ρ2 + 1) Γ (n+ ρ3 + 1)2

× Γ (−2ρ1 + ρ2 + 1) Γ (ρ1 − 2ρ2 − 2ρ3 + 1)

Γ (l + ρ1 − 2 (m+ ρ2)− 2 (n+ ρ3) + 1) Γ (m− 2 (l + ρ1) + ρ2 + 1)
.

(4.80)

The classical B-periods Πd,i (i = 1, 2) are given by the formula (4.4) with the non-

invertible matrix,

C =

[
2 −1 0
−1 2 2

]
. (4.81)

From the prepotential, the Bohr-Sommerfeld volumes are

vol
(0)
i (z) =

3∑
j=1

Cij
∂F0

∂tj
− 2π2

3
, i = 1, 2. (4.82)
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The complex structure moduli z1, z2, z3 are related to the eigenvalues of the dimer

system by,

z1 =
E2

E2
1

, z2 =
E1

E2
2

, z3 =
R6

E2
2

. (4.83)

From the classical limit ~ = 0 of (4.68), the classical phase volumes vanish at a

conifold point

z1 =
r9 + 2

(r9 − 4)2
, z2 = −r

18(r4 − 4)

(r9 + 2)2
, z3 = −(r9 − 1)3

(r9 + 2)2
, (4.84)

where we use the polynomial relation (3.17) to eliminate R. As a consistency check,

we check numerically that the phase volumes (4.82) vanish at the conifold point for

r = 2−1/9.

Now let us consider the quantum mirror curve given by

Ψ(x− i~) + ei~z3e
2xΨ(x+ i~) +

(
z1z

2
2e3x + z2e

2x + ex + 1
)

Ψ(x) = 0. (4.85)

By taking the residue of w(x; ~), we find a quantum A-period,

Π(z; ~) = −1

3
log(z1z

2
2) +

∮
x=∞

dxw(x; ~)

= −1

3
log(z1z

2
2) +

(
−z2 − z3 − 6z2z3 −

3z22
2
− 3z23

2
+ z1z

2
2 − 30z22z3 − 30z2z

2
3

− 315z22z
2
3 + 90z1z

2
2z

2
3 + 12z1z

2
2z3

)
−
(
−z2z3 − 10z2z

2
3 − 10z22z3 − 210z22z

2
3 + 6z1z

2
2z3 + 90z1z

2
2z

2
3

)
~2 +O(~4, z3i ).

(4.86)

The differential operator giving the leading corrections to the quantum A-periods is

given by

D2 = −z1
2
θ1 +

(
1

12
− z1

)
θ21 +

z1
4
θ2 +

(
1

6
− z1

4

)
θ22 +

(
− 1

12
+ z1 −

1

12z1z2

)
θ1θ2.

(4.87)

Then, we can obtain the quantum mirror maps and quantum B-periods by acting the

differential operator on the classical periods,

t
(2)
i = D2ti, (i = 1, 2, 3), Π

(2)
d,k = D2Π

(0)
d,k, (k = 1, 2). (4.88)

To check the consistency, we calculate the NS free energy near the large radius

frame which can be calculated from the general formulae (4.27) and (4.28). Then, we

find the instanton parts of [Fn]inst. for n = 1, 2,

[F1]
inst. =

Q1

6
+
Q2

6
+
Q3

6
+
Q1Q2

6
+
Q1Q3

6
+

7Q2Q3

3
+

5Q1Q2Q3

2
+O(Q2

i ),

[F2]
inst. =

Q1

360
+
Q2

360
+
Q3

360
+
Q1Q2

360
+
Q1Q3

360
− 59Q2Q3

180
− 13Q1Q2Q3

40
+O(Q2

i ).

(4.89)
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They agree with the topological vertex computations.

Now we are ready to calculate the quantum corrections to the energy spectra. The

Bohr–Sommerfeld quantization conditions are given by (4.68), where the quantum

corrected spectra and volumes are defined in (4.69). In the classical limit ~ = 0

of (4.68), the classical Bohr–Sommerfeld volumes vanish at the classical minimum

energies

E
(0)
1 =

4− r9

r6
=: Em1 , E

(0)
2 =

2 + r9

r12
=: Em2 , (4.90)

which correspond to the conifold point. In the following, we do the computations for

a particular case r = 2−1/9. The leading corrections to the energy spectra are given

by (4.47). By comparing with the perturbative computation (3.18), we find the exact

values of E1,2-derivatives of the volumes at the conifold point,

(
∂E1vol

(0)
1 ∂E2vol

(0)
1

∂E1vol
(0)
2 ∂E2vol

(0)
2

)
= π

−
−2
√
2−2

22/3(166
√
2+245)

1/6
1

(83
√
2+ 245

2 )
1/6

− 21/3

(4
√
2+7)

1/2 −
211/12(

√
2+1)

(
21/4(166

√
2+245)

1/6−(37
√
2−52)

1/2
)

23/4(7
√
2+8)

1/2
(166
√
2+245)

1/6−2(51−34
√
2)

1/2

 ,

(4.91)

which agree with the numerical computations.

