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KÄHLER GROUPS AND SUBDIRECT PRODUCTS OF SURFACE

GROUPS

CLAUDIO LLOSA ISENRICH

Abstract. We present a construction that produces infinite classes of Kähler groups that

arise as fundamental groups of fibres of maps to higher dimensional tori. Following the work

of Delzant and Gromov, there is great interest in knowing which subgroups of direct products

of surface groups are Kähler. We apply our construction to obtain new classes of irreducible,

coabelian Kähler subgroups of direct products of r surface groups. These cover the full range

of possible finiteness properties of irreducible subgroups of direct products of r surface groups:

For any r ≥ 3 and 2 ≤ k ≤ r − 1, our classes of subgroups contain Kähler groups that have a

classifying space with finite k-skeleton while not having a classifying space with finitely many

(k + 1)-cells.

We also address the converse question of finding constraints on Kähler subdirect products

of surface groups and, more generally, on homomorphisms from Kähler groups to direct

products of surface groups. We show that if a Kähler subdirect product of r surface groups

admits a classifying space with finite k-skeleton for k > r

2
, then it is virtually the kernel of an

epimorphism from a direct product of surface groups onto a free abelian group of even rank.

1. Introduction

A Kähler group is a group that can be realised as the fundamental group of a closed Kähler

manifold. The problem of which finitely presented groups are Kähler was first addressed by

Serre in the 1950s [35, 26] and has driven a field of very active research since. While numerous

strong constraints have been proved and examples of Kähler groups with a variety of different

properties have been constructed, the question remains wide open. For a general background

on Kähler groups see [1], for a more recent overview see [13].

While a general answer seems out of reach for the moment, it is fruitful to consider Serre’s

problem in the context of more specific classes of groups. For instance, it has been shown

that if the fundamental group of a compact 3-manifold without boundary is Kähler then it

is finite [22] (see also [7] and [29]) and that a Kähler group with non-trivial first L2-Betti

number is commensurable to a surface group (i.e. the fundamental group of a closed Riemann

surface) [25]. Delzant and Py showed that if a Kähler group acts geometrically on a locally

finite CAT(0) cube complex, then it is commensurable to a direct product of finitely many

surface groups and a free abelian group [20].

More generally, a close connection between Kähler groups acting on CAT(0) cube complexes

and subgroups of direct products of surface groups has been observed starting with the work

of Delzant and Gromov on cuts in Kähler groups [19] (see also [34, 20]). This led Delzant

and Gromov to pose the question of which Kähler groups are subgroups of direct products of

surface groups? Following the work of Bridson, Howie, Miller and Short [8, 9], one knows that

this question is intimately related to the question of finding Kähler groups which are not of

finiteness type Fr for some r, i.e. do not admit a classifying space with finite r-skeleton: any

2010 Mathematics Subject Classification. 32J27, 20F65 (32Q15, 20J05).

Key words and phrases. Kähler groups, Compact Kähler manifolds, Surface groups, Branched covers, Ho-

mological finiteness properties.

1

http://arxiv.org/abs/1701.01163v4


2

subgroup of a direct product of k surface groups which is Fk is virtually a direct product of

surface groups and finitely generated free groups.

The first examples of Kähler subgroups of direct products of surface groups which are of type

Fr−1 but not Fr (r ≥ 3) were constructed by Dimca, Papadima and Suciu [21]. Their class of

examples has since been extended by Biswas, Mj and Pancholi [6] and by the author [31]. All of

these examples arise as kernels of surjective homomorphisms of the form π1(Sg1)×⋯×π1(Sgr) →
Z2 where r ≥ 3 and Sgi is a closed Riemann surface of genus gi ≥ 2, 1 ≤ i ≤ r. Recently, examples

of Kähler groups that are of type Fr−1 but not of type Fr, and which are not commensurable

to any subgroup of a direct product of surface groups have been constructed by Bridson and

the author [11].

We want to recall two key notions when studying subgroups of direct products of surface

groups: A subgroup H ≤ G1 × ⋅ ⋅ ⋅ × Gr of a direct product of r groups Gi is called full if

all intersections Gi ∩ H ∶= (1 × ⋅ ⋅ ⋅ × 1 ×Gi × 1 × ⋅ ⋅ ⋅ × 1) ∩ H are non-trivial, and subdirect if

pi(H) = Gi for all 1 ≤ i ≤ r, with pi ∶ G1 × ⋅ ⋅ ⋅ ×Gr → Gi the projection. Their significance stems

from the fact that every finitely presented subgroup of a direct product of surface groups with

trivial center admits a universal embedding in a direct product of finitely many free groups

and surface groups with full subdirect image [10, Theorem C].

This paper consists of three parts. In the first part (Section 2) we develop a new construction

method for Kähler groups. The groups obtained from this method arise as fundamental groups

of fibres of holomorphic maps onto higher-dimensional complex tori. In the second and third

part we address Delzant and Gromov’s question. In the second part (Sections 3 – 5) we apply

our construction method to provide Kähler subgroups of direct products of surface groups

that are not commensurable with any of the previous examples. These arise as kernels of

a surjective homomorphism onto Z2k and are irreducible, i.e. do not decompose as direct

product of two nontrivial groups (even virtually). The examples constructed in this work

significantly extend the range of irreducible full subdirect Kähler subgroups of direct products

of surface groups: all previous examples of such Kähler subgroups of a product of r surface

groups are either virtually a product of surface groups and a free abelian group, or of type

Fr−1, but not of type Fr. Here we produce irreducible examples of type Fk and not of type

Fk+1 for all 2 ≤ k ≤ r−1, hence covering the full range of possible finiteness properties [8, 9]. In

the third part (Sections 6 – 9) we give new constraints on Kähler subgroups of direct products

of surface groups. In particular, we show that if a full subdirect product of r surface group

is Kähler of type Fk with k > r
2
then it is virtually the kernel of an epimorphism from the

product of surface groups onto a free abelian group of even rank.

One says that a surjective holomorphic map h ∶ X → Y between compact complex manifolds

has isolated singularities if the critical locus of h intersects each fibre (preimage of a point) in

a discrete subset. The key result in our construction method is Theorem 2.7, a special case of

which is:

Theorem 1.1. Let X be a compact complex manifold of dimension n + k and let Y be a

complex torus of dimension k. Let h ∶X → Y be a surjective holomorphic map with connected

smooth generic fibre H. Assume that there is a filtration

{0} ⊂ Y 0
⊂ Y 1

⊂ ⋯ ⊂ Y k−1
⊂ Y k

= Y

of Y by complex subtori Y l of dimension l such that the projections

hl = πl ○ h ∶ X → Y /Y k−l =∶ Yl

have isolated singularities, where πl ∶ Y → Yl is the holomorphic quotient homomorphism.
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If n = dimCH ≥ 2, then the map h induces a short exact sequence

1→ π1(H) → π1(X) → π1(Y ) = Z2k → 1.

Furthermore, we obtain that πi(X,H) = 0 for 2 ≤ i ≤ dimCH.

Theorem 1.1 and Theorem 2.7 are generalisations of [21, Theorem C] and [11, Theorem

2.2]. We expect that our methods can be applied to construct interesting new classes of

Kähler groups. Indeed we provide a first application in this work, by constructing new classes

of Kähler subgroups of direct products of surface groups.

Notation. Throughout this article S = Sg will always denote a closed Riemann surface of

genus g ≥ 2 and Γ = Γg = π1(Sg) its fundamental group.

Theorem 1.2. Let r ≥ 3, r − 2 ≥ k ≥ 1 and g1, . . . , gr ≥ 2. Then there are an elliptic curve E,

closed Riemann surfaces Si of genus gi and a surjective holomorphic map

h ∶ S1 × ⋅ ⋅ ⋅ × Sr → E×k

satisfying the following properties:

(1) the smooth generic fibre H of h is connected and Kähler (in fact projective);

(2) the inclusion H ↪ S1 × ⋅ ⋅ ⋅ × Sr induces an embedding π1(H) ≤ π1(S1) × ⋅ ⋅ ⋅ × π1(Sr) as
an irreducible full subdirect product with π1(H) = ker(h∗);

(3) π1(H) is of type Fr−k but not of type Fr−k+1;
(4) there is no (r − k + 1)-dimensional smooth complex subvariety ι ∶ X ↪ R1 × ⋅ ⋅ ⋅ ×Rr of

a direct product of r Riemann surfaces Ri with ι∗(π1(X)) ≅ π1(H).

In particular, there is a Kähler subgroup of Γ1 × ⋅ ⋅ ⋅ × Γr which is an irreducible full subdirect

product of type Fm but not of type Fm+1, for every r − 1 ≥m ≥ 2.

Here we use the notation E×k = E × ⋅ ⋅ ⋅ ×E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

for the Cartesian product of k copies of E. The

coabelian subgroups of direct products of surface groups form an important subclass of the

class of all subgroups of direct products of surface groups. Indeed, in the case of three factors

any finitely presented full subdirect subgroup of D = π1(S1) × π1(S2) × π1(S3) is virtually

coabelian, i.e. contains the derived subgroup [D0,D0] of some D0 ≤ D of finite index; with

more factors any full subdirect subgroup is virtually conilpotent [10]. We will give a more

detailed discussion of subgroups of direct products of surface groups in Section 5.

Theorem 1.2 shows that there are indeed Kähler groups covering the full range of possible

finiteness properties of irreducible full subdirect products of surface groups. We will see that a

modification of the construction used to prove Theorem 1.2 provides a second class of examples

(see Theorem 4.1). This class will show that the in particular part of Theorem 1.2 can also

be proved by considering only holomorphic maps to a product of two elliptic curves. The

reduction in dimension of the complex torus will mean that these different examples do not

satisfy Theorem 1.2 (4). This shows that there is no direct correlation between the finiteness

properties of a Kähler subgroup G ≤ π1(S1) × ⋅ ⋅ ⋅ × π1(Sr) and the maximal dimension of a

complex submanifold X ⊂ S1×⋅ ⋅ ⋅×Sr such that the inclusion map has image G on fundamental

groups.

Conversely, we address the question of finding constraints on Kähler subgroups of direct

products of surface groups, or, more generally, on Kähler groups that admit homomorphisms

to direct products of surface groups.
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Definition 1.3. For a Kähler group G we call a subgroup H ≤ G holomorphically coabelian if

there is a compact Kähler manifold X with G = π1(X) and a complex torus T such that H is

the kernel of an epimorphism φ = h∗ ∶ π1(X) → π1(T ) = Z2l for h ∶X → T a holomorphic map.

We say that H ≤ G is virtually holomorphically coabelian if there are finite index subgroups

H0 ≤H and G0 ≤ G such that H0 ≤ G0 is holomorphically coabelian.

Remark 1.4. Note that every holomorphically coabelian subgroup H ≤ G = π1(X) is coa-

belian of even rank, that is, the kernel of an epimorphism from G to a free abelian group of

even rank. We will make use of this observation at several points in this work without further

reference.

We will show that under certain assumptions the image of a Kähler group under a homo-

morphism to a direct product of surface groups is virtually holomorphically coabelian.

Theorem 1.5. Let G = π1(X) with X compact Kähler and let φ ∶ G → G be a surjective

homomorphism onto a subgroup G ≤ Γ1 × ⋅ ⋅ ⋅ ×Γr. Assume that φ has finitely generated kernel

and that G is full and of type Fm for m ≥ 2.

Then, after reordering factors, there is s ≥ 0 such that the projection pi1,...,ik(G) ≤ Γgi1 ×

⋅ ⋅ ⋅ × Γgik is virtually holomorphically coabelian, for all k < 2m and all 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ s.

Furthermore, the center Z(G) = G ∩ (Γgs+1 × ⋅ ⋅ ⋅ × Γgr) ≤ ps+1,...,r(G) ≅ Zr−s is a finite index

subgroup.

Combining Theorem 1.5 with a study of the first Betti number of coabelian subdirect

products of groups in Section 8, allows us to show that there are non-Kähler subgroups of

direct products of surface groups with interesting properties.

Corollary 1.6. Let G = ker(ψ) for ψ ∶ Γg1 × ⋅ ⋅ ⋅ × Γgr → Z2l+1 an epimorphism. Then ker(ψ)
is not Kähler.

Corollary 1.7. For r ≥ 6 and g1, . . . , gr ≥ 2 there is a non-Kähler full subdirect product

G ≤ Γg1 × ⋅ ⋅ ⋅ × Γgr with even first Betti number.

Structure: This work is structured as follows: In Section 2 we prove Theorem 2.7, which

implies Theorem 1.1. In Sections 3 and 4 we construct large new classes of Kähler subgroups

of direct products of surface groups, which we use to prove Thereom 1.2. In Section 5 we

show that these examples are irreducible and derive their precise finiteness properties. In

Section 6 we study homomorphisms from Kähler groups to direct products of surface groups

and prove Theorem 1.5 and Corollary 1.6. In Section 7 we study the first Betti number of

coabelian subgroups of direct products of groups and prove Corollary 1.7. We apply the results

of Section 8 to obtain additional constraints on homomorphisms from Kähler groups to direct

products of surface groups. In Section 9 we consider the universal homomorphism from a

Kähler group to a direct product of Riemann orbisurfaces and we explain why our constraints

apply to it.
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2. A new construction method

Let X and Y be compact complex manifolds and let f ∶ X → Y be a surjective holomorphic

map. Recall that since X and Y are compact a sufficient condition for the map f to have

isolated singularities is that the set of singular points of f intersects every fibre of f in a finite

set [32, (2.7) & (2.8)]. Having isolated singularities yields strong restrictions on the topology

of the fibres near the singularities. We will only make indirect use of these restrictions here,

by applying Theorem 2.1. For background on isolated singularities see [32].

Before we proceed we fix some notation: For a set M and subsets A,B ⊂M we will denote

by A ∖B the set theoretic difference of A and B. If M = T n is an abelian group then we will

denote by A −B = {a − b ∣ a ∈ A,b ∈ B} the group theoretic difference of A and B with respect

to the additive group structure. We will be careful to distinguish − from set theoretic ∖.

