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Abstract

In the high confinement mode (H-mode) of Tokamak plasmas, a region of strongly
reduced heat and particle transport builds up at the plasma edge. Consequently,
the thermodynamic profiles (pressure, temperature and density) in the H-mode are
characterized by steep gradients in the plasma edge region, while the core profiles
are raised as if they were on a growing pedestal. For this reason, the plasma edge
in H-mode plasmas is also known as the “pedestal”.

While the transport barrier results in significantly enhanced pressure, temperature
and energy confinement, the pedestal provides the energy to drive a new type of
plasma instabilities localized at the plasma edge, which are called Edge Localized
Modes (ELMs). Large ELMs, so-called type I ELMs, cause massive bursts of lost
energy and particles that limit the achievable pedestal top pressure (pedestal height)
and will lead to severe damage on the vessel for future fusion devices. Hence, for
the operation of future fusion devices in H-mode, it is inevitable to understand
the physics of ELMs. Pedestal stability against type I ELMs is well-described by
the theory of ideal magnetohydrodynamics, where ELMs are identified with the
occurrence of two classes of instabilities, peeling and ballooning modes. However, in
general the coupling of these modes is complex and has to be determined numerically.
A predictive model for pedestal stability, the EPED framework, which generates
model thermodynamic profiles and determines ideal growth rates, was developed
previously. This framework predicts a stability regime at significantly enhanced
pedestal pressures, the so-called Super H-mode, that can only be experimentally
accessed by varying the plasma density. Recently, another predictive model, IPED,
was developed which is based on the EPED definitions for the model density and
temperature profiles but determines ideal growth rates based on a different stability
code.

In this work, a new procedure which estimates the equilibrium area and volume
profiles in flux coordinates was developed in order to improve the normalization of
pressure and current density profiles generated by the IPED framework. In addi-
tion, the IPED framework is expanded by a new model calculating the edge current
density, which was recently developed. The upgraded IPED framework is used to
determine pedestal stability over a large range of plasma parameters. Firstly, in
contrast to predictions of the EPED framework, we generally observe intermediate
mode numbers to block access to the Super H regime. In this context, the influence
of different stability criteria and model specific details was tested, showing no ten-
dencies towards a Super H solution. That aside, we observe a similar structure of
the stability boundary in the EPED parameter space, which is the space of pedestal
top pressure and electron density (p-n space), where “peeling” modes are destabiliz-
ing at lower densities and “ballooning” modes are destabilizing at higher densities.
Furthermore, dimensionless scaling laws for the critically stable pedestal top pres-
sure were determined, highlighting the beneficial impact of positive triangularity
and large edge safety factor on the pedestal stability. As a result, it is suggested to
operate at high positive triangularity and high toroidal magnetic field at a density
slightly below the density at which the stability regime transitions from “peeling” to
“ballooning” limited, in order to optimize the pedestal top pressure. To interpret our
findings, simple analytical mappings were derived which relate stability diagrams in
s-α and p-n space, where the former is a natural space for describing peeling and
ballooning stability. The numerically predicted p-n diagrams aligned well with the
analytical predictions using the derived transformation to p-n space.
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Zusammenfassung

Das Regime hohen Einschlusses (H-Mode) in Tokamak Plasmen zeichnet sich durch
eine Region stark reduzierten Wärme- und Teilchentransports am Plasmarand aus.
Auf Grund des verminderten Transports entstehen starke Gradienten der Druck-,
Dichte- und Temperaturprofile am Plasmarand, während die Profile im Plasmain-
neren wie auf einem wachsenden Podest angehoben werden.

Die Transportbarriere führt zu einer erheblichen Steigerung von Druck, Temperatur
und Energieeinschluss im Plasmainneren. Die starken Gradienten in der Randre-
gion ermöglichen jedoch die Entstehung einer neuen Art von Instabilitäten, welche
am Plasmarand lokalisiert sind. Diese werden im Allgemeinen “Edge Localized
Modes” (ELMs) genannt. Besonders starke ELMs (Typ I ELMs) führen zu einem
massiven Verlust von Teilchen und Energie auf kurzen Zeitskalen und beschränken
damit den maximalen Druck im Plasmarand. Zudem schädigen die Ausbrüche das
Vakuumgefäß größerer Fusionsreaktoren erheblich. Ein tiefgründiges Verständnis
der ELMs ist somit für den Betrieb von zukünftigen Fusionsmaschinen essenziell. Die
Stabilität des Plasmas gegen Typ I ELMs wird gut von der idealen Magnetohydrody-
namik beschrieben, wobei ELMs durch zwei Klassen von Randinstabilitäten, Peeling
und Ballooning Moden, erklärt werden können. Die Kopplung dieser Instabilitäten
ist jedoch im Allgemeinen komplex und erfordert eine numerische Auswertung.
Das EPED Framework, ein System zur numerischen Vorhersage der Plasmarand-
Stabilität, basiert auf Modellprofilen für Temperatur und Dichte und bestimmt für
diese die idealen Wachstumsraten. Dieses Framework findet ein stabiles Regime
stark erhöhten Drucks, welches experimentell nur zugänglich ist, indem die Dichte
des Plasmas variiert wird, den sogenannten Super H-Mode. In den letzten Jahren
wurde ein unabhängiges Framework, IPED, entwickelt, welches auf den EPED Def-
initionen für Dichte- und Temperaturprofilen basiert, jedoch die Wachstumsraten
mit Hilfe eines anderen Stabilitätscodes bestimmt.

In dieser Arbeit wurde ein neues Verfahren zur Abschätzung der Flächen- und Vol-
umenprofile in Flusskoordinaten entwickelt, um die Normierung von Druck- und
Stromdichteprofilen in IPED zu verbessern. Zudem wurde das IPED Framework um
ein kürzlich neu entstandenes Modell zur Berechnung der Randstromdichte erweitert.
Die Randstabilität wurde mit der neuen Version von IPED über einen großen Bereich
von Plasmaparametern bestimmt. Im Gegensatz zum EPED Framework beobachten
wir, dass Instabilitäten mittlerer Modenzahlen den Zugang zum Super H Regime ver-
hindern, wobei auch der Einfluss von verschiedenen Stabilitätskriterien und mod-
ellspezifischen Details untersucht wurde. Andererseits beobachten wir eine ähnliche
Struktur der Stabilitätsgrenze im EPED Parameterraum, dem Raum von Druck
und Elektronendichte des Plasmarands (p-n Raum), wobei der Druck bei niedrigen
Dichten von Peeling Instabilitäten und bei hohen Dichten von Ballooning Insta-
bilitäten limitiert wird. Des Weiteren wurden dimensionslose Skalengesetze für den
höchsten stabilen Druck des Plasmarands bestimmt, die den vorteilhaften Einfluss
von hoher positiver Triangularität und hohem Sicherheitsfaktor am Rand auf die
Plasmarand-Stabilität widerspiegeln. Um den erreichbaren Druck im Plasmarand zu
optimieren, wird ein Betrieb mit hohem toroidalen Magnetfeld und hoher positiver
Triangularität bei einer Dichte knapp unter der Dichte, bei welcher der Übergang
von Peeling zu Ballooning Moden lokalisiert ist, vorgeschlagen. Zur Interpretation
der numerischen Ergebnisse wurden vereinfachte analytische Transformationen zwis-
chen p-n Raum und s-α Raum hergeleitet, wobei der erste einen natürlichen Raum
zur Beschreibung von Peeling und Ballooning Stabilität darstellt. Die numerisch
bestimmten p-n Stabilitäts-Diagramme stimmen gut mit den theoretisch vorherge-
sagten und in den p-n Raum transformierten Stabilitäts-Diagrammen überein.
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1 Magnetically confined nuclear fusion

Magnetically confined nuclear fusion is a promising approach for a future energy
source emitting no greenhouse gases and producing hardly any long-lived radioactive
waste. This concept is based on the energy production of the sun, where hydrogen
fuses to helium mainly in the proton-proton reaction at high temperatures and
densities. However, for possibly achievable reactor densities or pressures the proton-
proton reaction is not self-sustained, i.e. the energy loss exceeds the produced fusion
energy which heats the plasma. The criterion for a fusion reactor to be self-sustained
is given by the “triple product” [1]:

neT · τE > const. · T 2/σv ≡ L (1)

where pe = neT is the electron pressure, τE is the time scale at which the system loses
its energy (the energy confinement time), σv is the reaction rate, L is the ignition
threshold, ne is the electron density and T is the temperature, assumed to be equal
for all particle species. Thus, the triple product is a condition for the product of
energy confinement time and plasma pressure. The requirement on both of these
quantities, L, is desired to be as small as possible in order to build an economic
fusion reactor [2]. For this reason, fusion reactors aim to produce energy by the
fusion of deuterium and tritium to helium, because this reaction, characterized by
σv(T ), has a comparably low minimum of the triple product at T ≈ 15 keV [2]. The
deuterium-tritium ignition threshold, considering realistic density and temperature
distributions across the plasma volume, is roughly given by L ≈ 5 · 1021 keV s m−3,
which results in required energy confinement times of τE ≈ 3.3 s at typical reactor
densities of ne ≈ 1020 m−3 [1]. At temperatures of T ∼ 15 keV the hydrogen atoms
are fully ionized. This is utilized by magnetic confinement devices, which use strong
magnetic fields to trap the ionized particles and generate the required pressures.
There are two prevailing reactor designs following this concept, the Stellarator and
the Tokamak, both sharing a toroidal field line topology.

Figure 1: Basic structure of a Tokamak fusion reactor. Adapted from www.euro-
fusion.org (Effective: 09.08.2020).
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In this work, we focus on the toroidally symmetric Tokamak device, which is illus-
trated in figure 1. In a purely toroidal magnetic field, the Lorentz force would lead
to a drift motion ~vD ∼ ~B × ~∇| ~B|/q of the charged particles due to the gradient
and curvature of the magnetic field ~B [1]. This drift separates positive and negative
charges q and therefore generates an electric field ~E. Then, a secondary drift motion
~vD ∼ ~E × ~B would occur which causes the particles to leave the plasma volume [1].
The superposition of a poloidal magnetic field neutralizes the initial drift motion.
For this reason, the confining magnetic field of a Tokamak is a superposition of a
toroidal magnetic field generated by the toroidal field coils and a poloidal magnetic
field generated by the plasma current, which is induced by the transformer coil [1].
For this magnetic field configuration, one can define radially nested flux surfaces, i.e.
surfaces that embed the magnetic field lines [1]. Such a flux surface is also displayed
in figure 1. Finally, the outer poloidal field coils generate a vertical magnetic field
used to position the plasma and shape its flux surfaces [1].

The toroidal magnetic field is usually strong enough that the mean free path of the
particles perpendicular to the field lines is small compared to the system size. In
contrast, the mean free path parallel to the field lines typically exceeds the system
size by orders of magnitude. Thus, thermodynamic gradients can only be sustained
between different flux surfaces [3]. Perpendicular to the flux surfaces, i.e. in mi-
nor radial direction, the thermodynamic gradients are determined by collisional and
turbulent transport as well as sources and sinks, resulting in radially resolved ther-
modynamic profiles [1][3]. Usually, temperature and density have their maximum
at the plasma center due to heat sources and inward particle transport, the “parti-
cle pinch”, and monotonously decrease towards the last closed/confined flux surface
(LCFS) [3].

Figure 2: Thermodynamic profile structure for a L-mode (blue) and H-mode (red)
plasma. The temperature profile obeys the stiffness relation |~∇T |/T = const. .
Based on [3][5].

Figure 2 (blue profile) shows the thermodynamic profile structure of a Tokamak
plasma in low confinement mode (L-mode), where radial heat and particle trans-
port is approximately uniform. The transport at the plasma edge is observed to
be suppressed if exceeding a certain heating power threshold. Then, the plasma
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transitions to a high confinement mode (H-mode), where a transport barrier near
the LCFS builds up, resulting in steep thermodynamic gradients at the plasma edge
[5][6]. During the transition from L-mode to H-mode, the temperature core gradient
length |~∇T |/T is typically preserved, which is known as profile stiffness, and the
core profiles are lifted up as if they are on a growing pedestal [3][7]. For this reason,
the edge region between the transport barrier and the LCFS is called the pedestal.
Figure 2 (red profile) also outlines the typical thermodynamic profile structure for
an H-mode plasma.

While the H-mode has significantly enhanced pressure, temperature and energy
confinement, it also comes with a new type of major plasma instabilities called Edge
Localized Modes (ELMs), which limit the possible pedestal height [5][6]. Large
ELMs, more precisely Type I ELMs, strongly degrade the transport barrier and
therefore lead to massive energy and particle loads on the vessel material which can
cause severe damage in future fusion reactors [8]. On the contrary, ELMs usually
clear the core plasma from impurities in present devices, which is advantageous as
impurities dilute the hydrogen fuel and significantly increase radiation losses [1][5][9].
However, recent transport simulations predict that ELMs in ITER might lead to an
increase in the impurity content of the core plasma [9]. Hence, for the operation of
future reactors it is inevitable to understand the physics of ELMs.

The stability of the H-mode pedestal against type I ELMs, studied in this work,
is well-described by the theory of ideal magnetohydrodynamics (MHD) [10]. From
linearized ideal MHD, two classes of edge localized instabilities limiting the pedestal,
namely high mode number peeling and (edge) ballooning modes, were theoretically
derived and studied in detail previously [11][12]. However, the coupling of peel-
ing and ballooning modes is still not completely understood. Furthermore, there are
multiple stability codes that can numerically evaluate ideal MHD stability. A simple
model creating thermodynamic profiles, called EPED, was developed in combina-
tion with a stability code, ELITE, to numerically study edge stability of H-mode
plasmas [13][14]. The EPED-ELITE framework predicted an edge stability regime
at significantly enhanced pedestal pressures that can only be experimentally ac-
cessed by varying the plasma density, the so-called Super H-mode [15]. Conversely,
critically stable pedestal top pressures for negative triangularity scenarios are usu-
ally noticeably smaller compared to plasmas with positive triangularity, reducing
the ELM energy content [16]. Recently, a different framework, IPED, combining
EPED with the stability code MISHKA was developed by M. G. Dunne to achieve
an independent analysis for the edge stability of H-mode plasmas [17][18].

In this thesis, the ideal MHD stability of H-mode Tokamak plasmas is studied for
different operational scenarios, including negative triangularity, using an upgraded
version of the predictive framework IPED. In particular, stability trends as well as
the stability of separate mode numbers are analyzed in order to optimize the pedestal
stability for ASDEX Upgrade (AUG). Furthermore, an attempt is made to reproduce
the Super H solutions predicted in [15]. Firstly, the theoretical background of ideal
MHD and the EPED and IPED frameworks is summarized in chapter 2. Then, the
implementation details of the newly upgraded IPED code are described in chapter
3. Numerical results, including trends and scaling laws for pedestal stability, are
presented in chapter 4. Finally, we interpret and discuss our findings in chapter 5.
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2 Theoretical background

2.1 Ideal MHD

2.1.1 Stationary equilibrium

The theory of magnetohydrodynamics (MHD) describes the plasma as a combina-
tion of charged fluids. It is based on the fluid theory assumptions that there are
sufficiently many particles in each fluid cell and that these particles are in thermo-
dynamic equilibrium, i.e. that the mean free path length and the Larmor radius
are much smaller than the system size. This allows, similar to conventional hydro-
dynamics, to describe the system in terms of the moments of the kinetic equation
together with a closure assumption. While for a Tokamak plasma these assumptions
usually hold perpendicular to the magnetic field, they are violated parallel to the
magnetic field as the mean free path typically exceeds the system size. Thus, MHD
is only a consistent description for dynamics perpendicular to the magnetic field. In
addition, ideal MHD assumes that the plasma is ideally conducting, i.e. that the
time scale of MHD events is much smaller than the time scale of resistive losses.
The resulting one-fluid non-linear ideal MHD equations yield [4]:

Continuity ∂tρ+ ~∇ · (ρ~v) = 0 (2)

Force balance ρ
(
∂t~v +

(
~v · ~∇

)
~v
)

= −~∇p+~j × ~B (3)

Ideal Ohm’s law ~E + ~v × ~B = 0 (4)

combined with the Maxwell equations and a closure assumption

Maxwell ~∇ · ~B = ~∇ · ~E = 0 , ∂t ~B = −~∇× ~E , µ0
~j = ~∇× ~B (5)

Adiabatic closure dt
(
pρ−Γ

)
= 0

(2)⇒ dtp+ pΓ(~∇ · ~v) = 0 (6)

where ρ is the mass density, ~v is the center-of-mass velocity, p is the isotropic pres-
sure, ~j is the current density, ~B is the magnetic field, ~E is the electric field and
Γ is the adiabatic index. In the following, we determine a stationary ideal MHD
equilibrium for a Tokamak plasma and study its linear stability.

The geometry of an axisymmetric Tokamak plasma with nested flux-surfaces is dis-
played in figure 3, introducing the natural coordinate system. Using the Maxwell

equations in toroidal symmetry and approximating
∣∣∣ρ (~v · ~∇)~v∣∣∣ � ∣∣∣~∇p∣∣∣, the sta-

tionary force balance (equation 3) can be rewritten as [4]:

F · d
ψ̂
F + µ0R

2 · d
ψ̂
p = µ0Rjtor = −∆∗ψ̂ (7)

with

F (ψ̂) = RBtor and ψ̂(R,Z) =

∫ R

0
BZ(R,Z)R dR−

∫ RM

0
BZ(R,ZM )R dR (8)

where ψ = 2πψ̂ is the poloidal flux (here defined with respect to the magnetic
axis), Btor is the toroidal magnetic field, jtor is the toroidal current density and
∆∗ ≡ R∂R(1/R ·∂R) +∂2

Z is the Stokes operator in cylindrical coordinates; the mag-
netic axis is located at (RM , ZM ) and BZ is the vertical component of the magnetic

2.1 Ideal MHD
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Figure 3: Geometry of an axisymmetric Tokamak plasma with nested flux surfaces.
Global cylindrical coordinates (R,Φ, Z) and minor radius r of a flux surface. Blue:
Midplane, Orange: Flux surfaces, Green: Center of the last closed flux surface, Red:
Magnetic axis.

field. Equation 7 is known as the Grad-Shafranov equation. There are different
numerical codes solving the Grad-Shafranov equation, one of them being HELENA,
for a given pressure and current density profile as well as a plasma boundary S(R,Z)
[19].

