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Abstract

In this paper, we provide insights on how much testing and social distanc-
ing is required to control COVID-19. To this end, we develop a compartmen-
tal model that accounts for key aspects of the disease: 1) incubation time,
2) age-dependent symptom severity, and 3) testing and hospitalization de-
lays; the model’s parameters are chosen based on medical evidence, and, for
concreteness, adapted to the German situation. Then, optimal mass-testing
and age-dependent social-distancing policies are determined by solving op-
timal control problems both in open loop and within a model predictive
control framework. We aim to minimize testing and/or social distancing
until herd immunity sets in under a constraint on the number of available
intensive care units. We find that an early and short lockdown is inevitable
but can be slowly relaxed over the following months.

1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a strain of
coronavirus which causes the respiratory illness coronavirus disease 2019 (COVID-
19). In 2020, on March 11*" the World Health Organization (WHO) declared
the outbreak of SARS-CoV-2 a pandemic [41]. Due to the novelty of the virus,
there was (and, at the time of submitting this manuscript, still is) significant
uncertainty concerning the severity and mortality of COVID-19. Furthermore,
as of October 2020, no vaccine has completed the trials necessary for approving
widespread use [24]. Therefore, many countries are enforcing nonpharmaceutical
countermeasures [19, 20], e.g. 1) social distancing, 2) increased public hygiene,

*This work was funded by the Federal Ministry of Education and Research (BMBF; grants
05M18EVA and 05M18SIA).

TMax Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
(grundel@mpi-magdeburg.mpg.de, ritschel@mpi-magdeburg.mpg.de).

!Technische ~ Universitit  Ilmenau, Ilmenau, Germany, Institute  for  Math-
ematics (stefan.heyder@tu-ilmenau.de, thomas.hotz@tu-ilmenau.de,
philipp.sauerteig@tu-ilmenau.de, karl.worthmann@tu-ilmenau.de).



3) travel restrictions, 4) self-isolation (quarantine), and 5) population-wide mass
testing for SARS-CoV-2 infection. However, enforcing these countermeasures for
long periods of time can have severe economic and social consequences, both at the
national and the global scale [28]. Therefore, there is a need for identifying eco-
nomic strategies for simultaneously relaxing the countermeasures and containing
the pandemic.

Model-based decision support systems can be used for exactly this purpose.
They use predictive models to assist decision makers in identifying and evaluating
candidate strategies (e.g. [1]). In particular, given a dynamical model of the
spread of SARS-CoV-2, economically optimal (open-loop) mitigation strategies
can be identified by solving optimal control problems (OCPs) over several months
or even years. A key advantage of this approach is that it can directly account for
constraints, e.g. related to the capacity of public healthcare systems. However,
given the uncertainty surrounding SARS-CoV-2 and COVID-19, it is advisable
to implement the optimal mitigation strategies in closed-loop, i.e. to repeatedly
update the strategies when new data becomes available. This is referred to as
model predictive control (MPC) [32] and is an established method for advanced
process control [31]. The predictive capabilities of the underlying model are crucial
for the efficacy of the resulting mitigation strategy, and a common challenge is to
identify suitable model parameters.

Epidemics are often modelled using deterministic compartmental models [18],
e.g. the classical SIR model, where individuals are either susceptible, infectious,
or removed, or the SEIR model which, additionally, takes the incubation time
into account. Optimal control of compartmental models was already an active
research topic before the SARS-CoV-2 pandemic (see [35] for a review). In partic-
ular, optimal control of SIR models has been considered, e.g. for arbitrary social
interaction models [2] and to identify time-optimal mitigation strategies [3, 16].
Optimal control of more complex models has also been considered. For instance,
Fischer et al. [12] consider optimal control of a model with two species, Bussell
et al. [6] demonstrate the importance of closed-loop mitigation strategies (i.e. of
incorporating feedback), and Watkins et al. [39] consider MPC of stochastic com-
partmental models. In [11] the authors determine control strategies to maintain
hard infection caps in a disease-vector model based on the theory of barriers. This
approach, however, exploits the low dimensionality of the model. Application
of these techniques to complex compartmental models, therefore, requires model
order reduction.

In response to the SARS-CoV-2 pandemic, many researchers have presented
optimal control strategies, for instance based on Pontryagin’s maximum princi-
ple (e.g. [21, 30, 42]). These strategies typically involve 1) extended SIR or
SEIR models, 2) nonpharmaceutical countermeasures (often social distancing),
and 3) minimization of the number of infected as well as the economic cost of the
countermeasures (and often other quantities as well, e.g. the number of deaths).
Furthermore, they rarely satisfy hard constraints, for instance related to health
care or testing capacities. In the following, we highlight some of the key develop-
ments in decision support for SARS-CoV-2 mitigation based on optimal control.
Gondim and Machado [14] use a model with three age groups to compute optimal
quarantine strategies (for susceptible individuals) which minimize the number of
infected and the cost of quarantining. Bonnans and Gianatti [4] compute social



distancing strategies based on a model with a continuous age structure. Here, the
strategies minimize a combination of 1) the number of deaths, 2) the peak number
of hospitalized, and 3) the cost of social distancing. Similarly, Richard et al. [33]
present optimal social distancing strategies based on a model with a continuous age
and infection duration structure, which minimize the number of deaths and the cost
of social distancing. Morato et al. [25] compute on-off (also called bang-bang) so-
cial distancing strategies which minimize 1) the number of symptomatic infectious
people and 2) the duration of the social distancing policies, subject to constraints
on intensive care unit (ICU) occupancy. They use extended SIR models. Carli et
al. [7] use MPC to compute social distancing and travel restriction strategies for
an extended multi-region SIR model, minimizing the cost of the countermeasures
and preventing an overload on the hospitals. Kéhler et al. [22] use MPC to mini-
mize the number of fatalities caused by COVID-19, subject to constraints on the
economic cost of social distancing. They take a modified SIDARTHE model [13]
as basis and use interval arithmetic in the MPC to propagate model uncertainties.
Finally, Tsay et al. [37] use MPC to minimize the cost of social distancing and
testing, subject to an upper bound on the peak number of infectious people who
have been tested positive. They use the unscented Kalman filter to estimate the
noisy state variables of an extended SEIR model.