In this section we generalise the following result of Dimca, Papadima and Suciu to maps

onto higher-dimensional tori by proving Theorem 1.1.

Theorem 2.1 ([21, Theorem C] ). Let X be a compact complex manifold and let Y be a

closed Riemann surface of genus at least one. Let f ∶X → Y be a surjective holomorphic map

with isolated singularities and connected fibres. Let f̂ ∶ X̂ → Ỹ be the pull-back of f under the

universal cover p ∶ Ỹ → Y and let H be the smooth generic fibre of f̂ (and therefore of f).

Then the following hold:

(1) πi(X̂,H) = 0 for i ≤ dimCH;

(2) if dimCX ≥ 3, then 1→ π1(H)→ π1(X) f∗→ π1(Y )→ 1 is exact.

Note that in fact we will prove the more general Theorem 2.7 from which Theorem 1.1 follows

immediately. These results can be seen as Lefschetz type results, since they say that in low

dimensions the homotopy groups of the subvariety H ⊂ X̂ of complex dimension n ≥ 2 coincide

with the homotopy groups of X̂. The most classical Lefschetz type theorem is the Lefschetz

Hyperplane Theorem (see [24] for a detailed introduction to Lefschetz type theorems).

2.1. Fibrelong isolated singularities. To prove Theorem 2.7 we make use of a generalisa-

tion of Theorem 2.1 which relaxes the conditions on the singularities of h.

Definition 2.2. Let X, Y be compact complex manifolds. We say that a surjective map

h ∶X → Y has fibrelong isolated singularities if it factors as

X
g

//

h

  
❅
❅
❅
❅
❅
❅
❅
❅

Z

f
��

Y

where Z is a compact complex manifold, g is a holomorphic submersion with connected fibres

(and thus defines a locally trivial fibration), and f is holomorphic with isolated singularities.

We denote by F a fibre of g.

For holomorphic maps with connected fibrelong isolated singularities, Bridson and the au-

thor proved

Theorem 2.3 ([11, Theorem 2.2]). Let Y be a closed Riemann surface of positive genus and

let X be a compact Kähler manifold. Let h ∶ X → Y be a surjective holomorphic map with

connected generic (smooth) fibre H.

If h has fibrelong isolated singularities, g and f are as in Definition 2.2, and f has connected

fibres of complex dimension m ≥ 2, then the sequence

1→ π1(H)→ π1(X) h∗→ π1(Y )→ 1
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is exact.

We will also need the following proposition.

Proposition 2.4 ([11, Proposition 2.3]). Under the assumptions of Theorem 2.3, if the map

π2(Z) → π1(F ) associated to the fibration g ∶ X → Z is trivial, then the long exact sequence

induced by the fibration F ↪H → H reduces to a short exact sequence

1→ π1(F )→ π1(H)→ π1(H)→ 1.

If, in addition, the fibre F is aspherical, then πi(H) ≅ πi(H) ≅ πiX for 2 ≤ i ≤m − 1.

Note that the hypothesis on π2(Z) → π1(F ) is automatically satisfied if π1(F ) does not

contain a non-trivial normal abelian subgroup. This is the case, for example, if F is a direct

product of hyperbolic surfaces.

2.2. Restrictions on h ∶X → Y for higher-dimensional tori. LetX be a compact complex

manifold and let Y be a complex torus of dimension k. Let h ∶ X → Y be a surjective

holomorphic map. Assume that there is a filtration

{0} ⊂ Y 0
⊂ Y 1

⊂ ⋯ ⊂ Y k−1
⊂ Y k

= Y

of Y by complex subtori Y l of dimension l, 0 ≤ l ≤ k. We denote Yl ∶= Y /Y k−l the quotient

torus for 0 ≤ l ≤ k. Let πl ∶ Y → Yl be the canonical holomorphic projection.

Remark 2.5. Note that if Y is an abelian variety the existence of such a filtration implies

that Y is isogeneous to a direct product of elliptic curves by Poincaré’s Reducibility Theorem

(for instance [5, Theorem 5.5]). This is, however, false in general for non-abelian varieties,

even for extensions of elliptic curves by elliptic curves [33, Section 3], [5, Section 1.6].

Assume that the maps hl = πl ○ h ∶ X → Yl have connected fibres and fibrelong isolated

singularities. By definition, there are compact complex manifolds Zl such that the hl factor

as

X
gl

//

hl   
❅
❅
❅
❅
❅
❅
❅
❅

Zl

fl
��

Yl,

with gl a holomorphic submersion with connected fibres, and fl surjective holomorphic with

isolated singularities and connected fibres. Assume further that the smooth fibre Fl of gl is

aspherical. We denote by H l the connected smooth generic fibre of hl and by Hl the connected

smooth generic fibre of fl.

Let x ∈ Y be a generic point and let xl = πl(x) be its image in Yl for 1 ≤ l ≤ k. Note

that πk ∶ Y → Yk is the identity map, thus identifying Y with Yk and x with xk. Since the

πl ∶ Y → Yl are surjective, the xl ∈ Yl are also generic points. Since the singular values of hl
are contained in a proper subvariety of Yl for 1 ≤ l ≤ k, it follows that xl ∈ Yl is a regular value

for 1 ≤ l ≤ k.

By definition, the smooth generic fibres H l = h
−1
l (xl) of hl form a nested sequence

H =Hk ⊂Hk−1 ⊂ ⋯ ⊂H0 =X.

Denote by El = xl+Y
k+1−l/Y k−l

⊂ Yl the translate of the quotient group Y
k+1−l/Y k−l passing

through xl.

Lemma 2.6. Assume that for every l the map hl has connected fibres and fibrelong isolated

singularities. Then the restriction maps hl∣Hl−1
∶ H l−1 → El are also surjective holomorphic

with fibrelong isolated singularities and connected smooth generic fibre H l−1.
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Proof. Denote by πl−1,l ∶ Yl → Yl−1 the canonical projection and observe that hl−1 = πl−1,l ○ hl.

By definition H l−1 = h
−1
l−1(xl−1) = h−1l (π−1l−1,l(xl−1)) = h−1l (El), implying that hl∣Hl−1

is surjective

holomorphic with connected smooth generic fibre H l.

The factorization hl = fl ○ gl induces a factorization

H l−1

gl∣Hl−1
//

hl∣Hl−1 $$❏
❏❏

❏❏
❏❏

❏❏
❏

gl(H l−1)
fl ∣gl(Hl−1)

��

El.

(2.1)

Note that gl(H l−1) = f−1l (El) = f−1l (π−1l−1,l(xl−1)). By genericity, xl−1 is a regular value of

πl−1,l ○ fl ∶ Zl → Yl−1, implying that gl(H l−1) is a smooth complex manifold. Using that

hl = fl ○ gl has fibrelong isolated singularities, it is now easy to check that the same holds for

hl∣H l−1
with respect to the factorization (2.1). �

2.3. The Main Theorem. We can now state and prove the Main Theorem of this section.

Theorem 2.7. Assume that h ∶X → Y has all the properties described in Paragraph 2.2, that

the induced map π2(H l−1)→ π1(Fl) is trivial for 1 ≤ l ≤ k, and that n ∶=min1≤l≤kdimCHl ≥ 2.

Then the map h induces short exact sequences

1Ð→ π1(H)Ð→ π1(H l) h∣Hl,∗Ð→ π1(xk + Y k−l) ≅ Z2(k−l) Ð→ 1

and πi(H l) ≅ πi(X) for 2 ≤ i ≤ n − 1 and 0 ≤ l ≤ k.

Note that Theorem 1.1 is the special case of Theorem 2.7 with Zl = X and gl = idX for

1 ≤ l ≤ k.

We emphasize the following important observation, which we will apply in Section 4.

Addendum 2.8. In fact we will see that the proof and conclusions of Theorem 2.7 remain

correct when we replace the assumptions in Paragraph 2.2 by the weaker assumption that there

is a point xk ∈ Y such that

● xl = πl(x) is a regular value of hl for 1 ≤ l ≤ k;

● the corestrictions of the maps hl to El = xl +Y
k−l+1/Y k−l have fibrelong isolated singu-

larities;

● and, in the corresponding factorization hl∣H l−1
= fl ○ gl, the maps fl have connected

smooth generic fibres Hl and the maps gl have aspherical fibres Fl.

The generic choice of x in Paragraph 2.2 and Lemma 2.6 show that all of these conditions are

satisfied under the assumptions of Theorem 2.7.

Proof of Theorem 2.7. The proof is by induction on l starting with l = k and decreasing to

l = 0, The induction step will be based on applying Theorem 2.3 and Proposition 2.4.

Since Hl is connected and dimCHl ≥ n ≥ 2, Theorem 2.3, Proposition 2.4 and Lemma 2.6

imply that the restrictions hl∣Hl−1
induce short exact sequences

1→ π1(H l)→ π1(H l−1) hl∗→ π1 (El) = Z2 → 1 (2.2)

and that πi(H l−1) ≅ πi(H l) for 2 ≤ i ≤ dimHl −1, where 1 ≤ l ≤ k. In particular, we obtain that

πi(H l−1) ≅ πi(H l) for 2 ≤ i ≤ n − 1.
Hence, we are left with proving that the short exact sequences in (2.2) induce short exact

sequences

1Ð→ π1(H)Ð→ π1(H l) h∣Hl,∗Ð→ π1(xk + Y k−l) ≅ Z2(k−l) Ð→ 1, (2.3)
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for 0 ≤ l ≤ k. The case l = k is trivial.

Now assume that the sequence (2.3) is exact for l = l0 with 0 < l0 ≤ k and consider the

commutative diagram of topological spaces

H
� � // H l0−1 = h

−1 (xk + Y k−l0+1) h
// // xk + Y

k−l0+1

H
� � //

=

OO

H l0 = h
−1 (xk + Y k−l0) h

// //

?�

OO

xk + Y
k−l0 .

?�

OO

It induces a commutative diagram of fundamental groups

1 // π1(H) � � // π1(H l0−1) h∗
// // π1(xk + Y k−l0+1) = Z2(k−l0+1) // 1

1 // π1(H) � � //

=

OO

π1(H l0) h∗
// //

?�

OO

π1(xk + Y k−l0) = Z2(k−l0)
?�

OO

// 1,

(2.4)

where injectivity of the vertical map in the middle follows from (2.2). Note that the bottom

row of (2.4) is exact by induction hypothesis. We will now deduce that the top row is also

exact.

Exactness at π1(H) follows from injectivity of π1(H l0)↪ π1(H l0−1).
For exactness at π1(xk + Y k−l0+1) observe that, by the Ehresmann Fibration Theorem, the

fibrationH l0−1 → xk+Y
k−l0+1 restricts to a locally trivial fibrationH

∗
l0−1 → (xk+Y k−l0+1)∗ with

connected fibre H over the complement (xk +Y k−l0+1)∗ of the subvariety of critical values of h

in xk+Y
k−l0+1. Hence, the induced map π1(H∗l0−1)→ π1(xk+Y k−l0+1)∗ on fundamental groups

is surjective. Since the complements H l0−1 ∖H
∗
l0−1 and (xk + Y k−l0+1) ∖ (xk + Y k−l0+1)∗ are

contained in complex analytic subvarieties of complex codimension at least one, the induced

map π1(H l0−1)→ π1(xk + Y k−l0+1) is surjective.
The induction step is thus completed by the following result:

Lemma 2.9. The top horizontal sequence in Diagram (2.4) is exact at π1(H l0−1).
Proof. It is clear that π1(H) ≤ ker (π1(H l0−1)→ π1(xk + Y k−l0+1)). Hence, the only thing that

we need to prove is that π1(H) contains ker (π1(H l0−1)→ π1(xk + Y k−l0+1)) .
Let g ∈ ker (π1(H l0−1) h∗→ π1(xk + Y k−l0+1)). Then

g ∈ ker(π1(H l0−1) hl0∗→ π1 (El0)) ,
since the map hl0∗ factors through h∗ ∶ π1(H l0−1)→ π1(xk + Y k−l0+1).

By exactness of (2.2) for l = l0, this implies that there is g̃ ∈ π1(H l0) with ιl0∗(g̃) = g, where
ιl0 ∶ H l0 ↪H l0−1 is the inclusion map. It follows from commutativity of the diagram of groups

(2.4) and injectivity of the vertical maps that g̃ ∈ ker(π1(H l0)→ π1(xk + Y k−l0)).
The induction assumption now implies that g̃ ∈ Im(π1(H) → π1(H l0)). Hence, g ∈ π1(H),

completing the proof of the lemma. �

It follows that the Sequence (2.3) is a short exact sequence for 0 ≤ l ≤ k, thus completing

the proof. �

3. A class of higher dimensional examples

In this section we will construct a general class of examples of Kähler subgroups of direct

products of surface groups arising as kernels of homomorphisms onto Z2k for any k ≥ 1.
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Let E = C/Λ be an elliptic curve, let r ≥ 3 and let

αi ∶ Si → E

be branched holomorphic coverings by closed Riemann surfaces Si of genus ≥ 2 for 1 ≤ i ≤ r.

Our groups will be the fundamental groups of the fibres of surjective holomorphic maps

from the direct product S1 × ⋯ × Sr onto the k-fold direct product E×k of E with itself. For

vectors w1,⋯wn ∈ Z
k we will use the notation (w1 ∣ ⋯ ∣ wn) to denote the k × n-matrix with

columns wi and wi,j to denote the j-th entry of wi.

