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HOW MUCH TESTING AND SOCIAL DISTANCING IS REQUIRED
TO CONTROL COVID-19? SOME INSIGHT BASED ON AN

AGE-DIFFERENTIATED COMPARTMENTAL MODEL\ast 
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Abstract. In this paper, we provide insights on how much testing and social distancing is re-
quired to control COVID-19. To this end, we develop a compartmental model that accounts for key
aspects of the disease: incubation time, age-dependent symptom severity, and testing and hospital-
ization delays; the model's parameters are chosen based on medical evidence, and, for concreteness,
adapted to the German situation. Then, optimal mass-testing and age-dependent social distancing
policies are determined by solving optimal control problems both in open loop and within a model
predictive control framework. We aim to minimize testing and/or social distancing until herd im-
munity sets in under a constraint on the number of available intensive care units. We find that an
early and short lockdown is inevitable but can be slowly relaxed over the following months.

Key words. compartmental modeling, SARS-CoV-2, decision support, model predictive control,
optimal control
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1. Introduction. The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a strain of coronavirus which causes the respiratory illness coronavirus dis-
ease 2019 (COVID-19). On March 11, 2020, the World Health Organization (WHO)
declared the outbreak of SARS-CoV-2 a pandemic [58]. Due to the novelty of the virus,
there was (at the time of submitting this manuscript) significant uncertainty concern-
ing the severity and mortality of COVID-19. Furthermore, as of October 2020, no
vaccine has completed the trials necessary for approving widespread use [36]. There-
fore, many countries are enforcing nonpharmaceutical countermeasures [28, 29], e.g.,
social distancing, increased public hygiene, travel restrictions, self-isolation (quaran-
tine), and population-wide mass testing. However, enforcing these countermeasures
for long periods of time has severe economic and social consequences, both at the
national and global scale [42]. Therefore, there is a need for identifying economic stra-
tegies for simultaneously relaxing the countermeasures and containing the pandemic.
Model-based decision support systems can be used for exactly this purpose.

Predictive models are used to assist decision makers in identifying and evaluating
candidate strategies; see, e.g., [2]. In particular, given a dynamical model of the spread
of SARS-CoV-2, economically optimal (open-loop) mitigation strategies can be iden-
tified by solving optimal control problems (OCPs) over several months or even years.
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S146 GRUNDEL ET AL.

A key advantage of this approach is that it can directly account for constraints, e.g.,
related to the capacity of public healthcare systems. However, given the uncertainty
surrounding SARS-CoV-2 and COVID-19, it is advisable to implement the optimal
mitigation strategies in closed-loop, i.e., to repeatedly update the strategies when new
data becomes available. This is referred to as model predictive control (MPC) [46],
also known as receding-horizon control, and is an established method for advanced
process control [45]. The predictive capabilities of the underlying model are crucial for
the efficacy of the resulting mitigation strategy, and a common challenge is to identify
suitable model parameters.

Epidemics are often modelled using deterministic compartmental models [27], e.g.,
the classical susceptible, infected, and recovered (SIR) model, where individuals are ei-
ther susceptible, infectious, or removed, or the susceptible-exposed-infectious-removed
(SEIR) model which, additionally, takes the incubation time into account. Optimal
control of compartmental models was already an active research topic before the
SARS-CoV-2 pandemic; see [50] for a review. In particular, optimal control of SIR
models has been considered, e.g., for arbitrary social interaction models [3] and to
identify time-optimal mitigation strategies [5, 25]. Optimal control of more complex
models has also been considered. For instance, Fischer, Chudej, and Pesch [19] con-
sider optimal control of a model with two species, Bussell et al. [8] demonstrate the
importance of closed-loop mitigation strategies (i.e., of incorporating feedback), and
Watkins, Nowzari, and Pappas [56] considered MPC of stochastic compartmental
models. In [18] the authors determined control strategies to maintain hard infection
caps in a disease-vector model based on the theory of barriers. This approach, however,
exploits the low dimensionality of the model. Application of these techniques to com-
plex compartmental models is not straightforward. Furthermore, using reduced-order
models instead makes it challenging to actually satisfy hard constraints.