In this case, we do not calculate the classical mirror maps around the conifold

point, but when one wants to calculate higher corrections to the energy spectra as

in the case of Y 3,0, the classical mirror maps are needed to obtain the higher-order

quantum corrections to the (derivatives) of the volumes via the formulae (4.18), (4.22).

4.2.4 Y 3,2 model

In this example, we sometimes also use some of the notations and definitions in Section

4.2.2. The mirror curve of Y 3,2 is

ep + z3e
x−p + z1z

2
2e3x + z2e

2x + ex + 1 = 0. (4.92)

The Picard–Fuchs operators are

L1 = θ1(θ1 − 2θ2 − θ3)− z1(−2θ1 + θ2 − 1)(−2θ1 + θ2),

L2 = (θ2 − θ3)(−2θ1 + θ2)− z2(θ1 − 2θ2 − θ3 − 1)(θ1 − 2θ2 − θ3),
L3 = θ23 − z3(θ1 − 2θ2 − θ3)(θ2 − θ3),
L4 = θ1θ

2
3 − z1z2z3(θ1 − 2θ2 − θ3 − 1)(θ1 − 2θ2 − θ3)(−2θ1 + θ2).

(4.93)
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The classical mirror maps and the derivatives of the prepotential are given by

t1(z) = ω1 = log z1 + 2z1 − z2 + 3z21 −
3z22
2

+ 2z2z3 − 2z21z2 + z1z
2
2 + 12z22z3

− 15z22z
2
3 − 6z1z

2
2z3 + 6z1z

2
2z

2
3 +O(z3i ),

t2(z) = ω2 = log z2 − z1 + 2z2 −
3z21
2

+ 3z22 − 4z2z3 + z21z2 − 2z1z
2
2 − 24z22z3

+ 30z22z
2
3 + 12z1z

2
2z3 − 12z1z

2
2z

2
3 +O(z3i ),

t3(z) = ω3 = log z3 +
1

3
{(t1(z)− log z1) + 2 (t2(z)− log z2)} ,

(4.94)

and
∂F0

∂t1
=

1

18
(16ω11 + 10ω12 + ω22 + 12ω13 + 6ω23) ,

∂F0

∂t2
=

1

18
(5ω11 + 2ω12 + 2ω22 + 6ω13 + 12ω23) ,

∂F0

∂t3
=

1

3
(ω11 + ω22 + ω12) ,

(4.95)

where ωi and ωij are defined in (4.59) with the coefficients c(l,m, n; ρi),

c(l,m, n; ρi) =
Γ (ρ1 + 1) Γ (ρ3 + 1)2 Γ (ρ2 − ρ3 + 1)

Γ (l + ρ1 + 1) Γ (n+ ρ3 + 1)2 Γ (m− n+ ρ2 − ρ3 + 1)

× Γ (−2ρ1 + ρ2 + 1) Γ (ρ1 − 2ρ2 − ρ3 + 1)

Γ (m− 2 (l + ρ1) + ρ2 + 1) Γ (l − n+ ρ1 − 2 (m+ ρ2)− ρ3 + 1)
.

(4.96)

The classical B-periods Πd,i (i = 1, 2) are given by (4.4) with the non-invertible matrix

Cij,

C =

[
2 −1 0
−1 2 1

]
, (4.97)

From the prepotential, the Bohr-Sommerfeld volumes are

vol
(0)
i (z) =

3∑
i=1

Cij
∂F0

∂tj
− 2π2

3
, i = 1, 2. (4.98)

The complex structure moduli parameters z1, z2, z3 are related to the eigenvalues of

the dimer model by

z1 =
E2

E2
1

, z2 =
E1

E2
2

, z3 = −R
6

E2

. (4.99)

From the classical limit ~ = 0 of (3.21), the classical phase volumes vanish at

z1 =
r9/2 − 3r9/4 + 5

(2r9/4 − 5)2
, z2 =

5r9/4 − 2r9/2

(r9/2 − 3r9/4 + 5)2
, z3 =

(r9/4 − 1)3

r9/4(r9/2 − 3r9/4 + 5)
,

(4.100)
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where we use the polynomial relation (3.20) to eliminate R. We check numerically

that the volumes vanish at this point for, e.g., r = 2−4/9.