For n ≥ 1 we consider the Z-module E×n = Cn/Λn. The Z-module homomorphisms

Hom(E×n1 ,E×n2) are precisely the C-linear maps B ∶ Cn1 → Cn2 with B(Λn1) ≤ Λn2 . In

particular, we have Mn2,n1
(Z) ≤ Hom (E×n1 ,E×n2) for Mn2,n1

(Z) = Zn2×n1 the set of n2 × n1-

matrices with coefficients in Z, and Gl(n,Z) ≤ End(E×n) if n = n1 = n2.
We say that a set of vectors C = {v1,⋯, vr} ⊂ Zk has property

(P) if there is 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ r such that {vi1 , . . . , vik} is a Z-basis for Zk and any choice

of k vectors in C is linearly independent; and

(P’) if C has property (P), and in addition ij = j and {v1, . . . vk} is the standard basis for

Zk.

For any set C = {v1,⋯, vr} ⊂ Zk and B = (v1 ∣ ⋯ ∣ vr) we can define the holomorphic map

h = B ○ (α1,⋯, αr) = r

∑
i=1

vi ⋅ αi ∶ S1 ×⋯× Sr → E×k.

We will be interested in maps h for which the set C has property (P). Note that, after

reordering factors and adjusting by a biholomorphic automorphism of E×k, say A ∈ GL(k,Z),
we may in fact assume that C has property (P’) if it has property (P). The following observation

shows that such maps exist.

Remark 3.1. Note that for k ≥ 1, the Z-module Zk is not a finite union of Z-submodules of

rank ≤ (k−1). Thus, for every r ≥ k we can inductively construct a subset C = {v1,⋯, vr} ⊂ Zk
which satisfies property (P’). In particular, we can always complete a set {v1, . . . , vm} ⊂ Zk

with property (P’) for m ≤ r to a set {v1, . . . , vr} with property (P’).

The main result of this section is:

Theorem 3.2. Let 1 ≤ k ≤ r− 2. Assume that C satisfies property (P’), and that α1,⋯, αk are

surjective on fundamental groups.

Then h satisfies the hypotheses of Theorem 2.7, and H has the following properties:

(1) H is an (r − k)-dimensional Kähler (projective) submanifold of a direct product of r

Riemann surfaces;

(2) the inclusion H ↪ S1 × ⋅ ⋅ ⋅ × Sr induces an embedding π1(H) ≤ π1(S1) ×⋯ × π1(Sr) as
an irreducible full subgroup with π1(H) = ker(h∗);

(3) π1(H) is of finiteness type Fr−k, but not of type Fr−k+1;

(4) there is no (r − k + 1)-dimensional smooth projective subvariety X
ι
↪ R1 × ⋅ ⋅ ⋅ ×Rr of a

direct product of r Riemann surfaces Ri with ι∗(π1(X)) = π1(H).
Moreover, πj(H) = 0 for 2 ≤ j ≤ r − k − 1.

The rest of this section will be dedicated to the proof of this result. In particular, we will

assume from now that C and h satisfy the assumptions of Theorem 3.2. We consider the

filtration Y l
= E×l × {0} of E×k where πl ∶ E

×k → Yl = Y
k/Y k−l

= {0} × E×l is the projection

onto the last l coordinates and denote hl = πl ○ h, for 0 ≤ l ≤ k.

Due to the assumptions on C the map hl factors as hl = fl ○ gl for 1 ≤ l ≤ k with

fl = πl ○ (vk−l+1 ∣ ⋯ ∣ vr) ○ (αk−l+1,⋯, αr) ∶ Sk−l+1 ×⋯× Sr → Yl = {0} ×E×l
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and

gl ∶ S1 ×⋯ × Sr → Sk−l+1 ×⋯× Sr

the canonical projection with fibre Fl ∶= S1×⋯×Sk−l a product of closed hyperbolic surfaces (It

follows from the fact that v1,⋯, vk ∈ Z
k is a standard basis of Zk that hl = fl ○ gl for 1 ≤ l ≤ k).

We will first check that h satisfies all hypotheses of Theorem 2.7. The following is a natural

and straight-forward generalization of [31, Lemma 2.1].

Lemma 3.3. Let X be a connected compact complex manifold, E an elliptic curve and f ∶

X → E a surjective holomorphic map. If there is a subgroup A = Z2
≤ π1(X) such that

f∗(A) ≤ π1(E) is a finite index subgroup and f∗(π1(X)) = π1(E), then f has connected and

non multiple fibres.

Proof. Since f is proper, by Stein factorisation and [15, p. 104], there is a closed Riemann

orbisurface Sg,m, such that f factors as

X
h1

//

f
!!
❈
❈
❈
❈
❈
❈
❈
❈
❈

Sg,m

h2
��

E,

where h1 is holomorphic with connected and non multiple fibres and h2 is holomorphic and

finite-to-one; for the definition of a closed Riemann orbisurface refer to Section 6. In particular,

h2 induces a (possibly ramified) covering map between the underlying Riemann surface Sg of

Sg,m and E.

By assumption, the restriction f∗∣A is injective. Thus, h1,∗(A) ≤ πorb1
(Sg,m) defines a Z2-

subgroup of πorb
1
(Sg,m). It follows that Sg = Sg,m is an elliptic curve and h2 ∶ Sg,m → E is an

unramified cover. Surjectivity of f∗ ∶ π
orb
1
(Sg,m)→ π1(E) implies that Sg,m = E. Hence, f has

connected and non multiple fibres. �

Lemma 3.4. Under the assumptions of Theorem 3.2, the maps h, hl, fl and gl, 1 ≤ l ≤ k,

have connected fibres.

Proof. It suffices to consider the maps fl, as the maps gl clearly have connected fibres and the

connectedness of the fibres of the maps hl then follows from the identity hl = fl ○ gl.

Choose a generic point x = xk ∈ E
×k
= Y k as in Section 2.2, let Hl = f

−1
l (xl), H l = h

−1
l (xl)

be the corresponding fibres, and denote El ∶= xl +Y
k−l+1/Y k−l. The proof is by induction on l.

First consider l = 1. Then we have

f1 = π1 ○ (vk ∣ . . . ∣ vr) ○ (αk, . . . , αr) ∶ Sk × ⋅ ⋅ ⋅ × Sr → Y1 = {0} ×E.
In particular, we have f1 = ∑rj=k vk,j ⋅ αj . By assumption on C, r − k + 1 ≥ 2, and we have

vk,k = 1 and vk,j ≠ 0 for j ≥ k. Since αk ∶ Sk → E is surjective on fundamental groups, the same

holds for f1. Furthermore, the restriction f1∣Sj
defines a branched covering of E for k ≤ j ≤ r.

Hence, f1,∗(π1(Sj)) ≤ π1({0} × E) is a finite index subgroup for k ≤ j ≤ r. It follows that f1
satisfies all conditions of Lemma 3.3 and therefore has connected fibres.

Let now 2 ≤ l ≤ k. By choice of xk, the corestriction

fl∣f−1
l
(El)
∶ f−1l (El)→ El = xl + Y

k−l+1/Y k−l

has smooth generic fibre Hl. Since by definition πl(vk−l+1) =
⎛⎜⎜⎜⎜⎝

1

0

⋮

0

⎞⎟⎟⎟⎟⎠
∈ {0} ×Zl, we obtain

f−1l (El) = Sk−l+1 × f−1l−1(xl−1) = Sk−l+1 ×Hl−1,



11

with Hl−1 smooth and connected by induction assumption.

Choose a basepoint z0 ∈ Sk−l+1. By assumption on C, the set πl({vk−l+2, . . . , vr}) spans Cl.
Thus, the map

r

∑
j=k−l+2

πl(vj) ⋅ αj ∶ Sk−l+2 × ⋅ ⋅ ⋅ × Sr → Yl = {0} ×E×l
is a surjective holomorphic map. Thus, the same holds for the restriction

fl∣{z0}×Sk−l+2×⋅⋅⋅×Sr
.

It follows that

fl∣{z0}×Hl−1
∶ {z0} ×Hl−1 → El

is a surjective holomorphic map between compact complex manifolds and therefore

fl,∗(π1(Hl−1)) ≤ π1(E)
is a finite index subgroup. On the other hand αk−l+1 is surjective on fundamental groups

by assumption. Hence, fl∣f−1
l
(El)

satisfies the assumptions of Lemma 3.3. Therefore fl has

connected smooth generic fibres, completing the induction. �

We can give a precise description of the set of singular values of fl.

Lemma 3.5. A point (zk−l+1,⋯, zr) ∈ Sk−l+1 ×⋯ × Sr is a critical point of fl if and only if zi
is a critical point of αi for at least r − k + 1 of the zi, where k − l + 1 ≤ i ≤ r.

In particular, the set of critical values Cfl of fl is the union Cfl = ⋃
i∈Il

Bl,i of a finite number

of (l − 1)-dimensional submanifolds Bl,i ⊂ Sk−l+1 × ⋯ × Sr with the property that for every

k − l + 1 ≤ j ≤ r the projection of Bl,i onto Sj is either surjective or has finite image.

Proof. Consider the differential

Dfl = (Dπl(vk−l+1) ⋅ dαk−l+1, . . . ,Dπl(vr) ⋅ dαr) . (3.1)

Note that by definition of πl the vector Dπl(vi) is the vector in Zl consisting of the last l

entries of vi. By property (P’), any k vectors in C form a linearly independent set. Furthermore,

we chose C such that E1 = {v1, . . . , vk} is the standard basis of Zk. This implies that the set

Cl = {Dπl(vk−l+1), . . . ,Dπl(vr)} ⊂ Zl
also has property (P’). In particular, any choice of l vectors in Cl forms a linearly independent

set.

It thus follows from (3.1) that the critical points of fl are precisely the points (zk−l+1,⋯, zr) ∈
Sk−l+1 ×⋯× Sr such that zi is a critical point of αi for at least r − k + 1 of the zi, proving the

first part of the statement. The second part is an immediate consequence of the first part. �

Proposition 3.6. For all l the map hl has fibrelong isolated singularities. More precisely,

the factorisation hl = fl ○ gl satisfies that gl is a locally trivial fibration and fl has isolated

singularities. Furthermore, the dimension of a smooth generic fibre Hl of fl is r − k for

1 ≤ l ≤ k.

Proof. Recall that by definition of fl and gl we have hl = fl ○ gl, and the map gl has fibres

Fl = S1 × ⋅ ⋅ ⋅ × Sk−l a direct product of Riemann surfaces. In particular, it is a locally trivial

fibration with connected fibres.

Lemma 3.5 provides us with an explicit description of the set of critical points of fl. Linear

independence of any l vectors in the set Cl, defined in the proof of Lemma 3.5, implies that

the restriction of fl to any of the Bl,i is locally (and thus globally) finite-to-one. Hence, the

intersection Cfl ∩Hl,y is finite for any fibre Hl,y = f
−1

l (y), y ∈ {0}×E×l. In particular, the map

fl has isolated singularities.
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The assertion that a smooth generic fibre Hl of fl has dimension r− (k− l)− l = r−k follows

immediately from the definition of fl, completing the proof. �

Proof of Theorem 3.2. It follows from Lemma 3.4 and Proposition 3.6 that h satisfies the

hypotheses of Theorem 2.7 for n = r−k. Thus, (2) with the exception of irreducibility and the

moreover part follow (after observing that the image of π1(H) is full, because the restriction

of h∗ to each factor has non-trivial kernel). Finally, (3), (4) and irreducibility follow from

Lemma 5.9 in Section 5. �

Proof of Theorem 1.2. The only part of Theorem 1.2 that is not a direct consequence of

Theorem 3.2 and its proof is that for a suitable choice of the map h the group π1(H) ≤
π1(S1) × ⋅ ⋅ ⋅ × π1(Sr) is a subdirect product. Considering the set C such that {v1, . . . , vk} is a
standard basis of Zk and vk+1 = v1 + ⋅ ⋅ ⋅ + vk we see that the complement C ∖ {vi} of any vector

contains a basis of Zk. Choosing αk+1 such that it induces an epimorphism on fundamental

groups then assures that the restriction of h∗ to π1(S1)×⋅ ⋅ ⋅×π1(Si−1)×1×π1(Si+1)×⋅ ⋅ ⋅×π1(Sr)
is surjective on fundamental groups for 1 ≤ i ≤ r (see proof of Lemma 5.9 for more details on

h∗). It follows that π1(H) is subdirect. �

4. Examples from maps onto a product of two elliptic curves

In the light of Theorem 3.2(3) and (4) one wonders if there is a relation between the

finiteness properties of an irreducible full subdirect Kähler group G ≤ π1(S1) × ⋅ ⋅ ⋅ × π1(Sr)
and the maximal dimension of a smooth embedded subvariety X

ι
↪ R1 × ⋅ ⋅ ⋅ ×Rr of a direct

product of r Riemann surfaces Ri with ι∗(π1(X)) ≅ G. In this section we will show that this

is not the case. More precisely, we will show that for 2 ≤ m ≤ r − 1 and any choice of surface

groups π1(Si) there is a full irreducible Kähler subgroup G ≤ π1(S1)× ⋅ ⋅ ⋅ ×π1(Sr) of finiteness
type Fm but not of type Fm+1 which is the fundamental group of a complex submanifold of

complex codimension two in a direct product S1 × ⋅ ⋅ ⋅ × Sr of Riemann surfaces. We obtain

our examples by combining the ideas of the construction in Section 3 with Addendum 2.8 and

Theorem 2.7.

Note that codimension two is the best we can hope for with our construction. Indeed, if E is

an elliptic curve, let h ∶ S1×⋅ ⋅ ⋅×Sr → E be a holomorphic map and let (z1, . . . , zr) ∈ S1×⋅ ⋅ ⋅×Sr be
a base point. Then, for 2 ≤m ≤ r, the restriction h∣{(z1,...,zm−1)}×Sm×{(zm+1,...,zr)} is either trivial

or surjective and thus the image h∗(1×⋅ ⋅ ⋅ ×1×π1(Sm)×1×⋅ ⋅ ⋅ ×1) ≤ π1(E) is either trivial or a
finite index subgroup. Therefore, if h induces a short exact sequence on fundamental groups,

then ker(h∗) is a product of finitely many surface groups and a group of the form constructed

in [31, Theorem 1.1]. In particular, ker(h∗) is not irreducible unless it is of type Fr−1 and not

of type Fr.