In response to the SARS-CoV-2 pandemic, many researchers have presented op-
timal control strategies, for instance based on Pontryagin's maximum principle (e.g.
[31, 44, 59]). These strategies typically involve extended SIR or SEIR models, non-
pharmaceutical countermeasures (often social distancing), and minimization of the
number of infected as well as the economic cost of the countermeasures (and often
other quantities as well, e.g., the number of deaths). However, hard constraints, for
instance related to health care or testing capacities, are hardly taken into account.
In the following, we highlight some of the key developments in decision support for
SARS-CoV-2 mitigation based on optimal control. Gondim and Machado [21] use a
model with three age groups to compute optimal quarantine strategies (for suscepti-
ble individuals), which minimize the number of infected and the cost of quarantining.
Bonnans and Gianatti [6] compute social distancing strategies based on a model with
a continuous age structure. Here, the strategies minimize a combination of the number
of deaths, the peak number of hospitalized, and the cost of social distancing. Simi-
larly, Richard et al. [47] present optimal social distancing strategies based on a model
with a continuous age and infection duration structure, which minimize the number
of deaths and the cost of social distancing. Morato et al. [38] compute on-off (also
called bang-bang) social distancing strategies which minimize the number of sympto-
matic infectious people and the duration of the social distancing policies subject to
constraints on intensive care unit (ICU) occupancy. They use extended SIR models.
In [10, 48] the authors use MPC to compute social distancing and travel restriction
strategies for an extended multi-region SIR model, minimizing the cost of the coun-
termeasures and preventing an overload on the hospitals. K\"ohler et al. [34] use MPC
to minimize the number of fatalities caused by COVID-19, subject to constraints on
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the economic cost of social distancing. They take a modified SIDARTHE model [20]
as basis and use interval arithmetic in the MPC to propagate model uncertainties.
Finally, Tsay et al. [53] use MPC to minimize the cost of social distancing and testing,
subject to an upper bound on the peak number of infectious people who have tested
positive. They use the unscented Kalman filter to estimate the noisy state variables
of an extended SEIR model.

In this work, we address some of the key questions that decision makers involved
in the mitigation of the SARS-CoV-2 pandemic are facing:

1. Is mass testing alone sufficient to avoid overloading of ICUs?
2. If not, how much social distancing is then required?
3. How much can social distancing measures be reduced by targeting specific

age groups?
4. How do strategies obtained by short- and long-term planning differ?
5. What are the benefits of increasing the daily testing or ICU capacity?

In this paper, the limited ICU capacity is considered as an example for constraints
imposed by the health care system or political considerations. Of course, different
constraints such as limited personnel for contact tracing could be incorporated as
well.

We address the above questions by proposing a novel compartmental model and
using optimal control as well as MPC to compute open- and closed-loop social distanc-
ing and testing strategies. The model contains three age groups, and it accounts for
several of the key characteristics of COVID-19, i.e., (1) the incubation time, (2) dif-
ferent levels of symptom severity depending on age, (3) delay of testing results (and
the following self-isolation), and (4) delay of hospitalization.

Furthermore, we choose values of the epidemiological model parameters based
on the best of our knowledge to ensure that our numerical results match reality. For
concreteness, we use the COVID-19 outbreak in Germany to determine parameters
depending on demographics and the health care system. However, we expect our
conclusions to carry over to outbreaks in other developed countries as well.

The remainder of this paper is structured as follows. In section 2, we describe
the novel compartmental model of the SARS-CoV-2 outbreak in Germany, and in
section 3, we motivate our choice of model parameters. In section 4, we demonstrate
that optimal control can be used as a decision support tool based on the proposed
model, and we conclude this paper in section 5.

2. Modelling pandemics. In this section, we propose a dynamical model tai-
lored to COVID-19. The aim is to be able to evaluate the effect of population-wide
mass testing (in combination with quarantine) and social distancing measures on the
development of the pandemic. To this end, we extend the well-known SIR model.

2.1. Interpretation of deterministic compartmental models. We start
with an illustration of the connection between (1) infectious disease models based on
randomly acting individual agents and (2) their approximation by ordinary differential
equation compartmental models. This exposition will highlight the interpretation and
conversion of parameters when moving from a random to a deterministic model. Our
final model will be based on parameter values from the epidemiological literature and
not be obtained by parameter identification. As such parameters will often describe
the behavior of individuals, we deem a brief explanation on how to convert these to
the ODE setting to be useful to the reader. The actual parameter values used in this
model are described in section 3. For simplicity, we consider the classical SIR model in
this subsection. However, the connection, especially the interpretation of parameters,
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S148 GRUNDEL ET AL.

is similar for more complex models such as the one described in section 2.2. For a
more in-depth analysis of these models we refer the reader to [14, Chapter 3] which
contains a derivation similar to ours.