In this work, we address some of the key questions that decision makers involved
in the mitigation of the SARS-CoV-2 pandemic are facing: 1) Is mass testing alone
sufficient to avoid overloading of ICUs? 2) If not, how much social distancing is
then required? 3) How much can social distancing measures be reduced by tar-
geting specific age groups? 4) How do strategies obtained by short and long-term
planning differ? 5) What are the benefits of increasing the daily testing capacity
or the ICU capacity? Here, the limited ICU capacity is considered as an example
for constraints imposed by the health care system or political considerations. Of
course, different constraints such as limited personnel for contact tracing could be
incorporated as well.

We address the above questions by proposing a novel compartmental model
and using optimal control as well as MPC to compute open and closed-loop social
distancing and testing strategies. The model contains three age groups, and it
accounts for several of the key challenging characteristics of COVID-19, i.e. 1) the
incubation time, 2) different levels of symptom severity depending on age, 3) delay
of testing results (and the following self-isolation), and 4) delay of hospitalization.
Furthermore, we choose values of the epidemiological model parameters based on
the current state of knowledge in order to ensure that our numerical results match
reality. For concreteness, we use the COVID-19 outbreak in Germany to determine
parameters depending on demographics and the health care system. However, we
expect our conclusions to carry over to outbreaks in other developed countries as
well.

The remainder of this paper is structured as follows. In Section 2, we describe
the novel compartmental model of the SARS-CoV-2 outbreak in Germany, and in
Section 3, we motivate our choice of model parameters. In Section 4, we demon-
strate that optimal control can be used as a decision support tool based on the
proposed model, and we conclude the paper in Section 5.



2 Modelling Pandemics

In this section, we propose a dynamical model tailored to COVID-19. The aim is to
be able to evaluate the effect of population-wide mass testing (in combination with
quarantine) and social distancing measures on the development of the pandemic.
To this end, we extend the well-known SIR model.

2.1 Interpretation of deterministic compartmental models

We start with an illustration of the connection between 1) infectious disease models
based on randomly acting individual agents and 2) their approximation by ordinary
differential equation compartmental models. This exposition will highlight the
interpretation and conversion of parameters when moving from a random to a
deterministic model. For simplicity, we consider the classical SIR model in this
subsection. However, the connection, especially the interpretation of parameters,
is similar for more complex models such as the one described in Section 2.2.

Consider a population of n,,, individuals or agents each being either suscep-
tible, infectious or removed. At time t € [0,00) denote the (random) set of sus-
ceptibles by &;, the set of infectious by Z; and the set of removed by R;. Time is
modeled continuously and measured in days.

We assume a homogeneous population with contacts between agents a and b
following a Poisson process with intensity A which does not depend on the agents
considered. Infections occur randomly upon contact with a fixed probability « if
one of the agents is susceptible and the other infectious. Thus, potentially infec-
tious contacts also follow a Poisson process with respective intensity aA. Similarly,
we model other events, in this simple model only recoveries, to occur according to
a Poisson process. This implies that the time an agent spends in the infectious
compartment is exponentially distributed with rate 7, say, which we also assume
to be the same for each agent (see [27] for models where these quantities follow
other distributions).

We denote by S(t) = E%,[(t) = E% and R(t) = E% the expected
share of the population which are susceptible, infectious and removed, respectively.
Since for large np., the change of % over a short time interval can, due to the

law of large numbers, be well approximated by its expectation, S(t) will provide

a sufficient approximation of 7‘1—” over the finite time horizon considered for a
pop

country the size of Germany. By the same argument, I(¢) and R(¢) approximate
% and %, respectively, sufficiently well.

If a is susceptible he will transition to the infectious compartment upon having
an infectious contact. At a fixed time t with a € &;, there are two possible sources
of infection for a: either some b € Z; which is already infectious or some ¢ € &,
which will become infectious himself at some later time.

To determine the probability that b infects a in the time frame (¢,¢ + At], we
analyze two competing events: The first is an infectious contact between a and b,
and the second is b’s recovery from the infectious state. Both events happen in-
dependently of one another with exponentially distributed time of occurrence, the
first with rate a\ and the second with rate n. Thus the first time of occurrence of

one of these is again exponentially distributed with rate aA+n and the probability



that the first occurrence is an infectious contact is ai‘in. In total

P(b infects a in (¢,t + At] ‘ a € 8;,b € It)
a\
:<1 —exp(—(aX + n)At)) Py
=aA At + o(At).

For ¢ € §; to infect a in (¢,t+ At], ¢ has to become infectious himself before he
in turn can infect a. This happens only with probability o((At)?) and can, thus, be
neglected in the following calculations. In total a is moved out of the susceptible
compartment with probability

P<a N ‘ St,It> =1- H (1 — At — O(At)) H (1 _ O((At)Q))

beT: cES:

Approximating % and % by S(t) and I(t) using the law of total expectation
yields
S(t+ At) — S(t) 1 al
~ —alAt|Z, At) = —
As A > —aAAt T + o(At)

beS; pop

R — NS () I(t) + o(1).

[Sl[Zi] + o(1)

As we assume the time from infection to removal to be exponentially distributed
with rate 7, a similar but more straight-forward calculation reveals

R(t+ At) — R()
At

where ! is the mean stay of a single agent in the infectious compartment. We
now set 5 = npopaA, which can be interpreted in this model as the daily amount
of (potentially) infectious contacts a single agent has.

Since S(t) 4+ I(t) + R(t) = 1 for all ¢, we obtain the following system of ODEs:

S(t) = —BS(t)I(t)
1(t) = BSH)I(t) —nl(t) (1)
R(t) = nl(t).