As before, we choose elements v1, . . . , vr ∈ Z
2, as well as ramified covers αi ∶ Si → E of an

elliptic curve E, and define a holomorphic map

h =
r

∑
i=1

vi ⋅ αi ∶ S1 × ⋅ ⋅ ⋅ × Sr → E×2. (4.1)

However, we now vary our choice of the vi’s to obtain examples with the desired properties.

More precisely, for r ≥ 4, m ≥ 1 and r −m ≥ 3, we choose v1, . . . , vm = ( 1

0
), vm+1 = ( 0

1
),

vm+2 = ( 1

1
) and {vm+3, . . . , vr} ⊂ Z2 such that {vi, vj} are linearly independent for m ≤ i <

j ≤ r. For the remainder of this section we denote C ∶= {v1, . . . , vr} and h the holomorphic

map in (4.1) defined by this choice of C.

The main result of this section is:
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Theorem 4.1. Assume that C ⊂ Z2 and h are as defined above and that αm, αm+1 and αm+2
are surjective on fundamental groups.

Then h satisfies the hypotheses of Addendum 2.8 and Theorem 2.7, and H has the following

properties:

(1) H ⊂ S1 × ⋅ ⋅ ⋅ × Sr is a Kähler (projective) subvariety of codimension 2;

(2) the inclusion H ↪ S1 × ⋅ ⋅ ⋅ × Sr induces an embedding π1(H) ≤ π1(S1) ×⋯ × π1(Sr) as
an irreducible full subdirect product with π1(H) = ker(h∗); and

(3) π1(H) is of finiteness type Fr−m−1, but not of type Fr−m.

Moreover, πi(H) = {0} for 2 ≤ i ≤ r −m − 2.

As in Section 3 we denote by πl ∶ E
×2 → {0}×E×l the projection onto the last l factors and

by hl = πl ○ h the composition. The map hl factors as hl = fl ○ gl for 1 ≤ l ≤ 2 with

f2 = (v1 ∣ . . . ∣ vr) ○ (α1, . . . , αr) ∶ S1 × ⋅ ⋅ ⋅ × Sr → E×2,

g2 = S1 × ⋅ ⋅ ⋅ × Sr → S1 × ⋅ ⋅ ⋅ × Sr,

f1 = π1 ○ (vm+1 ∣ . . . ∣ vr) ○ (αm+1, . . . , αr) ∶ Sm+1 × ⋅ ⋅ ⋅ × Sr → {0} ×E,
and

g1 = S1 × ⋅ ⋅ ⋅ × Sr → Sm+1 × ⋅ ⋅ ⋅ × Sr,

where g1 is the canonical projection with fibre F1 = S1×⋅ ⋅ ⋅×Sm a product of closed hyperbolic

surfaces.

The main difference between the proof of Theorem 4.1 and the one of Theorem 3.2 is that

the map f2 does not have isolated singularities. However, by Addendum 2.8 it suffices to show

that the corestriction f2∣f−1
2
(E×{e}) ∶ f

−1
2
(E × {e})→ E × {e} has isolated singularities for e ∈ E

to obtain the consequences of Theorem 2.7. We thus start with two preliminary results that

show that the hl do indeed satisfy the conditions of Addendum 2.8.

Lemma 4.2. Under the assumptions of Theorem 4.1, the maps hi, fi and gi, i = 1,2, have

connected fibres and the fibres of the gi are aspherical.

Proof. Since the maps αm and αm+1 are surjective on fundamental groups, we see that by

choice of C, r and m, the same argument as in the proof of Lemma 3.4 shows connectedness

of fibres. Moreover, the fibres of the gi are direct products of Riemann surfaces and thus

aspherical. �

Lemma 4.3. The map f1 and the corestriction f2∣f−1
2
(E×{e}) ∶ f

−1
2
(E × {e}) → E × {e} have

isolated singularities for all e ∈ E.

Proof. For the map f1 this follows by the same argument as in the proof of Proposition 3.6.

The differential of f2 is

Df2 = (v1 ⋅Dα1 . . . vr ⋅Dαr)
= (( 1

0
) ⋅Dα1⋯( 1

0
) ⋅Dαm vm+1 ⋅Dαm+1 ⋯ vr ⋅Dαr) .

Due to our assumptions on C, a point z = (z1, . . . , zr) ∈ S1 × ⋅ ⋅ ⋅ × Sr is a critical point of f2
if and only if at least one of the following holds:

(1) Dαm+1(zm+1) = ⋅ ⋅ ⋅ =Dαr(zr) = 0;
(2) Dα1(z1) = ⋅ ⋅ ⋅ =Dαm(zm) = 0 and at least r −m− 1 of the Dαi(zi) vanish for i ≥m+ 1.
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The locus of points satisfying (2) is a union of finitely many one-dimensional subvarieties

of S1 × ⋅ ⋅ ⋅ × Sr and it intersects each fibre of f2 in at most finitely many points. Hence, these

singularities are isolated for f2 and thus for f2∣f−1
2
(E×{e}).

Observe that for the points z ∈ f−1
2
(E × {e}) satisfying (1) but not (2), there exists at least

one i with 1 ≤ i ≤ m such that Dαi(zi) ≠ 0. The composition of f2∣{(z1,...,zi−1)}×Si×{(zi+1,...,zr}

with the projection onto the second factor of E×2 is constant. Thus, {(z1, . . . , zi−1)} × Si ×{(zi+1, . . . , zr} ⊂ f−12
(E ×{e}) . In particular, Dαi(zi) ≠ 0 implies that D(f2∣f−1

2
(E×{e}))(z) ≠ 0.

Since E×{e} is one-dimensional, z is not a critical point of the restriction f2∣f−1
2
(E×{e}). Hence,

all critical points of f2∣f−1
2
(E×{e}) satisfy (2).

It follows that f2∣f−1
2
(E×{e}) has isolated singularities. �

Proof of Theorem 4.1. We argue as in Section 2.2 that for a generic point x2 ∈ E
×2 the pro-

jections xi = πi(x2) are regular values of the hi. Thus, Lemmas 4.2 and 4.3 imply that all

conditions of Addendum 2.8 are satisfied. Our conditions on C and the proof of Theorem 2.7

show that (2), with the exception of irreducibility, the moreover part and (1) hold, and that

π1(H) is of type Fr−m−1.
Thus, we only need to prove that π1(H) is irreducible and not of type Fr−m. Observe that

φ = h∗ is defined by the surjective homomorphism

h∗(g1,⋯, gr) = φ(g1,⋯, gr) = r

∑
i=1

vi ⋅ αi(gi) ∈ π1(E×2) = (Z2)2 ≅ Z4

for (g1,⋯, gr) ∈ π1(S1) ×⋯× π1(Sr).
We first prove irreducibility. Assume that there is a finite index subgroup H1×H2 ≤ ker(φ).

Since ker(φ) is a full subdirect product (after possibly passing to finite index subgroups of

the π1(Si)), we obtain that there is a partition of {1, . . . , r} into two sets {i1, . . . , it} and

{it+1, . . . , ir} such that H1 ≤ π1(Si1) × ⋅ ⋅ ⋅ × π1(Sit) and H2 ≤ π1(Sit+1) × ⋅ ⋅ ⋅ × π1(Sir) (because
non-trivial elements of surface groups have cyclic centralizers).

Thus, for every element (xi1 , . . . , xir) ∈H1×H2 ≤ Γi1×⋅ ⋅ ⋅×Γir , we have (xi1 , . . . , xit ,1, . . . ,1) ∈
H1 × 1 ≤ ker(φ) and (1, . . . ,1, xit+1 , . . . , xir) ∈ 1 ×H2 ≤ ker(φ). By our assumptions on C at

least one of {vi1 , . . . , vit} and {vit+1 , . . . , vir} contains a pair of linearly independent vectors,

say {vit+1 , vit+2} are linearly independent.

Let A ≤ Z4
= (Z2)2 be the finite index subgroup with

A = Im (vit+1 ⋅ αit+1,∗ + vit+2 ⋅ αit+2,∗) .
Then for any element xi1 ∈ Λi1 of the finite index subgroup Λi1 ∶= (vi1 ⋅ αi1,∗)−1 (A) ⊴ Γi1
there is (xit+1 , xit+2) ∈ Γit+1 × Γit+2 with (xi1 ,1, . . . ,1, xit+1 , xit+2 ,1, . . . ,1) ∈ ker(φ). Hence,

the intersection ker(φ) ∩ (Γi1 × Γit+1 × Γit+2) projects to a finite index subgroup of Γi1 . Since

H1×H2 ≤ ker(φ) is a finite index subgroup, the same is true for the projection of the intersection

(H1 ×H2)∩(Γi1 × Γit+1 × Γit+2) to Γi1 . Thus,H1×1 contains a finite index subgroup of Γi1 . This

is impossible, because ker(αi1,∗) ≤ Γi1 has infinite index. It follows that ker(φ) is irreducible.
Finally, observe that v1 = ⋅ ⋅ ⋅ = vm = ( 1

0
) implies that the image φ(Γ1×⋅ ⋅ ⋅×Γm) ≅ Z2

≤ Z4
=

Imφ is not a finite index subgroup. Thus, the group kerφ is not of type Fr−m, by Corollary

5.4 below. �

Remark 4.4. Note that one could also apply the converse direction of Theorem 5.2 to obtain

that the groups constructed in Theorem 3.2 and Theorem 4.1 have finiteness type Fr−k (resp.

Fr−m−1). However, the proof we give actually provides the stronger result that in fact classify-

ing spaces for our examples can be constructed from compact Kähler manifolds by attaching

only cells of dimension larger than r − k (resp. r −m − 1).
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Remark 4.5. Theorem 3.2(4) and Theorem 4.1(1) show that the examples obtained from

Theorem 3.2 for k ≥ 3 are not isomorphic to any of the examples obtained from Theorem 4.1.

Remark 4.6. The construction described in this section generalises to epimorphisms to Z2k

for any k ≥ 2. This produces irreducible coabelian Kähler subgroups of a direct product of

r ≥ 3 surface groups of type Fm and not Fm+1 for 2 ≤ m ≤ r − k, which arise as fundamental

groups of a codimension k subvariety of a direct product of Riemann surfaces. For simplicity

of notation, we restricted ourselves to the case k = 2 in our explicit computations.

5. Finiteness properties and irreducibility

In this section we want to determine the precise finiteness properties of our examples and

prove that they are irreducible.

Let H ≤ G = G1 × ⋅ ⋅ ⋅ ×Gr be a subgroup of a direct product of groups G1,⋯,Gr . For every

1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ r denote by pi1,⋯,ik ∶ G→ Gi1 × ⋅ ⋅ ⋅ ×Gik the canonical projection.

We say [10, 30] that the group H virtually surjects onto k-tuples (resp. surjects onto k-tuples,

resp. virtually surjects onto pairs (VSP)) if for every 1 ≤ i1 < ⋯ < ik ≤ r the group pi1,⋯,ik(H)
has finite index in Gi1 × ⋅ ⋅ ⋅ ×Gik (resp. we have equality pi1,⋯,ik(H) = Gi1 × ⋅ ⋅ ⋅ ×Gik , resp. H
virtually surjects onto 2-tuples).

We further say that H is coabelian of rank k if there is an epimorphism φ ∶ G1×⋅ ⋅ ⋅×Gr → Zk

such that H = ker(φ), and that H is virtually coabelian of rank k if there are finite index

subgroups H0 ≤H and Gi,0 ≤ Gi such that H0 ≤ G1,0×⋅ ⋅ ⋅×Gr,0 is coabelian of rank k. It is not

hard to see that the coabelian rank of H is invariant under passing to finite index subgroups.

Remark 5.1. For the remainder of the section we will be considering the finiteness properties

and irreducibility of subgroups of direct products of surface groups. Note that the results

in the literature that we refer to are stated in the more general context of non-abelian limit

groups, which include surface groups and free groups. We want to emphasize at this point that

in fact all results of this section, with the exception of Lemma 5.9, remain true when replacing

surface groups by non-abelian limit groups. The only change to the proofs is in Lemma 5.5,

where we need to replace the fact that centralizers in surface groups are cyclic by the facts

that non-abelian limit groups have trivial center and can not decompose as a direct product

of two non-trivial groups.

For subgroups of direct products of surface groups, a close relation between their finiteness

properties and virtual surjection to k-tuples has been observed (see [10],[27], also [30]). In

fact if a subgroup H ≤ G1 ×⋯×Gr of a direct product of finitely presented groups is subdirect

then H is finitely generated; and if it is VSP then H is itself finitely presented [10, Theorem

A]. The converse is not true in general; it is true though if G1,⋯,Gr are surface groups and

H is full subdirect [10, Theorem D].

More generally, it is conjectured [27] that, for G1,⋯,Gr surface groups (resp. non-abelian

limit groups) and H ≤ G1 ×⋯× ×Gr a full subdirect product, the following are equivalent:

(1) H is of type Fk;

(2) H virtually surjects onto k-tuples.

Kochloukova proved that (1) implies (2) and gave conditions under which (2) implies (1).

Theorem 5.2 (Kochloukova [27, Theorem C]). For r ≥ 1 let Γ1, . . . ,Γr be surface groups, let

H ≤ Γ1 × ⋅ ⋅ ⋅ × Γr be a full subdirect product, and let 2 ≤ k ≤ r. If H is of type Fk then H

virtually surjects onto k-tuples. The converse is true if H is virtually coabelian.

Note that in Kochloukova’s statement of Theorem 5.2 the condition is that H has the

homological finiteness type FPk(Q). By [10, Corollary E] this is however equivalent to type
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Fk for subgroups of direct products of surface groups. In general we only have that Fk implies

FPk(Q) (see for instance [23, Section 8.2]).