Now let us consider the quantum mirror curve,

Ψ(x− i~) + e
i~
2 z3e

xΨ(x+ i~) +
(
z1z

2
2e3x + z2e

2x + ex + 1
)

Ψ(x) = 0. (4.101)

By taking the residue of w(x; ~), we find a quantum A-period,

Π(z; ~) = −1

3
log(z1z

2
2) +

∮
x=∞

dxw(x; ~)

= −1

3
log(z1z

2
2) +

(
−z2 −

3z22
2

+ 2z2z3 + z1z
2
2 + 12z22z3 − 15z22z

2
3 − 6z1z

2
2z3 + 6z1z

2
2z

2
3

)
−
(
z2z3

4
+

7z22z3
2
− 15z22z

2
3

2
− 11

4
z1z

2
2z3 + 5z1z

2
2z

2
3

)
~2 +O(~4, z3i ).

(4.102)

The differential operator giving the leading correction to the quantum A-periods in

this case has the following relatively long expression,

D2 = − 1

24z2(1− z3)

{
2(4− 5z3 + 12z1z2 − 13z1z2z3)θ1

+
1

z1

(
−4 + 16z1 + 5z3 − 4z1z2 − 20z1z3 + 48z21z2 + 3z1z2z3 − 52z21z2z3

)
θ21

+ (−4 + 5z3 − 12z1z2 + 13z1z2z3)θ2

+ (4 + 8z2 − 5z3 + 12z1z2 − 12z2z3 − 13z1z2z3)θ
2
2

+
1

z1

(
12− 16z1 − 15z3 + 4z1z2 + 20z1z3 − 48z21z2 + 52z21z2z3

)
θ1θ2

}
.

(4.103)

Then, we can obtain the quantum mirror maps and quantum B-periods by acting

above operator on the classical periods, as in (4.88).

We do not provide the details of the calculations of the NS free energy in this case

since the computation process is completely the same as the Y 3,1 model, but one can

show that the NS free energy calculated from the differential operators agree with the

topological vertex computations.

Now we are ready to calculate the quantum corrections to the energy spectra. The

Bohr–Sommerfeld quantization conditions are given by (4.68), where the quantum

corrected spectra and volumes are defined in (4.69). From the classical limit ~ = 0

of (4.68), the classical Bohr–Sommerfeld volumes vanish at the classical minimum

energies,

E
(0)
1 =

5− r9/4

r3/4
=: Em1 , E

(0)
2 =

5

r3/2
− 3r3/4 + r3 =: Em2 , (4.104)

which correspond to the conifold point. For simplicity, we do the computations for

r = 2−4/9. The leading corrections to the spectra are given by (4.47). By comparing
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with the perturbative computations, we find the exact values of E1,2-derivatives of

the volumes at the conifold point,(
∂E1vol

(0)
1 ∂E2vol

(0)
1

∂E1vol
(0)
2 ∂E2vol

(0)
2

)
=
π

3

(
211/3√

7
27/3√

7

−22/3 −24/3

)
, (4.105)

which are consistent with the numerical computations.

Similar to the Y 3,1 case, we do not calculate the classical mirror maps around the

conifold point, but when one calculates higher-order corrections to the energy spectra

as in the Y 3,0 model, the classical mirror maps are needed to obtain the higher-order

quantum corrections to the (derivatives) of the volumes via the formulae (4.18) (4.22).

4.2.5 Y 3,3 model

As the final example, we consider the Y 3,3 model. We sometimes use some of the

notations and definitions in Section 4.2.2. The mirror curve of Y 3,3 is

ep + e−p + e3x +
e2x

z
1/3
1 z

2/3
2 z

1/6
3

+
ex

z
2/3
1 z

1/3
2 z

1/3
3

+
1

z
1/2
3

= 0. (4.106)

The Picard–Fuchs operators are

L1 = θ1 (θ1 − 2θ2 − 2θ3) + 4θ2θ3 − z1 (2θ1 − θ2 + 1) (2θ1 − θ2) ,
L2 = θ2 (θ2 − 2θ1) + z2 (2θ2 − θ1 + 1) (2θ2 − θ1) ,
L3 = θ23 + z3 (2θ3 − θ1 + 1) (2θ3 − θ1) ,
L4 = θ2θ

2
3 + z1z2z3(θ1 − 2θ2)(θ1 − 3θ3)(2θ1 − θ2).