To determine suitable parameter values for § and 7 in this simplistic model, we reit-
erate that these are best thought of in the probabilistic setting. For the coefficients
of the linear terms on the right-hand side, the interpretation is straight-forward:
it is the rate of the exponential distribution underlying the time until an agent
leaves the compartment. Its inverse is the mean stay in this compartment.

For coefficients of interaction (product) terms, here 3, the interpretation is the
rate at which an agent in the first compartment causes other agents to leave the
second compartment. In our setting, this is the daily amount of infections one
infectious agent causes which can readily be seen from the definition of 3. See
Section 3 for a more detailed discussion of the parameter values we use in our
model. As above mentioned, these interpretations for the parameters carry over in
a straight-forward manner to more sophisticated models such as the one considered
in the following.

— nI(t) + o(1),



2.2 A Compartmental Model for COVID-19

The SIR model provides a good starting point to study the dynamics of pandemics.
However, due to its simple structure it is not suited to model the COVID-19
pandemic adequately. In particular it does not include hospitalization, age-specific
disease progressions and interventions. Therefore, we extend the SIR model in
three ways.

1. We introduce eight additional compartments. In detail, we take into account
that people can be infected, but not yet infectious. We call them exposed
(or latent) and denote the compartment by F, see also [18]. Moreover, we
split the infectious compartment into three depending on how the course of
the infection will be. We distinguish between severe cases I° that are going
to need intensive care, i.e. they will move to H'Y at some point in time;
mild cases I™ that are going to visit a physician and hence be quarantined,
i.e. removed; and asymptomatic cases I that might recover without being
detected. Furthermore, we incorporate the possibility of being tested but not
yet detected by introducing the compartments T (severe) and T° (other).
We assume that the patients with severe cases will visit a physician at some
point before being sent to an ICU. To this end, we introduce P as a pre-
ICU compartment which comprises isolated patients at home or on a regular
hospital ward. Moreover, we split the compartment of removed people into
known and unknown cases R = RV + RE.

2. Each compartment is further divided into n, groups, n, € N, depending on
the age of a subject in order to study how these groups affect each other.

3. Social distancing and hygiene measures affect the contact rate as well as
the transmission probability. Therefore, S can be used as a time-dependent
control input 5(t).

The resulting SEITPHR model reads as

50 = — Yo BOS M [0+ 10 + O+ TE0 +T00] (2a)

E) = S80S0 [15(0) + 1) + I + T5) + T9(0)] ~ 1Bt

N

2b)
I5(t) = wyE(t) — (i + 0:0)I5 (1) (2¢)
M) = 7MyEi(t) — (™ + 0:(6) 1 (2) (2d)
IAt) = myE() — (" + 0:(8) I (1) (2¢)
T5(t) = ()15 (t) — 7575 (t) (2f)
TO®) = 0:(t) [IM(t) + I(t)] — 7°TL(t) (28)
Bty = n I3 (t) + 5T (1) — pPi(1) (2h)
HICU(t) = pPy(t) — o HIV(1) (2i)
RE(t) = n™IM(t) + 79T2(t) + o HIOV (1) (24)
RY(t) = n'IA(), (2K)



where the subscript i € {1,2,...,n,} denotes the age group in ascending order. We
enforce 3%, N; = 1, where N; denotes the relative size of age group i. We assume
a mean incubation time y~! independent of both the course of infection and the
age of the patient. However, depending on the age, there are different probabilities
77, M and 7 for the three courses of infection, where 77 + 7™ + 74 = 1 for
all 4. Similar to the SIR model (1), the parameters denoted by 7 correspond to
people being removed from the system, i.e. n° and 7™ denote those who visit a
physician and, therefore, are put into quarantine immediately, while n** represents
unreported recovery. We denote the total number of susceptibles and unreported
cases by U; = S; + E; + Iz-S + IM + IZ-A + RY. The control input 6; : Rs>y —
R>( describes the rate of those being tested per day, where tests are distributed
uniformly at random among all individuals in U;. In addition, symptomatic cases
who visit physicians are assumed to be tested as well. Therefore, the total number
of tests at time ¢t > 0 is given by

Ttot( = Npop - (Z@ +nS]S( )+77M]fw(t)>.

Note that testing does not affect the state of non-infectious subjects. Parame-
ters 7° and 7¢ denote the rate from being tested positive to being detected, and
hence being put into quarantine. Furthermore, p is the rate from pre-hospital quar-
antine to hospitalization and ¢ from hospitalization to being reportedly removed,
i.e. o incorporates both mortality and recovery rate of hospitalized patients. The
basic structure of the SEITPHR model (2) is depicted in Figure 1.
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x
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Figure 1: Flow of the SEITPHR model for one age group. The controls are
indicated with dashed red edges. Unreported compartments are highlighted by
the left red triangle, while tested and detected compartments are highlighted by
the right blue trapezium.

For a concise notation we stack the state vectors into = (x1,...z,,) and the



controls into u = (3, 0), where

xp = (S, By, 17, 1M 1A, T2, TP, Py HCY RY | RYY),

vy Ly o4y o4y

and 8 = (6@')2?:1 with 3;; : R>g = Rxg and 6 = (04, ..., 0,,). Similarly, we denote
7 € R¥= 7 € R? and n € R3. Thus, we write system (2) as

w(t) = flx(t),ult),p), (3)
where p = (m,n,7,p,0,7) € R3T® collects all parameters. Furthermore, we
introduce the initial condition z(0) = ° for some 2° € Q, where

Q = {ZE c Rlzldng

11-ng
Z l’j =1
j=1

denotes the set of possible states. Note that 2 is forward invariant under (3), i.e.
if 29 € Q then z(t) € Q for all t > 0.