We shall need the following auxiliary result which is a consequence of Theorem 5.2.

Lemma 5.3. Let G1,⋯,Gr be groups and Q be a finitely generated abelian group. Let φ ∶ G1×

⋅ ⋅ ⋅ ×Gr → Q be an epimorphism. Assume that the subgroup H = ker(φ) ≤ G1 × ⋅ ⋅ ⋅ ×Gr virtually

surjects onto m-tuples (resp. surjects onto m-tuples), then the group φ(Gi1 ×⋯ ×Gir−m) ≤ Q
is a finite index subgroup of Q (resp. equal to Q) for all 1 ≤ i1 < ⋅ ⋅ ⋅ < ir−m ≤ r.

Proof. Assume that H virtually surjects onto m-tuples. Consider a product Gi1 × ⋅ ⋅ ⋅ ×Gir−m
of r −m factors. We may assume that ij = j.

Let g ∈ Q be an arbitrary element. By surjectivity of φ there exist elements h1 ∈ G1×⋯×Gr−m
and h2 ∈ Gr−m+1 ×⋯×Gr such that g = φ(h1) ⋅φ(h2). Since H virtually surjects onto m-tuples

there is k ≥ 1 such that hk
2
∈ pr−m+1,⋯,r(H). Hence, there is h1 ∈ G1 × ⋯ × Gr−m such that

h1 ⋅ h
k
2
∈ H = ker(φ). In particular it follows that φ(hk

2
) = φ((h1)−1). As a consequence we

obtain that gk = φ(h1)k ⋅ φ(h2)k = φ(h1)k ⋅ φ((h1)−1) ∈ φ(G1 ×⋯×Gr−m).
We proved that the abelian group Q/φ(G1 × ⋯ ×Gr−m) has the property that each of its

elements is torsion. This implies that Q/φ(G1 ×⋯×Gr−m) is finite and thus φ(G1 ×⋯×Gr−m)
is a finite index subgroup of Q.

The second part follows immediately, since we can choose k = 1 in the above proof if H

surjects onto Gr−m+1 × ⋅ ⋅ ⋅ ×Gr. �

Corollary 5.4. Let φ ∶ Γ1×⋯×Γr → Q be an epimorphism, where Γ1,⋯,Γr are surface groups

and Q is a finitely generated abelian group. If ker(φ) is a full subdirect product of type Fm then

the image φ(Γi1 ×⋯× Γir−m) ≤ Q is a finite index subgroup of Q for all 1 ≤ i1 < ⋯ < ir−m ≤ r.

Proof. This is a direct consequence of Lemma 5.3 and Theorem 5.2. �

As another consequence of Theorem 5.2, we obtain:

Lemma 5.5. Let G ≤ Γ1 × ⋅ ⋅ ⋅ ×Γr be a full subdirect product of r surface groups Γi of type Fm
which is virtually a product H1 ×H2. Then, after possibly reordering factors, there is 1 ≤ s ≤ r

such that H1 ≤ Γ1 × ⋅ ⋅ ⋅ × Γs, H2 ≤ Γs+1 × ⋅ ⋅ ⋅ × Γr, and one of the following holds:

(1) H1 is virtually a direct product of s surface groups; or

(2) G virtually surjects onto at least one 2m-tuple.

Proof. Centralizers of non-trivial elements in surface groups are infinite cyclic. Hence, subdi-

rectness of G implies that, after reordering the Γi, there is 1 ≤ s ≤ r such that H1 ≤ Γ1× ⋅ ⋅ ⋅ ×Γs
and H2 ≤ Γs+1 × ⋅ ⋅ ⋅ ×Γr. Theorem 5.2 implies that G and thus H1 ×H2 virtually surjects onto

m-tuples in Γ1 × ⋅ ⋅ ⋅ × Γr.

If either s ≤m or r− s ≤m, say s ≤m, then H1 ×H2 surjects onto a finite index subgroup of

Γ1×⋅ ⋅ ⋅ ×Γs. However, this projection is isomorphic to H1. Thus, H1 is a finite index subgroup

of Γ1 × ⋅ ⋅ ⋅ × Γs and therefore H1 is virtually a direct product of s surface groups. If r − s ≤m,

then a further reordering of factors allows us to exchange the roles of H1 and H2 (and s and

r − s), thus leading to the same conclusion.

Now assume that s, r −m > m. In this case H1 ×H2 virtually surjects onto m-tuples in

Γ1 × ⋅ ⋅ ⋅ × Γs (resp. Γs+1 × ⋅ ⋅ ⋅ × Γr). Factoring the projection onto such an m-tuple through

the projection onto Γ1 × ⋅ ⋅ ⋅ × Γs (resp. Γs+1 × ⋅ ⋅ ⋅ × Γr), we see that H1 ≤ Γ1 × ⋅ ⋅ ⋅ × Γs (resp.

H2 ≤ Γs+1 × ⋅ ⋅ ⋅ × Γr) also virtually surjects onto m-tuples. Thus, H1 ×H2 virtually surjects

onto at least one 2m-tuple and the same holds for G. �
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Remark 5.6. Note that Lemma 5.5 can also be applied to full subgroups G ≤ Γ1 × ⋅ ⋅ ⋅ × Γr,

after replacing the Γi by the projections of G to Γi and G by the quotient G/Z(G) by the

center Z(G), since G/Z(G) and G have the same finiteness type by [4, Proposition 2.7].

We shall also need the following result by Kuckuck.

Proposition 5.7 ([30, Corollary 3.6]). Let G ≤ Γ1 × ⋯ × Γr be a full subdirect product of a

direct product of r surface groups Γi, 1 ≤ i ≤ r. If G virtually surjects onto m tuples for m > r
2

then G is virtually coabelian. In particular, G is virtually coabelian if G is of type Fm.

More precisely, we have that in either case there exist finite index subgroups Σi ≤ Γi, a free

abelian group A and a homomorphism

φ ∶ Σ1 ×⋯×Σr → A

such that ker(φ) ≤ G is a finite index subgroup.

We will require the following consequence of Theorem 5.2 and Proposition 5.7:

Corollary 5.8. Let r ≥ 1 and let G ≤ Γ1×⋯×Γr be a full subdirect product of surface groups Γi,

1 ≤ i ≤ r. Assume that G is of type Fm with m ≥ 0. For k ≥ 0 with m > k
2
and 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ r

the projection pi1,⋯,ik(G) ≤ Γi1 × ⋅ ⋅ ⋅ × Γik is of type Fm.

Proof. By Theorem 5.2 the group G ≤ Γ1×⋯×Γr virtually projects onto m-tuples. Hence, the

projection G ∶= pi1,⋯,ik(G) ≤ Γi1 ×⋯×Γik is full subdirect and virtually surjects onto m-tuples

with m > k
2
. By Proposition 5.7 G is virtually coabelian in Γi1 ×⋯×Γik . Hence, the subgroup

G ≤ Γi1 × ⋯ × Γik is full subdirect, virtually coabelian, and virtually projects onto m-tuples.

The converse direction of Theorem 5.2 then implies that G is of type Fm. �

As a consequence of the results in this section we can determine the precise finiteness

properties and irreducibility of the groups arising from our construction in Theorem 3.2.

Lemma 5.9. Under the assumptions of Theorem 3.2 and with the same notation, let φ = h∗ ∶

π1(S1) ×⋯× π1(Sr)→ π1(E×k) be the induced epimorphism on fundamental groups.

Then ker(φ) ≅ π1(H) is irreducible of type Fr−k and not of type Fr−k+1. Moreover, there

is no subvariety X
ι
↪ R1 × ⋅ ⋅ ⋅ ×Rr of dimension ≥ r − k + 1 in a direct product of r Riemann

surfaces Ri of genus ≥ 2 such that ι∗(π1(X)) ≅ π1(H).
Proof. Since H is compact with πi(H) = {1} for 2 ≤ i ≤ r − k, the group π1(H) admits a

classifying space with finitely many cells in dimension less than or equal to r−k. Thus, π1(H)
is of type Fr−k.

As in the proof of Theorem 4.1 we have

φ(g1,⋯, gr) = r

∑
i=1

vi ⋅ αi(gi) ∈ (π1(E))×k ≅ (Z2)k ≅ Z2k

for (g1,⋯, gr) ∈ π1(S1) ×⋯× π1(Sr).
Since the maps αi are finite sheeted branched coverings, the image αi,∗(π1(Si)) ≤ π1(E) is

a finite index subgroup for 1 ≤ i ≤ r. The assumption that the vi satisfy property (P’) implies

that the image φ(π1(Si1) ×⋯× π1(Sik)) ≤ π1(E×k) of any k factors is a finite index subgroup

of π1(E×k) ≅ Z2k, 1 ≤ i1 < ⋯ < ik ≤ r.

Since we have r ≥ k+2 factors and any k factors map to a finite index subgroup of π1(E×k),
the kernel of

φ0 = φ∣Σ1×⋯×Σr ∶ Σ1 ×⋯×Σr → π1(E×k)
is subdirect, after passing to finite index subgroups Σi ≤ π1(Sγi). Note that the image Im(φ0) ≤
π1(E×k) is a finite index subgroup, thus isomorphic to Z2k, and that ker(φ0) ≤ ker(φ) is a
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finite index subgroup. The intersection Σi ∩ ker(φ0) ⊴ Σi is a non-trivial normal subgroup of

infinite index in Σi, since φ(Σi) ≅ Z2. Thus, ker(φ0) is a full subdirect product of Σ1 ×⋯×Σr.

Since the image of the restriction of φ0 to any factor Σi is isomorphic to Z2, the image of

the restriction of φ to any k − 1 factors Σi1 × ⋯ × Σik−1 (1 ≤ i1 < ⋯ < ik−1) is isomorphic to

Z2(k−1) (by the same argument as for k factors). In particular, φ(Σi1 ×⋯×Σik−1) is not a finite

index subgroup of Im(φ0) ≅ Z2k. By Corollary 5.4, ker(φ0) and therefore its finite extension

ker(φ) ≥ ker(φ0) cannot be of type Fr−k+1.

Assume that there is a finite index subgroup H1 ×H2 ≤ ker(φ) which is a product of two

non-trivial groups H1 and H2. By Lemma 5.5 we may assume that (after reordering factors)

H1 ≤ π1(S1)×⋯×π1(Ss), H2 ≤ π1(Ss+1)×⋯π1(Sr), for some 1 ≤ s ≤ r−1. Assume that H1 (or

H2) is virtually a direct product of surface subgroups Λi ≤ π1(Si), 1 ≤ i ≤ s. In particular, the

Λi must be finite index subgroups of the π1(Si). This contradicts that the restriction of φ to

any finite index subgroup of π1(Si) has infinite image. Hence, by Lemma 5.5, ker(φ) virtually
surjects onto at least one 2(r − k)-tuple. However, the genericity condition (P’) satisfied by C

implies that ker(φ) does not virtually surject onto any (r − k + 1)-tuple (the argument is the

same as in the proof of Lemma 5.3). In particular, ker(φ) is irreducible.
Finally, assume that there are closed Riemann surfaces Ri and a smooth subvariety X

ι
↪

R1 × ⋅ ⋅ ⋅ × Rr of dimension ≥ r − k + 1 with ι∗(π1(X)) ≅ π1(H). The group ι∗(π1(X)) ≤
π1(R1) × ⋅ ⋅ ⋅ × π1(Rr) is full, since by assumption it must contain Zr as a subgroup. After

replacing the Ri by finite covers, we may also assume that ι∗(π1(X)) is a subdirect product.

Thus, [10, Theorem C(3)] implies that, after possibly reordering factors, the isomorphism

ι∗(π1(X)) ≅ π1(H) is induced by an isomorphism ν ∶ π1(R1)×⋅ ⋅ ⋅×π1(Rr)→ π1(S1)×⋅ ⋅ ⋅×π1(Sr)
with ν(π1(Ri)) = π1(Si). In particular, we deduce, from the above observation that π1(H)
does not virtually surject onto any (r − k + 1)-tuple, that the same holds for ι∗(π1(X)).

On the other hand the fact that X has dimension at least r−k+1 implies that the projection

of X to at least one (r − k + 1)-tuple of direct factors must be surjective. After possibly

reordering factors we may assume that ι(X) surjects onto R1 × ⋅ ⋅ ⋅ × Rr−k+1. It follows that

p1,...,r−k+1(ι∗(π1(X))) ≤ π1(R1) × ⋅ ⋅ ⋅ × π1(Rr−k+1) is a finite index subgroup, a contradiction.

This completes the proof. �

6. Restrictions on coabelian Kähler groups

All non-trivial examples of Kähler subgroups of direct products of surface groups con-

structed so far, are obtained as kernels of maps from a direct product of surface groups to

a free abelian group. Hence, a natural special case of Delzant and Gromov’s question is the

following question.

Question 1. Let S1, . . . , Sr be closed hyperbolic Riemann surfaces, let k ∈ Z and let φ ∶

π1(S1) × ⋅ ⋅ ⋅ × π1(Sr)→ Zk be an epimorphism. When is ker(φ) a Kähler group?

We will show that for ker(φ) to be Kähler, k must be even. This will follow from a study

of the more general question of finding constraints on homomorphisms

ψ ∶ G→ π1(S1) × ⋅ ⋅ ⋅ × π1(Sk)
from a Kähler group G to a direct product of surface groups.

For a compact Kähler manifold X we denote by aX ∶ X → A(X) the Albanese map to its

Albanese variety A(X). By the universal property of the Albanese variety, every holomorphic

map f ∶X → Y between compact Kähler manifolds X and Y induces a commutative diagram
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of holomorphic maps

X
f

//

aX
��

Y

aY
��

A(X) falb
// A(Y ).

The following result shows that this commutative diagram of holomorphic maps provides

strong restrictions on coabelian subgroups of Kähler groups which are the image of a holo-

morphic map.

Lemma 6.1. Let X,Y be compact Kähler manifolds and let f ∶X → Y be a holomorphic map.