(4.107)

Their solutions provide the mirror maps and the derivatives of prepotential,

t1(z) = ω1 = log z1 + 2z1 − z2 − z3 + 3z21 −
3z22
2
− 3z23

2
− 2z21z2 + 6z21z3 + z1z

2
2 − 4z21z2z3 +O(z3i ),

t2(z) = ω2 = log z2 − z1 + 2z2 −
3z21
2

+ 3z22 + z21z2 − 3z21z3 − 2z1z
2
2 + 2z21z2z3 +O(z3i ),

t3(z) = ω3 = log(z3) + 2z3 + 3z23 +O(z3i ),

(4.108)

and
∂F0

∂t1
=

2

3
ω11 +

2

3
ω12 +

2

3
ω13 +

2

3
ω22 +

1

3
ω23 +

2π2

3
,

∂F0

∂t2
=

1

3
ω11 +

4

3
ω12 +

1

3
ω13 +

4

3
ω22 +

2

3
ω23 +

2π2

3
,

(4.109)

where ωi and ωij are given in (4.59) with the coefficients c(l,m, n; ρi),

c(l,m, n; ρi) =
1

Γ(1 + l − 2m+ ρ1 − 2ρ2)2Γ(1− 2l +m− 2ρ1 + ρ2)Γ(1 + l − 2n+ ρ1 − 2ρ3)

× 1

Γ(1 +m+ ρ2)Γ(1 + n+ ρ3)2
.

(4.110)

32



For the third mirror map t3, the summation can be expressed in a closed form,

t3(z) = log z3 − 2 log

(
1−
√

1− 4z3
2

)
. (4.111)

The classical B-periods are completely the same form as the ones of Y 3,0 since the ma-

trices Cij of Y 3,0 and Y 3,3 are the same. From the prepotential, the Bohr-Sommerfeld

volumes are

vol
(0)
i (z) =

3∑
j=1

Cij
∂F0

∂tj
− 2π2

3
, i = 1, 2, (4.112)

where the complex structure moduli parameters z1, z2, z3 are related to the eigenvalues

of dimer model by

z1 =
(1 +R6)E1

E2
2

, z2 =
E2

E2
1

, z3 =
R6

(1 +R6)2
. (4.113)

The Bohr-Sommerfeld volumes should vanish at the conifold point,

z1 =
(1 +R2)(1 +R6)

3(1 +R2 +R4)2
, z2 =

1 +R2 +R4

3(1 +R2)2
, z3 = − R6

(1 +R6)2
. (4.114)

We check that the volumes vanish numerically for, e.g., R = 1.

Now let us consider the quantum mirror curve given by

Ψ(x+ i~) + Ψ(x− i~) +

(
e3x +

e2x

z
1/3
1 z

2/3
2 z

1/6
3

+
ex

z
2/3
1 z

1/3
2 z

1/3
3

+
1

z
1/2
3

)
Ψ(x) = 0.

(4.115)

By taking the residue of w(x; ~), we find a quantum A-period,

Π(z; ~) = −1

3
log(z21z2z3) +

∮
x=∞

dxw(x; ~)

= −1

3
log(z21z2z3) +

(
2z21z2z3 + z21z2 − 3z21z3 −

3z21
2
− z1

)
−
(
z21z3 − z21z2z3

)
~2 +O(~4, z3i ).

(4.116)

The differential operator giving the leading correction to the quantum A-periods is

given by

D2 =
1

12(−1 + 2z2)

{
z1 (15z22 − 12z2 + 4)− z2

2
θ1 +

z1 (9z22 − 24z2 + 8) + 5z2 − 2

2
θ21

+ (z1
(
−15z22 + 6z2 − 1

)
+ z2)θ2 −

z1 (36z22 − 15z2 + 2)− 4z2 + 1

2
θ22

}
.

(4.117)
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Then, we can obtain the quantum B-periods by acting above differential operator on

the classical B-periods.

We do not provide the details of the calculations of the NS free energy in this

case since the computation process is completely the same as Y 3,0 model, but one can

show that the NS free energy calculated from the differential operators agrees with

the topological vertex computations.