3 Parameters

Before we present our choices for the parameters of model (2), let us reiterate that
some of the parameters of our model depend on age. We indicate this dependence
by an appropriate index which we drop if the parameter is constant across age-
groups. For example, 7 is the age-dependent probability of having a severe course
of disease while we assume n“, the rate with which asymptomatic cases recover,
to be age-independent.

N; We use data on the population size of Germany at the end of 2019 from the
GENESIS-Online Database of the DESTATIS [36]. The first age group consists
of individuals aged younger than 15 years, the second of those older than 15 but
younger than 60 years, and the last comprises all individuals older than 60 years.
These groupings result in proportions N; = 0.14, Ny = 0.58 and N3 = 0.28.

ij The rate at which an infected agent in compartment /; infects susceptibles
in compartment S; depends on the contact structure of a population as well as
the probability that a contact between a susceptible and infectious agent leads
to a transmission of the disease. We base our contact process on data from the
POLYMOD study on daily contacts in several European countries [26]. From this
data we calculate a contact matrix C' = (¢;;) whose (4, j)-th entry is the mean
amount of contacts an individual in age group ¢ has with age group j; here we
only consider those contacts labeled as physical, since those are more likely to lead
to viral transmission.

Let us denote by ZQ]- the rate at which a single infectious agent from age group
j infects susceptible agents from age group i if no countermeasures, such as social
distancing, are in place. We model ?j to be proportional to ¢;; and let a be the
corresponding proportionality constant. If a single infectious agent is introduced
without interventions such as test, quarantine and social distancing measures in



place into the otherwise completely susceptible, i.e. virgin, population, the mean
amount of secondary cases he causes is the basic reproduction number

Ng 1 Ng Q
Ro~ D> NiNjBi—= > NilNjei - (4)

4,j=1 4,j=1

There is a wide variety of estimates for R in the literature [29], with most
estimates in the interval [2,3.5]. We choose a value of Ry = 2.5 as early, higher
estimates might be biased upwards due to imported and undetected cases. Fixing
7' =6 (see the discussion on 74 below) we calculate a = 5.79% and in turn 37
from (4):

0.46 0.48 0.12
(B )1<ij<n, = [ 048 0.63 0.29 | . (5)
0.12 0.29 0.18

~ The rate at which latent cases become infectious is the inverse of the mean
incubation time. This parameter is modeled age-independent and chosen to be
0.19, which corresponds to a mean incubation time of 5.2 days [23].

ﬂ'f , 7rlM , 71';4 These parameters denote the proportion of individuals in age group
¢ that have severe, mild or asymptomatic course of disease. For Germany, the
Robert Koch Institut (RKI) has published data on severity of disease progression
for 12,178 cases by age-groups [34]. For our purposes we define a severe case to
be a case that will eventually be admitted to intensive care, a mild case being one
developing influenza-like symptoms, pneumonia or being admitted to hospital for
other reasons. All other cases we classified as asymptomatic.

S M _A

Thus we obtain m; = (77, m;", 7/), the proportion of severe, mild and asymp-

tomatic cases in age group i, respectively, as

0.53 031 3.02
(71, T2, T3) = 100 12.11 22.01 25.12
87.37 T77.68 T1.86

Observe that the oldest age group is at highest risk with 3.02% of infected indi-
viduals admitted to ICU. Also the proportion of severe cases in the youngest age
group is higher than in the middle age group. This might be explained by the
fact that cases in the youngest age group are detected less frequently due to them
being tested less, leading to overreporting of severe cases.

n%,mM,n" These are the rates at which infectious individuals are removed from
the infection process, if no mass-testing is implemented, i.e. if ; = 0. For individ-
uals with severe or mild course of disease when they develop symptoms leading to
self-isolation, quarantine prescribed by a physician, or to direct hospitalization.

One characteristic of COVID-19 is that even presymptomatic cases transmit
SARS-CoV2 [17]. We assume the time from being infectious to symptom onset to
be 2 days after which we add 2 more days which it takes before the infectee visits
a physician. Thus we choose n° = 0.25.

For mild progressions we assume the same mean duration from being infectious
to symptomatic, though in this case individuals self-isolate, visit a physician or



receive a positive test result after a mean waiting time of again 2 more days;
consequently, we also set n™ = 0.25.

For asymptomatic cases in I/ the only way to be removed from the infection
process is by recovery from the infection. In [40] positive virus samples were found
in patient’s throats for up to 8 days after symptom onset. Assuming a lower viral
load for asymptomatic cases with only 4 days of potential infectiousness and adding
the 2 days of presymptomatic transmission we chose n4 = 0.17, corresponding to
a mean time of 6 days to recovery for asymptomatic cases.

79,75 As we assume the testing related to the controls 6; to be of a random

nature, tested individuals are not yet removed from the infection process. Instead
we assume positive test results to become available after a mean delay of 2 days.
However, severe cases may visit a physician and thus go into immediate quarantine
before receiving their test result. The latter transition occurs with rate n°, and
hence the faster transition occurs with rate 7% = % +n% = 0.75.

Non-severe cases that are tested, T, are removed if they recover naturally

with rate n), or receive a positive test result, or visit a physician. That leads to
1 Y
70 =M 4 4 4 % = 0.92 for each age group.

p This parameter is the rate at which severe cases move from being in the pre-
ICU state to the intensive care unit. This includes time spent in quarantine at
home as well as time spent in the hospital in normal care while being isolated.

In [10] the median time from symptom onset to being in intensive care for 50
patients was 9 days. As the median of an exponential distribution Exp(() is 10? 2
we choose a mean stay of 1022 — 2~ 10.98 = p~! days, accounting for the mean
two days from symptom onset to the transition into the pre-ICU compartment.

o This is the mean time spent on intensive care until discharge or death. Ac-
cording to [10] patients with acute respiratory distress symptoms (ARDS) spent a
median amount of 13 days in intensive care and patients without ARDS spent a me-
dian amount of 2 days in intensive care. Of the 50 patients considered in this study,
24 were afflicted with ARDS. Converting again between median and mean for the
assumed exponential distribution yields a mean time of 0~ = 10152 u 1022 2 =105
days spent in intensive care.