However, before continuing with the linear stability analysis of the obtained equi-
librium, analytical investigations of equation 7 provide additional insights. For this
reason, we introduce the minor radius r, the major radius or flux surface center R0

and the vertical center Z0 as

r =
1

2

(
R+ −R−

)
∈ [0, a] , R0 =

1

2

(
R+ +R−

)
, Z0 =

1

2

(
Z+ + Z−

)
(9)

where P−FS = (R−FS, Z
−
FS) and P+

FS = (R+
FS, Z

+
FS) are the radially innermost and

outermost points for any flux surface FS, a is the minor radius of the last closed flux
surface (LCFS) and the magnetic axis is defined to be at R = RM ≡ R0(r = 0) and
Z = ZM ≡ Z0(r = 0) (compare to figure 3). In the following, we approximate that
Z0(r) ≈ ZM for all flux-surfaces. Additionally, assuming circular flux surface cross-
sections centered around R0(r) ≡ R0(0), there would be a net force expanding the
torus generated by both the larger pressure-driven force and the stronger magnetic
field at the inner half of the torus. In equilibrium, this force is compensated by a
strengthening of the magnetic field at the outer half of the torus due to an outward
shift, i.e. a compression, of the flux-surfaces [4]. This shift is called the Shafranov
shift ∆s(r) ≡ R0(r) − R0(a). One can calculate that an external vertical magnetic
field has to be applied in order to generate the Shafranov shift which balances the
outward force [4]. Treating the shift as a small perturbation and for small inverse

2.1 Ideal MHD
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aspect ratios ε = r/R0(0)� 1, the following differential equation can be derived [4]:

dr
(
rB2

pol,0 · dr∆s

)
=

r

R0(0)
·
(
2µ0r · drp−B2

pol,0

)
with ∆s(a) = 0 (10)

where Bpol,0 is the unperturbed poloidal magnetic field, i.e. the poloidal field for
R0(r) ≡ R0(0) and r is the radius of the (unperturbed) circular flux surfaces. This
equation can be solved for a constant current density and quadratic pressure profile
p(r) ∼ (1− (r/a)2):

∆s(r) = ∆s,0 ·
[
1−

(r
a

)2
]

with ∆s,0 =

(
βpol,0 +

1

4

)
· a2

2R0(0)
(11)

where βpol,0 is the unperturbed poloidal beta. The estimate for the Shafranov shift
given by equation 11 is used later to approximate the equilibrium flux surfaces in
the IPED 2 framework.

2.1.2 Linear stability

The equilibrium obtained in the previous section obeys the force balance relation.
However, it might be unstable with respect to small perturbations. For this reason,
we linearize the MHD equations around the equilibrium solution. For a flow-free
equilibrium, i.e. ~veq. = 0, one obtains [4]:

Force balance ρ0∂t~v1 =
1

µ0

(
(~∇× ~B0)× ~B1 + (~∇× ~B1)× ~B0

)
− ~∇p1 (12)

Ideal Ohm’s law ∂t ~B1 = ~∇× (~v1 × ~B0) (13)

Adiabatic closure ∂tp1 = −p0Γ(~∇ · ~v1)− (~v1 · ~∇)p0 (14)

where we denote the equilibrium quantities with the index 0 and a small perturbation
with the index 1. Introducing the perturbed quantity ~ξ with ∂t~ξ = ~v1, we can
integrate the linearized flow-free MHD equations and insert the integrated equations
13 and 14 into the linearized force balance [4]:

ρ0∂
2
t
~ξ = 1

µ0

(
(~∇× ~B0)× ~B1 + (~∇× ~B1)× ~B0

)
+ ~∇

(
p0Γ~∇ · ~ξ + ~ξ · ~∇p0

)
with ~B1 = ~∇× (~ξ × ~B0)

(15)

where we set the integration bounds without loss of generality to

~ξ1(~x, t = 0) = ~B1(~x, t = 0) = ρ1(~x, t = 0) = p1(~x, t = 0) = 0 , ~v1(~x, t = 0) 6= 0 .

Using an exponential Ansatz ~ξ(~x, t) = e−iωt~ξsp(~x), where ~ξsp is the spatial part of ~ξ,
this equation simplifies to a standard complex eigenvalue problem of the form

− ω2ρ0
~ξ = F~ξ with ω2 ∈ R (16)

where F is the hermitian MHD force operator [4]. There are multiple numerical
codes, one of them being MISHKA, that can solve this eigenvalue problem using a
Fourier decomposition of the form ~ξsp(~x) ∼ eiΦn, which allows a growth rate ω and
structure of the perturbation for every toroidal mode number n independently [18].

2.1 Ideal MHD
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Moreover, equation 16 can be used to derive a variational formalism that grants ana-
lytical insight into linear MHD stability without calculating the detailed eigenvalues
and eigenfunctions [4]:

δW (~ξ∗, ~ξ) ≡ −1

2

∫
~ξ∗ · F~ξ dV =

ω2

2

∫
ρ0|~ξ|2 dV ≡ ω2K(~ξ∗, ~ξ)

K(~ξ∗,~ξ)6=0

⇔ ω2 =
δW (~ξ∗, ~ξ)

K(~ξ∗, ~ξ)
(17)

where a star denotes complex conjugation, δW (~ξ∗, ~ξ) is the work done by the dis-
placement ~ξ and K(~ξ∗, ~ξ) is related to the kinetic energy of the perturbation. This
equation is valid even if ω is not an eigenvalue of equation 16. However, following
the variational principle of Ritz, the most negative eigenvalue ω is prescribed by
minimizing the right-hand-side of equation 17, which is equivalent to minimizing
δW (~ξ∗, ~ξ) for an arbitrary normalization condition |~ξ| = const. [4][20]. Then, the
system is stable if the δW > 0 and unstable if δW < 0, where δW refers to the min-
imized work functional. With this variational principle, which is called the energy
principle, stability can be studied in the context of reasonable test functions ~ξ, which
may represent different classes of instabilities. Consequently, when restricting sta-
bility analysis to a certain set of test functions, the minimized work functional only
describes stability with respect to the chosen set of perturbations. In this case, the
obtained minimized frequency ω is an upper bound to the most negative eigenvalue,
meaning that there might be unconsidered classes of instabilities that destabilize the
system.

For a magnetically confined fusion plasma where the plasma volume is surrounded
by a vacuum region enclosed by a perfectly conducting wall, an explicit form of the
work functional can be calculated using appropriate boundary conditions [4]:

δW = δWF + δWS + δWV (18)

with

δWV =
1

2

∫
Vacuum

| ~B1|2

2µ0
dV (19)

δWS =
1

2

∫
Surface

|~n · ~ξ⊥|2 ~n ·

{
~∇

(
p0 +

| ~B0|2

2µ0

)}
jump

dσ (20)

δWF =
1

2

∫
Fluid

[
| ~B1,⊥|2

2µ0
+

(
| ~B0,⊥|2

2µ0

∣∣∣~∇ · ~ξ⊥ + 2~ξ⊥ · ~κ
∣∣∣2)+ Γp0|~∇ · ~ξ|2−

−2(~ξ⊥ · ~∇p0)(~κ · ~ξ∗⊥)−
j0,‖

| ~B0|
(~ξ∗⊥ × ~B0) · ~B1

]
dV (21)

where δWV is the vacuum contribution, δWS is the contribution from the plasma-
vacuum interface, δWF is the fluid/plasma contribution, {. . . }jump refers to the jump

of the enclosed quantities across the surface, ~n is the surface-normal vector, ~κ = ~b·~∇~b
with ~b = ~B0/| ~B0| is the curvature vector and the indices ⊥ and ‖ denote the vector
components perpendicular and parallel to ~B0.

2.1 Ideal MHD
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Studying the different contributions, the first three terms of δWF can be associ-
ated with energy of shear Alfvén waves, compressional Alfvén waves and sound
waves, respectively, and are always positive and thus stabilizing [4]. Therefore, the
destabilizing contributions of δWF are given by the fourth and fifth term, represent-
ing pressure-gradient driven and current-density driven instabilities, respectively [4].
Because the contribution −(~ξ⊥ · ~∇p0)(~κ ·~ξ⊥) is negative if ~∇p0 and ~κ are parallel and
positive if they are anti-parallel, the curvature of the magnetic field is destabilizing
at the outer half and stabilizing at the inner half of the torus [4]. Hence, we term
the curvature “unfavorable” on the outer half of the torus and “favorable” on the
inner half. The overall contribution of the pressure-gradient crucially depends on
the average curvature along a field line [4]. Next, the vacuum part δWV is generally
positive and therefore always stabilizing. While the plasma-vacuum interface term
δWS is more complex, it does not contribute to the work functional if displacements
leave the surface unchanged ~n · ~ξ⊥ = 0 or if there is no jump in the pressure gradient
~∇
(
p0 + | ~B0|2/(2µ0)

)
[20]. To make further analytical progress, the contributions of

the vacuum and the plasma surface can be ignored in the context of minimization,
if we are only interested in modes that are localized inside the plasma edge, and
we set δW ≡ δWF [20][11]. However, numerical codes are able to solve the full
eigenproblem (equation 16) and calculate the complete work functional (equation
18).

2.1.3 Edge Localized Modes

As previously mentioned, a new type of instability located at the plasma edge
(pedestal region), called Edge Localized Modes (ELMs), occurs if Tokamak plas-
mas transition to the high confinement state (H-mode). Since ELMs cause massive
bursts of lost particles and energy (∼ 5 − 10% of the total content in 6 1ms), it is
crucial for larger fusion reactors to suppress or mitigate them in order to prevent
damage to the plasma vessel [8][10].

Historically, ELMs can be classified into three different types; here, we exclude so-
called dithering cycles that may be interpreted as repeated transitions between low
and high confinement mode. Type III ELMs occur at heating powers close to the H-
mode transition power PL→H and are possibly described by coupled resistive MHD
instabilities [10]. Consistently, as the edge temperature rises and resistive effects are
suppressed, the type III ELM frequency decreases until this ELM type completely
vanishes. At higher edge temperatures, i.e. for large H-mode pedestals, type I ELMs
emerge and typically limit the pedestal height [10]. These ELMs are proposed to be
caused by coupled ideal MHD instabilities. This is consistent with the observation
that the type I ELM frequency increases with separatrix heating power, since the
build up of the edge gradients up to a critical value is accelerated. A common model
for this ELM-type is given by the peeling-ballooning theory, which describes the
occurrence of type I ELMs by the coupling of ideal peeling and ballooning modes
[10]. Thus, in the regime of sufficiently high edge temperatures, pedestal stability can
be studied using ideal MHD and especially the peeling-ballooning theory. Finally,
for completeness, type II ELMs are observed in strongly shaped plasmas, being more
frequent and less severe compared to type I ELMs. [10].

Based on the variational formalism introduced in the previous section, peeling and
ballooning instabilities can be analytically analyzed. We will first focus on the high

2.1 Ideal MHD
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toroidal mode number (high-n) limit n → ∞. In this limit, the work functional
δW = δWF can be simplified for modes with a resonant surface q(ψ) = m/n close
to the plasma boundary, the so-called peeling modes, and minimization yields the
peeling inequality [12]:√

1− 4DM > 1 +
1

π∂ψq

∮
j‖B

B3
polR

2
dl ⇔ Stability (22)

where
∮
. . . dl denotes integration along the flux-surface in the (R,Z)-plane, q is the

safety factor and DM is the Mercier index, which can be interpreted as a measure
of how favorable the field line curvature averaged along a field line is. In the case of
weak shaping and small inverse aspect ratio ε ≡ r/R0 � 1 the Mercier index can be
written as DM = (q−2− 1)εαs−2, where we define the normalized magnetic shear as
s ≡ (r/q) · ∂rq and the normalized pressure gradient as α = (2µ0R0)/B2 · q2∂rp [12].
Both the integral in equation 22 and the Mercier index are strongly dependent on
shaping and aspect ratio. Thus, the effect of shaping on high-n peeling stability has
to be analyzed carefully. While the peeling inequality is usually evaluated numeri-
cally, a simple relation for stability can be derived for small inverse aspect ratio and
circular flux surfaces (see [12]):

(1− q−2)ε · α
s2
>

1

4π∂ψq

∮
j‖B

B3
polR

2
dl =

∂ψV

4π∂ψq

〈
j‖B

B2
polR

2

〉
V

≈x
π

2− s
s

(23)

with the simple equilibrium relation s = 2− 2j‖ ·A(r = a)/IP

⇒ Marginal stability for: α = π
(2− s)s

(1− q−2)ε
(24)

where IP is the total plasma current, A(r) is the area enclosed by a flux-surface
and 〈. . . 〉V denotes the standard “flux-surface average”, which is equivalent to the
volume-average with respect to the volume V (r) enclosed by a flux-surface; the
precise definitions of A, V and 〈. . . 〉V are given in the appendix B.1 “Averages”.
One has to be careful, since equation 23 is only consistent if |2 − s| � 1, i.e. if
assuming that the right hand side is a small quantity; this is the “small current
density”-“small pressure gradient” limit. Finally, an example stability boundary for
high-n peeling modes is displayed in figure 5 (page 11).

Furthermore, we discuss localized modes where multiple poloidal mode numbers from
adjacent resonant surfaces couple at a single flux surface so that their amplitude is
maximized in the region of unfavorable curvature [4][12]. These modes are called
ballooning modes and the poloidal structure of such a mode is shown in figure 4a.
While radial localization seems contradictory to poloidal mode number coupling,
radial localization ∆r ≈ ∆m

n∂rq
can still be satisfied for ∆m > 0 in the high-n limit

[4]. As for the peeling modes, the work functional is minimized using the Euler-
Lagrange method. While there is no simple stability inequality, the equation for
marginal stability can be simplified in the limit of large aspect ratio, circular flux
surfaces and vanishing Shafranov shift [4]:

dθ

(
(1 + h2)dθX̂

)
+ α(h · sin θ + cos θ) · X̂ = 0 with h ≡ sθ − α sin θ (25)

where θ ∈ [−∞,∞] is the ballooning angle, generalizing the poloidal angle, and X̂
represents the radial displacement. The solution of equation 25 as well as a modifica-
tion including the effect of finite Shafranov shift are displayed in figure 4b. One can

2.1 Ideal MHD
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Figure 4: a) Structure of a ballooning mode with m = 20 to 30 (from [4]). b) Bal-
looning stability border for a large aspect ratio Tokamak with circular flux surfaces;
the darker shaded region indicates ballooning instability if including the effect of the
Shafranov shift (from [4], Author: H.-P. Zehrfeld, IPP).

see that there are two stable regions in the s − α diagram, which are disconnected
for vanishing Shafranov shift. While, for fixed shear, the pressure gradient is limited
in first-stable regime, there is no such limitation in the second-stable regime. This
strange second stability regime might be explained by the stabilizing effect of the
pressure gradient through the effective local shear h, similar to the “magnetic well”
due to shaping [4]. The first and second stable regimes get connected if one considers
finite Shafranov shift and the connection zone even increases when elongating the
plasma cross-section [4]. Figure 5 (page 11) also displays a typical high-n ballooning
boundary.

Finally, the coupling of finite-n ballooning and peeling modes was studied by Hegna
and others, who developed a theoretical framework expressing the mode structure
by a discrete set of poloidal harmonics. Assuming peeling modes with their ratio-
nal surface being outside the plasma (but close to the plasma surface), the work
functional for coupled modes δWPB can be expressed to zeroth-order as [21]:

δWPB
∼= δWP −

I2
0

4δWB
or δWPB

∼= δWB −
I2

0

4δWP
(26)

where the coupling/interaction integral I0 acts generally destabilizing, δWP > 0
is the peeling mode energy, δWB > 0 is the ballooning mode energy and “ ∼= ”
denotes that two expressions describe congruent stability diagrams. Therefore, cou-
pled modes can be destabilized if both the pure peeling and pure ballooning work
functional are small, which is close to the pure peeling and pure ballooning stability
boundary [21]. If either δWP < 0 or δWB < 0, the system is pure peeling or bal-
looning unstable. The interaction integral usually has to be evaluated numerically.
However, a strongly simplified analytical expression was derived for weak shaping
and constant current density inside the edge region [21]:

I0 = − α
s2

(1 + s) exp(−1/s) ln(∆) with ∆ = M + 1− n · q|r=a � 1 (27)

where M is the number of resonant surfaces inside the plasma. Under the applied
simplifications, the peeling energy scales as δWP ∼ ∆−1 [21]. Therefore, the peeling
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energy term diverges stronger than the interaction integral as ∆ → 0, meaning
that coupling will be only important if δWB is sufficiently small, i.e. close to the
ballooning boundary [21]. Moreover, one can show that the coupling is maximized
for modes with ∆ = exp(−2). For smaller values of ∆, the peeling mode energy
becomes increasingly dominant [21]. The coupled peeling-ballooning modes are also
displayed in figure 5, which summarizes the previous results.

Figure 5: Sketch of the stability borders for pure high-n ballooning (orange) and
peeling (blue) modes as well as lines to guide the eye for coupled peeling-ballooning
stability borders (violet). Left: s-α space, based on [22], Right: j-α space using
the transformation s = 2 − 2j‖ · A(r = a)/IP (equation 23). The different shading
of the coupled stability borders is to distinguish them. The violet dashed line is
an artificially modified version of the coupled stability border, representing stronger
coupling. The orange dashed line roughly approximates the ballooning boundary in
the 1st stable regime for comparison with common j-α stability diagrams (see [12]).

From the above discussion, the dimensionless quantities s and α seem to be a natural
choice for edge stability diagrams. However, their definitions given above are related
to plasmas with circular cross-section. We define a more generalized definition for the
normalized shear and the normalized pressure gradient for shaped plasmas following
Miller and others [23]:

s ≡ 2V

q
·
∂ψq

∂ψV
, α ≡ −µ0

∂ψV

2π2

√
V

2π2R0
· ∂ψp (28)

2.2 Diamagnetic stabilization

In the ideal MHD model, any phenomena related to the finite Larmor radius (FLR)
or the distinct gyro-motion of the different particle species (ions and electrons) were
neglected [4][24]. While this assumption is usually fulfilled for MHD events with
sufficiently long wavelength, FLR effects become important as the wavelength λMHD

gets comparable to the ion Larmor radius rL,i, i.e. λMHD / rL,i [25][26]. The study
of high-n MHD modes may be extended by kinetic corrections that treat the effect
of FLR [25][26]. This results in a modified stability criterion [25][27]:

γMHD <
1

2
· ω∗,i ⇔ Stable (29)

with the ion diamagnetic drift frequency (DDF)

ω∗,i =
n

Zeni
· ∂ψpi (30)

2.2 Diamagnetic stabilization
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where γMHD = −iω is the ideal MHD growth rate, ω2 < 0 is an eigenvalue of
equation 16, n is the toroidal mode number, Z is the ion charge number, ni is the
ion density and pi is the ion pressure. Thus, modes that grow slowly compared to
the ion DDF are suppressed. Because equation 29 is a local stability criterion and
the ion DDF is in general not constant over the edge region, this criterion has either
to be implemented directly in the numerical stability code as local stabilization
mechanism or the variation of ω∗,i over the pedestal has to be treated effectively
[27][28]. We follow the effective treatment of the ion DDF as described in [28]:

ωeff1
∗,i = 0.5 · ωmax

∗,i (31)

ωeff2
∗,i =


0.75 · ωmax

∗,i for nq95 6 27.7

ωeff2
∗,i

∣∣∣
nq95=27.7

+ 0.12 · (ωmax
∗,i − ωeff2

∗,i

∣∣∣
nq95=27.7

) for nq95 > 27.7
(32)

where the dependence of the effective ion DDFs ωeff1
∗,i and ωeff2

∗,i on the poloidal mode
number nq95 is displayed in figure 6, q95 is the safety factor at ψ = 0.95·ψ(r = a) and
ωmax
∗,i = max(ω∗,i) is evaluated at the peak position of ∂ψpi in the pedestal. In order

to obtain these effective DDFs, growth rates γ2F calculated by the two-fluid code
BOUT++ were compared to ideal growth rates γMHD [28][29]. Then, based on the
eigenvalue relation ω ·(ω−ω∗,i)+γ2

MHD = 0, the effective diamagnetic drift frequency

is defined as ωeff
∗,i = 2

√
γ2

MHD − γ2
2F [28]. Subsequently, the effective DDFs ωeff1

∗,i and

ωeff2
∗,i were obtained by a rough approximation and a bi-linear fit, respectively, of

the effective DDFs ωeff
∗,i from the BOUT++ simulations [28]. The newly introduced

effective ion DDFs replace ω∗,i in equation 29 to include the effect of ω∗,i not being
constant over the pedestal region.