Then the images, kernels and cokernels of the induced maps

f∗ ∶ H1(π1(X),Z) = (π1(X))ab →H1(π1(Y ),Z) = (π1(Y ))ab,
f∗ ∶H1(π1(X),Z) → H1(π1(Y ),Z)

have even rank.

If, moreover, f∗(π1(X)) ≤ π1(Y ) is the kernel of an epimorphism ψ ∶ π1(Y ) → Zl then

f∗(π1(X)) is holomorphically coabelian. More precisely, f∗(π1(X)) is the kernel of the homo-

morphism h∗ ∶ π1(Y )→ π1(B) = Zl induced by the holomorphic map h ∶ Y → A(Y )/falb(AX) =∶
B.

Proof. The first part is an easy consequence of the observation that

falb,∗ = f∗,tf ∶H1(A(X),Z) =H1(X,Z)tf →H1(X,Z)tf =H1(A(Y ),Z), (6.1)

where for a finitely generated abelian group A we denote by Atf = A/ {torsion} its maximal

torsion-free quotient (see also [2, Lemma 2.1]).

Now assume that G ∶= f∗(π1(X)) = ker(ψ) for an epimorphism ψ ∶ π1(Y ) → Zl. Then we

obtain an exact sequence

π1(X) f∗→ π1(Y ) ψ→ Zl → 1.

By right exactness of abelianization, this induces an exact sequence

(π1(X))ab f∗→ (π1(Y ))ab → Zl → 1.

Since Zl is torsion-free, this sequence induces an exact sequence on maximal torsion-free

quotients which forms the lower row of the following commutative diagram

π1(X) f∗
//

��

π1(Y ) ψ
//

��

Zl //

=

��

1

(π1(X))ab,tf f∗,tf
// (π1(Y ))ab,tf // Zl // 1.

(6.2)

It follows that Zl is the cokernel of f∗,tf = falb,∗.

On the other hand we obtain a commutative diagram of holomorphic maps

X
f

//

aX
��

Y

aY
��

h

((❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

A(X) falb
// A(Y ) // A(Y )/falb(A(X)) = B,
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denoting by h the induced diagonal map. Combining this with (6.1) and (6.2), we deduce that

there is a commutative diagram

π1(X) f∗
//

��

π1(Y ) //

�� &&▲
▲▲

▲▲
▲▲

▲▲
▲

Zl //

��

1

π1(A(X)) falb,∗
// π1(A(Y )) //

88rrrrrrrrrrrr

π1 (B) ,

(6.3)

where all vertical and diagonal maps are epimorphisms.

For dimension reasons it follows from the short exact sequences in (6.2) and the definition

of B that l = 2 ⋅ dimC(B). We deduce that the vertical homomorphism Zl → π1(B) in (6.3) is

an isomorphism and thus the result follows. �

Lemma 6.1 allows us to strengthen our results with respect to a previous version of this work;

it is based on a suggestion by the referee, for which we are very grateful. Before proceeding

to state and prove the main result of this section, we want to recall some results from the

literature that we shall need.

For g ≥ 0 and m = (m1, . . . ,ms), we denote by Sg,m the closed orbisurface of genus g with

s ≥ 0 cone points D = {p1, . . . , ps} of multiplicities mi ≥ 2. Its orbifold fundamental group is

the group

Γg,m ∶= π
orb
1 (Sg,m) = π1(Sg ∖D)/ ⟨⟨γmi

i ∣ i = 1, . . . , s⟩⟩
for γi, 1 ≤ i ≤ r, a loop bounding a small disc around pi. We say that Sg,m is equipped with a

complex structure if the underlying surface Sg is equipped with a complex structure; in this

case we call Sg,m a Riemann orbisurface. For a complex manifold X, a map f ∶ X → Sg,m
is called holomorphic if for each pi ∈ D there is a disc neighbourhood Ui in which f factors

through a holomorphic map to the mi-fold branched cover of Ui in pi.

Throughout the remainder of this paper all orbisurfaces will be assumed to be closed and

hyperbolic. We will use this assumption without further mention and we will refer to the

orbifold fundamental group of a closed hyperbolic orbisurface as an orbisurface group.

Theorem 6.2. Let X be a compact Kähler manifold, let G = π1(X), and let φ ∶ G→ πorb
1
(Sg,m)

be an epimorphism. Then φ factors through an epimorphism ψ ∶ G → πorb
1
(Sh,n) with finitely

generated kernel, which is induced by a holomorphic map X → Sh,n.

Moreover, φ has finitely generated kernel if and only if φ is induced by a holomorphic map

f ∶ X → Sg,m with connected fibres (for a suitable complex structure on Sg,m), such that the

critical values of f are the cone points pi and the multiplicity of the singular fibre over pi is

mi.

The surface group case of the first part of Theorem 6.2 is due to Siu [36] and Beauville [3].

This version of Theorem 6.2 is proved in [18]. A first explicit version of this result can be

found in [14]; however, it was probably known much earlier (see discussion in [28]). We will

require the following additional observation (see for instance [1, Remark 2.13]).

Remark 6.3. Let G be a Kähler group and let φ ∶ G→ Fr be an epimorphism onto a finitely

generated free group. Then φ factors through an epimorphism ψ ∶ G → Γg,m with finitely

generated kernel.

Theorem 6.4. Let Γg,m be an orbisurface group, let A be any group and let G ≤ Γg,m × A.

Assume that G is finitely presented and that the intersection Γg,m ∩G is infinite. Then G∩A

is finitely generated.
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Proof. If Γg,m is a non-abelian surface group this is [12, Theorem 4.6]. The general case follows

after passing to a finite index subgroup G0 = G ∩ (Γh ×A) for Γh ≤ Γg,m a finite index surface

subgroup, since G0 ∩A = G ∩A. �

Lemma 6.5. Let G be a Kähler group and let φ ∶ G→ G ≤ Γg1,m1
× ⋅ ⋅ ⋅ × Γgr ,mr

be an epimor-

phism such that the projections pi ○ φ ∶ G → Γgi,mi
to factors have finitely generated kernel.

Then the projection pi(G) ≤ Γgi,mi
is either virtually cyclic or of finite index.

Proof. After possibly passing to finite index subgroups of G, G and the Γgi,mi
, we may assume

that G ≤ Γg1 × ⋅ ⋅ ⋅ × Γgr is a subgroup of a direct product of surface groups. Assume that

pi(G) ≤ Γgi is not cyclic. Since pi(G) is finitely generated, it is either finitely generated free

or a surface group. Surface subgroups of Γgi are precisely the finite index subgroups. Thus,

assume that Fr = pi(G) is a non-abelian finitely generated free group.

Remark 6.3 implies that there is a commutative diagram

G
ψ
//

pi○φ $$
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍

πorb
1
(Sh,m)
θ
��

Fr = pi(G),
where ψ is an epimorphism with finitely generated kernel for some orbisurface Sh,m.

Since pi ○ φ has finitely generated kernel the same is true for the induced epimorphism θ.

However, the only infinite index finitely generated normal subgroup of a closed hyperbolic

orbisurface is the trivial group. This implies that pi(G) ≅ πorb1
(Sh,m), a contradiction. �

As a direct consequence of Lemma 6.5, we obtain:

Corollary 6.6. Every Kähler subgroup G of a direct product of finitely many orbisurface

groups is of the form G ≅ A ×G0 with A virtually abelian and G0 a full subdirect product of

finitely many orbisurface groups.

Proposition 6.7. Let G = π1(X) and assume that there is a homomorphism φ ∶ G→ Γg1,m1
×

⋅ ⋅ ⋅ × Γgr,mr
that is induced by a holomorphic map f ∶ X → Sg1,m1

× ⋅ ⋅ ⋅ × Sgr,mr
. Assume

further that the image G = φ(G) ≤ Γg1,m1
× ⋅ ⋅ ⋅ × Γgr,mr

is full and of type Fk for k > r
2
. Then

G ≤ Γg1,m1
× ⋅ ⋅ ⋅ × Γgr,mr

is virtually holomorphically coabelian.

Proof. Since the composition X → Sgi,mi
of f with the projection to Sgi,mi

is holomorphic,

it is either surjective or constant. The latter can not happen, since we assumed that G ≤

Γg1,m1
× ⋅ ⋅ ⋅ × Γgr,mr

is full. Hence, the projection pi(G) ≤ Γgi,mi
is a finite index subgroup. It

follows that G ≤ p1(G) × ⋅ ⋅ ⋅ × pr(G) is a full subdirect product of orbisurface groups.

By passing to finite index surface subgroups of the pi(G) and then applying Proposition

5.7, we deduce that there exist l ≥ 0, finite index surface subgroups Γhi ≤ pi(G) and G0 ≤ G,

and an epimorphism ψ ∶ Γh1 × ⋅ ⋅ ⋅ × Γhr → Zl such that G0 = ker(ψ).
Let q ∶ X0 → X be the holomorphic cover corresponding to G0 and let qi ∶ Shi → Sgi,mi

be

the holomorphic covers corresponding to Γhi . Since (f ○ q)∗(π1(X0)) ≤ Γh1 × ⋅ ⋅ ⋅ ×Γhr , there is

a lift g ∶X0 → Sh1 × ⋅ ⋅ ⋅ × Shr making the diagram

Sh1 × ⋅ ⋅ ⋅ × Shr

(q1,...,qr)

��

X0

g
77♦♦♦♦♦♦♦♦♦♦♦♦♦

f○q
// Sg1,m1

× ⋅ ⋅ ⋅ × Sgr,mr

commutative. Considering local charts we see that the map g is holomorphic. It follows from

Lemma 6.1 that G0 ≤ Γh1 × ⋅ ⋅ ⋅ × Γhr is holomorphically coabelian. �
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Theorem 1.5 will be a consequence of the following more general result for orbisurfaces and

its proof.

Theorem 6.8. Let G = π1(X) with X compact Kähler and let φ ∶ G → G be a surjective

homomorphisms onto a subgroup G ≤ Γg1,m1
×⋅ ⋅ ⋅×Γgr ,mr

. Assume that φ has finitely generated

kernel and that G is full and of type Fm for m ≥ 2.

Then, after reordering factors, there is s ≥ 0, such that, for any k < 2m and any 1 ≤ i1 <

⋅ ⋅ ⋅ < ik ≤ s, the projection pi1,...,ik(G) ≤ Γgi1 ,mi1
× ⋅ ⋅ ⋅ × Γgik ,mik

is virtually holomorphically

coabelian. Furthermore, G∩ (Γgs+1,ms+1
× ⋅ ⋅ ⋅ × Γgr,mr

) ≤ ps+1,...,r(G) is a virtually abelian finite

index subgroup.

Proof. By Lemma 6.5, the projections pi(G) ≤ Γgi,mi
are either virtually cyclic or of finite

index. Thus, after reordering factors, we may assume that there is s ≥ 0 such that pi(G) ≤
Γgi,mi

is a finite index subgroup for 1 ≤ i ≤ s and virtually cyclic for s + 1 ≤ i ≤ r. We may

further assume that pi(G) = Γgi,mi
for 1 ≤ i ≤ s, since finite index subgroups of orbisurface

groups are orbisurface groups. Hence, we obtain a short exact sequence

1→ N → G→ p1,...,s(G)→ 1, (6.4)

where p1,...,s(G) ≤ Γg1,m1
× ⋅ ⋅ ⋅ ×Γgs,ms

is a full subdirect product and N = G∩ (Γgs+1,ms+1
× ⋅ ⋅ ⋅ ×

Γgr,mr
) is virtually abelian. In particular, N is of type F∞ and thus the group p1,...,s(G) is of

type Fm [4, Proposition 2.7].

For 1 ≤ i ≤ s, the kernel of the projection pi ○ φ ∶ G→ Γgi,mi
is the extension

1→ ker(φ)→ ker(pi ○ φ)→ G ∩ (Γg1,m1
× ⋅ ⋅ ⋅ × Γgi−1,mi−1

× 1 × Γgi+1,mi+1
× ⋅ ⋅ ⋅ × Γgr,mr

)→ 1.

By Theorem 6.4, the group

G ∩ (Γg1,m1
× ⋅ ⋅ ⋅ × Γgi−1,mi−1

× 1 × Γgi+1,mi+1
× ⋅ ⋅ ⋅ × Γgr,mr

)
is finitely generated, since G is finitely presented and {1} ≠ Γgi,mi

∩G ⊴ Γgi,mi
is normal and

thus infinite. Extensions of finitely generated groups by finitely generated groups are finitely

generated. Thus, the group ker(pi ○ φ) is finitely generated.

Theorem 6.2 implies that the epimorphism pi ○ φ ∶ G → Γgi,mi
is induced by a holomorphic

map fi ∶ X → Sgi,mi
. It follows that the map

f = (f1, . . . , fs) ∶ X → Sg1,m1
× ⋅ ⋅ ⋅ × Sgs,ms

is a holomorphic map inducing the compostion p1,...,s ○ φ on fundamental groups.

For any k ≥ 0 and 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ s, the projection Sg1,m1
× ⋅ ⋅ ⋅ × Sgs,ms

→ Sgi1 ,mi1
× ⋅ ⋅ ⋅ ×

Sgik ,mik
is holomorphic and hence so is its composition fi1,...,ik ∶ X → Sgi1 ,mi1

× ⋅ ⋅ ⋅ × Sgik ,mik

with f . Thus, the homomorphism pi1,...,ik ○ φ ∶ G→ pi1,...,ik(G) is induced by the holomorphic

map fi1,...,ik .

If k < 2m, Corollary 5.8 implies that pi1,...,ik(G) ≤ Γgi1 ,mi1
× ⋅ ⋅ ⋅ × Γgik ,mik

has a finite index

subgroup of type Fm and thus is itself of type Fm. Hence, Proposition 6.7 implies that

pi1,...,ik(G) is virtually holomorphically coabelian. �

We can now complete the proof of Theorem 1.5.