H!CU  The DIVI-Intensivregister offers daily information on the amount of free
intensive care hospital beds in Germany. On 20 October 2020 they reported a
capacity of 8,872 free beds with 879 actively treated COVID-19 patients [9]. We
therefore round the maximal ICU-beds available for COVID-19 patients to 10, 000.

T™2*  In late August until the beginning of October the RKI conducted between
1 and 1.2 million weekly SARS-CoV-2 tests in Germany. This motivates our upper

bound T = M of daily tests.

2% We initialize our model at time ¢t = 0 with entries of 2° set to 0 except for

those related to the susceptible, latent and infectious compartments. Our choice
of initial values is informed by the number of active cases reported by the RKI in

10



late march assuming the proportion of underreporting to be 50%. We hence set
the total number of infectious agents at ¢ = 0 to 524 and the number of latent
agents to 1672 distributed among the age-groups according to NV;. As we explain
in Remark 1 our model is robust against misspecification of the initial values.
Figure 2 demonstrates the simulation capabilities of our model. Here, the
course of the pandemic is visualized if no countermeasures are implemented, i.e.
no social distancing (8(t) = (°) and no mass-testing (8(t) = 0). As expected,

%107 s x10* HU 107 E+1I
10 2
—n, =1 "
. A - =ng =3 10 Y
5 \ 1 1 \
5
\ J v
\
0 0 0 =
0 26 52 0 0 26 52
Time in weeks Time in weeks Time in weeks

Figure 2: Evolution of the pandemic without countermeasures for one and three
age groups over one year; the dashed black horizontal line in the middle figure
marks HICV

max *

the pandemic evolves too fast to satisfy any reasonable cap on the number of
required ICUs. In particular, the number H'°Y of required ICUs exceeds 100,000
whereas we noted above that in Germany only about 10,000 ICUs are available to
treat COVID-19 patients. Therefore, countermeasures are indispensable to avoid
an overload on the hospitals. Note that if we distinguish different age groups
the pandemic evolves faster, but less ICUs are required, as the pandemic spreads
mostly in the less vulnerable, younger age groups. Similar observations, viz. herd
immunity being achieved faster in heterogeneous populations in comparison to
homogeneous ones, have already been made by [5].

4 Optimal testing and social distancing

In this section, we provide information on how to keep the epidemic manageable.
To this end, we formulate suitable optimal control problems (OCPs) and solve
them numerically. Since we neither take vaccines nor re-infections into account, we
consider the epidemic to be over once herd immunity is achieved, i.e. a state where
the introduction of new infectious agents does not lead to an outbreak. Therefore,
our main goal is to reach herd immunity with as few social distancing as possible
while maintaining strict limits on the ICU occupancy to avoid a breakdown of
the health care system. We call a control u = (3, 0) of the system (3) feasible, if
Bi;(t) €10, B%], 0:(t) >0, 14,5 € {1,...,ng}, and

)y Mig

Ng
Tpop * ZHz‘ICU(t) < Hy\

max
i=1
is satisfied for all ¢.
A natural stopping point for simulations is when the share of susceptibles
has decreased enough to ensure herd immunity even when all countermeasures

are lifted completely. The time-dependent effective reproduction number R(¢),
that is the mean number of secondary cases a primary cases will cause at time

11



t, can be used to determine whether herd-immunity has been reached: this will
be the case if R(t) is less than 1. If there is only one infected compartment, as
in a simple SIR model, the latter condition is equivalent to I (t) < 0. If there is
more than one infected compartment, as in model (2), [8, 38] have suggested to
compute RNM(#), based on the so-called next-generation matrix, as a proxy for
the effective reproduction number. Then, RNM(#) exhibits the same threshold
property as R(t), that is RN“M(¢) < 1 implies herd immunity. Thus we use
RNGM(¢) to check whether our simulations have reached herd immunity. A time
horizon of two years (104 weeks) sufficed for all our simulations.

This section is structured as follows. First, we verify the existence of a feasible
testing strategy, i.e. without enforcing social distancing. Note that due to delays
in testing, the existence of a solution is not trivial and depends on the initial value.
Next, we establish an upper bound on the maximal number of tests per day and
investigate to what extent social distancing is required in order to ensure feasibility.
Throughout our simulations, we assume the length of one control interval to be
one week. This reflects the practical constraint that the government cannot change
policies arbitrarily often but more realistically on a weekly basis. Throughout our
simulations we use the Matlab-inherent sequential quadratic programming (SQP)
tool to solve the OCPs.

4.1 Optimal testing strategy

Here, our goal is to maintain a hard cap on the number of required ICUs with as
few tests as possible without enforcing social distancing, i.e. 5 = 3°. To this end,
we solve the OCP

min J,(0) = /:f TN (g dt (6a)
s.t. npop-ig:H}CU(t) < HSU Vit t] (6b)
Ht) = Flalt),ult)p), Vi€ fforty], w(0)=4" (6¢)
Bt)=p° Vtelt,ty) (6d)
6i(1) >0 Vi€tots)ic{l,2. .. ng}. (6e)

The objective function penalizes the total number of tests over the entire time
horizon [tg, ts] with t; > t; > 0. The equality constraint (6¢) captures the system
dynamics while the one-sided box constraints (6e) ensure that the testing rates
cannot be negative.

Figure 3 depicts the optimal controls as well as the total number of tests and the
number of detected cases per day while Figure 4 shows the impact on the evolution
of the epidemic. Here, we computed the effective reproduction number RNM(t)
at each time step, demonstrating that we reached herd immunity.