Figure 6: Dependence of the effective DDFs ωeff1
∗,i and ωeff2

∗,i on nq95 relative to ω∗,i
as introduced in [28] based on a fit to BOUT++ simulations. As ω∗,i ∼ n the ion
DDF is a straight line.

To summarize, we introduced an effective diamagnetic stabilization mechanism for
high toroidal mode numbers n � 1 modifying the ideal MHD growth rates. While
the normalized ideal growth rates γMHD ·τA are density independent, the normalized
diamagnetic stability criterion ω∗,i ·τA ∼ 1/

√
ni depends explicitly on density, where

normalization is with respect to the Alfvén time τA ∼
√
ni, which will be important

later.

2.2 Diamagnetic stabilization
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2.3 Bootstrap current

From the previous sections we know that the ideal MHD equilibrium and its stabil-
ity properties in Tokamak geometry are determined by a current density profile, a
pressure profile and a plasma boundary. Consequently, for the study of instabilities
localized at the pedestal, a good model for these quantities, especially at the plasma
edge, is needed. Without additional external current drives, the area-averaged cur-
rent density in the pedestal consists of two contributions, the Ohmic current and
the bootstrap current [1]. The former is driven by the transformer coil and deter-
mined by the generated electric field and the electrical conductivity of the plasma,
while the latter is driven by the thermodynamic gradients. The order of the edge
Ohmic current can be estimated to jOhm ∼ 1 ·105 A

m2 , where we assumed T ≈ 1 keV,
R0 ≈ 1.5 m, a ≈ 0.5 m and a loop voltage of Uloop ≈ 0.1 V (see [1]). This is typ-
ically around one order of magnitude smaller than the edge bootstrap current. In
the following, the processes generating the bootstrap current are discussed.

Because the magnetic field of a Tokamak B ≈ Btor ∼ 1/R is radially decreasing,
charged particles which have sufficiently low parallel velocity are trapped in the outer
region of the Tokamak, since they are mirrored towards the low field side (LFS) at
a certain critical radius Rcrit [1]. Considering conservation of the magnetic moment,
which is generated by the gyro-motion of the charges, and the kinetic energy for the
movement along a magnetic field line, one can derive the trapping condition [30]:

v‖

v⊥
6

√
Bmax

Bmin
− 1 =

√
1 + ε

1− ε
− 1 (33)

Figure 7: a) Trajectory / banana orbit (blue) of a charged particle. The particle
is mirrored if the magnetic field B ∼ 1/R exceeds a critical value at a certain
major radius Rcrit (orange). The gradient and curvature drift (green) deflects the
particle from its native flux surface (black), resulting in the banana motion. This
is a projection to the (R,Z)-plane; the non-projected trajectories are mainly in the
toroidal direction, because the particle motion is centered around the field lines
~B ≈ ~Btor. The direction of the blue and green arrows is opposite for ions and
electrons. b) Flux of trapped particles though the midplane at a certain flux surface
(black) driven by banana orbits from neighboring flux surfaces (gray).

In addition to the reflection of trapped particles if the magnetic field exceeds a
certain strength, the gradient and curvature drift ~vD ∼ ~B × ~∇| ~B|/q, mentioned

2.3 Bootstrap current
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in chapter 1, leads to a deflection of the particle trajectory from its native flux
surface as displayed in figure 7a, resulting in so-called banana orbits [30]. Figure
7b shows two banana orbits that are centered at different flux surfaces but traverse
the midplane in opposite directions at the same flux surface. Consequently, the flux
of trapped particles though the midplane at a certain flux surface is determined
by neighboring banana orbits [30]. This gives rise to the so-called banana current
jB ∼ dr(ne + ni) if the banana orbits are differently populated, with contributions
from both the electron density gradient drne and the ion density gradient drni; here
we also used the fact that the banana motion for ions and electrons is in the opposite
direction. Note that a temperature gradient can also drive the banana current, as
in this case the particle velocities of the distinct orbits differ [30].

Figure 8: a) Parallel velocity distribution after modification by by trapped parti-
cles from neighboring flux surfaces, implying a discontinuity. b) Parallel velocity
distribution smoothed by collisions/scattering.

Because the trapped particles visit neighboring flux surfaces as they follow the ba-
nana trajectory, the velocity distribution at a certain flux surface is influenced by
the trapped particles of neighboring flux surfaces as shown in figure 8a [30]. Fi-
nally, collisions transfer momentum between trapped and passing particles, which
removes the discontinuity in the velocity distribution. This results in a smooth but
shifted velocity distribution, which is sketched in figure 8b [30]. The difference in
the velocity distributions of electrons and ions (both passing and trapped particles)
gives then rise to the bootstrap current [30]. For arbitrary magnetic equilibria and
collisionalities, the averaged parallel current density, including both the Ohmic and
the bootstrap current, can be expressed as [31]:

〈
j‖
〉
B

= σneo

〈
E‖
〉
B
− F (ψ)

BT

[
L31p∂ψln p+ L32pe∂ψln Te + L34α̃pi∂ψln Ti

]
(34)

where σneo is the neoclassical conductivity, E‖ is the parallel component of the

applied electric field with respect to ~B, F (ψ) is defined as in equation 7 (page 4)
and Te and Ti are the electron and ion temperatures; the average is defined as
〈. . . 〉B ≡ 〈. . . ·B〉V /BT with the toroidal magnetic field at the magnetic axis BT
and the coefficients L31, L32, L34 and α̃ depend on the effective electron and ion
collision frequencies as well as on the fraction of trapped particles. The bootstrap
current as given by equation 34 contains contributions from the temperature and
pressure gradients, as phenomenologically argued above. Moreover, using p = nT ,
the pressure gradients can be transformed to density gradient distributions as well.
Then, comparing typical values of the bootstrap coefficients, one finds that density
gradients are usually more efficient in driving the bootstrap current compared to
temperature gradients [31].

2.3 Bootstrap current
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2.3.1 Sauter model

In general, a complex set of transport equations has to be solved in order to ob-
tain precise values for the neoclassical bootstrap transport coefficients. However,
O. Sauter, C. Angioni and Y. R. Lin-Liu derived a simple set of fit formulas for these
coefficients as well as for the neoclassical conductivity by fitting the numerical results
computed by a Fokker–Planck solver, namely CQLP and CQL3D [31][32][33][34].
The resulting formulas, which fitted the numerical values of CQLP/CQL3D with an
uncertainty of / 5% over a wide range of collision frequencies and magnetic equi-
libria, are summarized in the appendix A.1, with the trapped fraction ft, effective
charge Zeff and collisionalities νe,∗ and νi,∗ defined as [31][32][35]:

ft = 1− 3

4

〈
B2
〉
V

∫ 1/Bmax

0

λ〈√
1− λB

〉
V

dλ , Zeff =

∑
Z2
αnα∑

Zαnα
(35)

νe,∗ = 6.921 · 10−18 qR0neZeff ln(Λe)

T 2
e ε

1.5
, νi,∗ = 4.90 · 10−18 qR0niZ

4
main ln(Λii)

T 2
i ε

1.5
(36)

where Bmax is the largest value of the magnetic field for any flux surface, the sum
∑

is over all charge states of all ion species with Zα their respective charge number and
nα their respective density, Zmain is the main ion charge number and the Coulomb
logarithms are

ln(Λe) = 31.3− ln

(√
ne[m−3]

Te[eV]

)
, ln(Λii) = 30− ln

(
Z3
i

√
ni[m−3]

(Ti[eV])1.5

)
. (37)

Furthermore, O. Sauter derived an approximation for the trapped fraction as de-
fined in equation 35, providing an analytical expression which includes the effect of
triangularity [36]:

ft = min

{
1; 1−

√
1− ε
1 + ε

1− εeff

1 + 2
√
εeff

}
, εeff = 0.67ε · (1− 1.4δ |δ|) (38)

with the triangularity δ of the LCFS; the (average) triangularity is defined as
δ(r) = 1

r ·
(
R0 − 1

2(R↑ +R↓)
)

where P ↑ = (R↑, Z↑) and P ↓ = (R↓, Z↓) are the
vertically highest and lowest points for any flux surface.

2.3.2 Redl model

In comparison to calculations by the NEO code, which is a state-of-the-art drift-
kinetic solver, the Sauter model usually predicts the bootstrap current for low to
intermediate collisionalities with an error of ∼ 10 to 20% in the pedestal [37][38].
However, the predicted current density is significantly overestimated compared to
the NEO outcomes in the high collisionality regime, due to technical limitations in
running the CQLP and CQL3D codes at high collisionalities back in 1999 when the
Sauter model was developed [37][39]. In addition, the ion flow term α̃ was calculated
using the reduced electron-ion coupling in the CQLP and CQL3D codes, leading to
additional differences in the high collisionality regime where electron-ion coupling
becomes increasingly important, and the effect of multiple impurity species was
approximated by varying the main ion charge [31][37]. Recently, the Sauter model
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was improved by A. Redl to increase accuracy in the high collisionality regime and
correctly include the effect of impurities by fitting the outcomes of the NEO code
[39]. The resulting formulas of the Redl model are given in the appendix A.2, with
the impurity strength α̃I defined as [39]:

α̃I =

∑
Z2
αnα

Z2
mainnmain

(39)

where nmain and Zmain are the main ion density and charge number, respectively,
and the sum

∑
is over all impurity species α. Assuming only a single impurity

species with density nimp and charge number Zimp as well as Zmain = 1, the impurity
strength might be expressed as:

α̃I =
Z2

impη̃

η − η̃
(40)

where the density scale factors

η̃ =
Zeff − 1

Zimp · (Zimp − 1)
and η =

(
Zeff − η̃ · Z2

imp

)
+ η̃ (41)

are defined such that nimp = η̃ · ne and ni = η · ne. Finally, comparing the Redl
model to outcomes from the NEO code results in errors of / 5% over a large range
of magnetic equilibria and collisionalities [39].

2.4 EPED1 model for density and temperature profiles

EPED1 is a framework predicting pedestal stability that defines model density and
temperature profiles for a set of global parameters and combines MHD stability
calculations with a pedestal width-height relation [13]. The input parameters for
EPED1 are:

• Shaping parameters for the LCFS: Major radius Rmaj ≡ R0(a), minor radius
a, elongation κ and triangularity δ

• Plasma parameters: Vacuum toroidal magnetic field at the magnetic axis BT ,
plasma current IP , normalized beta βN , effective charge Zeff and impurity
charge Zimp.

• Pedestal parameters: Pedestal width scale wpre.

• Scan parameters: Electron pedestal top density ne,ped and pedestal top tem-
perature Tped or pressure pped.

In addition, information on the equilibrium volume profile V (ψ) is required. More-
over, it is assumed that electron and ion temperature are equal [13]. In principle,
temperature, density and pressure are connected via the ideal gas law and thus
equivalent input parameters. We will for the following assume that we are given the
pedestal top pressure pped.

2.3 Bootstrap current
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The dimensions of the pedestal, namely height, width and gradient, are connected via
the relation “gradient = height

width ”. Therefore, there are two independent dimensions,
which have to be determined. As discussed in section 2.1, ideal MHD yields a critical
pressure gradient, but provides no relation for the independent pedestal dimensions.
For EPED1, the required relation is given by a simple empirical scaling law [13][41]:

∆ = wpre · βαwpol,ped , αw = 0.5 (42)

with

βpol,ped =
2µ0 · pped

〈Bpol〉2
, 〈Bpol〉 =

µ0 · IP
L(a)

(43)

where ∆ is the pedestal width defined as the average pedestal width of temperature
and density profiles, wpre is a prefactor that is assumed to stay roughly constant
for fixed aspect ratio, βpol,ped is the pedestal poloidal beta, αw is the width scaling
exponent, 〈Bpol〉 is the flux surface averaged poloidal magnetic field and L(a) is the
circumference of the LCFS. This relation now reduces the amount of independent
pedestal dimensions to 1, allowing the study of MHD edge stability in terms of only
a single pedestal dimension. The width relation, which prescribes a path in the
∆-pped space, and results from ideal MHD, which yield growth rates at every point
in the ∆-pped space, are shown in figure 10 (page 19).

For some data sets, the correlation of the introduced width scaling is observed to
be of the order Corr ∼ 0.68 with a standard deviation of σstd ∼ 0.20, indicating
significant scatter of experimental data with respect to the scaling [41]. This scatter
can be seen as an uncertainty of wpre for fixed αw. In addition, for some data sets,
the scaling exponent αw seems to deviate from its proposed value of 0.5 [41]. These
uncertainties have to be considered when determining the prediction error of the
model.

The empirical width scaling in equation 42 might be interpreted as a transport
constraint. P. Snyder and others argue that the constraint is linked to the onset
kinetic ballooning modes (KBM) investigating similarities in the respective scaling
laws [13]. This idea is further developed in EPED1.6 where the prefactor wpre,
which has to be determined experimentally, is replaced by a function G of shaping,
collisionality and further influences that can be obtained from KBM stability evalu-
ation using the “ballooning critical pedestal” technique [42]. Moreover, T. Luda and
others suggest a different empirical pedestal width scaling, originally discovered by
P. A. Schneider, that is proposed to be related to electron temperature gradient
modes (ETG), given by Te,ped/|~∇Te| = 2.0 cm [43][44]. Their recently developed
predictive framework couples core and pedestal transport models and considers, in
contrast to EPED1, differences in electron and ion temperatures Te 6= Ti, distinct
temperature and density pedestal widths as well as influences of gas puff on the
pedestal width [44].

To continue with EPED1, model density and temperature profiles, resulting in a
model pressure profile required for MHD stability calculations, are defined as [13]:

ne(ψ̃) = ne,edge(ψ̃) + an1 · ne,core(ψ̃)

T (ψ̃) = Tedge(ψ̃) + aT1 · Tcore(ψ̃) (44)

2.4 EPED1 model for density and temperature profiles
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with

ne,edge(ψ̃) = ne,sep + an0

[
tanh

(
2(1− ψ̃mid)

∆

)
− tanh

(
2(ψ̃ − ψ̃mid)

∆

)]

Tedge(ψ̃) = Tsep + aT0

[
tanh

(
2(1− ψ̃mid)

∆

)
− tanh

(
2(ψ̃ − ψ̃mid)

∆

)]

ne,core(ψ̃) = Θ

(
1− ψ̃

ψ̃ped

)
·

[
1−

(
ψ̃

ψ̃ped

)αn1]αn2

Tcore(ψ̃) = Θ

(
1− ψ̃

ψ̃ped

)
·

[
1−

(
ψ̃

ψ̃ped

)αT1
]αT2

(45)

and

ψ̃mid = 1− ∆

2
, ψ̃ped = 1−∆

αn1 = αn2 = 1.1 , αT1 = 1.2 , αT2 = 1.4 (46)

where ψ̃ is the normalized poloidal flux, ne,sep and Tsep are the separatrix density and
temperature, an0 and aT0 are linked to the pedestal top density and temperature,
an1 is linked to the density at the magnetic axis, aT1 has to be determined from the
normalized beta βN and Θ(. . . ) denotes the Heaviside function. As the normalized
beta is a boundary condition to be fulfilled by the pressure profile, either an1 or aT1

is a free parameter that weakly influences the shape of the core pressure profile. We
choose a slightly increasing density profile towards the magnetic axis by

an1 = 1 · 1019 m−3 .

In EPED1 the separatrix values are fixed to

ne,sep = αn0 · ne,ped , Tsep = 75 eV (47)

where αn0 = 1/4 is chosen as a typical scaling relation [13]. We retain this scaling,
but adjust the factor to be αn0 = 1/3 for AUG scans. Next, the factors an0 and aT0

are defined so that the profiles approximately match their specified pedestal values

an0 =
ne,ped − ne,sep

1.75
, aT0 =

Tped − Tsep

1.75
(48)

with Tped calculated using the ideal gas law

Tped =
pped

kBnped
, nped = ne,ped + ni,ped = ne,ped · (1 + η)

where kB is the Boltzmann constant, ni,ped is the ion pedestal density and η is the
density scale factor defined in section 2.3.2.

Lastly, from the specified normalized beta, we can calculate the volume averaged
pressure

pav = β ·
B2
T + 〈Bpol〉2

2µ0
, β =

βN
100
· IP [MA]

a[m] ·BT [T]
(49)

2.4 EPED1 model for density and temperature profiles
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where β is the total plasma beta. Subsequently, aT1 is determined such that the
volume average of the resulting pressure profile equals pav:

aT1 =
1〈

ne(ψ̃) · Tcore(ψ̃)
〉
V

·
[

pav

kB · (1 + η)
−
〈
ne(ψ̃) · Tedge(ψ̃)

〉
V

]
(50)

where the volume-average 〈. . . 〉V is evaluated with respect to the equilibrium volume
profile V (ψ). Example EPED1 profiles are shown in figure 9.

Figure 9: EPED1 profiles created with IPED 2 for an AUG-like plasma (see appendix
B.2 “Parameter sets”). Left: Density profiles where pedestal top densities from
purple to red are ne,ped = 4, 5, 6, 7, 8 [1019 m−3]. Right: Temperature profiles
with βN = 1.8 and ne,ped = 5 · 1019 m−3 where pedestal top pressures from purple
to red are pped = 10, 13, 16, 19, 22 kPa.

Figure 10: Left: EPED height-width constraint (green; equation 42) fixing the path
in the ∆-pped diagram as well as MHD stable (blue) and unstable (red) points for
a single density ne,ped; sketch of the MHD stability boundary (orange) separating
∆-pped space; the predicted critical pressure is given by the crossing of the orange
and the green line. Right: Stability scans for multiple densities in edge-current-
density vs pressure-gradient space; the critical pressures for the different densities
create a stability boundary (black).

2.4 EPED1 model for density and temperature profiles
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After creation of the temperature and density profiles according to equation 44,
EPED1 creates a current density profile using the bootstrap current calculated from
the Sauter model (see section 2.3.1) for the pedestal region defined by ∆ and a simple
polynomial core current profile that obeys the boundary conditions of q0 = 1.05 and
an integrated current of IP [13]. The use of a simple polynomial core current profile
is based on the assumption that “details of the [core] current profile are relatively
unimportant” [13]. We will discuss the effect of the core current density later in this
work.

Finally, the EPED1 framework is directly integrated into an equilibrium code that
generates the EPED1 model profiles simultaneously to solving the Grad-Shafranov
equation and uses the stability code ELITE to calculate ideal MHD growth rates
[13]. This is done for a range of pedestal top densities and pressures, which results
in a prediction of the stability boundary [13]. Figure 10 shows such a stability scan;
here performed by the IPED 2 framework, which is based on the EPED1 model,
instead of the EPED1 framework.

2.5 Density dependence and the Super-H mode

A natural space to analyze the results from the EPED model is the pped-ne,ped space,
i.e. the space of scan parameters, which for the remaining work will be shortly called
p-n space. While, in principle, one would not expect a density dependence of the
normalized growth rates γMHD · τA for ideal MHD (as already mentioned in section
2.2), explicit density dependencies enter though both the edge current density, given
mainly by the bootstrap current, and the normalized effective DDFs ωeff1

∗,i · τA and

ωeff2
∗,i · τA. Thus, because of the integrated bootstrap model and also because of

the effective diamagnetic stabilization, ideal as well as diamagnetically stabilized
normalized growth rates that are calculated using the EPED model are expected
to be density dependent. The relation between the p-n space and the s-α space,
which according to section 2.1 seems to be a natural space for ideal MHD stability,
is further discussed in chapter 5.