Now we are ready to calculate the quantum corrections to the energy spectra. For

simplicity, we do the computations for R = 1. The Bohr–Sommerfeld quantization

conditions are given by (4.68), where the quantum corrected spectra and volumes are

defined in (4.69).

In the classical limit ~ = 0 of (4.68), the classical Bohr–Sommerfeld volumes

vanish at the classical minimum energies

E
(0)
1 = 6 =: Em1 , E

(0)
2 = 9 =: Em2 , (4.118)

which correspond to the conifold point. The leading corrections to the spectra are

given by (4.47). By comparing them with direct perturbative calculations (3.15), we

find the exact values of E1,2-derivatives of the volumes at conifold point,(
∂E1vol

(0)
1 ∂E2vol

(0)
1

∂E1vol
(0)
2 ∂E2vol

(0)
2

)
=

( √
3 − 1√

3

− 1√
3

1√
3

)
. (4.119)

With the change of variables, we find(
∂z1vol

(0)
1 (z) ∂z2vol

(0)
1 (z)

∂z1vol
(0)
2 (z) ∂z2vol

(0)
2 (z)

)
=
√

3π

(
−9 4

3

0 −12

)
. (4.120)

We check numerically that this is indeed true.

The classical A-periods near the conifold point are

tc,1 =− 3π
√

3zc,1 −
68πzc,2

3
√

3
− 20πzc,3

9
√

3
+

131πzc,1zc,2

2
√

3
+

7πzc,1zc,3

2
√

3
+

400πzc,2zc,3

27
√

3
− 1657πzc,1zc,2zc,3

36
√

3

+O(z2c,i),

tc,2 =− 6π
√

3zc,1 −
28πzc,2

3
√

3
− 28πzc,3

9
√

3
+

19πzc,1zc,2

2
√

3
+

23πzc,1zc,3

2
√

3
+

80πzc,2zc,3

27
√

3
+

7πzc,1zc,2zc,3

36
√

3

+O(z2c,i),

tc,3 =− 2 log(1− 2
√
−zc,3) + log(1 + 4zc,3),

(4.121)

where

z1 =
1

6
+ zc,1, z2 =

1

6
+ zc,2, z3 = −1 + zc,3. (4.122)

The coefficients of zc,1 and zc,2 are fixed by the relation (4.22).

Repeating the computations for ~2-order, we find

E
(2)
1 =

1

36
(9n1(n1 + 1) + 3n2(n2 + 1) + 8),

E
(2)
2 =

1

2
n1 + n2

2 +
3n2

2
+ n1n2 +

2

3
.

(4.123)
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These results agree with (3.15) for R = 1.

5 Discussions

In this paper, we studied the analytic connections between genus two mirror curves

and Y p,q cluster integrable systems, which are generalizations of affine A-type rel-

ativistic Toda systems. It is interesting to consider the much higher genus mirror

curves and the application to other types of affine Toda systems.

In the topic of the differential operator method, there are still interesting issues to

clarify. For example, it would be interesting to consider the genus one mirror curves

for local En del Pezzo surfaces, where the global symmetries are En groups. Such

curves are considered in [6, 53] with some mass parameters turned off. With all mass

parameters turned on where the Calabi-Yau threefolds are non-toric, it is interesting

to study the differential operator approach for the cases.

Also, in [54], the authors pointed out that the quantum A-periods of D5 del Pezzo

geometry can be expressed as D5 Weyl characters. The quantum mirror map of this

curve would be also given in the differential operator method. Therefore, it would be

interesting to clarify relations between the Weyl group expression and the differential

operators.

Recently, the authors in [55] provide the analytic results on the black hole per-

turbation theory from the quantization conditions. They consider the quantization

conditions for A-periods, not B-periods. It would be interesting to clarify the physical

implications of this quantization conditions in the integrable systems or topological

strings.
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A An eigenvalue formula

Suppose S is a real symmetric 2n × 2n matrix, and M is a real symplectic 2n × 2n

matrix that diagonalizes the symmetric matrix, i.e., we have

Σ =

(
0 In
−In 0

)
, MTΣM = Σ, MTSM =

(
C 0
0 D

)
, (A.1)
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where C = diag{c1, c2, · · · , cn}, D = diag{d1, d2, · · · , dn} are real n × n diagonal

matrices. Then we can show that the characteristic polynomial of the matrix SΣ (or

ΣS) is

det(SΣ− λI) =
n∏
k=1

(λ2 + ckdk). (A.2)

So the eigenvalues of SΣ are ±i
√
ckdk, k = 1, 2, · · ·n. In the context of our physics

problem, the two diagonal matrices are identical C = D, therefore the diagonal

elements are completely determined by the symmetric matrix S, are thus independent

of the choice of the symplectic matrix M .