We observe that there exists a testing strategy that ensures feasibility, which
was not obvious from the outset because of the assumed delays. In particular,
the bound (6b) is active once it’s reached, i.e. H'V = HICU and becomes in-
active when the number of susceptible people falls below a certain threshold and
RNGM(#) < 1 indicating the onset of herd immunity.
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Figure 3: Optimal testing strategy for three age groups over two years.
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Figure 4: Evolution of the epidemic corresponding to the optimal testing strategy
visualized in Figure 3 and reproduction number based on next-generation matrix.
The dashed black line in the middle plot depicts the maximal capacity of ICUs.

Remark 1 The steady state in H'CY suggests that problem (6) satisfies the so-
called turnpike property [15]. Typically, turnpikes indicate the optimal operating
state of a system. These are steady states at which the running costs are minimized.
In our example, since we do not penalize the number of required ICUs, the best
strategy s to stay at the upper bound while saving tests. Once the objective function
value is zero the system leaves the state eventually. In particular, regardless of the
initial value, the system is steered towards this optimal operating point. As a
consequence, a rough estimation suffices as initial guess for our simulations. A
rigorous analysis of these turnpikes, however, is left for future research.

However, these results are only of theoretical interest, since this optimal testing
strategy would be prohibitively expensive and might not even be implementable
at all. For instance, regarding Figure 3, one observes that the mean testing rate
reaches about 0.5, which corresponds to being tested every two days on average.
Moreover, the total number of tests per day required for this approach is more than
12,000,000 on average (over 65 weeks), compared to 7™ ~ 170,000 daily tests
which are currently conducted in Germany. Note that, even with this enormous
testing effort, the number of detected cases, TS + T©, is rather small since the
number of infectious individuals is small compared to the total population.

In conclusion, mass-testing alone currently does not suffice to maintain hospi-
talization caps in reality. These arguments support the government’s decision to
introduce additional measures like social distancing and hygiene concepts. How-
ever, cheap rapid test kits might change the situation favorably as they could be
made widely available, self-administered while giving immediate test results.

In the following subsections, we enforce T™** as an upper bound on the amount
of daily tests. Under this additional constraint we then determine the minimal
amount of social distancing required to reach herd immunity. The success of
such measures depends on the acceptance and thus compliance by the general
population.
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4.2 Optimal homogeneous social distancing

In a first step, we determine an optimal social distancing strategy by penalizing the
deviation of 3 from 3° equally over all age groups. This might increase acceptance
in the general population due to the (perceived) fairness of such measures: everyone
is treated equally and contacts are reduced by the same proportion for everyone.
In reality such strategies may be hard to conceive as different measures affect the
age groups differently, i.e. closing schools and nurserys affects those in the lowest
age group the most while leaving the oldest age group unaffected. Nevertheless
a mixture of many different non-pharmaceutical measures may be able to achieve
such a reduction in contacts.

We introduce a time-varying factor 6 = 0(¢) describing the amount of social
distancing that is implemented. Moreover, we choose to penalize the ¢? deviation
of this control input from 0 = 1 in the objective function in order to smooth
the optimal control. For instance, penalizing the ¢! deviation yields bang-bang
controls, i.e. the optimal solution jumps back and forth between the two extremal
options: no contact restrictions and lock down (simulations not shown). Therefore,
we determine an optimal homogeneous social-distancing policy by solving

min J2(0,0) = /ttf (1-6)" + Kg@(t) dt (7a)
st Npop - iH}CU(t) < HSY Vte lty,tf] (7b)
Bii(t) =0(t)B) Vi, je{l,....,ng} (7c)
(t) = flz(t),u(t),p) Vte€ [toty], 2(0)=2" (7d)
Tt < T™ Yt e [ty ty], (7e)
i(t) € [0,1] Vi€ [to,ty) (71)
0,(t) >0 Vt€ltoty),ic{l,2,. .. ngh (7g)

Note that we allow to distribute the tests among the age groups by not fixing 6;,
but enforcing (7e) and (7g). Furthermore, we introduce a regularization term with
weight £ = 107°. The choice of « is based on simulations. In contrast to (6), we
always find a feasible solution of (7) if the epidemic has not yet evolved too far.
More precisely, by choosing § = 0, which corresponds to a complete lockdown,
we are (theoretically) able to stop the spread. Therefore, if the initial number of
people with a severe course of infection is sufficiently low, the upper bound on the
number of ICUs will not be violated.

A highly fluctuating social distancing strategy may lead to low acceptance
in the general population, because people have to adapt to new rules every few
weeks. Thus before we solve (7) let us have a look at what happens if we consider a
constant value for § over time, i.e. a social distancing strategy without fluctuations.
Figure 5 (left) shows that fewer contacts result in a longer time for the epidemic to
abate on the one hand, but a lower number of total infections within the considered
time horizon on the other hand. Moreover, Figure 5 (middle) visualizes that quite
strict social distancing is needed in order to meet the ICU capacities. The maximal
value of § to stay feasible is 0.487, i.e. contacts needed to be more than halved
over three years. Furthermore, once we lift the restrictions, see Figure 6, there
might be another outbreak. In particular, the stronger the restrictions were in the
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Figure 5: The impact of constant contact reduction rate § € 0.4, 0.6] on the speed
of evolution of the epidemic and on the number of required ICUs.
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Figure 6: Solution for fixed ¢ for three years and complete lift of restrictions
afterwards.

beginning, the stronger the second outbreak will be. Therefore, it is essential to

establish herd immunity before lifting all restrictions, and to adapt the policy over
time.

A visualization of the optimal solution of (7) can be found in Figures 7 and 8.