Figure 11: Marginal stability calculated by the EPED1 framework for a DIII-D
scenario (see appendix B.2 “Parameter sets”) with κ = 1.89 and different triangu-
larities. At high plasma shaping a stable “branch” forms that is only accessible if
the density is varied. Adapted from [15].

2.4 EPED1 model for density and temperature profiles
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In 2015, P. B. Snyder and others discovered that the EPED framework in some cases,
especially for strongly shaped flux surfaces, predicts more than one critical pressure
for a fixed density [15]. This results in a regime of significantly enhanced stable
pedestal pressures, called the Super H-mode, that is only experimentally accessible
if the density is increased while remaining on the peeling mode limited boundary.
The marginal stability as predicted by the EPED framework is shown for different
triangularities in figure 11, where for δ > 0.4 a stable “channel”, the Super H branch,
opens [15]. The reproduction of the Super H solution within the IPED 2 framework
has been attempted and results are discussed in chapter 4.

2.6 The IPED 1 framework

IPED 1 is a predictive framework written by M. G. Dunne which creates model
equilibria, current density and pressure profiles from the same set of input parame-
ters as EPED and then uses HELENA and MISHKA to compute ideal growth rates
[17][18][19]. Moreover, the framework is organized in a modularized form and can
be easily expanded by further models for the bootstrap current or temperature and
density profiles. The code part creating the model equilibria, current density and
pressure profiles is called Profile Creator.

In order to create the model equilibria, firstly, the LCFS is either parametrized as

~γr(t) =

(
Ra(t)
Za(t)

)
=

(
R0(a) + a cos (t+ δ sin(t))

aκ sin(t)

)
, t ∈ [0, 2π] (51)

or identified with a prescribed separatrix. From this, the length La ≡ L(a) as well
as the area Aa of the LCFS can be calculated by integration of the parametrization.
The volume of the LCFS is estimated by Va = 2πRAa, where R is the average radius
of the LCFS. Then, the volume profile is approximated based on power law fits of
several equilibria to:

V (ψ̃) = Va · ψ̃αV , αV ≈ 1.5 (52)

Subsequently, the equilibrium area, minor radius and safety factor profiles are de-
termined to:

A(ψ̃) = V (ψ̃)/(2πR) (53)

r(ψ̃) =

√
A(ψ̃)/π with ψ(r = a) = −µ0IPRa

2πL(a)
(54)

q(ψ̃) = (qmax − 1) ·
[
exp(ψ̃2)− 1

]
+ 1 with qmax =

2πa2BT

µ0IPR
· 1 + κ2

2
(55)

Secondly, the generated model equilibria are used to calculate the EPED profiles and
the Sauter bootstrap current 〈jBS〉B according to sections 2.3.1 and 2.4. Then, the
area-averaged current density is created by truncating the bootstrap current density
jped = 〈jBS〉B at ψ̃ = ψ̃cut ≡ 1− 2∆ and adding a simple current density profile for
the core plasma similar to the EPED framework:

〈jtor〉A (ψ̃) =


c1 + c2Ã(ψ̃) + c3Ã(ψ̃)2 + jped(ψ̃cut) for ψ̃ 6 ψ̃cut

jped(ψ̃) for ψ̃ > ψ̃cut

(56)

2.6 The IPED 1 framework
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with

Ã(ψ̃) = A(ψ̃)/A(ψ̃cut) , c1 = j0 − jped(ψ̃cut)

c2 = jped(ψ̃cut)− j0 − c3 , c3 = 6
[
0.5
(
j0 − jped(ψ̃cut)

)
− jav

]
and

j0 =
2BT

1.3µ0R
, jav =

IP − Iped − I0

A(ψ̃cut)

Iped =

∫ 1

ψ̃cut

jped · ∂ψ̃A dψ̃ , I0 = jped(ψ̃cut) ·A(ψ̃cut)

where 〈. . . 〉A denotes the area-average, precisely defined in the appendix B.1
“Averages”. The area-average fulfills the equality∫ ψ̃0

0
〈. . . 〉A · ∂ψ̃A dψ̃ =

∫
A(ψ̃0)

. . . d~x2 for all ψ̃0 ∈ [0, 1]

where A ∈ R2 is the area enclosed by a flux-surface in the (R,Z)-plane and
A = area(A).

Finally, the resulting pressure and current density profiles as well as the plasma
boundary (equation 51) are then processed by HELENA and MISHKA to calculate
ideal MHD growth rates.

2.6 The IPED 1 framework
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3 Implementation of IPED 2.0

3.1 Structural overview and code development

As part of this thesis, the IPED 1 framework was upgraded to IPED 2. The changes
of this upgrade are discussed in the following. Figure 12 shows the structure of
the Profile Creator code for both IPED versions. There are two major structural
changes from IPED 1 to IPED 2. Firstly, using IPED 1, we experienced that the
current density and pressure profiles were sometimes scaled by HELENA, indicating
a difference between the ad-hoc equilibrium estimate of IPED 1 (equations 51 to
55) and the HELENA equilibrium. Thus, the equilibrium model of IPED 1 was
replaced by a more precise equilibrium estimation procedure based on a fixed set
of flux surfaces. Secondly, since the new equilibrium estimate takes the current
density profile into account to calculate flux coordinates, it is possible to iterate
until the current profile is self-consistent with respect to the set of flux surfaces.
This means that the converged current profile creates flux coordinates resulting in
an equal current density profile again. In addition, a new bootstrap current model
(Redl, see section 2.3.2) as well as new core current profile shapes were implemented.
Lastly, minor corrections, including 〈jtor〉A 6= 〈jtor〉B, were applied and the code was
translated from IDL to Python 3.

(a) Profile Creator of IPED 1

(b) Profile Creator of IPED 2

Figure 12: Code structure of the Profile Creator of IPED for a single pedestal top
density and temperature. Blue: equilibrium model, Green: pressure and current
profile output.

In principle, IPED 2 takes the same input parameters as EPED and IPED 1. How-
ever, it is also possible to pass the ratio of global and pedestal beta, i.e. cβ ≡ pav

pped
,

instead of the normalized beta, which roughly accounts for the effect of profile stiff-
ness. These inputs are connected by equation 49 (page 18). As for IPED 1, the

3.1 Structural overview and code development
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equilibrium estimation was generalized to process a prescribed input separatrix,
overriding the shaping parameters, which is further discussed in section 3.2.2.

Figure 13: Dependencies of the equilibrium estimation. Blue: Procedure, Red:
Input, Green: Output. Dashed arrow: Only if available.

Figure 13 shows the dependencies of the new equilibrium estimation procedure,
which is divided in “flux surface estimation” and “flux coordinate calculation”; the
detailed structure of the equilibrium profile creation is illustrated in figure 12b. At
first, the shape of the equilibrium flux surfaces is parametrized based on an analytical
solution of the Grad-Shafranov equation and approximate shaping profiles κ(r) and
δ(r). This yields volume V (r) and area A(r) profiles as well as the poloidal variation
of the poloidal magnetic field (section 3.2). In order to calculate the poloidal flux
and the safety factor profile, information on the current density profile is needed.
However, since flux coordinates are required for the EPED and bootstrap current
models, an initial edge current density has to be estimated (section 3.3). From
this estimated edge current density, a current density profile is created (section
3.4). Subsequently, the poloidal flux ψ(r) and safety factor q(r) are calculated
with respect to the estimated flux surface geometry (section 3.5). To guarantee a
certain safety factor at the magnetic axis, the axis current density j0 is adjusted
twice during the equilibrium estimation procedure (section 3.5). Then, using the
equilibrium profiles in flux coordinates, EPED profiles and the bootstrap current can
be determined and the resulting current profile is used to recalculate the poloidal
flux. This is repeated until the current profile is self-consistent, which means that it
generates flux coordinates resulting in an equal current density profile again. While
the iterative loop estimates the equilibrium profiles, it is not a proper solution of
the Grad-Shafranov equation. A comparison between the obtained estimate and the
proper Grad-Shafranov solution calculated by HELENA is given in section 3.6.

3.2 Flux surface estimate

3.2.1 Flux surface geometry from shaping parameters

In this section, we derive estimates for equilibrium profiles in spatial coordinates
independent from the details of pressure and current density profiles. Results that
are used for the calculation of equilibrium profiles in flux coordinates are boxed. As
basis for the equilibrium profile estimation, we use the analytical set of flux surfaces
from Miller and others [23]:

~γr(t) =

(
R(r, t)
Z(r, t)

)
=

(
R0(r) + r cos

(
t+ sin−1(δ(r)) sin(t)

)
ZM + rκ(r) sin(t)

)
, t ∈ [0, 2π] (57)

3.1 Structural overview and code development
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where r is the minor radius, κ(r) is the elongation, δ(r) is the triangularity,
R0(r) = Rmaj + ∆s(r) is the major radius, ZM is the vertical position of the mag-
netic axis and the Shafranov shift ∆s(r) is calculated using equation 11 (page 6).
The choice of ZM is free, since the Grad-Shafranov equation is translation invariant
in the Z-direction. In general, the profiles κ(r), δ(r) and R0(r) are given by the
solution of the Grad-Shafranov equation for a specific safety factor and pressure
gradient profile [23]. We estimate the shaping profiles independently from pressure
and current density profiles following Chen and others (see [45]):

δ(r) = δ0 ·
(r
a

)2
, κ(r) = κ0 − 0.3 + 0.3

(r
a

)4
(58)

where κ0 is the elongation at the LCFS and δ0 is the triangularity at the LCFS.

Figure 14: Miller flux surface Γr with R0 = 1.66, r = 0.6, κ = 1.6, δ = 0.4 and
ZM = 0.1. M = (RM , ZM ) is the magnetic axis and P0 = (R0, ZM ) is the flux
surface center. ϕ and ϑ are poloidal angles with respect to M and P0, respectively.

The set of equations 57 and 58 defines our estimate of equilibrium flux surfaces. A
single Miller flux surface Γr = γr ([0, 2π]) is shown in figure 14. To ensure that the
area enclosed by Γr is convex and that the set of flux surfaces is nested, we require
∆s <

a
2 and |δ0| < 0.8. Moreover, we define a general poloidal coordinate τ such

that there is a diffeomorphism between t and τ for every r, i.e. there is a smooth
coordinate transform. Hence, the angle to the magnetic axis ϕ and the angle to
the flux surface center ϑ are general poloidal coordinates. The formulation in a
general poloidal coordinate τ can be useful, since it ensures that the equations can
be directly applied to entities that are not given on a regular grid in t, ϕ or ϑ. It is
remarked that the curve parameter t is in general not equal to the poloidal angles
ϕ and ϑ.

Subsequently, using V =
∫
V div (z ~ez) dV =

∫
∂V z ~ez ·d~σ and equation 57, volume and

area profiles can be reduced to:

V (r) = −2π

∫ τ(2π)

τ(0)
R(r, τ)Z(r, τ)∂τR(r, τ)dτ , A(r) = −

∫ τ(2π)

τ(0)
Z(r, τ)∂τR(r, τ)dτ

(59)

3.2 Flux surface estimate
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Additionally, one can determine the poloidal dependence of the poloidal magnetic
field Bpol. For this purpose, we define a poloidal surface as a surface that is toroidally
symmetric and transverse to the poloidal magnetic field:

Apol(r, ϕ) =


 R(r̃, ϕ) · cos(Φ)

R(r̃, ϕ) · sin(Φ)
Z(r̃, ϕ)

 ∣∣∣∣ r̃ ∈ [0, r], Φ ∈ [0, 2π]

 , (60)

where ~Apol(r, ϕ)‖ ~eϕ is the surface normal vector, Apol = area(Apol) is the surface
area and Φ is the toroidal angle. The poloidal cross section of such a poloidal surface,
spanning from the magnetic axis to a flux surface Γr, is represented by the blue line
in figure 14. Consider a volume bounded by two poloidal surfaces Apol(r, ϕ1) and

Apol(r, ϕ2) as well as the flux surface described by Γr. Then, according to ~∇· ~B = 0,
the flux through Apol(r, ϕ1) must be equal to the flux through Apol(r, ϕ2) for every
r ∈ [0, a]. Thus, we can derive an expression for the differential poloidal flux:

dψ = Bpol · cos
(
∠( ~Bpol, ~Apol)

)
· ∂rApol︸ ︷︷ ︸

Functions of ϕ

dr = const. in ϕ (61)

To generalize, the equations 60 and 61 also hold when exchanging ϕ by τ . This might
be useful to reduce computational costs significantly if including these calculations
in a loop, because no interpolations are needed if τ = t. Next, the upper expression
can be solved for the normalized poloidal variation bvar(r, τ) of the poloidal magnetic
field Bpol(r, τ) = b0(r) · bvar(r, τ), where b0(r) will be determined in section 3.5:

bvar(r, τ) = b̃var(r, τ) ·

(∫ τ(2π)

τ(0)
b̃var(r, τ) · ‖∂τ ~γr(τ)‖2dτ

)−1

(62)

where

b̃var(r, τ) =
{ ∣∣∣cos

[
tan−1

(
∂τZ(r,τ)
∂τR(r,τ)

)
+ tan−1

(
∂rR(r,τ)
∂rZ(r,τ)

)]∣∣∣ · ∂rApol(r, τ)
}−1

∂rApol(r, τ) = 2π ·R(r, τ) ·
√

(∂rR(r, τ))2 + (∂rZ(r, τ))2

(63)

For τ = ϕ, equation 63 can be reduced to the form implemented in IPED 2:

b̃var(r, ϕ) =
{ ∣∣∣sin [tan−1

(
∂ϕZ(r,ϕ)
∂ϕR(r,ϕ)

)
− ϕ

]∣∣∣ · ∂rApol(r, ϕ)
}−1

Apol(r, ϕ) = π · (R(r, ϕ) +RM ) ·
√

(R(r, ϕ)−RM )2 + (Z(r, ϕ)− ZM )2

(64)

It is remarked that the poloidal areas in equation 64 need to be evaluated numeri-
cally, as the transformation ϕ(t) is in general a complicated function. We also define
a circumference coordinate, which is used to determine the safety factor later:

Cr(ϕ) =

∫ ϕ

0
‖∂ϕ ~γr(ϕ)‖2dϕ (65)

3.2 Flux surface estimate
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3.2.2 Flux surface geometry from a prescribed separatrix

Instead of supplying shaping parameters Rmaj, a, κ0 and δ0 (see figure 13), it is also
possible to pass an experimentally determined separatrix ~γSEP(τ) = (Rs(τ), Zs(τ))
to the Profile Creator code. Then, the shaping parameters can be calculated from
the input separatrix:

Rmaj = 1
2 · (max (Rs) + min (Rs)) κ0 = 1

2 · (κ↓ + κ↑)

a = 1
2 · (max (Rs)−min (Rs)) δ0 = 1

2 · (δ↓ + δ↑)

ZM = 1
2 · [Zs (amax (Rs)) + Zs (amin (Rs))]

(66)

where

κ↓ = 1
a · (ZM −min (Zs)) δ↓ = 1

a · (Rmaj −Rs (amin (Zs)))

κ↑ = 1
a · (max (Zs)− ZM ) δ↑ = 1

a · (Rmaj −Rs (amax (Zs)))
(67)

In the upper equations amax and amin are the argument maximum and argument
minimum, respectively. We assume that the area enclosed by the input separatrix
is convex and that the separatrix is nearly untilted, i.e.

|Zs (amax (Rs))− Zs (amin (Rs)) | � 2a .

For the following, we want to define an assimilated set of flux surfaces that estimates
the true equilibrium well while keeping computational cost low. For this purpose,
we reshape the Miller flux surfaces so that they approach the input separatrix for
r → a in a purely geometrical manner. As the geometric profiles are integrated
quantities, it is assumed that the estimated equilibrium profiles are not strongly
influenced by the detailed geometry of the flux surfaces. At first, we redefine the
shaping parameters κ0 and δ0 from equations 58 and 66 to be step functions of t:

κ0(t) =


κ↑ for t 6 π

κ↓ for t > π
, δ0(t) =


δ↑ for t 6 π

δ↓ for t > π
(68)

Then, the set of equations 57 and 58 together with 68 defines a set of up-down
asymmetric Miller flux surfaces ~γr

AMS(t) = (Rm(r, t), Zm(r, t)), which is used as the
basis for reshaping. Subsequently, we introduce a reshape cut-off parameter ξ that
will be discussed later in this section. For r 6 ξ · a, the assimilated flux surfaces
are given by the up-down asymmetric Miller flux surfaces. For r > ξ · a, a linear
distance assimilation with respect to the input separatrix is performed:

~γr(ϑ) = αL(r, ϑ) ·
[(

Rm(r, ϑ)
Zm(r, ϑ)

)
−
(
R0(r)
ZM

)]
+

(
R0(r)
ZM

)
(69)

αL(r, ϑ) =
1

l(r, ϑ)

[
lc(ϑ) +

(
ls(ϑ)− lc(ϑ)

lm(ϑ)− lc(ϑ)

)
· (l(r, ϑ)− lc(ϑ))

]
(70)

with

l(r, ϑ) =

∥∥∥∥( Rm(r, ϑ)
Zm(r, ϑ)

)
−
(
R0(r)
ZM

)∥∥∥∥
2

, ls(ϑ) =

∥∥∥∥( Rs(ϑ)
Zs(ϑ)

)
−
(
Rmaj

ZM

)∥∥∥∥
2

lc(ϑ) = l(ξ · a, ϑ) , lm(ϑ) = l(a, ϑ)
(71)

3.2 Flux surface estimate
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where αL(r, ϑ) is the length rescale factor that adjusts the distances between the
geometric middle point and the flux surface so that the shape of the separatrix is
assimilated as r → a. The reshaping is centered around the geometric middle point
(R0(r), ZM ), which directly implies a reshaping independent of the shift of R0(r).
Moreover, the distance-based assimilation for fixed ϑ is the most basic choice for a
pure geometric assimilation. Finally, the cut-off parameter has to be small enough
so that the flux surfaces are nested; at least the area enclosed by ~γSEP has to contain
~γAMS
ξ·a . However, choosing ξ too low will result in strangely shaped flux surfaces near

the magnetic axis, while choosing ξ too large will result in a vanishing assimilation
zone and therefore in diverging magnetic fields. The default choice in the Profile
Creator code is ξ = 0.6. In addition, the constant assimilation factor could be
replaced by a polynomial of degree greater 0, which would also allow to set ξ = 0:

αL(r, ϑ)|ξ=0 =

(
ls(ϑ)− lm(ϑ)

lm(ϑ)n+1

)
· l(r, ϑ)n + 1 (72)

where n > 0 is the degree of the assimilation polynomial. One can directly see that
equation 70 is equivalent to an assimilation polynomial of degree 0. While ξ = 0
implies smooth transitions, the higher order assimilation polynomials might squeeze
the flux surfaces near the separatrix. However, ξ = 0 with n = 1 might also be a
considerable geometric assimilation.

Figure 15: Assimilated flux surfaces for shot AUG33173 created from equation 70
with ξ = 0.6. Orange: Input separatrix, Blue: Up-down asymmetric Miller flux sur-
faces, Violet: Surface at r = ξ · a, Red: Assimilated flux surfaces. Dashed/Dotted:
Distances from geometric middle point (R0(r), ZM ). a) Comparison of up-down
asymmetric Miller separatrix and input separatrix showing distance deviations,
b) Set of assimilated flux surfaces.