The calculations are straightforward. Noticing Σ2 = −I and (−ΣMT )(ΣM) = I,

so the characteristic polynomial is

det(SΣ− λI) = det(−ΣMTSΣ2M − λI)

= det(

(
0 D
−C 0

)
− λI). (A.3)

It is now simple to verify the determinant is indeed the polynomial in the right hand

side of (A.2).

References

[1] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, and C. Vafa, “Topological

strings and integrable hierarchies,” Commun. Math. Phys. 261 (2006) 451–516,

arXiv:hep-th/0312085.

[2] N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and

Four Dimensional Gauge Theories,” in XVIth International Congress on

Mathematical Physics, pp. 265–289. 2009. arXiv:0908.4052 [hep-th].

[3] A. Mironov and A. Morozov, “Nekrasov Functions and Exact Bohr-Zommerfeld

Integrals,” JHEP 04 (2010) 040, arXiv:0910.5670 [hep-th].

[4] M. Aganagic, M. C. N. Cheng, R. Dijkgraaf, D. Krefl, and C. Vafa, “Quantum

Geometry of Refined Topological Strings,” JHEP 11 (2012) 019,

arXiv:1105.0630 [hep-th].

[5] M.-x. Huang, “On Gauge Theory and Topological String in

Nekrasov-Shatashvili Limit,” JHEP 06 (2012) 152, arXiv:1205.3652

[hep-th].

[6] M.-x. Huang, A. Klemm, J. Reuter, and M. Schiereck, “Quantum geometry of

del Pezzo surfaces in the Nekrasov-Shatashvili limit,” JHEP 02 (2015) 031,

arXiv:1401.4723 [hep-th].

36

http://dx.doi.org/10.1007/s00220-005-1448-9
http://arxiv.org/abs/hep-th/0312085
http://dx.doi.org/10.1142/9789814304634_0015
http://dx.doi.org/10.1142/9789814304634_0015
http://arxiv.org/abs/0908.4052
http://dx.doi.org/10.1007/JHEP04(2010)040
http://arxiv.org/abs/0910.5670
http://dx.doi.org/10.1007/JHEP11(2012)019
http://arxiv.org/abs/1105.0630
http://dx.doi.org/10.1007/JHEP06(2012)152
http://arxiv.org/abs/1205.3652
http://arxiv.org/abs/1205.3652
http://dx.doi.org/10.1007/JHEP02(2015)031
http://arxiv.org/abs/1401.4723


[7] A. Mironov and A. Morozov, “Nekrasov Functions from Exact BS Periods: The

Case of SU(N),” J. Phys. A 43 (2010) 195401, arXiv:0911.2396 [hep-th].

[8] J.-E. Bourgine, “Large N limit of beta-ensembles and deformed Seiberg-Witten

relations,” JHEP 08 (2012) 046, arXiv:1206.1696 [hep-th].

[9] F. Fucito, J. F. Morales, and D. Ricci Pacifici, “Deformed Seiberg–Witten

Curves for ADE Quivers,” JHEP 01 (2013) 091, arXiv:1210.3580 [hep-th].

[10] M. Billo, M. Frau, L. Gallot, A. Lerda, and I. Pesando, “Deformed N=2

theories, generalized recursion relations and S-duality,” JHEP 04 (2013) 039,

arXiv:1302.0686 [hep-th].

[11] K. Ito, S. Kanno, and T. Okubo, “Quantum periods and prepotential in N = 2

SU(2) SQCD,” JHEP 08 (2017) 065, arXiv:1705.09120 [hep-th].

[12] Y. Hatsuda, M. Mariño, S. Moriyama, and K. Okuyama, “Non-perturbative

effects and the refined topological string,” JHEP 09 (2014) 168,

arXiv:1306.1734 [hep-th].

[13] J. Kallen and M. Mariño, “Instanton effects and quantum spectral curves,”

Annales Henri Poincare 17 no. 5, (2016) 1037–1074, arXiv:1308.6485

[hep-th].

[14] M.-x. Huang and X.-f. Wang, “Topological Strings and Quantum Spectral

Problems,” JHEP 09 (2014) 150, arXiv:1406.6178 [hep-th].