Proof of Theorem 1.5. The only part that does not follow immediately from Theorem 6.8 is

the furthermore part. Since G ≤ Γg1 × ⋅ ⋅ ⋅ × Γgr is full and all subgroups of surface groups

are either free or surface groups, the virtually cyclic intersections G ∩ Γgi are all isomorphic

to Z. Thus, the group N in the proof of Theorem 6.8 is isomorphic to Zr−s. Since the
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centralizer of a non-trivial element in a surface group is cyclic we deduce that Z(G) = N =
G ∩ (Γgs+1 × ⋅ ⋅ ⋅ × Γgr) ≤ ps+1,...,r(G) ≅ Zr−s is a finite index subgroup. �

Remark 6.9. Observe that the proof of Theorem 6.8 shows more generally that if φ ∶ G →
G ≤ Γg1,m1

× ⋅ ⋅ ⋅ × Γgr,mr
is a homomorphism from G = π1(X), with X compact Kähler, onto

a finitely presented full subdirect product G ≤ Γg1,m1
× ⋅ ⋅ ⋅ × Γgr,mr

, then there exists a unique

complex structure on the product Sg1,m1
× ⋅ ⋅ ⋅ ×Sgr,mr

of topological orbifolds such that φ = f∗
for a holomorphic map f ∶ X → Sg1,m1

× ⋅ ⋅ ⋅ × Sgr,mr
.

Note further that the proof of Theorem 6.8 also shows that the same conclusion holds if we

replace the assumption that G is of type Fm by the assumption that G ≤ Γg1,m1
× ⋅ ⋅ ⋅ × Γgr,mr

is virtually coabelian and finitely presented.

Corollary 6.10. Let G = π1(X) with X compact Kähler and let φ ∶ G → G be a surjective

homomorphisms onto a subgroup G ≤ Γg1,m1
×⋅ ⋅ ⋅×Γgr ,mr

. Assume that φ has finitely generated

kernel and that G is virtually coabelian and finitely presented.

Then, for any 0 ≤ k ≤ r and any 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ r, the projection pi1,...,ik(G) ≤ Γgi1 ,mi1
×

⋅ ⋅ ⋅ × Γgik ,mik
is virtually holomorphically coabelian.

Proof. After passing to a finite index subgroups, we may assume that G is coabelian in a

direct product of orbisurface groups. Since G is finitely presented, it is also a full subdirect

product. Now the same arguments as in the proof of Theorem 6.8 show that φ is induced by

a holomorphic map. The fact that projections of coabelian subgroups of direct products of

groups are themselves virtually coabelian completes the proof. �

Corollary 1.6 is a direct consequence of Corollary 6.10. More generally, we have

Corollary 6.11. With the same notation as in Corollary 1.6, for G = ker(ψ) coabelian of odd

rank and G1 any finitely presented group, H = G ×G1 is not Kähler.

Proof. This is an immediate consequence of Corollary 6.10 applied to the projection H →
G. �

Remark 6.12. Note that in particular Corollary 6.11 applies to the direct product of any

two full subdirect products of orbisurface groups which are coabelian of odd rank. Thus, we

can use Corollary 6.11 to construct full subdirect products of orbisurface groups which are

coabelian of even rank, but not Kähler.

This provides us with large classes of examples of non-Kähler subgroups of direct products

of surface groups. As we will see in Section 7, many of the examples in Corollary 1.6 share

the property that they are non-Kähler for the reason that their first Betti number is odd.

We want to emphasize that a particularly strong version of Corollary 1.6 holds in the case

of a direct product of three orbisurface groups.

Theorem 6.13. Let X be a compact Kähler manifold and let G = π1(X). Let ψ ∶ G →
Γg1,m1

×Γg2,m2
×Γg3,m3

be a homomorphism such that the projection pi○ψ has finitely generated

kernel for 1 ≤ i ≤ r and the image G ∶= Im(ψ) of ψ is finitely presented. Then one of the

following holds:

(1) G = πorb
1
(R) for R a closed hyperbolic orbisurface;

(2) G is virtually Zk for 0 ≤ k ≤ 3

(3) G is virtually Zk × Γh for h ≥ 2 and k ∈ {1,2};
(4) G is virtually a direct product Zk × Γh1 × Γh2 for h1, h2 ≥ 2 and k ∈ {0,1};
(5) G is virtually holomorphically coabelian.
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Proof. Since centralizers in surface groups are cyclic, every free abelian subgroup of G has

rank ≤ 3. We will distinguish cases, making repeated use of Lemma 6.5. If G has virtually

cyclic projection to all factors, then G is virtually abelian and thus (2) holds. Hence, we may

assume that G is not virtually abelian. Assume first that G is not a full subgroup. After

projecting away from factors which have trivial intersection with G, we either obtain that G

is a subgroup of a hyperbolic orbisurface group in which case (1) holds, or a full subgroup

of a direct product of two hyperbolic orbisurface groups. If the latter holds then either G is

subdirect in a direct product Γγ1,l1 × Γγ2,l2 and the VSP property implies that (4) holds, or

(3) holds with k = 1. If G is full and not subdirect in any Γγ1,l1 × Γγ2,l2 × Γγ3,l3 then we must

also have (3) with k = 2 or (4). Else G must be full subdirect (after passing to finite index

subgroups of the Γgi,mi
) and it follows from finite presentability, Proposition 6.7, and Remark

6.9 that (5) holds. �

Remark 6.14. Note that the assumption that pi ○ψ has finitely generated kernel in Theorem

6.13 can be replaced by the assumption that pi ○ ψ has either virtually cyclic image or is

induced by a holomorphic map for 1 ≤ i ≤ r, as we can then apply Proposition 6.7 directly to

obtain the conclusion.

7. Short exact sequences on abelianizations

Note that for a holomorphic map f ∶ X → Y , Lemma 6.1 does not provide us with the

parity of the first Betti number b1(f∗(π1(X))) of the group f∗(π1(X)), but only with the

rank of the abelian subgroup f∗,ab((π1(X))ab) ≤ (π1(Y ))ab. This is, because in general the

map f∗,ab ∶ (π1(X))ab → (π1(Y ))ab is not injective.
We will now show that in the case of coabelian subgroups of direct products of surface

groups with strong enough finiteness properties we can actually obtain (virtual) injectivity

and as a consequence we obtain that in fact b1(f∗(π1(X))) is even. This will follow from more

general group theoretic considerations.

We will make use of the following easy and well-known fact

Lemma 7.1. Let G and H be groups and let φ ∶ G→H be an injective homomorphism. Then

the following are equivalent:

(1) the induced map φab ∶ Gab →Hab on abelianisations is injective;

(2) φ([G,G]) = φ(G) ∩ [H,H].
It allows us to prove

Proposition 7.2. Let k ≥ 1, r ≥ 2 be integers, let G1,⋯,Gr be finitely generated groups and

let ψ ∶ G = G1 × ⋯ ×Gr → Zk be an epimorphism. Assume further that (at least) one of the

following two conditions is satisfied:

(1) k = 1 and ker(ψ) is subdirect in G1 ×⋯×Gr;

(2) the restriction of ψ to Gi surjects onto Zk for at least three different i ∈ {1,⋯, r}.
Then the map ψ induces a short exact sequence

1→ (ker(ψ))ab → (G1 ×⋯×Gr)ab → Zk → 1 (7.1)

on abelianisations and in particular the following equality of first Betti numbers holds:

b1(G) = k + b1(ker(ψ)). (7.2)
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Proof. We will first give a proof under the assumption that Condition (2) is satisfied and will

then explain how to modify our proof if Condition (1) is satisfied. Assume that Condition (2)

holds and that (without loss of generality) the restriction of ψ to each of the first three factors

is surjective.

It is clear that exactness of (7.1) implies the equality (7.2) of Betti numbers. Hence, we

only need to prove that the sequence (7.1) is exact. Abelianisation is a right exact functor

from the category of groups to the category of abelian groups. Hence, it suffices to prove that

the inclusion ι ∶ ker(ψ) → G induces an injection ιab ∶ (ker(ψ))ab → Gab of abelian groups.

Since the image of ψ is abelian, it follows that [G,G] ≤ ker(ψ). We want to show that

[G,G] ≤ [ker(ψ),ker(ψ)]. Since [G,G] = [G1,G1] × ⋯ × [Gr,Gr] it suffices to show that

[Gi,Gi] ≤ [ker(ψ),ker(ψ)] for 1 ≤ i ≤ r.
We may assume that i > 2, since for i = 1,2 the same argument works after exchanging the

roles of Gi and G3. Fix x, y ∈ Gi. Since the restrictions ψ∣Gj
∶ Gj → Zk are surjective for

j = 1,2 we can choose elements g1 ∈ G1 and g2 ∈ G2 with ψ(g1) = −ψ(x) and ψ(g2) = −ψ(y).
Then the elements u ∶= g−1

1
⋅ x ∈ G and v ∶= g−1

2
⋅ y ∈ G are in ker(ψ). Since [Gi,Gj] = {1} for

i ≠ j it follows that [u, v] = [x, y]. Thus, [Gi,Gi] ≤ [ker(ψ),ker(ψ)] for 1 ≤ i ≤ r. Consequently[G,G] ≤ [ker(ψ),ker(ψ)] and therefore by Lemma 7.1 the map ιab is injective.

Now assume that Condition (1) holds. As before it suffices to prove that [Gi,Gi] ≤[ker(ψ),ker(ψ)] for 1 ≤ i ≤ r. To simplify notation assume that i = 1. If we can prove that

there is some element g0 ∈ G2 ×⋯×Gr such that for any x ∈ G1 there is an integer k ∈ Z with

x ⋅ gk
0
∈ ker(ψ) then the same argument as before will show that [G1,G1] ≤ [ker(ψ),ker(ψ)].

Observe that we have the following equality of sets

Q ∶= {ψ(g1,1) ∣ (g1, g) ∈ ker(ψ) ≤ G1 × (G2 ×⋯×Gr)}
= {ψ(1, g) ∣ (g1, g) ∈ ker(ψ)} ≤ Z.

The set Q is a subgroup of Z, since it is the image of the group ker(ψ) under the homo-

morphism ψ ○ ι1 ○π1 ∶ G→ Z, where π1 ∶ G→ G1 is the canonical projection and ι1 ∶ G1 → G is

the canonical inclusion. Let g0 ∈ G2 × ⋯ ×Gr be an element such that ψ(1, g0) = l0 generates

Q.

Since ker(ψ) is subdirect, for any g1, g2 ∈ G1 there are elements g1, g2 ∈ G2×⋯×Gr such that

(g1, g1), (g2, g2) ∈ ker(ψ) and therefore ψ(g1,1) = k1 ⋅ l0 ⋅ ψ(g2,1) = k2 ⋅ l0 ∈ Q. It follows that

(g1, (g0)−k1), (g2, (g0)−k2) ∈ ker(ψ). Thus [g1, g2] ∈ [ker(ψ),ker(ψ)], completing the proof. �

As a direct consequence, we obtain a constraint on Kähler groups

Corollary 7.3. Let r, k ≥ 1 be integers, let G1,⋯,Gr be finitely generated groups and let

ψ ∶ G1 × ⋯ × Gr → Zk be an epimorphism satisfying one of the Conditions (1) or (2) in

Theorem 7.2. If b1(G1) +⋯+ b1(Gr) − k is odd then ker(ψ) is not Kähler.

Proof. By Proposition 7.2 the first Betti number of ker(ψ) is equal to b1(G1)+⋯+ b1(Gr)− k
and therefore odd. Hence, ker(ψ) can not be Kähler. �

Corollary 7.3 provides us with an elementary proof of Corollary 1.6 in two special cases.

Corollary 7.4. Let ψ ∶ Γg1,m1
× ⋅ ⋅ ⋅ ×Γgr,mr

→ Z be a non-trivial homomorphism with subdirect

kernel. Then ker(ψ) has odd first Betti number and in particular is not Kähler.

Corollary 7.5. Let r ≥ 3 and let ψ ∶ Γg1,m1
× ⋅ ⋅ ⋅ × Γgr,mr

→ Z2k+1 be a homomorphism such

that ψ∣Γgi,mi
is an epimorphism for i = 1,2,3. Then ker(ψ) has odd first Betti number and in

particular is not Kähler.

As a consequence, we obtain:
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Corollary 7.6. Let H = ker(ψ1) × ker(ψ2) be the product of the kernels of two epimorphisms

ψ1, ψ2 satisfying the conditions in Corollary 7.5. Then H is a full subdirect product of orbisur-

face groups, which is coabelian of even rank, has even first Betti number and is not Kähler.

Proof. The group H is not Kähler by Remark 6.12. All other properties follow from Corollary

7.5. �

Proof of Corollary 1.7. This is an easy consequence of Corollary 7.6. �

8. Finiteness properties and first Betti numbers

We will now show how the results of Section 7 can be used to prove that under the assump-

tion of strong enough finiteness properties the projections in Theorem 1.5 have a finite index

subgroup with even first Betti number.

Proposition 8.1. Let G = π1(X) and let φ ∶ G→ Γg1,m1
×⋅ ⋅ ⋅×Γgr,mr

be a homomorphism that

is induced by a holomorphic map f ∶ X → Sg1,m1
× ⋅ ⋅ ⋅ × Sgr,mr

with full image G = im (φ) of
type Fm for m ≥ 2r

3
. Then G is virtually holomorphically coabelian and there is a finite index

subgroup G0 ≤ G with even first Betti number.

Proof. It follows from Proposition 6.7 that G is virtually holomorphically coabelian. Let

Γhi ≤ Γgi,mi
be finite index surface subgroups, 1 ≤ i ≤ r and φ ∶ Γh1 × ⋅ ⋅ ⋅ × Γhr → Z2N

=∶ Q be

an epimorphism such that ker(φ) ≤ G is a finite index subgroup.