Figure 15 shows the set of flux surfaces created from equation 70. To summarize, we
defined a fast simple geometric assimilation procedure based on Miller flux surfaces
that preserves area and volume of the input separatrix in addition to the shaping
moments δ and κ. Hence, the resulting set of flux surfaces is replacing the equations
57 and 58 in the section 3.2.1.

3.2 Flux surface estimate
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3.3 Edge current density profile

3.3.1 Initial edge current density estimate

In order to calculate the poloidal flux, information on the current density profile
is needed. However, the EPED and bootstrap models already require equilibrium
profiles in poloidal flux coordinates ψ(r). Thus, the initial current density profile
j(r) has to be estimated. At first, we use the pedestal width scaling from the EPED
model and translate the width in normalized flux coordinates w to a half-width in
spatial coordinates wr to be used in a Gaussian peak later:

wr ≈
a

2
·
[
1−
√

1− 2w
]

(73)

In the above estimate, we assumed that the peak width is 2w and that r ∼
√
ψN .

The bootstrap current peak density is roughly estimated by the low collisionality
limit [1]:

jBS ≈
√

a

Rmaj
· 1

〈Bpol〉
· ∆p

∆r
(74)

with the pressure gradient ∆p
∆r approximated by

∆p

∆r

∣∣∣∣
ped,mid

≈
pped

1.5 · wr
,

∆p

∆r

∣∣∣∣
ped,top

≈
pav − pped

a
(75)

where pped is the pedestal top pressure, given as input to IPED, and pav is the
average pressure, determined by equation 49 (page 18). Then, we define the edge
current estimate as

〈jtor,ped〉A (r) ≡ jBS,top + jBS,peak · exp

(
−(r − (a− wr))2

w2
r

)
(76)

with
jBS,top = max

{
0, jBS|ped,top

}
jBS,peak = max

{
0, jBS|ped,mid − jBS|ped,top

}
.

Finally, the edge current cutoff is set to rped ≡ a− 2wr.

3.3.2 Edge current density from bootstrap current models

For an edge current density obtained from the Sauter or Redl model〈
j‖
〉
B

= σneo

〈
E‖
〉
B

+
〈
j‖,BS

〉
B

, the area-averaged edge current density is given by:

〈jtor,ped〉A =
σneoUloop

2π 〈R〉A
+
〈R〉A
RM

·
〈
j‖,BS

〉
B

, 〈R〉A =
∂AV

2π
(77)

where Uloop is the applied loop voltage and we used

〈. . . 〉B =
1

BT
∂V

∫
. . . ·B 2πRdA ≈ 2πRM ∂VA ∂A

∫
. . . dA =

RM
〈R〉A

〈. . . 〉A (78)

In addition, we approximated 〈1/R〉A ≈ 1/ 〈R〉A for the Ohmic current density as
well as

〈
j‖
〉
A
≈ 〈jtor〉A and E‖ = Uloop/(2πR).

The obtained edge current density (equation 77) usually has a peak near the pedestal
top. The onset of this peak, being equivalent to the edge current cutoff rped, is
defined to be at ψ̃ped = 2ψ̃peak − 1 with the peak localized at ψ̃ = ψ̃peak.

3.3 Edge current density profile
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3.4 Current density profile creation

In this section, we create a current density profile 〈jtor〉A based on a prescribed edge
current density 〈jtor,ped〉A that is either given by the edge current estimate (equation
76) or calculated from a bootstrap current model (equation 77). Analogously to
the EPED framework, this is done by using simple model functions for the core
current density profiles. While the edge current density is well described by the
combination of bootstrap and Ohmic current, the core current density is significantly
affected by further phenomena like current diffusion and current driving heating
sources. However, the direct influence of the precise core current density shape
on the pedestal stability is assumed to be small, because ELMs are almost edge
localized. For this reason, instead of rigorously calculating the core current density,
the core current density might be modeled with simple functions that obey certain
boundary conditions. Nevertheless, we will show that there is an indirect influence
of the core current density shape on the pedestal stability caused by the change in
total poloidal flux.

Four different core current shapes were implemented in IPED 2. The core current

shapes ĵ ĵ0 ,̂jav
tor,core are defined in normalized area coordinates x ∈ [0, 1] and obey the

following boundary conditions

ĵ ĵ0 ,̂jav
tor,core(0) = ĵ0 , ĵ ĵ0 ,̂jav

tor,core(1) = 0 as well as

∫ 1

0
ĵ ĵ0 ,̂jav
tor,core(x)dx = ĵav .

The choice of coordinates directly implies that the core model functions and thus the
core flux are stable with respect to the iteration loop, since x is current-independent,
meaning that there is no need of convergence for the core current profile. In the
following, the implemented core current shapes are introduced:

• Parabolic model: No additional boundary conditions

ĵ ĵ0 ,̂jav
tor,core(x) =

(
3ĵ0 − 6ĵav

)
· x2 −

(
4ĵ0 − 6ĵav

)
· x+ ĵ0 (79)

• Quartic model: Flattened at x = 1

ĵ ĵ0 ,̂jav
tor,core(x) =

(
2.5ĵ0 − 7.5ĵav

)
· (1− x)4 −

(
1.5ĵ0 − 7.5ĵav

)
· (1− x)2 (80)

• Power model: Positive and monotonously decreasing, Flattened at x = 0

ĵ ĵ0 ,̂jav
tor,core(x) = −ĵ0 · (xs − 1) , s =

[
1− ĵav

ĵ0

]−1

− 1 (81)

• Double power model: Positive and monotonously decreasing, Flattened at
x ∈ {0, 1}

ĵ ĵ0 ,̂jav
tor,core(x) = ĵ0 · (x2s − 2xs + 1) (82)

s = −
3s̃+ 3 +

√
(3s̃+ 3)2 − 8s̃ · (s̃+ 1)

4s̃
, s̃ =

ĵav

ĵ0
− 1

3.4 Current density profile creation
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Figure 16: Core current shapes for ĵ0 = 1 and ĵav = 0.47. Blue: Parabolic, Green:
Quartic, Violet: Power, Red: Double Power.

The parabolic core current profile is equivalent to the core current density used by
IPED 1 (see equation 56 on page 21). Figure 16 shows the different core current
shapes. While they behave similar for intermediate ratios ĵav/ĵ0 ∼ 0.5, their behav-
ior differs for ĵav/ĵ0 → {0 or 1}. It has to be remarked that the power and double
power profiles are only valid for ĵav/ĵ0 ∈ (0, 1), which limits their usability.

Finally, the total current profile can be assembled from the pedestal and core current
densities:

〈jtor〉A (r) =


ĵ ĵ0 ,̂jav
tor,core

(
A(r)

A(r=rped)

)
+ jped(r = rped) for r < rped

jped(r) for r > rped

(83)

with

ĵ0 = j0 − jped(r = rped) , ĵav =
IP − Iped − I0

A(r = rped)

Iped =

∫ a

rped

jped · ∂rA dr , I0 = jped(r = rped) ·A(r = rped)

where jped ≡ 〈jtor,ped〉A and the edge current density is truncated at rped. The axis
current density is initially given by

j0 =
2BT

µ0q0R0(0)
(84)

but adjusted twice during the equilibrium profile estimation as described in the
following section, where the default axis safety factor is set to the value used by
the EPED framework of q0 = 1.05 [13]. To summarize, the resulting total current
density profile retains the prescribed pedestal current while satisfying 〈jtor〉A (0) = j0
as well as an integrated total current of Itot = IP for a set of core current shapes.

3.5 Poloidal flux and safety factor calculations

The area-averaged current density profile generates a poloidal flux within the esti-
mated flux surface geometry (section 3.2). Using Ampère’s law and equation 62, the

3.5 Poloidal flux and safety factor calculations
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poloidal magnetic field and flux are given by:

Bpol(r, ϕ) = µ0 · I(r) · bvar(r, ϕ) , I(r) =

∫ r

0
〈jtor〉A · ∂rA dr (85)

ψ(r) =

∫ r

0
Bpol(r, ϕ) · ∂rApol(r, ϕ) dr ∀ϕ ∈ [0, 2π] (86)

By construction (see equation 61), the poloidal flux in equation 86 is well-defined.
The flux profile is bijective only if the current profile I(r) has no zeros, which
is usually fulfilled. Then, r and ψ can be used to describe the radial variations
equivalently. With the results from equation 59, this directly grants the geometrical
profiles V (ψ), A(ψ) and r(ψ). Interpolating the magnetic field to polar coordinates,
it is also possible to calculate the spatially resolved current density:

jtor =
1

µ0
·
(
~∇2D × ~Bpol

)
,

~Bpol

Bpol
=

∂ϕ~γr(ϕ)

‖∂ϕ~γr(ϕ)‖2
(87)

For estimation of the toroidal magnetic field Btor = F (ψ) ·R−1, we roughly approx-
imate F (ψ) from the Grad-Shafranov equation:

dF 2

dψ
= dψ

〈
F 2
〉
≈ 2µ0

(
〈R〉 〈jtor〉

2π
− 〈R〉2 dψp

)
, F (ψ(a)) = RMBT (88)

Since there is no information on dψp before the second loop iteration (see figure
12b), the toroidal magnetic field is approximated by the vacuum toroidal magnetic
field in these cases, i.e. F (ψ) ≡ RMBT . Two different approaches were implemented
to calculate the safety factor profile q as IPED 2 developed. The first is based on a
flux derivative, the second approach tracks the field line for one poloidal turn and
counts the number of toroidal turns:

q(ψ) =
dφ

dψ
, φ =

∫ r

0
Btor(r) · ∂rA(r) dr (89)

q(r) =
1

2π

∫ 2π

0
∂CrΦ · ∂ϕCr(ϕ) dϕ , ∂CrΦ =

1

R(r, ϕ)
· Btor(r, ϕ)

Bpol(r, ϕ)
(90)

both yielding equivalent results. Moreover, assuming sufficiently smooth profiles, we
can approximate the axis safety factor by:

q(0) = lim
ψ→0

φ(ψ)

ψ
= lim

r→0

φ(r)

ψ(r)
≈ Btor(0)

j0
· const. (91)

where j0 = 〈jtor〉A (0) and const. is a constant depending on the fixed set of flux
surfaces only. The axis current density j0 is a free parameter in the current profile
creation and might be chosen so that q(0) equals a given fixed value q0. As mentioned
in the previous section, the initial current density is estimated by the circular flux
surface case j0 = (2BT ) · (µ0q0R0(0))−1. However, shaping and the Shafranov shift
can influence this relation. For this reason, we define the axis current scale:

Cj =
q(0)

q0
(92)

3.5 Poloidal flux and safety factor calculations
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Therefore, following approximation 91, we can adjust j0
adjust→ Cj ·j0 so that q(0) = q0,

where Cj only depends on shaping. This is called “j0 adjustment” in figure 12b
and performed twice during profile creation. Initially, after the first calculation of
q(ψ) using the current profile estimate, and secondly, after the first adjustment of
the toroidal field Btor using equation 88. The second adjustment is usually small.
Nevertheless, it is necessary since the axis current adjustment is based on the as-
sumption that Btor(0) is constant, which is significantly violated at this step. Both

determined axis current scales are indexed as C
(i)
j where i = 1, 2 is their respective

index. Finally, the corrected axis current j0 granting q(0) = q0 is given by

j0 =

(∏
i

C
(i)
j

)
· 2BT
q0µ0R0(0)

(93)

where the product is over all previously determined axis current adjustments C
(i)
j .

The empty product is set to 1.

After calculation of the safety factor and poloidal flux profiles, temperature and
density profiles are generated by the EPED1 model and edge current densities are
obtained from the bootstrap current models. Subsequently, the resulting current
density profile is used to recalculate the poloidal flux and safety factor profiles. This
is repeated until the current profile has converged.

3.6 Convergence and verification

In the previous sections of this chapter, we defined an iterative process to obtain a
self-consistent current density profile with respect to a fixed flux surface geometry
that embeds both the EPED model and a model for the bootstrap current. How-
ever, it remains to define and discuss convergence of the current density profile and
to compare the equilibrium estimate to the equilibrium profiles calculated by the
HELENA code.

To define convergence, we have to measure differences between current density pro-
files and thus introduce an appropriate metric. Firstly, it is natural to compare
the profiles on a fixed domain. Since spatial coordinates are independent of other
quantities, we will define convergence for current density profiles in spatial coor-
dinates, which are in this section simply referenced as j. An established measure
for local differences between bounded functions is the L∞-norm ‖ · ‖∞. To get a
scale-independent metric, we define a normalized distance between j and j̃ as:

d∞(j, j̃) =
‖j − j̃‖∞
IP /A|r=a

(94)

A rigorous proof of convergence for the defined iteration procedure would require to
show that the loop, represented by a non-linear operator mapping the current profile
at iteration step n to the next current profile at step n + 1, converges to fix point.
However, properly defining the loop operator or rigorously proofing convergence to
a fix point is challenging. For this reason, we will instead discuss the observed
convergence properties based on performed runs.

3.6 Convergence and verification
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Figure 17: Typical convergence process of the iterative equilibrium estimation pro-
cedure. Black: Initial current density estimate with low collisionality bootstrap
current (1st “Current density estimate” in figure 12b on page 23), Dark blue: Cur-
rent density estimate after the first “j0 adjustment” with low collisionality bootstrap
current (2nd “Current density estimate” in figure 12b), Light blue: Current density
before the second “j0 adjustment” with Sauter or Redl model bootstrap current
(1st iteration in figure 12b), Green: Current density profiles of the further iter-
ations, where a brighter color indicates a higher iteration step n (visually nearly
indistinguishable). a) Convergence of the current profile. b) Decadic logarithm of
the normalized step distance d∞(j(n), j(n−1)) for the n-th iteration step. The dashed
horizontal line marks the numerical convergence threshold, the solid horizontal line
marks the numerical resolution limit. The purple line is a linear fit to the iteration
steps n > 3 up to the numerical resolution limit, indicating exponential convergence.

The convergence process of a current density profile is illustrated in figure 17a and
figure 17b shows the decadic logarithm of the normalized step distance d∞(j(n), j(n−1))
for the n-th iteration step. For a broad range of parameter sets, the normalized
step distance is observed to decrease roughly exponentially after the toroidal field
correction (equation 88), i.e. for n > 3. Nevertheless, rare exceptions from this be-
havior were observed, where for high core pressures, the EPED model might create
a “spike” in the derivative of the temperature profile (see figure 18a) which implies
a disturbance of the bootstrap current at the position of the spike. This disturbance
of the edge current is sometimes observed to prohibit convergence with respect to
the comparably strict convergence norm ‖ · ‖∞ because the “spike” (numerically)
trembles around the edge cutoff at r = rped. The “spike” is a direct consequence of
the analytical definition of Tcore(ψ̃) (equation 45 on page 18). Finally, one can see
that a numerical precision limit is reached around d∞(j(n), j(n−1)) ∼ 10−12.

We assume a profile to be converged after N > 3 steps if:

d∞(j(N), j(N−1)) < 10−9 ⇔ Converged (95)

Assuming that the exponential decrease of the normalized step distance, as shown
in figure 17b, holds for n → ∞, we can estimate the relative approximation error

3.6 Convergence and verification
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Figure 18: a) EPED temperature profile (blue) created using equation 44 (page 17)
and its derivative ∂ψ̃T (green) for the parameters aT1 = 1, aT0 = 0.1 and ∆ = 0.1,
showing a “spike” at the pedestal top location.

b) Approximation error as defined in equation 98 of the minor radius profile r(ψ̃)
(black), area profile A(ψ̃) (green), volume profile V (ψ̃) (red) and safety factor pro-
file q(ψ̃)|0.8a6r6a (blue). Every data point represents approximation errors for AUG,
DIII-D and ITER like equilibrium estimates by IPED 2 (see appendix B.2 “Parame-
ter sets”) for densities ne,ped = 2, 6, 10 [1019 m−3] and pressures from 10 to 35 kPa
or 30 to 150 kPa for the AUG/DIII-D or ITER like case, respectively; the error bars
display the standard deviation of the approximation error.

of the converged solution j(N) relative to the true limit j∗ = lim
n→∞

j(n), which is the

true self-consistent solution, by:

‖j(N) − j∗‖∞ 6
∑
n>N

‖j(n+1) − j(n)‖∞ ≈
∑
n>N

c1 · e−c2n 6

6
∫ ∞
N−1

c1 · e−c2ndn ≈ ‖j
(N) − j(N−1)‖∞

c2

⇒ d∞(j(N), j∗) <
10−9

c2
(96)

with the approximation

‖j(n+1) − j(n)‖∞ ≈ c1 · e−c2n (97)

where c1 can be interpreted as a measure for the quality of initial estimate and c2 is
an approximation speed that, for the observed parameter space, is roughly bounded
by 0.5 6 c2 6 3. Thus, in the limits of the approximation error, the converged
solution is self-consistent with respect to the fixed flux surface geometry.

Equally important, a benchmark that rates the converged equilibrium estimate of
IPED 2, i.e. V (ψ), A(ψ), r(ψ) and q(ψ), against the Grad-Shafranov solution given
by the HELENA code has to be performed. For this reason, we introduce a new
approximation error δ2f measuring a normalized global deviation between the IPED

3.6 Convergence and verification
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2 estimated profile fIPED and its respective HELENA solution fHEL based on the
L2-norm ‖ · ‖2 in normalized poloidal flux coordinates

δ2f =
‖fHEL − fIPED‖2
‖fHEL‖2

(98)

where f ≡ V,A, r, q. Here, the global L2-norm was chosen over the local L∞-
norm, because we are interested in the global deviation of the equilibrium profiles,
especially for the area and volume profiles which are used to normalize the pressure
profile and the current density profile. The approximation error of the safety factor
profile is restricted to the pedestal, here roughly defined as 0.8a 6 r 6 a, since the
safety factor only influences the equilibrium estimate through the bootstrap model,
i.e. through the edge current density.

Figure 18b shows the approximation error of the equilibrium profiles over a range of
normalized betas, where each data point represents approximation errors for AUG,
DIII-D as well as ITER like equilibrium estimates generated by IPED 2. One can see
that the approximation error increases with increasing normalized beta. However,
while the errors for the geometric profiles are below 3% for βN 6 3, the error of the
safety factor is roughly one order of magnitude larger. Typical safety factor profiles
generated by IPED 2 and their respective HELENA solutions are displayed in figure
19. It is supposed that the relatively large error of the safety factor is related to
the rough approximation in equation 88 (page 32), which is not a proper solution
of the force balance. Furthermore, because δ2q 6� 1, the effect of deviations of the
safety factor on the equilibrium estimate was examined numerically and analytically.
Firstly, the numerical analysis was performed for AUG and DIII-D like scenarios by
substitution of q → (1 + δq) · q into equation 36 (page 15), where δq is the uni-
form/local deviation of the safety factor, and covered (unperturbed) collisionalities
up to νe,∗ ≈ 30. As a result, deviations of δq = ±20% implied changes to the boot-
strap current peak value of 6 0.1% at low collisionalities up to ∼ 18% at the highest
collisionalities. In contrast, the effect on the total poloidal flux was generally less
than 1%. It is proposed that the effect on the poloidal flux is low, because deviations
of q mainly affect the relatively small high-collisionality edge current density, which

Figure 19: Safety factor profiles generated by IPED 2 (dashed) and their respective
HELENA solutions (solid) for an AUG like scenario with κ = 1.6, δ = 0.4 and
ne,ped = 6 · 1019 m−3 (see B.2 “Parameter sets”). Green: βN = 1.8, Blue: βN = 3.6.
Left: pped = 10 kPa, Right: pped = 35 kPa.