As mentioned above, the bound on H'™VY is not violated. Since the weight & is
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Figure 7: Optimal combination of testing and (homogeneous, time-varying) social
distancing for three age groups over two years. The dashed black line in the second
subplot depicts the upper bound on the total number of tests per day.
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Figure 8: Evolution of the epidemic based on the controls visualized in Figure 7.
The dashed black line in the plot of H'®Y depicts the upper bound on the number
of available ICUs.

chosen sufficiently small, the upper bound on the total number of tests per day
is active as long as the upper bound on ¢ is not. However, note that not all age
groups are tested equally. More precisely, only the middle-aged group is tested
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at all. The reason is that this group is the largest (No > N; + N3) and has the
highest contact rates (c.f. (5)) and therefore, contributes more to the spread of the
epidemic than the other groups. Furthermore, we observe that the social distancing
policy has to be quite strict in the beginning. In particular, min, §(¢) ~ 0.3 which
corresponds to a reduction of average contacts per person by 70%. However, this
can be qualitatively compared to the measures taken in Germany starting in mid
March 2020 when contacts were reduced by school and restaurant closures as well
as other contact restrictions.

In conclusion, social distancing is an effective tool to keep the epidemic man-
ageable. Comparing the results of (7) to the simulations with constant 6 we see
that a (partial) lockdown appears inevitable. However, our simulations suggest to
let the epidemic evolve for a few weeks, then enforce a contact reduction down
to approximately 30% for 2-4 weeks before slowly lifting the restrictions over the
next 12 months until herd immunity is achieved.

4.3 Age-dependent social distancing

The constraint that contacts are reduced by the same proportion for each age group
is restrictive and it is plausible that more efficient solutions exist when contact
reductions are distributed differently across age groups. One reason to consider
such a strategy is that it may be more efficient at stopping the spread of the
epidemic; as mentioned above the middle-age group is the driver of the epidemic
while the oldest age group consists of the most vulnerable individuals. In any case,
such an age-differentiated social distancing strategy needs to be accepted by the
whole population to be successful.

Hence, we improve the social distancing policy computed above by allowing it
to depend on age. Given the solution (6*,6*) of (7), we solve the OCP

min J5(6,5) = : ]Zl NNy (B (1) — 35)" + w6(t) (8a)

st Mpop - %H}CU(t) < HSY Vit et ty] (8b)
=1

i(t) = f(a(t),u(t),p) Vteltots], =(0)=a’ (8¢)

Tt < T Yt € [ty ty] (8d)

0;(t) >0 Vtelto,tr),i€{1,2,...,ng} (8e)

Bi;(t) € [BE™, 8] Vit e [to.ty), i,5€{1,2,...,ng}. (8f)

Here, we use 6* to define S}™ = min, §*(t) 3™, i.e. the lower bound on 3 in (8)
is the worst case of (7). Therefore, no one is treated worse than when applying
homogeneous social distancing. Note that (6*,8) with 3 = 6*3° is feasible for
problem (8). As in (7) we penalize testing as soon as () = 3° holds.

Results for (8) can be found in Figures 9 and 10, where
B(t) = 37 NiN;Bi;(t)
ij=1

describes the average number of contacts per person and day in a heterogeneous
population. Here, we used x = 107°. The corresponding value for 3° is 8° =
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Figure 9: Optimal age-dependent social-distancing strategy for three age groups
over two years.
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Figure 10: Evolution of the compartments associated with controls depicted in
Figure 9.

0.4167. This allows to compare the solution (3;;(t) with 3°5*(¢) obtained from
(7). Similar to the solution of (7), the upper bound on testing is active most
of the time, while essentially only the middle-aged group is tested. The social
distancing measures are less restrictive than for (7) which makes compliance with
the measures more likely. However, the measures could be perceived as unfair,
since the contacts of the oldest age group are restricted most. Moreover, the
contacts of the middle-age group are least restricted. Therefore, the working class
would be allowed to go to work which benefits the economy.

In conclusion, social distancing is crucial to avoid an overload on the hospitals.
In addition, testing middle-aged people helps to reduce the required amount of
social distancing. Furthermore, all presented strategies support a lock down a few
weeks into the epidemic, which is followed by lifting the restrictions step by step
until herd immunity sets in. Age-differentiated social distancing might be hard to
argue for, but it helps to end the epidemic several months earlier and, therefore,
support the economy.

4.4 Short-term decision making

The control strategies derived in the previous subsections provide rough guidelines
for how the epidemic can be controlled. However, from a decision maker’s per-
spective, it will be hard to argue for policies taking effect in the far future. In
particular, there are many uncertainties that might affect the performance of the
control strategy over the time span of two years, and hence the control strategy
needs to be adjusted over time. Therefore decision need to be revised constantly
adapting to the changing conditions during the epidemic’s progress. Model pre-
dictive control (MPC) provides a state of the art methodology to tackle such
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Figure 11: Optimal control for solving (8) in closed loop for varying prediction
horizon length. For the sake of readability, we depicted average values of 6 and
sums of T**" over the age groups.
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Figure 12: Evolution of the epidemic based on the controls depicted in Figure 11.
For the sake of readability, only the sum over the age groups is visualized.

problems. The basic idea of MPC is to consecutively solve a series of OCPs over
a smaller horizon of K control intervals rather than solving a single OCP over the
whole horizon. More precisely, only the first part of the optimal control derived by
solving such an auxiliary OCP is implemented. Then, the time window is shifted,
and the procedure is repeated based on updated measurements. For a detailed
introduction to MPC we refer to [32]. Here, we tackle (8) via MPC; the earlier
problems can be treated analogously. The MPC scheme for (8) is summarized in
Algorithm 1.

Algorithm 1 MPC scheme for solving (8)
Input: Prediction horizon length K, length of control interval At. Set time t = .
Repeat:

1. Obtain current states & = x(t).

2. Determine optimal solution u* : [t,t + KAt) — RY of (8) on [t,t + KAt)
with 29 = 2.

3. Implement u*|p 4a¢). Increment time ¢ <t 4+ At.

Results based on varying prediction horizon lengths can be found in Figures 11
and 12. The basic structure of both the optimal control and the associated
states is comparable to the open-loop solution presented in the previous subsection.
Therefore, we stopped the simulations after one and a half years. The length
of the prediction horizon affects mainly the optimal social distancing policy. In
particular, the larger the prediction horizon, the less social distancing is needed
in total. More precisely, for bigger K, we implement a slightly stricter lockdown
but can start it later and relax it earlier. Furthermore, the larger K gets the
closer the optimal solution is to the open-loop solution. In particular, the MPC
solutions qualitatively resemble the open-loop solution: after an early lockdown,
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social distancing is slowly lifted.