[15] A. Grassi, Y. Hatsuda, and M. Mariño, “Quantization conditions and

functional equations in ABJ(M) theories,” J. Phys. A 49 no. 11, (2016) 115401,

arXiv:1410.7658 [hep-th].

[16] X. Wang, G. Zhang, and M.-x. Huang, “New Exact Quantization Condition for

Toric Calabi-Yau Geometries,” Phys. Rev. Lett. 115 (2015) 121601,

arXiv:1505.05360 [hep-th].

[17] A.-K. Kashani-Poor, “Quantization condition from exact WKB for difference

equations,” JHEP 06 (2016) 180, arXiv:1604.01690 [hep-th].

[18] R. Couso-Santamaria, M. Mariño, and R. Schiappa, “Resurgence Matches

Quantization,” J. Phys. A50 no. 14, (2017) 145402, arXiv:1610.06782

[hep-th].

[19] A. Grassi and M. Mariño, “The complex side of the TS/ST correspondence,” J.

Phys. A 52 no. 5, (2019) 055402, arXiv:1708.08642 [hep-th].

37

http://dx.doi.org/10.1088/1751-8113/43/19/195401
http://arxiv.org/abs/0911.2396
http://dx.doi.org/10.1007/JHEP08(2012)046
http://arxiv.org/abs/1206.1696
http://dx.doi.org/10.1007/JHEP01(2013)091
http://arxiv.org/abs/1210.3580
http://dx.doi.org/10.1007/JHEP04(2013)039
http://arxiv.org/abs/1302.0686
http://dx.doi.org/10.1007/JHEP08(2017)065
http://arxiv.org/abs/1705.09120
http://dx.doi.org/10.1007/JHEP09(2014)168
http://arxiv.org/abs/1306.1734
http://dx.doi.org/10.1007/s00023-015-0421-1
http://arxiv.org/abs/1308.6485
http://arxiv.org/abs/1308.6485
http://dx.doi.org/10.1007/JHEP09(2014)150
http://arxiv.org/abs/1406.6178
http://dx.doi.org/10.1088/1751-8113/49/11/115401
http://arxiv.org/abs/1410.7658
http://dx.doi.org/10.1103/PhysRevLett.115.121601
http://arxiv.org/abs/1505.05360
http://dx.doi.org/10.1007/JHEP06(2016)180
http://arxiv.org/abs/1604.01690
http://dx.doi.org/10.1088/1751-8121/aa5e01
http://arxiv.org/abs/1610.06782
http://arxiv.org/abs/1610.06782
http://dx.doi.org/10.1088/1751-8121/aaec4b
http://dx.doi.org/10.1088/1751-8121/aaec4b
http://arxiv.org/abs/1708.08642


[20] A. Sciarappa, “Exact relativistic Toda chain eigenfunctions from Separation of

Variables and gauge theory,” JHEP 10 (2017) 116, arXiv:1706.05142

[hep-th].

[21] S. Zakany, “Quantized mirror curves and resummed WKB,” JHEP 05 (2019)

114, arXiv:1711.01099 [hep-th].

[22] K. Sun, X. Wang, and M.-x. Huang, “Exact Quantization Conditions, Toric

Calabi-Yau and Nonperturbative Topological String,” JHEP 01 (2017) 061,

arXiv:1606.07330 [hep-th].

[23] A. Grassi and J. Gu, “BPS relations from spectral problems and blowup

equations,” Lett. Math. Phys. 109 no. 6, (2019) 1271–1302, arXiv:1609.05914

[hep-th].

[24] L. Gottsche, H. Nakajima, and K. Yoshioka, “K-theoretic Donaldson invariants

via instanton counting,” Pure Appl. Math. Quart. 5 (2009) 1029–1111,

arXiv:math/0611945.

[25] C. A. Keller and J. Song, “Counting Exceptional Instantons,” JHEP 07 (2012)

085, arXiv:1205.4722 [hep-th].

[26] J. Kim, S.-S. Kim, K.-H. Lee, K. Lee, and J. Song, “Instantons from Blow-up,”

JHEP 11 (2019) 092, arXiv:1908.11276 [hep-th].

[27] M.-x. Huang, K. Sun, and X. Wang, “Blowup Equations for Refined

Topological Strings,” JHEP 10 (2018) 196, arXiv:1711.09884 [hep-th].

[28] J. Gu, B. Haghighat, K. Sun, and X. Wang, “Blowup Equations for 6d SCFTs.

I,” JHEP 03 (2019) 002, arXiv:1811.02577 [hep-th].