By Lemma 5.3, the group φ (pi1,...,ir−m(G)) ≤ Q is a finite index subgroup for all 1 ≤ i1 <

⋅ ⋅ ⋅ < ir−m ≤ r. Since m ≥ 2r
3
, there is a partition of {1, . . . , r} into three disjoint subsets

B1 = {j0 = 1, . . . , j1}, B2 = {j1 + 1, . . . , j2} and B3 = {j2 + 1, . . . , j3 = r} such that ∣Bi∣ ≥ r −m.

Thus, Ai ∶= φ (pBi
(G)) ≤ Q is a finite index subgroup.

Define Pi = Γhji−1 × ⋅ ⋅ ⋅ × Γhji . Consider the finite index subgroup A = A1 ∩ A2 ∩ A3 ≤ Z2l

and define finite index subgrups Pi,0 = φ
−1(A) ∩ Pi ≤ Pi. Consider the restriction φ ∶ P =

P1,0 ×P2,0 ×P3,0 → A of φ to the finite index subgroup P ≤ Γh1 × ⋅ ⋅ ⋅ × Γhr .

Since φ(Pi) = Ai ≥ A, we have φ(Pi,0) = A. Thus, the projection of G0 = ker(φ) onto the Pi,0
is surjective and we can therefore apply Proposition 7.2. Hence, the induced homomorphism

(ker(φ))
ab
= (G0)ab → Pab is injective and

b1(G0) = b1(P ) − 2N = b1(P1,0) + b1(P2,0) + b1(P3,0) − 2N.
However, b1(Pi,0) is even, because Pi,0 is a finite index subgroup of the Kähler group Pi for

i = 1,2,3. Thus, we obtain

b1(G0) ≡ 0 mod 2

for the finite index subgroup G0 ≤ G. �

Corollary 8.2. With the notation of Theorem 6.8, assume that the group G has finiteness

type Fm. Then the projections onto k ≤ 3m
2

factors with indices 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ s have a

finite index subgroup with even first Betti number.

If, moreover, G = G is a subgroup of a direct product of surface groups and s ≤ 3m
2
, then

r − s is even.

Proof. The first part is an immediate consequence of Proposition 8.1 and the fact that the

homomorphism in Theorem 6.8 is virtually induced by a holomorphic map.

For the second part, observe that this puts us in the setting of Theorem 1.5. Thus, after

possibly passing to the finite index subgroup G ∩ (Γg1 × ⋅ ⋅ ⋅ × Γgs × Z(G)) ≤ G, we may assume

that G is a direct product G ≅ G0 ×Z
r−s with G0 ≤ Γg1 × ⋅ ⋅ ⋅ ×Γgs full subdirect. Since s ≤ 3m

2
,
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G0 has a finite index subgroup G1 ≤G0 with even first Betti number. The group G1 ×Z
r−s is

Kähler, so it also has even first Betti number. Therefore, r − s is even. �

9. Universal homomorphism

Delzant [17, Theorem 2] and Corlette–Simpson [16, Proposition 2.8] proved that for a Kähler

group G there is a finite number of Riemann orbisurfaces Sgi,mi
such that every epimorphism

from G onto a surface group factors through one of the πorb
1
(Sgi,mi

). It is not difficult to see

that their result can be stated as follows:

Theorem 9.1. Let X be a compact Kähler manifold and let G = π1(X) be its fundamental

group. Then there is r ≥ 0 and closed hyperbolic Riemann orbisurfaces Sgi,mi
of genus gi ≥ 2

together with surjective holomorphic maps fi ∶X → Sgi,mi
with connected fibres, 1 ≤ i ≤ r, such

that

(1) the induced homomorphisms fi,∗ ∶ G→ πorb
1
(Sgi,mi

) are surjective with finitely generated

kernel for 1 ≤ i ≤ r;

(2) the image of φ ∶= (f1,∗, . . . , fr,∗) ∶ G→ πorb
1
(Sg1,m1

) × ⋅ ⋅ ⋅ × πorb
1
(Sgr,mr

) is full subdirect;

and

(3) every epimorphism ψ ∶ G→ πorb
1
(Sh,n) onto a fundamental group of a closed hyperbolic

Riemann orbisurface of genus h ≥ 2 and multiplicities n factors through φ.

For a Kähler group G we will call the homomorphism φ in Theorem 9.1 the universal

homomorphism (to a product of hyperbolic Riemann orbisurfaces), as it satisfies a universal

property.

Lemma 9.2. Let X be a compact Kähler manifold, let G = π1(X) be its fundamental group

and let φ ∶ G → πorb
1
(Sg1,m1

) × ⋅ ⋅ ⋅ × πorb
1
(Sgr,mr

) be the universal homomorphism to a product

of orbisurface groups defined in Theorem 9.1.

Then φ is induced by a holomorphic map f ∶ X → Sg1,m1
× ⋅ ⋅ ⋅ × Sgr,mr

and the image

G ∶= φ(G) ≤ πorb
1
(Sg1,m1

) × ⋅ ⋅ ⋅ × πorb
1
(Sgr ,mr

) of φ is a finitely presented full subdirect product.

Proof. To simplify notation denote by Γi ∶= π
orb
1
(Sgi,mi

) the orbifold fundamental group of

Sgi,mi
for 1 ≤ i ≤ r. The only part that is not immediate from Theorem 9.1 is that the image

G of the restriction φ∣G is finitely presented.

To see this, recall that by Theorem 9.1 the composition pi ○ φ ∶ G → πorb
1
(Sgi,mi

) of φ with

the projection pi onto Γi has finitely generated kernel. Hence, the kernel

Ni ∶= ker(pi∣G) =G ∩ (Γ1 × ⋅ ⋅ ⋅ × Γi−1 × 1 × Γi+1 × ⋅ ⋅ ⋅ × Γr) ⊴ G
of the surjective restriction pi∣G ∶ G→ Γi is a finitely generated normal subgroup of G.

Finite presentability is trivial for r = 1, so assume that r ≥ 2. Let 1 ≤ i < j ≤ r. The image of

the projection pi,j(G) ≤ Γi × Γj is a full subdirect product and pi,j(Ni) ⊴ pi,j(G) is a normal

finitely generated subgroup. Since by definition pi,j(Ni) ≤ 1×Γj, it follows from subdirectness

of pi,j(G) that in fact pi,j(Ni) ⊴ 1 × Γj is a normal finitely generated subgroup.

The group pi,j(Ni) is either trivial or has finite index in Γj , since all finitely generated

normal subgroups of Γj = π
orb
1
(Sgj ,mj

) are either trivial or of finite index. The former is not

possible, because G is full. It follows that pi,j(Ni) ⊴ 1 × Γj is a finite index subgroup. Thus,

pi,j(G) ≤ Γi×Γj is a finite index subgroup. Since i and j were arbitrary, we obtain that G has

the VSP property. Thus, G is finitely presented by [10, Theorem A]. �

Versions of the results of Sections 6 to 8 hold for the universal homomorphism of a Kähler

group. This is because the universal homomorphism is induced by a holomorphic map. In

particular, we obtain the following version of Theorem 6.8.
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Theorem 9.3. For every Kähler group G there are r ≥ 0, closed orientable hyperbolic orbisur-

faces Sgi,mi
of genus gi ≥ 2 and a homomorphism φ ∶ G→ πorb

1
(Sg1,m1

)× ⋅ ⋅ ⋅ ×πorb
1
(Sgr,mr

) with
the universal properties described in Theorem 9.1. Its image G = φ(G) ≤ πorb

1
(Sg1,m1

) × ⋅ ⋅ ⋅ ×
πorb
1
(Sgr ,mr

) is a finitely presented full subdirect product.

Let k ≥ 0 and m ≥ 2 such that m > k
2
. If G is of type Fm then, for every 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ r,

the projection pi1,...,ik(G) ≤ πorb1
(Sgi1 ,mi1

)×⋅ ⋅ ⋅×πorb
1
(Sgik ,mik

) has a finite index subgroup which

is virtually holomorphically coabelian.

Proof. The assertion that G is finitely presented follows from Lemma 9.2. By Theorem 9.1 φ

is induced by a holomorphic map. We can lift any such holomorphic map to a holomorphic

map f defining the restriction φ∣G0
∶ G0 → π1(Rγ1) × ⋅ ⋅ ⋅ × π1(Rγr), obtained by passing to

finite index surface subgroups π1(Rγi) ≤ πorb1
(Sgi,mi

) and the finite index subgroup G0 ∶=

G ∩ φ−1(π1(Rγ1) × ⋅ ⋅ ⋅ × π1(Rγr)). The result now follows from Corollary 5.8 and Proposition

6.7. �

Remark 9.4. Note that since G is finitely presented, the consequences of Theorem 9.3 always

apply for k = 3.

Lemma 9.2 and its proof raise the natural question if there is a geometric analogue of the

VSP property. The following result shows that this is indeed the case.

Proposition 9.5. Let X be a compact Kähler manifold and let G = π1(X). Let φ ∶ G →
πorb
1
(Sg1,m1

)×⋯×πorb
1
(Sgr,mr

) be a homomorphism with finitely presented full subdirect image

such that the composition pi ○ φ ∶ G→ πorb
1
(Sgi,mi

) has finitely generated kernel for 1 ≤ i ≤ r.

Then φ = f∗ is realised by a holomorphic map f = (f1,⋯, fr) ∶ X → Sg1,m1
× ⋯ × Sgr,mr

, for

suitable complex structures on the Sgi,mi
, and the holomorphic projection fij = (fi, fj) ∶ X →

Sgi,mi
× Sgj ,mj

is surjective for 1 ≤ i < j ≤ r.

Proof. Finite generation of ker(pi ○ φ) and Theorem 6.2 imply that φ is induced by a holo-

morphic map f = (f1,⋯, fr) ∶ X → Sg1,m1
× ⋯ × Sgr,mr

. We now replace the Sgi,mi
by closed

hyperbolic Riemann surfaces Ri, by passing to regular finite covers Ri → Sgi,mi
and the induced

finite-sheeted coverX0 →X satisfying that π1(X0) = f−1∗ ((π1(R1) × ⋅ ⋅ ⋅ × π1(Rr)) ∩ f∗(π1(X))).
Since the kernels of the epimorphisms π1(X0) → π1(Rγi) are finitely generated, the fibres of

the induced holomorphic maps hi ∶ X0 → Rγi are connected.

Assume for a contradiction that there is 1 ≤ i < j ≤ r such that the image hij(X0) ⊂ Ri ×Rj
of the holomorphic map hij = (hi, hj) ∶ X0 → Ri ×Rj is 1-dimensional.

Let Di (resp. Dj) be the finite set of singular values of hi (resp. hj) and let D = hij(X0) ∩(Di ×Rj ∪Ri ×Dj). Since hi and hj are both surjective, the set D is finite and by definition

all points in hij(X0) ∖ D are of the form (xi, xj) with xi and xj regular values of hi and

hj . Let (xi, xj) ∈ hij(X0) ∖D. The map hij has rank 1 in each regular point, implying that

dhi(y) and dhj(y) are proportional for every point y ∈ h−1ij (xi, xj). Since the fibres of hi and

hj are connected it follows that h−1i (xi) = h−1j (xj). We deduce that for F = pi(D) we have a

holomorphic map q ∶ Ri ∖ F → Rj such that the diagram

X0 ∖ h
−1

i (F )
hi

��

hj

%%❑
❑❑

❑❑
❑
❑❑

❑
❑

Ri ∖ F // Rj

commutes. Since F is finite q extends to a holomorphic map q ∶ Ri → Rj , which is biholomor-

phic by symmetry of the argument. In particular, the image hij,∗(π1(X0)) ≤ π1(Ri) × π1(Rj)
is isomorphic to π1(Ri) ≅ π1(Rj).
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In contrast the VSP property and the fact that G is a finitely presented full subdirect

product imply that hij,∗(π1(X0)) ≤ π1(Ri) × π1(Rj) is a finite index subgroup. This is a

contradiction. It follows that hij(X0) is 2-dimensional for 1 ≤ i < j ≤ r. �

In a previous version we proved Proposition 9.5 using Stein factorization. We are grateful

to the referee for providing us with the simpler proof given above.

Remark 9.6. We have seen in the proof of Theorem 6.8 in Section 6 that the kernel of φ

in Proposition 9.5 being finitely generated is a sufficient condition for φ to be induced by a

holomorphic map, and have the property that the projections of G to surface group factors

have finitely generated kernel.

Note that the consequences of Proposition 9.5 in particular apply to the universal homo-

morphism to a product of orbisurfaces.

Corollary 9.7. Let X be a compact Kähler manifold and let f = (f1,⋯, fr) ∶ X → Sg1,m1
×⋯×

Sgr,mr
be a holomorphic realisation of the universal homomorphism φ ∶ G→ πorb

1
(Sg1,m1

)×⋯×
πorb
1
(Sgr ,mr

) defined in Theorem 9.1.

Then the holomorphic projection fij = (fi, fj) ∶ X → Sgi,mi
× Sgj ,mj

is surjective for 1 ≤ i <

j ≤ r.

Proof. This is an immediate consequence of applying Proposition 9.5 to Lemma 9.2 and its

proof. �

It is natural to ask if there is a generalisation of Proposition 9.5 to give surjective holo-

morphic maps onto products of s factors. The examples constructed in Theorem 3.2 show

that this is certainly false for general r − 1 ≥ s ≥ 3 – for instance consider Theorem 3.2 with

r = 4, k = 2 and any choice of branched coverings satisfying all necessary conditions. More

generally, we also note that all of the groups constructed in Theorem 3.2 are projective. Thus,

by the Lefschetz Hyperplane Theorem, they can be realised as fundamental groups of compact

projective surfaces. Hence, we can not even hope for holomorphic surjections onto k-tuples

under the additional assumption that our groups are of type Fm and that k ≤m. This shows

that any result regarding geometric surjection to k-tuples would necessarily have to be of a

more subtle nature.
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