3.6 Convergence and verification
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has little influence on the integrated core current Icore = IP − Iped and thus on the
total poloidal flux. Secondly, to make analytical progress, the bootstrap current is
roughly approximated by jBS ∼ 1/(1+

√
νe,∗+cZνe,∗) with cZ ≡ (2Zeff)−2 (see [46]).

Then, using δνe,∗ = δq, the non-linear error propagation yields:

|δjBS| =
|√νe,∗(1−

√
1 + δq)− cZνe,∗ δq|

1 +
√
νe,∗(1 + δq) + cZνe,∗(1 + δq)

→


|δq|/(1 + δq) for νe,∗ →∞

0 for νe,∗ → 0
(99)

From this, one can see that in general the non-linear error propagation decreases
with increasing effective charge or decreasing collisionality. Inserting the parameters
of the most liming case that was numerically analyzed (Zeff = 1.3 and νe,∗ = 30)
results in |δjBS| ≈ 16%, which is close to the result obtained from the numerical
analysis of |δjBS| ≈ 18%. In conclusion, the error of the safety factor profile might
be treated as an error of the edge current density that is roughly described by
equation 99, whereas the effect on the total poloidal flux and thus on the gradients
∂ψ is generally small.

Finally, to rate the flux surface assimilation procedure introduced in section 3.2.2,
the approximation errors using the separatrix and plasma parameters from AUG
Shot 33173 were determined. The resulting approximation errors, comparing IPED
2 and HELENA in the case of a prescribed input separatrix, are δ2V ≈ 0.9%,
δ2A ≈ 1.5%, δ2r ≈ 1.6% and δ2q ≈ 15%, where βN = 2.2, which aligns with the
results presented in figure 18b.

3.6 Convergence and verification
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4 Results from IPED 2.0

In this chapter, the newly implemented IPED 2 framework is used to study MHD
stability in both the p-n space as well as the s-α space. Firstly, in section 4.1, an
attempt is made to reproduce the DIII-D Super H solution predicted by the EPED-
ELITE framework (see [15]). Moreover, the influence of the core current density, the
bootstrap current and certain EPED model parameters on the stability boundary
was examined. Then, in section 4.2, trends of the stability boundary as well as a
scaling for the critically stable pedestal top pressure are presented, where we used
AUG like plasma parameters including negative triangularity scenarios.

This paragraph shortly summarizes the creation procedure of the stability diagrams.
Following sections 2.1 and 2.2, we define a single IPED 2 scanned point or profile
set, identified by its pedestal top pressure and density, to be MHD stable if (see
[17]):

γMHD 6 γthr ⇔ Ideally stable (100)

γMHD 6 γthr & γMHD <
1

2
· ωeff
∗,i ⇔ Diamagnetically stable (101)

where γthr is a numerical threshold for the normalized growth rate and ωeff
∗,i is ei-

ther ωeff1
∗,i or ωeff2

∗,i as defined in section 2.2. Following M. G. Dunne and others
(see [17]), we set γthr ≡ 0.04/τA if not otherwise specified, identifying growth rates
γMHD 6 γthr as negligibly small. Then, for γthr ≡ 0.04/τA, the stability bound-
ary γMHD(pped, ne,ped) = γthr is created using triangular interpolation between the
data points. However, since triangular interpolation yields rough grid-like bound-
aries for γthr ≡ 0, we create the stability boundaries in this case by connecting
the critically stable pressures γMHD(pped) = γthr for each density. Finally, for
all IPED 2 scans, growth rates were calculated for the toroidal mode numbers
n = 1, 3, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, where a finer resolution was chosen for the
low mode numbers and we included all mode number used in [15]. It can be seen
later that the selection of mode numbers is sufficiently dense, meaning that the differ-
ences between stability boundaries corresponding to two “adjacent” mode numbers
are generally small.

4.1 DIII-D: Search for a Super H mode solution

At first, we try to reproduce the Super H solution predicted by the EPED-ELITE
framework (see [15]). For this purpose, all stability boundaries in this section are
created using the same input parameters as specified in [15], which are also listed
as “DIII-D” in the appendix B.2 “Parameter sets”, as well as the Sauter model for
calculating the bootstrap current and the parabolic core current model.

Figure 20 shows IPED 2 scans for triangularities δ = 0.4 and δ = 0.5 with γthr ≡ 0
(black boundary) and γthr ≡ 0.04/τA (blue boundary) in comparison to the Super H
solution from EPED-ELITE (green boundary). The “standard” H solution, i.e. the
lowest critical pressures, of the EPED-ELITE boundary is well reproduced by the
γthr ≡ 0 case. However, although there are multiple IPED 2 scanned points (circles)
within the predicted Super H mode region, such a Super H solution is not found
with IPED 2. Instead, we observe a “pressure drop” region at intermediate densi-
ties connecting the low mode number limited and high mode number limited critical

4.1 DIII-D: Search for a Super H mode solution
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Figure 20: Ideal stability boundaries using DIII-D parameters with κ = 1.89. Left:
δ = 0.4, Right: δ = 0.5. Black boundary: γthr ≡ 0, Blue boundary: γthr ≡ 0.04/τA,
Green: Super H mode solution predicted by the EPED-ELITE framework (from
[15]). Blue circles: Single IPED2 scanned point with γMHD 6 0, Red circles: Single
IPED2 scanned point with γMHD > 0. The numbers denote the most destabilizing
toroidal mode numbers at the equally colored stability boundary. For three destabi-
lizing modes, the corresponding mode structure is displayed, where the domain was
restricted to 0.8 6 ψ̃ 6 1.

Figure 21: Stability boundaries using DIII-D parameters with κ = 1.89 and δ = 0.4.
Left: γthr ≡ 0, Right: γthr ≡ 0.04/τA. Black: Ideally stable, Light Blue: Diamag-
netically stable using ωeff1

∗,i , Dark Blue: Diamagnetically stable using ωeff2
∗,i , Green:

Super H mode boundary from [15]. Solid: All toroidal mode numbers. Dashed:
Only n > 5 considered for comparison to [15].

pressures, in the following called “low-n limited boundary” and “high-n limited
boundary”, respectively. We will conclude later that the high-n limited boundary
is destabilized by ballooning modes while the low-n boundary is destabilized by low
mode number coupled peeling-ballooning modes or kink/peeling modes (see chap-
ter 5). Consequently, they might also be referred to as the “ballooning” and the
“peeling” boundary, respectively. In general, the most destabilizing mode numbers
increase with increasing density, where the transition from low to high limiting mode
numbers seems to be smoother for γthr ≡ 0.04/τA. Examples for mode structures
at the stability boundary are also displayed in figure 20. Furthermore, one can see
that there are some gaps between the IPED 2 scanned points. For these equilibria,
the corresponding growth rates were identified as numerical defects since MISHKA

4.1 DIII-D: Search for a Super H mode solution
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failed to calculate real eigenvalues ω2. Finally, the criterion γthr ≡ 0.04/τA results in
noticeably higher pressures but retains the qualitative shape of the stability bound-
ary.

Next, as shown in figure 21, the effects of different stability conditions on the stability
boundary are examined. Diamagnetic stability increases the critical pressures at the
high-n limited boundary, whereas the low-n limited boundary is nearly unaffected by
diamagnetic stabilization. It is remarked that applying diamagnetic stabilization to
low mode numbers is inconsistent anyway, because the diamagnetic stability criterion
is only valid for n� 1 (see section 2.2). For high mode numbers, the linear criterion
ωeff1
∗,i has a stronger stabilizing effect compared to the bi-linear criterion ωeff2

∗,i , since
the latter saturates for n · q95 > 27.7 (section 2.2). Furthermore, restricting mode
numbers to n > 5 (dashed boundaries) as in [15] implies a small change to the low-n
limited boundary for ideal stability. A strong combined stabilization of diamagnetic
stability and the restriction to n > 5 is observed at low to intermediate densities ne,
where the high mode numbers n are strongly diamagnetically stabilized ω∗,i ∼ n/ne
and the lowest mode numbers are completely ignored. The restriction to n > 5
is inappropriate if it affects the stability boundary, i.e. if the dashed and solid
lines in figure 21 split up, which is usually the case at low densities, especially in
combination with diamagnetic stabilization. Finally, the qualitative effects of the
different stability conditions are equivalent for γthr ≡ 0 and γthr ≡ 0.04/τA. In
conclusion, the ideal stability criterion seems to be the best choice for reproducing
the “standard” H solution of [15] and we observed no tendencies towards a Super H
solution for any of the applied stability criteria.

Figure 22: Ideal stability boundaries using DIII-D parameters with κ = 1.89
and δ = 0.4. Left: γthr ≡ 0, Right: γthr ≡ 0.04/τA. Black: Uloop = 0 V, Light
Blue: Uloop = 0.1 V, Dark Blue: Uloop = 0.2 V, Red: Decreased bootstrap current
jBS → 0.9 · jBS , Yellow: Increased bootstrap current jBS → 1.1 · jBS , Dashed gray:
Super H mode boundary from [15].

As already discussed in section 3.6, there might be differences in the edge current
densities between EPED-ELITE and IPED 2 implied by the error of the predicted
safety factor δq. For this reason, we will test if this deviation can prevent the predic-
tion of a Super H solution. Assuming that the parameter region of interest, i.e. the
region where we expect a Super solution, is pped > 10 kPa and ne,ped 6 7 ·1019 m−3,
IPED 2 calculates unperturbed collisionalities νe,∗ 6 1.6. Then, inserting |δq| ≈ 10%
for βN = 1.8 (see figure 18b on page 35) into equation 99 yields an error propaga-
tion to the bootstrap current of |δjBS| 6 3.1%. It is remarked that the largest
deviation |δjBS| = 3.1% is reached only at the lowest pressure and highest den-
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sity value considered. The stability boundaries for the most pessimistic scenario
νe,∗ → ∞ ⇒ |δjBS| ≈ 10% are displayed in figure 22, where the bootstrap current
(equation 34 on page 14) was modified by a prefactor of 0.9 or 1.1. One can see that
the bootstrap current has nearly no effect on the high-n boundary but an increased
bootstrap current shifts the “pressure drop” to higher pressures and decreases stabil-
ity at the low-n boundary. Finally, the effect of applied loop voltage was tested. As
a result, increasing loop voltage mainly affects the low-n boundary, where increasing
voltage decreases stability, as expected because this region is mainly kink/peeling
limited.

Figure 23: Ideal stability boundaries using DIII-D parameters with κ = 1.89 and
δ = 0.4. Left: γthr ≡ 0, Right: γthr ≡ 0.04/τA. Colored: Stability boundaries
considering only a single toroidal mode number n (see labels in the plot). Solid
black: Stability boundary, Dashed black: Super H mode boundary from [15].

Figure 24: Ideal stability boundaries using DIII-D parameters with κ = 1.89. Left:
δ = 0.4, Right: δ = 0.5. Black boundary: γthr ≡ 0, Dashed black: Super H
mode boundaries from [15], Red: Lines of constant shear s (see labels) calculated
by IPED2-HELENA.

In order to understand why there is no Super H solution using the IPED2-HELENA-
MISHKA framework, we look at the stability of every toroidal mode number sepa-
rately. Figure 23 displays the stability boundaries for every mode number (colored)
as well as their envelope (solid black) in comparison to the EPED-ELITE Super H
solution (dashed black). Remarkably, the high mode numbers n > 30 perfectly re-
produce the lower part of Super H solution and mode number n = 1 aligns with the
upper part of the Super H solution. However, using the IPED2-HELENA-MISHKA
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framework, intermediate mode numbers n = 8 ∼ 20 block access to the Super H
regime. Thus, it would be necessary to strongly stabilize intermediate mode numbers
while leaving high mode numbers unaffected to enable the Super H regime described
in [15]. Furthermore, in p-n space, low mode number boundaries n = 1 ∼ 8 are
usually nearly straight lines, high mode number boundaries n > 30 form “parabola-
like” curves and intermediate mode numbers seem to smoothly transition from the
straight line to the parabolic boundary shape. The shapes of the different mode
number boundaries are discussed in chapter 5. Both ideal stability criteria γthr ≡ 0
and γthr ≡ 0.04/τA qualitatively yield the same mode number boundaries, while the
triangular interpolation for γthr ≡ 0.04/τA results in smoother boundaries. Finally,
we observed that the Super H solutions from [15] are aligned with the lines of con-
stant shear as shown in figure 24. However, it is remarked that the precise shear
values might differ between the EPED and IPED2-HELENA frameworks.

Figure 25: Ideal stability boundaries using DIII-D parameters with κ = 1.89, δ = 0.4
and cβ = 3 overriding βN . Left: BT = 1.9 T and δ = 0.5, Right: BT = 2.17 T and
δ = 0.6. Colored: Stability boundaries considering only a single toroidal mode
number n (see labels in the plot). Solid black: Stability boundary, Dashed black:
Super H mode boundary from [15].

While the Super H solution from EPED-ELITE was not directly reproducible us-
ing IPED2, we next try to access the Super H regime deviating from the precise
set of input parameters given in [15]. In order to “decouple” high and low mode
number boundaries, we used higher triangularities, magnetic fields and “stiff” core
pressure profiles, where we fixed cβ instead of βN . The mode number boundaries
for cβ = 3 and δ = 0.5 as well as for cβ = 3, δ = 0.6 and BT = 2.17 T are shown
in figure 25. Here, the “bunch” of mode number boundaries at pped ≈ 30 kPa is
limited by global instabilities, probably caused by the high beta values βN > 4 at
pped ' 30 kPa. However, the stability boundary below pped ≈ 30 kPa is limited by
purely edge localized modes. As a result, even for high shaping and magnetic field
we observe no “decoupling” of the low and high mode numbers. Finally, the δ = 0.6
and BT = 2.17 T case (figure 25, right) is stable at significantly higher pressures
compared to the δ = 0.5 and BT = 1.9 T case (figure 25, left). The stabilizing effect
of the magnetic field and triangularity as well as other stability trends are further
discussed in the section 4.2.

In the following, we will examine the effects of model details on the stability bound-
ary. Figure 26 shows the dependence of the stability boundary on the different core
current profile shapes introduced in section 3.4. While the stability boundaries in
the s-α space deviate only noticeably for the different core current models, there are
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Figure 26: Ideal stability boundaries using DIII-D parameters with κ = 1.89 and
δ = 0.4. Left: p-n space, Right: s-α space. Black: Parabolic core current model,
Green: Quartic core current model, Blue: Double power core current model, Red:
Power Core current model, Yellow: Parabolic core model with Redl bootstrap cur-
rent, Solid Gray: Stability boundary for the parabolic core current model considering
only n = 40, Dashed Gray: Lines of constant density corresponding to the black sta-
bility boundary. Note that the lines of constant density might vary for the different
stability boundaries but can be seen as a guide for the eye.

Figure 27: Normalized pressure profiles (left) and safety factor profiles (right) using
DIII-D parameters with κ = 1.89 and δ = 0.4. The profiles belong to a single
IPED 2 scanned point and were selected at roughly the same location in s-α space,
s = 5.98± 0.11 and α = 5.76± 0.04, near the stability boundaries. Black: Parabolic
core model, Green: Quartic core model, Blue: Double power core model, Red: Power
core model. The blue and green profiles are visually nearly indistinguishable.

significant differences between the critical pressures in the p-n space. Normalized
pressure and safety factor profiles at equal normalized shear and pressure gradient,
s = 5.98 ± 0.11 and α = 5.76 ± 0.04, for the different core current models are pre-
sented in figure 27. It is assumed that the differences in the s-α stability boundaries
for the different core current models are related to the effective shift of the maxi-
mum of the normalized pressure gradient and to the differences in the safety factor
profiles. Furthermore, figure 26 also shows a comparison of the Redl and Sauter
bootstrap current models. As a result, differences between the Sauter and Redl
model vanish for low and high densities, while the “pressure drop” is steeper for the
Redl model. Finally, for the parabolic core current model, the stability boundary

4.1 DIII-D: Search for a Super H mode solution



44 | 4 Results from IPED 2.0

considering only the toroidal mode number n = 40 is displayed. Comparison to the
stability diagrams discussed in section 2.1 (figure 5 on page 11) indicates that the
high-n boundary is associated with high-n ballooning mode stability.

Figure 28: Ideal stability boundaries using DIII-D parameters with κ = 1.89 and
δ = 0.4. Left: p-n space, Right: s-α space. Black: Default EPED parameters
an1 = 1 · 1019 m−3 and αT2 = 1.4, Blue: an1 = 4 · 1019 m−3, Red: αT2 = 1.0, Green:
αT2 = 1.8.

Finally, we also tested the influence of two fixed EPED model parameters, defining
the shape of the core pressure profile, namely an1 and αT1. As shown in figure 28,
changing the core density gradient an1 has nearly no effect on the stability. However,
there is a significant difference related to changes of the core temperature profile
shape αT2. This is probably because αT2 strongly affects the “spike” located at the
pedestal top of the temperature gradient profile (see figure 18a page 35). Moreover
as αT2 → 1 the “spike” transforms to a discontinuity of the temperature gradient
profile, which might explain the stronger effect of “αT2 = 1.4 → 1.0” compared to
“αT2 = 1.4→ 1.8”.

4.2 AUG: Trends and scaling laws

In the following section we study the influences of the model input parameters on
ideal edge stability in detail. Firstly, three major trends of the stability boundaries
with model input parameters are presented in p-n and s-α space. Secondly, several
scaling laws are developed from a data set created with IPED 2. Finally, example
stability boundaries for negative triangularity are shown. If not otherwise specified,
the standard “AUG” parameters, as specified in the appendix B.2 “Parameter sets”,
with κ = 1.6 are used. The current profiles are created from the parabolic core model
and the Redl bootstrap model.

From the last section, it is already known that we generally observe a low-n boundary
at low densities and a high-n boundary at high densities, which are connected by
a transition region limited by intermediate mode numbers that we have called the
“pressure drop” boundary. The mode number boundaries are, for the observed
parameter sets, always qualitatively equal to the mode boundaries shown in figure
23, having straight low mode number boundaries and “parabola shaped” high mode
number boundaries in p-n space. However, when looking at a fixed density interval,
one might not be able to see all three regimes of stability boundaries at once, as the
high-n or low-n boundaries are maybe located outside of the fixed density frame.
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Figure 29: Ideal stability boundaries for δ = 0.0 (red boundaries) and δ = 0.4
(blue boundaries) in p-n (left) and s-α (right) space. Toroidal magnetic fields at
the magnetic axis are BT = 2.2 T (bright), BT = 2.6 T (medium) and BT = 3.0 T
(dark). Solid: Stability boundaries, Dashed: Lines of constant density. Note that
the lines of constant density might vary for the different stability boundaries but
can be seen as a guide for the eye.