For K = 3, the ICU capacity reaches its upper limit earlier due to the laissez-
faire policy in the beginning. However, this constraint also becomes inactive earlier.
For even shorter prediction horizons recursive feasibility cannot be guaranteed, i.e.
the ICU cap might be violated (simulations not shown).

4.5 Impact of upper bounds on number of tests and ICUs

So far, we assumed both the upper bounds on the number of tests per day, and on
the number of ICUs to be fixed at our chosen values. In practice, these conditions
may change: free ICU capacity might exhibit seasonal patterns and the number
of possible tests per day depends on infrastructure and available personnel. In
addition, varying the upper bounds is useful to illustrate the benefits of increased
testing and higher ICU capacities. In this subsection, we investigate the impact
of these parameters on the optimal social distancing policy numerically.

First, we study the effect 7™ has on the social distancing by solving (7)
via MPC, see Figure 13 (left). As pointed out in the previous subsection, the
prediction horizon length affects the start and end time of measures as well as
its peak (simulations not shown). In addition, increasing 7™ by some factor
Tiex > 1 shifts the whole § curve upwards, i.e., as expected, the more tests
are available, the less social distancing is required. Furthermore, Figure 13 (left)
visualizes the impact of 7™** on the objective function value of (7).
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Figure 13: Impact of 7™ on social-distancing costs (left) and of H™** on both
social-distancing costs (middle) and testing (right). In the last two subfigures
the currently available number of ICUs in Germany is highlighted by a vertical
dashed line. The dashed horizontal lines in the right-most figure indicate the total
testing capacities over the entire simulation horizon. Factor of modification of 7™
denoted by T§a*.

Second, we investigate the impact of the number of ICUs on the optimal so-
lution of (8). Results can be found in Figures 13 and 14. For the simulations in
Figure 13 (middle and right) we used MPC with prediction horizon K = 12 weeks.
Figure 13 (middle) clearly shows that the number of available ICUs directly af-
fects the cost function value. While for a small value of HISU every additional
ICU contributes, for large values, a saturation seems to take place. In particular,
doubling the current number of available ICUs does help, but the benefit becomes
negligible when increasing it further. These phenomena are almost unaffected by
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doubling or halving T™#*. However, when there are not enough ICUs, then the
upper bound on T*" is always active, see Figure 13 (right), where T*" is at its
maximum value all the time. Moreover, an increase in the number of ICUs clearly
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Figure 14: Impact of the available number HCU of ICUs and the prediction hori-
zon K on the average social distancing. The dotted cyan line refers to the number
of currently available ICUs in Germany. The vertical dotted black line marks the

end of social distancing measures for that setting.

leads to a reduction in the social distancing measures, as can be seen in Figure 14.

In summary, increasing test capacities and/or ICU capacities helps to reduce
measures like social distancing. However, the impact of the number of available
ICUs appears to be much stronger. Nonetheless the qualitative shape of the solu-
tions over time is not affected by varying these constraints.

5 Conclusions and outlook

In this paper, we demonstrated how mitigation of the COVID-19 epidemic can be
achieved by a combination of age-stratified testing and social distancing measures
while avoiding a breakdown of the health care system. We showed that in our
compartmental model mass testing alone is insufficient to achieve this goal, as it
would require unrealistic testing capacities.

As a remedy, we designed optimal social distancing strategies with a focus on
applicability and acceptance in the general population, i.e. strategies with slowly
changing contact reductions. The resulting social distancing measures imitate the
measures actually taken in Germany, but are lifted at a much slower pace. Age-
differentiated contact reductions may improve upon these results as they yield
qualitatively similar social distancing strategies and prioritize relaxing restrictions
for the work-force and children.

To model the process of policy making more realistically, we used MPC which
allows to adapt to deviations from the envisioned course of the epidemic by solving
the optimal control problem repeatedly. Our analysis reveals that longer predic-
tion horizons allow for faster lifting of restrictions although long-term predictions
may be infeasible in practice. Additionally we showed that the amount of avail-
able intensive care units is a key factor influencing the required amount of social
distancing.

We believe that our model with the chosen parameters reflects reality suffi-
ciently well to provide qualitatively valid insight on how testing and social dis-
tancing can control the spread of SARS-CoV-2. We learned that mass testing
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alone is, assuming realistic testing capacities, not sufficient to avoid a breakdown
of the health care system in Germany. To prevent this, one has to implement
strict contact reductions early on, which, ideally, should then be eased slowly. If
one allows these reductions to vary by age, one is able to relax restrictions for the
(working) middle age group, at the cost of reducing contacts of the more vulnerable
older population.

While short-term planning of measures is unable to control the exponential
growth of cases, medium-term planning produces strategies that, qualitatively, do
not differ from optimal ones while being flexible enough to adapt to new circum-
stances. Finally, as expected, the number of available intensive care units dictates
how fast herd-immunity can be reached and how much total social distancing is
necessary.

However, we caution the reader against interpreting these results in a quan-
titative way, as our model has not been devised to produce precise predictions.
Similarly, we want to stress that we do not provide concrete policies to implement,
as the impact of particular countermeasures on 5 is not easily quantified.

Concerning other influences on the epidemic’s evolution, note that we have not
yet considered vaccinations nor re-infections, both of which could be included in
our model without difficulties, if parameters are available to model them. As our
model is based on ODEs, interaction effects such as contact tracing cannot be
included. Agent-based (stochastic) models are able to handle these critical effects
and could be seen as a natural extension of our (deterministic) compartmental
model. To solve the resulting stochastic optimal control problems would then
require more sophisticated techniques, however.
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