[29] J. Gu, A. Klemm, K. Sun, and X. Wang, “Elliptic blowup equations for 6d

SCFTs. Part II. Exceptional cases,” JHEP 12 (2019) 039, arXiv:1905.00864

[hep-th].

[30] J. Gu, B. Haghighat, A. Klemm, K. Sun, and X. Wang, “Elliptic Blowup

Equations for 6d SCFTs. III: E-strings, M-strings and Chains,” JHEP 07

(2020) 135, arXiv:1911.11724 [hep-th].

[31] J. Gu, B. Haghighat, A. Klemm, K. Sun, and X. Wang, “Elliptic Blowup

Equations for 6d SCFTs. IV: Matters,” arXiv:2006.03030 [hep-th].

[32] Y. Hatsuda, H. Katsura, and Y. Tachikawa, “Hofstadter’s butterfly in quantum

geometry,” New J. Phys. 18 no. 10, (2016) 103023, arXiv:1606.01894

[hep-th].

38

http://dx.doi.org/10.1007/JHEP10(2017)116
http://arxiv.org/abs/1706.05142
http://arxiv.org/abs/1706.05142
http://dx.doi.org/10.1007/JHEP05(2019)114
http://dx.doi.org/10.1007/JHEP05(2019)114
http://arxiv.org/abs/1711.01099
http://dx.doi.org/10.1007/JHEP01(2017)061
http://arxiv.org/abs/1606.07330
http://dx.doi.org/10.1007/s11005-019-01163-1
http://arxiv.org/abs/1609.05914
http://arxiv.org/abs/1609.05914
http://dx.doi.org/10.4310/PAMQ.2009.v5.n3.a5
http://arxiv.org/abs/math/0611945
http://dx.doi.org/10.1007/JHEP07(2012)085
http://dx.doi.org/10.1007/JHEP07(2012)085
http://arxiv.org/abs/1205.4722
http://dx.doi.org/10.1007/JHEP11(2019)092
http://arxiv.org/abs/1908.11276
http://dx.doi.org/10.1007/JHEP10(2018)196
http://arxiv.org/abs/1711.09884
http://dx.doi.org/10.1007/JHEP03(2019)002
http://arxiv.org/abs/1811.02577
http://dx.doi.org/10.1007/JHEP12(2019)039
http://arxiv.org/abs/1905.00864
http://arxiv.org/abs/1905.00864
https://doi.org/10.1007/JHEP07(2020)135
https://doi.org/10.1007/JHEP07(2020)135
http://arxiv.org/abs/1911.11724
http://arxiv.org/abs/2006.03030
http://dx.doi.org/10.1088/1367-2630/18/10/103023
http://arxiv.org/abs/1606.01894
http://arxiv.org/abs/1606.01894


[33] Y. Hatsuda, Y. Sugimoto, and Z. Xu, “Calabi-Yau geometry and electrons on

2d lattices,” Phys. Rev. D 95 no. 8, (2017) 086004, arXiv:1701.01561

[hep-th].

[34] Z. Duan, J. Gu, Y. Hatsuda, and T. Sulejmanpasic, “Instantons in the

Hofstadter butterfly: difference equation, resurgence and quantum mirror

curves,” JHEP 01 (2019) 079, arXiv:1806.11092 [hep-th].

[35] Y. Hatsuda and Y. Sugimoto, “Bloch electrons on honeycomb lattice and toric

Calabi-Yau geometry,” JHEP 05 (2020) 026, arXiv:2003.05662 [hep-th].

[36] S. Codesido, A. Grassi, and M. Mariño, “Spectral Theory and Mirror Curves of

Higher Genus,” Annales Henri Poincare 18 no. 2, (2017) 559–622,

arXiv:1507.02096 [hep-th].

[37] S. Codesido, J. Gu, and M. Mariño, “Operators and higher genus mirror

curves,” JHEP 02 (2017) 092, arXiv:1609.00708 [hep-th].

[38] A. Grassi and M. Mariño, “A Solvable Deformation of Quantum Mechanics,”

SIGMA 15 (2019) 025, arXiv:1806.01407 [hep-th].

[39] F. Fischbach, A. Klemm, and C. Nega, “WKB Method and Quantum Periods

beyond Genus One,” J. Phys. A 52 no. 7, (2019) 075402, arXiv:1803.11222

[hep-th].

[40] A. B. Goncharov and R. Kenyon, “Dimers and cluster integrable systems,”
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