Firstly, as shown in figure 29, we observe strong trends of the edge stability with the
toroidal magnetic field BT and the triangularity δ in both the p-n and s-α space,
where we kept all other model input parameters fixed. Variations of the toroidal
magnetic field are related to variations of the edge safety factor qa ∼ BT /IP . In-
creasing the toroidal magnetic field BT or the triangularity δ increases the critically
stable pedestal top pressure and shifts the pressure drop boundary to higher den-
sities. Moreover, the height of the drop ∆pped increases with increasing toroidal
magnetic field BT or the triangularity δ, indicating a stronger trend for the low-n
boundary compared to the high-n boundary. In s-α space, the high-n boundary at
high normalized shear is transverse to the lines of constant density, the pressure drop
is more parallel to the lines of constant density and the low-n boundary is trans-
verse to the lines of constant density again, as indicated in figure 29. The different
boundaries are especially pronounced for the δ = 0 case in both the p-n and s-α
space.

Figure 30: Ideal stability boundaries for δ = 0.0 (red boundaries) and δ = 0.4 (blue
boundaries) in p-n (left) and s-α (right) space. Plasma currents are IP = 0.8 MA
(bright), IP = 1.0 MA (medium) and IP = 1.2 MA (dark). Solid: Stability bound-
aries, Dashed: Lines of constant density. Note that the lines of constant density
might vary for the different stability boundaries but can be seen as a guide for the
eye.
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Figure 30 shows the trend of the stability boundary with increasing plasma current
for δ = 0 and δ = 0.4. While there is a strong trend in the s-α space, where
increasing plasma current decreases stability, there is nearly no influence on the
critical pedestal top pressure in the p-n space. However, increasing plasma current
shifts the pressure drop boundary to lower densities. This allows modest control
over the position of the pressure drop boundary. Furthermore, the trends with BT
and 1/IP , i.e. with the edge safety factor, are nearly equal in the s-α space (see
figures 29 and 30), while the trends in the p-n space are significantly different. The
differences between the BT and IP trends in p-n space are due to the dimensionality
of the pressure and the density and vanish for dimensionless pressure and density
coordinates, which can be seen from the dimensionless scaling laws presented later
in this section. Finally, it is remarkable that for increasing plasma current the shift
of the pressure drop might results in an average decrease of the critical pressure at
a fixed density if all other input parameters are kept constant.

In order to understand the observed trends quantitatively, scaling laws describing
the pedestal stability were developed. Initially, our data set included IPED 2 scans
covering all combinations of

BT [T] ∈ {2.2, 2.6, 3.0} , IP [MA] ∈ {0.8, 1.0, 1.2} , βN ∈ {1.4, 1.8, 2.3} (102)

δ ∈ {0.0, 0.4} , ne,ped[1019m−3] ∈ {2, 4, 6, 8, 10} (103)

As the number of combinations of this rigorous grid-like parameter scan quickly
increases with additional varied input parameters, not every parameter combination
is included in the following extensions of the data set, where we also aimed to scan
more triangularities and get variation in κ, wpre and the aspect ratio. With the first
extension, we included κ = 1.8, where we fixed βN = 1.8 but varied the remaining
parameters as in equations 102 and 103. For the second extension, we randomly
chose 30 parameter combinations of equation 102 combined with

δ ∈ {−0.2, 0.0, 0.2} , κ ∈ {1.4, 1.7, 1.8} , wpre ∈ {0.08, 0.11, 0.15} (104)

where, in addition, for the last 20 combinations the minor and major radius were
chosen from (Rmaj, a) ∈ {(1.62, 0.6), (1.35, 0.5)} resulting in an aspect ratio of 2.7
instead of the default AUG aspect ratio of 3.3; each of the randomly chosen pa-
rameter combinations was scanned for ne,ped[1019m−3] ∈ {2, 4, 6, 8, 10}, resulting in
150 scans. The final data set excluding failed runs contains N = 402 scans, i.e.
data points. The pedestal top pressure was scanned in steps of ∆pped = 1 kPa.
Note that every of the 402 scans results from ∼ 180 stability calculations, where it
was assumed that on average stability has to be determined for ∼ 15 pedestal top
pressures.

The correlations between the parameters of the final data set are presented in figure
31. Except from major and minor radius, there is nearly no correlation between
the input parameters. To obtain dimensionless scaling laws, we introduce dimen-
sionless scaling quantities: The normalized density n̂e = ne,ped/nGW normalized
with respect to the Greenwald density nGW = IP /(πa

2), the edge safety factor
q̂ = (2πa2BT )/(µ0IPRmaj) · (1 + κ2)/2 for elongated plasma cross-sections (similar

to equation 55 on page 21) and the modified triangularity of the LCFS δ̂ = 1+δ > 0.
Note that the Greenwald density is an empirical quantity that cannot be derived
from the dimensionless MHD equations. For the scaling laws, the inverse aspect
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Figure 31: Parameter correlations of the final data set used as a basis for the scaling
laws including N = 402 scans. Left: Model input parameters, Right: Normalized
parameters used for the scaling laws.

ratio ε and the elongation κ are evaluated at the LCFS. Furthermore, we abbreviate
the poloidal beta by βp = βpol and the “KBM/transport” prefactor by wp = wpre.
Because both q̂ and βp are proportional to BT /IP , they are intrinsically correlated.
For this reason, instead of fitting a quantity f directly with the dimensionless quan-
tities q̂ and βp, we fit with the less correlated parameters q̂ and βp/q̂. Then, the
total scaling exponent of q̂ can be determined using the identity

f ∼ q̂c1βc2p = q̂c1+c2(βp/q̂)
c2 .

This method allows the exponents to be determined from a less correlated data
set by disentangling the correlated quantities q̂ and βp. The correlations of the
normalized or dimensionless input parameters are displayed in figure 31. Except
from the inverse aspect ratio, there are nearly no correlations between the scaling
parameters. However, as none of the scaling laws that will be presented in this
chapter are dependent on the aspect ratio, this correlation has no impact. There is
a small correlation of n̂e and q̂ as both quantities are proportional to 1/IP , which
might be avoided by directly using n̂e as an IPED 2 input replacing ne,ped.

The scaling exponents are determined by linear regression on the logarithm of the
dimensionless data set using the method of ordinary least squares. For all scaling
laws, the standard deviations σstd of every scaling exponent and the variance inflation
factors VIF of every scaling parameter are provided in the appendix A.3, where the
latter is a common measure for multicollinearity of a quantity with respect to the
underlying data set. Moreover, as σstd ∼

√
VIF, the VIF > 1 might be interpreted

as the increase of standard deviation caused purely by multicollinearity of the data.

Firstly, a scaling for the critically stable poloidal pedestal beta βpp was determined
including all N = 402 data points, which yields:

βpp = 0.686 · κ0.50 δ̂1.68 q̂1.61 β0.33
p n̂0.06

e w1.29
p (105)

with a fit determination of R2 = 90.8% and a root mean squared error of
RMSE = 0.076. The scaling and the parameter correlations are shown in figure
32. This scaling is based on nearly uncorrelated data and provides a good descrip-
tion of the average critical poloidal beta in p-n space. However, because the density
dependence varies strongly over the high-n, low-n and pressure drop boundaries,
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Figure 32: Scaling of the critically stable poloidal pedestal beta βpp (left) and cor-
relations between the scaling parameters (right) including all N = 402 data points.
Symbols (left): δ = −0.2 (H), δ = 0.0 (•), δ = 0.2 (N) and δ = 0.4 (�).

this dependence cannot be covered by a single scaling. Consequently, there is a
significant split between the high-n and low-n limited points in the scaling displayed
in figure 32. Finally, there are some negative triangularity scans (H symbols) which
appear as vertical groups in the scaling plot. These scans are characterized by high-n
limited critical pressures that strongly depend on the density. The strong density
dependence of these scans, which is poorly described by βpp ∼ n̂0.06

e , is discussed in
the “negative triangularity” part at the end of this section.

Because of the splitting of high-n and low-n limited critical pressures in figure 32
and to obtain quantitative information on the pressure drop, we determined separate
scaling laws for both the high-n and low-n boundaries, where we restricted data
points to destabilizing toroidal mode numbers of 30 6 n 6 40 and 1 6 n 6 8,
respectively. The resulting scaling law for the high-n boundary yields:

βn>30
pp = 1.894 · δ̂1.03 q̂1.03 β0.31

p n̂0.28
e w1.33

p (106)

with N = 227, R2 = 91.2% and RMSE = 0.042. Figure 33 shows the scaling as
well as the correlations between the scaling parameters. In the data set restricted

Figure 33: Scaling of the critically stable poloidal pedestal beta βpp (left) and cor-
relations between the scaling parameters (right) restricted to the high-n limited
data points n > 30. Symbols (left): δ = −0.2 (H), δ = 0.0 (•), δ = 0.2 (N) and
δ = 0.4 (�).
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to n > 30, there are two major correlations: δ̂ ⇀↽ q̂ and q̂ ⇀↽ n̂e, where we denote
correlations between two quantities by “ ⇀↽ ”. These are caused by the restriction
to n > 30, which creates a dependence of the densities contained in the data set
on the parameters that influence the location of the pressure drop. We will discuss
these correlations later in this section, when a scaling for the density at which the
pressure drop is located is shown. Furthermore, the coloring of the data points in
figure 33 (left) refers to the average slope ∆p/∆n of their respective high-n stability
boundary in p-n space. This means that critical pressures belonging to the same
stability boundary have equal color. Typically the high-n boundary has a positive
slope for ne,ped � nD, where nD is the density at which the pressure drop is located.
However, there are few data points with a negative average slope of the high-n
boundary, which usually indicates that their respective stability boundary is close
to the pressure drop. An example for a high-n boundary with negative average
slope is given by the blue boundary in figure 20 (right) on page 39. Moreover,
the negative triangularity scans which were poorly described by the weak density
dependence βpp ∼ n̂0.06

e in equation 105 also show significant deviations from the
high-n scaling law βpp ∼ n̂0.28

e (magenta H-symbols in figure 33). This indicates that
it is challenging to describe the density dependence of βpp with a simple scaling in
n̂e.

Next, the scaling law for the low-n boundary is determined to:

βn68
pp = 0.766 · κ1.27 δ̂1.98 q̂1.40 β0.25

p n̂0.09
e w1.41

p (107)

with N = 88, R2 = 97.2% and RMSE = 0.037. The scaling as well as the correlations
between the scaling parameters are displayed in figure 34. As for the high-n scaling,
there are significant correlations δ̂ ⇀↽ q̂ and q̂ ⇀↽ n̂e caused by the restriction to
n 6 8, which are discussed later. The correlation κ ⇀↽ q̂ is caused by the small
amount of the randomly generated samples with varying κ and might be avoided
by a larger sample size. However, fixing the elongation to κ = 1.6 resulted in
equal scaling exponents within the uncertainties of the regression. Furthermore,
the low-n stability boundaries seem to be steeper at lower triangularities, which
is similar to the trend observed for the high-n boundaries. Finally, there are no
pressure drops for δ = −0.2, as we observe only high-n limited critical pressures for

Figure 34: Scaling of the critically stable poloidal pedestal beta βpp (left) and cor-
relations between the scaling parameters (right) restricted to the low-n limited data
points n 6 8. Symbols (left): δ = 0.0 (•), δ = 0.2 (N) and δ = 0.4 (�).
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negative triangularity. Comparing equations 106 and 107, the major differences at
fixed density n̂e are

βn68
pp

βn>30
pp

∼ κ1.27 δ̂0.95 q̂0.37 (108)

indicating that the pressure drop, i.e the difference between the low-n and high-n
boundaries, increases mainly with shaping, which is consistent with our observations
of p-n diagrams.

Finally, a scaling for the location of the pressure drop is determined, which provides
a method to control the limiting stability boundary at a fixed density. For this
purpose, we define the location of the pressure drop as

n̂D ≡
1

2
·
[

max
n610
{n̂e}+ min

n>30
{n̂e}

]
.

Then, the drop scaling for fixed inverse aspect ratio ε = 0.3 yields:

n̂D = 0.022 · δ̂2.14 q̂1.98 β0.24
p (109)

with N = 39, R2 = 91.9% and RMSE = 0.055. Figure 35 shows the scaling and
the correlations between the scaling parameters. We restricted the scaling to fixed
inverse aspect ratio because only 3 pressure drops were observed for ε = 0.37. The
pressure drop strongly varies with both δ̂ and q̂. Therefore, simultaneously increasing
or decreasing these quantities shifts pressure drop strongly to high or low densities,
preventing observation of the high-n or low-n boundary, respectively. Thus, the
restrictions to either the high-n or low-n boundary imply a negative correlation of
δ̂ and q̂ in the restricted data set. This explains the correlations δ̂ ⇀↽ q̂ and q̂ ⇀↽ n̂e
which we observed previously (see figures 33 and 34). Furthermore, the coloring in
figure 35 indicates the width of the pressure drop

∆n̂D ≡ min
n>30
{n̂e} −max

n610
{n̂e}

where larger widths of the pressure drop ∆nD > 2 · 1019m−3 were only observed
for δ = 0.4. To summarize the scaling laws, we find enhanced pedestal stability

Figure 35: Scaling of the pressure drop location n̂D (left) and correlations be-
tween the scaling parameters (right). Symbols (left): δ = 0.0 (•), δ = 0.2 (N)
and δ = 0.4 (�).

4.2 AUG: Trends and scaling laws



4 Results from IPED 2.0 | 51

(equation 108) for high triangularities and safety factors (equation 109), which is
limited by low mode numbers. While this is similar to the observations of [15], no
Super H solutions were observed. Fixing all IPED 2 input parameters except IP
and BT , equations 106 and 107 yield pn>30

ped ∼ I0.38
P B1.34

T and pn68
ped ∼ I0.26

P B1.65
T ,

respectively. This agrees well with the trends observed in figures 29 and 30.

Figure 36: Ideal stability boundaries using AUG parameters with κ = 1.7 and
δ = −0.2. Left: IP = 0.6 MA, BT = 2.0 T, wpre = 0.11, Right: IP = 0.8 MA,
BT = 2.2 T, wpre = 0.15. Colored: Stability boundaries considering only a single
toroidal mode number n (see labels in the plot). Black: Stability boundary, Solid
Gray: Lines of constant α with spacing ∆α = 0.5, Dashed Gray: Lines of constant
s with spacing ∆s = 0.5.

Finally, stability boundaries for negative triangularity δ = −0.2 were determined
over a large range of input parameters, where two example boundaries are shown
in figure 36. At δ = −0.2, all observed stability boundaries are purely high-n
limited. While the critically stable pedestal pressures are typically small compared
to positive triangularity cases, there are parameter sets which create exceptionally
steep stability boundaries in p-n space (see figure 36, right). However, their steepness
is mainly caused by the steep lines of constant normalized pressure gradient α, which
“stretch” the stability boundary in p-n space. We will discuss the p-n to s-α mapping
in detail in the next chapter. To summarize, the steepest stability boundaries are
observed for broad pedestals wpre = 0.15 and large elongations κ > 1.7.
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5 Discussion

In order to understand the relation between stability boundaries in p-n space and
in s-α space, we will derive a simplified analytical mapping (s, α) 7→ (p, n). Using the
EPED constraint and estimating the pressure gradient peak value by
(∂ψ̃p)peak ∼ pped/∆, the peak value of α is estimated as:

α ∼
√
V

ψ2
a

· ∂ψ̃V
IP
√
pped

wpre
(110)

where ∂ψ̃V and V are evaluated at the peak position ψ̃peak = 1 − ∆
2 . If ∆ � 1,

the pressure dependence of ∂ψ̃V and V can be neglected and the mapping α 7→ p is
given by:

α ∼
IP
√
pped

ψ2
a · wpre

ψa∼IP=⇒ pped ∼ (wpreIPα)2 (111)

This relation approximately describes the lines of constant normalized pressure gra-
dient α in p-n space. However, equation 111 seems to be independent of the density,
which cannot describe the steep lines of constant normalized pressure gradient α
in figure 36 (page 51). The density dependence is contained in the dependence of
the total flux ψa on the shape of the current density profile and is neglected when
approximating ψa ∼ IP . For fixed total current IP , a decreasing bootstrap current
density usually increases the total flux by “smoothing” the integrated current pro-
file. Thus, the lines of constant pressure gradient α are increasing with density, as
pped ∼ (ψa(ne,ped)2/IP )2 ∼ ψa(ne,ped)4. In this approximation, the density depen-
dence of ψa is amplified by a power of 4. Here, we ignored the pressure dependence
of the edge current density ψa(ne,ped, pped), which however has no effect on the qual-
itative description of the density dependence of the lines of constant α. One can
see that a larger “transport prefactor” increases the slope of the lines of constant
pressure gradient α by pped ∼ w2

pre, which is what we observed for the steep stability
boundaries for δ = −0.2 in the previous chapter.

Next, we want to derive a mapping (s, α) 7→ n. Firstly, a relation between peak shear
and edge current density is given by the simple equilibrium relation
s = 2− 2j‖ ·A(r = a)/IP from equation 23 (page 9). Secondly, the current density
is related to the electron density by the bootstrap current formula, which can be
seen as a constraint that prescribes the “operational path” through the s-α space.
Following [46], we use the simplified collisionality dependence of the neoclassical
bootstrap transport coefficients L� ∼ 1/(1 +

√
νe,∗ + cZνe,∗) with cZ ≡ (2Zeff)−2,

where � is a placeholder for 31 or 32. Then, the edge peak current density, given
by equation 34 (page 14), is approximated to:

j‖ = cj

√
pped

1 +
√
νe,∗ + cZνe,∗

(112)

with the proportionality constant cj , where we additionally used equation 111, the
EPED transport constraint and neglected the ion flow term α̃L34 in equation 34.



5 Discussion | 53

Solving equation 112 for νe,∗ and using νe,∗ = cνq(1 + η)2n3
e,pedZeff/p

2
ped (equation

36 on page 15) results in

ne,ped(s, pped) =

 2pped

√
Zeff√

cν
√
q (1 + η)

√(Z2
eff − 1) +

2cj
√
ppedA(r = a)

IP (2− s)
− Zeff

2/3

(113)

where cν is a proportionality constant. Equation 113 describes the lines of constant
shear in the p-n space. Inserting 111 into 113 yields the mapping (s, α) 7→ n. Thus,
we have derived analytical mappings relating the p-n and the s-α space.

Figure 37: Sketch of the stability borders for pure high-n ballooning (orange) and
peeling (blue) modes as well as lines to guide the eye for coupled peeling-ballooning
stability borders (violet). Left: Boundaries in s-α space as shown in figure 5 for direct
comparison of the p-n and the s-α space, based on [22], Right: Boundaries in p-n
space using the mappings 111 and 113. The different shading of the coupled stability
borders is to distinguish them. The violet dashed line is an artificially modified
version of the coupled stability border, representing stronger coupling. The solid
green line is the low collisionality bootstrap current limit ne,ped = 0 corresponding to
the p-n diagram on the right. The dashed green line marks a typical low collisionality
bootstrap current limit for the observed stability diagrams presented in chapter 4.

At first, we apply the mappings 111 and 113 to the stability diagrams in s-α space
that were derived in section 2.1 from the theory of peeling and ballooning modes.
The pure high-n peeling and ballooning stability boundaries as well as coupled
peeling-ballooning boundaries in s-α space, as discussed in section 2.1, and their
mapping to p-n space are shown in figure 37. The solid bright violet line repre-
sents weak coupling between peeling and ballooning modes, usually observed for
high positive triangularities, whereas the dashed bright violet line indicates stronger
coupling between peeling and ballooning modes for less shaped plasma cross-sections
(sketched based on [22]). In addition, for weak shaping, the ballooning and peel-
ing unstable regions might intersect (see [12]), which is probably the case for the
stability diagrams that we observed for the negative triangularity scenarios in sec-
tion 4.2. As a result from figure 37, the obtained stability boundaries, using the
strongly simplified mappings 111 and 113, are qualitatively equal to the stability
boundaries determined with IPED2-HELENA-MISHKA presented in the previous
chapter. As already motivated in the previous chapter, the high-n stability bound-
aries in the IPED2 stability diagrams are related to pure ballooning instability, as
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they are equivalent in shape and location considering both p-n and s-α stability
diagrams. Analogously, the low-n stability boundaries from IPED2 are associated
with coupled peeling-ballooning or kink/peeling instabilities, where depending on
the coupling between peeling and ballooning modes a pressure drop is observed
(dashed and solid violet boundaries in figure 37). For this reason, we will identify
the high-n and low-n boundaries shown in the previous chapter as “ballooning” and
“peeling” boundaries, respectively. Here, we remind that the coupling between peel-
ing and ballooning modes (dashed and solid violet boundaries) is strongly dependent
on shaping (see equation 108). Finally, the pure high-n peeling boundary is expected
to be typically located at inaccessibly high current densities which exceed the low
collisionality bootstrap current limit. For the simplified stability diagrams in figure
37, the low collisionality bootstrap current, j‖ ∼ α as ne,ped → 0, is represented
by a straight line through (s, α) = (2, 0) in the s-α diagram (green lines) and is
a lower bound for the “operational paths” that might prohibit access to the pure
high-n peeling boundary. While the solid green line represents the low collisionality
bootstrap current limit ne,ped = 0 corresponding to the p-n diagram in figure 37
(right), the dashed green line marks a typical low collisionality bootstrap current
limit for the observed stability diagrams presented in chapter 4.

Figure 38: Lines of constant normalized magnetic shear (red) and normalized pres-
sure gradient (blue), forming a mesh with spacing ∆s = ∆α = 0.15 in s-α space
(left). Transformation to p-n space (right) using the mappings 111 and 113 with
equal parameters as for figure 37. Dashed lines: Stability borders for pure high-n
ballooning (orange) and peeling (blue) modes as well as lines to guide the eye for
coupled peeling-ballooning stability borders (violet) taken from figure 37.

Figure 38 displays a regular grid in s-α space and its transformation to p-n space
using the mappings 111 and 113. One can see that the grid is strongly stretched and
sheared by the transformation. Note that the lines of constant shear asymptotically
approach the density axis as s → 2, which is a direct consequence of equation
113, where s > 2 is associated with negative edge current densities. Furthermore,
the stretching of the grid is approximately perpendicular to the “pressure drop”
boundary, which implies that small uncertainties near the pressure drop in s-α space
might be amplified by the transformation to p-n space.

A proper numerical transformation for an IPED 2 stability diagram is shown in fig-
ure 39. Comparing figures 38 and 39, the simplified mappings 111 and 113 seem to
describe the numerical transformation remarkably well. However, effects of the pre-
cise bootstrap current model formulas of Sauter or Redl, the current density profile



5 Discussion | 55

Figure 39: Ideal stability boundaries using AUG parameters with κ = 1.6 and
δ = 0.4; we used the parabolic core current model and Redl bootstrap model. Left:
s-α space, Right: p-n space. Black: Stability boundary with γthr = 0.04 (solid)
or γthr = 0.0623 (dashed), Red: Lines of constant shear s, Blue: Lines of constant
pressure gradient α, Gray: Stability boundary for γthr = 0.04 considering only mode
number n = 40. Green Star: Example IPED 2 scanned point, Violet Arrow: In-
dicating a displacement of the stability boundary to the green star. Yellow: Lines
of constant top pressure or density through the green star (in p-n space) and their
crossing points with the solid black boundary.

shapes as well as effects of the finite pedestal width ∆ are not covered by the simple
mappings. This is reflected by differences between figures 38 and 39 at low densities,
i.e. collisionalities, and by the density dependence of the lines of constant normalized
pressure gradient, as mentioned previously in this chapter. Next, we determine the
transformation of uncertainties from the s-α to the p-n space. The dashed stability
boundary in figure 39 marks critically stable pressures for γthr = 0.0623, meaning
that growth rates on the dashed boundary are ∼ 56% larger than on the solid bound-
ary. Here, the dashed boundary was chosen so that it contains the displayed IPED 2
scanned point (green star), where the mapping (s, α) 7→ (p, n) of the IPED 2 scanned
point is given directly by HELENA and independent of the triangular interpolation.
One can see that the large difference in growth rates between the solid and dashed
boundaries is represented by a relatively small shift of the stability boundary in
s-α space, indicating a sharp increase of the growth rates γMHD across the stabil-
ity boundary. Thus, the stability boundary in s-α space is only weakly dependent
on the choice of γthr or equivalently on uncertainties of the growth rates δγMHD.
Quantitatively, the change δγMHD ≈ 56% might be interpreted as a shift (violet
arrow in figure 39) of the stability boundary by δα = 1.6% and δs = 3.8%, where we
chose the shift to be small in s-α space since we are interested in the propagation
of local uncertainties. This small deviation in s-α space is then transformed to a
significantly larger deviation δpped = 6.9% and δne,ped = 13.5% in p-n space, which
is also represented by a violet arrow in figure 39. The comparably large deviation
in p-n space is caused by the strong stretching of the transformation perpendicular
to the pressure drop boundary. It is remarkable that the observed amplification of
δp = 6.9% is larger compared to the linear propagation estimate δp ≈ 2 · δα = 3.2%
based on equation 111, which follows from the density dependence of the lines of
constant normalized pressure α. Finally, the effective error of the critically stable
pedestal top pressure considering (experimental) operation at a fixed density in p-n
space is δp = 23.8%, which is illustrated by the vertical yellow line in figure 39.
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In summary, uncertainties of the growth rate or stability boundary in s-α might
be strongly amplified by the transformation to p-n space. In combination with the
influence of the core current density shape shown in section 4.1, a precise prediction
of the critically stable pressure in p-n space, especially near the pressure drop, is
challenging. An uncertainty of the density where the pressure drop is located can
strongly influence the predicted critically stable pedestal top pressure for operation
at a fixed density.

Next, we discuss and compare some trends presented in the previous chapter. Firstly,
we observed only a weak influence of changes of the edge current density on the
stability boundary (figures 22 and 26) at high collisionalities. This is probably
explained by the vanishing influence of finite changes δjN of the normalized edge
current density jN = j‖ · A(r = a)/IP on both the shear δs ≈ −jN · δjN → 0 for
jN � 1 and the total poloidal flux because IP � IBS, where jN ∼ 1/νe,∗ � 1
for high collisionalities νe,∗ � 1. In addition, the differences of stability boundaries
using the Redl and the Sauter bootstrap current models vanish at low collisionalities,
because the edge current densities predicted by the Redl and the Sauter models are
approximately equal in the low collisionality regime. Thus, the bootstrap current
model only affects the stability boundary at intermediate collisionalities. Finally, the
structures of the mode number boundaries for positive and negative triangularities
agree well with the findings of [16] or [47].

6 Conclusion and future work

The aim of this thesis was to upgrade the IPED framework and to study non-
standard pedestal stability, in particular Super H and negative triangularity scenar-
ios, for AUG. In order to improve the normalization of pressure and current density
profiles, a new procedure for the estimation of equilibrium profiles was developed
and implemented into IPED, which is a predictive framework determining pedestal
stability that generates pressure profiles based on the EPED model. For this pro-
cedure, the equilibrium flux surface geometry is estimated and then iteratively a
current density profile is determined that self-consistently combines the EPED and
bootstrap current models. Hence, the converged current density profile generates a
poloidal flux within the estimated flux surface geometry that results in a consistent
edge current density calculated from the bootstrap current model. The differences
between the estimated equilibrium profiles and their proper Grad-Shafranov solu-
tions were observed to be small for the geometric profiles V (ψ), A(ψ) and r(ψ) over
a large range of plasma and shaping parameters. Deviations ' 10% were found
for the estimated pedestal safety factor q(ψ), which mainly affects the bootstrap
current density in the high collisionality regime. However, the influence of the boot-
strap current on the critically stable pressure was observed to be weak in the high
collisionality regime, where we argue that this is related to the vanishing effect of
the edge current density on normalized magnetic shear and poloidal flux at high
collisionality.

The upgraded IPED2-HELENA-MISHKA framework was used to study MHD sta-
bility in s-α and p-n space. Based on the study of critical stability for every mode
number separately, critical pedestal pressures were identified to be coupled low-n
peeling-ballooning or kink/peeling mode limited at low densities and pure high-n
ballooning limited at high densities. The transition between these regimes is limited
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by intermediate mode numbers n = 8 ∼ 20, where the critically stable pressures typ-
ically decrease from the “peeling” towards the “ballooning” limited stability bound-
ary. In contrast to [15], we observed intermediate mode numbers to prohibit access
to the Super H regime. That aside, we also obtain a beneficial influence of high tri-
angularity and safety factor on critical stability, which shifts the transition regime
(“pressure drop”) to higher densities and stabilizes the “peeling” boundary. In or-
der to optimize the pedestal top pressure, it is suggested to operate at high positive
triangularity and high toroidal field at a density slightly below the density at which
the “pressure drop” is located. Finally, studying different model specific influences
of the EPED model, the core current shape affects the total poloidal flux and con-
sequently the pressure gradient and safety factor, leading to significant changes of
the stability boundary in p-n space.

To interpret our findings, we expressed the transition between s-α and p-n space
by an analytical mapping, using a simplified bootstrap current formula. Applying
the analytical transformation, the theoretically predicted s-α diagrams for peeling
and ballooning stability aligned well with the p-n diagrams determined with IPED2-
HELENA-MISHKA. Transforming a regular mesh from s-α to p-n space, one finds
that small differences in the s-α space are significantly enlarged by the transfor-
mation. Finally, for operation at a fixed density that is near the “pressure drop”
boundary, small uncertainties in the density imply massive changes to the critically
stable pressure. In combination with the dependence of the critically stable pressure
on the EPED “transport/KBM” prefactor, a precise prediction of critical stability
in p-n space is challenging.

Future work might include evaluation of the different terms of the MHD work func-
tional δW in order to obtain information on the energy composition of the instabil-
ities. This can possibly provide insight into the stability of peeling and ballooning
modes separately as well as into the coupling of these modes. Furthermore, a fu-
ture version of IPED might be directly integrated into a Grad-Shafranov solver to
improve the quality of the predicted safety factor profile, which would increase the
accuracy of the predicted bootstrap current density. In addition, to understand
the absence of Super H solutions in IPED2-HELENA-MISHKA, one might directly
compare the MISHKA and ELITE codes for IPED2 scans and further analyze the
influences of various EPED model details on the stability boundary in p-n space.
Finally, the predictions of the IPED framework might be compared to experimental
findings.
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A Appendix

A.1 Sauter bootstrap formulas

The bootstrap coefficients defined by the Sauter model yield [31][32]:

L31 = F31(X = ft,31, Z = Zeff) , L34 = F31(X = ft,34, Z = Zeff) (114)

L32 = F32,ee(X = ft,32,ee, Z = Zeff) + F32,ei(X = ft,32,ei, Z = Zeff) (115)

σneo = F33(X = ft,33, Z = Zeff) · σSpitzer (116)

α̃ =

(
α̃0 + 0.25(1− f2

t )
√
νi,∗

1 + 0.5
√
νi,∗

+ 0.315ν2
i,∗f

6
t

)
/(1 + 0.15ν2

i,∗f
6
t ) (117)

with the fit functions F� and the effective trapped fractions f� given by

ft,31 =
ft

1 + (1− 0.1ft)
√
νe,∗ + 0.5(1− ft)νe,∗/Zeff

ft,32,ee =
ft

1 + 0.26(1− ft)
√
νe,∗ + 0.18(1− 0.37ft)νe,∗/

√
Zeff

ft,32,ei =
ft

1 + (1 + 0.6ft)
√
νe,∗ + 0.85(1− 0.37ft)νe,∗(1 + Zeff)

ft,33 =
ft

1 + (0.55− 0.1ft)
√
νe,∗ + 0.45(1− ft)νe,∗/Z1.5

eff

ft,34 =
ft

1 + (1− 0.1ft)
√
νe,∗ + 0.5(1− 0.5ft)νe,∗/Zeff

F31 = X + (1.4X − 1.9X2 + 0.3X3 + 0.2X4)/(Z + 1)

F32,ee =
0.05 + 0.62Z

Z(1 + 0.44Z)
(X −X4) +

X2 −X4 − 1.2(X3 −X4)

1 + 0.22Z
+

1.2X4

1 + 0.5Z

F32,ei =
0.56 + 1.93Z

Z(1 + 0.44Z)
(X −X4) + 4.95

X2 −X4 − 0.55(X3 −X4)

1 + 2.48Z
− 1.2X4

1 + 0.5Z

F33 = 1−X + (−0.36X + 0.59X2 − 0.23X3)/Z

α̃0 = − 1.17(1− ft)
1− 0.22ft − 0.19f2

t

where the trapped fraction ft, effective charge Zeff and collisionalities ν�,∗ are de-
fined in section 2.3.1.

The Spitzer conductivity σSpitzer is given by [31][32]:

σSpitzer = 1.9012 · 104 · (Te[eV])1.5

Zeff NZ ln(Λe)

[
1

Ωm

]
, NZ = 0.58 +

0.74

0.76 + Zeff

(118)
where the Coulomb logarithm ln(Λe) is defined in section 2.3.1.

A.1 Sauter bootstrap formulas
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A.2 Redl bootstrap formulas

The bootstrap coefficients defined by the Redl model yield [39][40]:

L31 = F31(X = ft,31, Z = Zeff) , L34 = F31(X = ft,34, Z = Zeff) (119)

L32 = F32,ee(X = ft,32,ee, Z = Zeff) + F32,ei(X = ft,32,ei, Z = Zeff) (120)

σneo = F33(X = ft,33, Z = Zeff) · σSpitzer (121)

α̃ =

[
α̃0 + (1 + 0.7(Zeff − 1))

√
0.25νi,∗ft

1 + 0.35
√

0.4νi,∗
− 0.00025ν2

i,∗f
6
t

]
· (122)

· (1 + 0.0005ν2
i,∗f

6
t )−1

with the fit functions F� and the effective trapped fractions f� given by

ft,31 = ft ·
[

1 + 0.6(1− 0.7ft)
√
νe,∗

0.2 + 0.8Zeff
+

0.7νe,∗

(1 +
√
Zeff − 1) · (1− 0.5ft)

]−1

ft,32,ee = ft ·
[
1 + 0.195(1− ft)

√
1.2νe,∗
Zeff

+ 0.15(1− 0.37ft)νe,∗ ·

·
(√

1 + 4(Zeff − 1)1.5 − f2
t

√
0.02(1 + 5(Zeff − 1)1.5)νe,∗

)−1 ]−1

ft,32,ei = ft ·
[
1 + 0.85(1 + 0.4ft)

√
1.2νe,∗

1 + 3
√
Zeff − 1

+ 1.4875(1− 0.4ft) ·

· (1.625 + 0.375Zeff)νe,∗

]−1

ft,33 = ft ·
[
1 +

0.6(1− 0.4ft)νe,∗√
Zeff

+ (0.35− 0.15ft) · (1 + 0.25
√
Zeff − 1)

√
0.33νe,∗

]−1

ft,34 = ft ·

[
1 +

0.4(Zeff − 0.1ft)
√

1.3νe,∗

0.8 + 0.1Zeff
+

(1− 0.5ft)νe,∗
Zeff

]−1

F31 = X + (X − 1.5X2 + 0.2X3 + 0.3X4)/(8Z − 5.9)

F32,ee =
0.1 + 0.6Z

Z (0.75 + 0.65(1 + (Z − 1)1.1))
(X −X4)+

+
0.7

1 + 0.2Z

[
X2 −X4 − 1.2(X3 −X4)

]
+

1.3

1 + 0.5Z
X4

F32,ei = − 0.4 + 1.93Z

Z(0.8 + 0.6Z)
(X −X4) +

5.5

1.5 + 2Z

[
X2 −X4 − 0.8(X3 −X4)

]
−

− 1.3

1 + 0.5Z
X4

F33 = 1−X + (−0.14X + 0.35X2 − 0.21X3)/Z

α̃0 = −0.62 + 0.018α̃I
0.53 + 0.105α̃I

1− ft
1− 0.35ft − 0.2f2

t

where the trapped fraction ft, effective charge Zeff and collisionalities ν�,∗ are de-
fined in section 2.3.1 and the impurity strength is defined in section 2.3.2.

A.2 Redl bootstrap formulas
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A.3 IPED 2 scaling laws

Standard deviations and VIFs for equation 105:

βpp = 0.686 · κ0.50 δ̂1.68 q̂1.61 β0.33
p n̂0.06

e w1.29
p

κ δ̂ q̂ βp/q̂ n̂e wp

σstd 0.13 0.04 0.05 0.04 0.02 0.06

VIF 1.04 1.07 1.02 1.01 1.00 1.08

Standard deviations and VIFs for equation 106:

βn>30
pp = 1.894 · δ̂1.03 q̂1.03 β0.31

p n̂0.28
e w1.33

p

δ̂ q̂ βp/q̂ n̂e wp

σstd 0.06 0.06 0.05 0.02 0.06

VIF 1.48 1.56 1.05 1.22 1.11

Standard deviations and VIFs for equation 107:

βn68
pp = 0.766 · κ1.27 δ̂1.98 q̂1.40 β0.25

p n̂0.09
e w1.41

p

κ δ̂ q̂ βp/q̂ n̂e wp

σstd 0.12 0.05 0.06 0.03 0.01 0.08

VIF 1.26 1.20 1.50 1.05 1.29 1.03

Standard deviations and VIFs for equation 109:

n̂D = 0.022 · δ̂2.14 q̂1.98 β0.24
p

δ̂ q̂ βp/q̂

σstd 0.14 0.16 0.11

VIF 1.03 1.03 1.02

A.3 IPED 2 scaling laws
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B Operators and definitions

B.1 Averages

Volume or standard flux-surface average:

〈. . . 〉V ≡ ∂V
∫
V(r)

. . . d~x3 with V (r) =

∫
V(r)

d~x3 (123)

where V(r) ∈ R3 and V (r) ∈ R represent the volume enclosed by a flux surface.

Area average:

〈. . . 〉A ≡ ∂A
∫
A(r)

. . . d~x2 with A(r) =

∫
A(r)

d~x2 (124)

where A(r) ∈ R2 and A(r) ∈ R represent the area enclosed by a flux surface in the
(R,Z)-plane.

Transport or magnetic field average:

〈. . . 〉B ≡ 〈. . . · ~B〉V /BT (125)

where ~B is the total magnetic field and BT is the value of the magnetic field at the
magnetic axis. If ”. . . ” represents a vector-component parallel to the magnetic field,
~B is replaced by | ~B|.

B.2 Parameter sets

Name Rmaj [m] a [m] wpre Zeff Zimp IP [MA]∗) BT [T]∗) βN
∗)

AUG 1.65 0.5 0.11 1.3 5.5 1.0 2.6 1.8

DIII-D 1.66 0.6 0.076 2.7 5.5 1.5 1.9 1.8

ITER 6.2 2.0 0.076 2.0 5.5 15.0 5.3 2.0

Table 1: Parameter sets for the different devices. ∗) These plasma parameters are
used if not otherwise specified. The DIII-D and ITER parameter sets are based on
[15].

B.2 Parameter sets
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