Consider a population of npop individuals or agents each being either susceptible,
infectious, or removed. At time t \in [0,\infty ) denote the (random) set of susceptibles
by \scrS t, the set of infectious by \scrI t, and the set of removed by \scrR t. Time is modelled
continuously and measured in days.

We assume a homogeneous population with contacts between agents a and b
following a Poisson process with intensity \lambda which does not depend on the agents
considered. Infections occur randomly upon contact with a fixed probability \alpha if
one of the agents is susceptible and the other infectious. Thus, potentially infectious
contacts also follow a Poisson process with respective intensity \alpha \lambda . Similarly, we model
other events, in this simple model only recoveries, to occur according to a Poisson
process. This implies that the time an agent spends in the infectious compartment is
exponentially distributed with rate \eta , say, which we also assume to be the same for
each agent (see [41] for models where these quantities follow other distributions).

We denote by S(t) = E | \scrS t| 
npop

, I(t) = E | \scrI t| 
npop

, and R(t) = E | \scrR t| 
npop

the expected

share of the population which are susceptible, infectious, and removed, respectively.

Since for large npop the change of | \scrS t| 
npop

over a short time interval can, due to the

law of large numbers, be well approximated by its expectation, S(t) will provide a

sufficient approximation of | \scrS t| 
npop

over the finite time horizon considered for a country

the size of Germany. By the same argument, I(t) and R(t) approximate | \scrI t| 
npop

and
| \scrR t| 
npop

, respectively, sufficiently well.

If a is susceptible, he will transition to the infectious compartment upon having
an infectious contact. At a fixed time t with a \in \scrS t, there are two possible sources of
infection for a: either some b \in \scrI t which is already infectious or some c \in \scrS t which
will become infectious himself at some later time.

To determine the probability that b infects a in the time frame (t, t + \Delta t], we
analyze two competing events: The first is an infectious contact between a and b, and
the second is b's recovery from the infectious state. Both events happen independently
of one another with exponentially distributed time of occurrence, the first with rate
\alpha \lambda and the second with rate \eta . Thus the first time of occurrence of one of these is
again exponentially distributed with rate \alpha \lambda + \eta and the probability that the first
occurrence is an infectious contact is \alpha \lambda 

\alpha \lambda +\eta . In total

P
\bigl( 
b infects a in (t, t+\Delta t]

\bigm| \bigm| a \in \scrS t, b \in \scrI t\bigr) = \bigl( 1 - exp( - (\alpha \lambda + \eta )\Delta t)
\bigr) \alpha \lambda 

\alpha \lambda + \eta 

= \alpha \lambda \Delta t+ o(\Delta t).

For c \in \scrS t to infect a in (t, t + \Delta t], c has to become infectious himself before
he in turn can infect a. This happens only with probability o((\Delta t)2) and can, thus,
be neglected in the following calculations. In total a is moved out of the susceptible
compartment with probability

P
\Bigl( 
a /\in \scrS t+\Delta t

\bigm| \bigm| \scrS t, \scrI t\Bigr) = 1 - 
\prod 
b\in \scrI t

\Bigl( 
1 - \alpha \lambda \Delta t - o(\Delta t)

\Bigr) \prod 
c\in \scrS t

\Bigl( 
1 - o

\bigl( 
(\Delta t)2

\bigr) \Bigr) 
=  - \alpha \lambda \Delta t| \scrI t| + o(\Delta t).

Approximating | \scrS t| 
npop

and | \scrI t| 
npop

by S(t) and I(t) using the law of total expectation
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yields

S(t+\Delta t) - S(t)

\Delta t
\approx 1

npop\Delta t

\sum 
b\in \scrS t

 - \alpha \lambda \Delta t| \scrI t| + o(\Delta t) =  - \alpha \lambda 

npop
| \scrS t| | \scrI t| + o(1)

\approx  - \alpha \lambda npopS(t)I(t) + o(1).

As we assume the time from infection to removal to be exponentially distributed with
rate \eta , a similar but more straightforward calculation reveals

R(t+\Delta t) - R(t)

\Delta t
= \eta I(t) + o(1),

where \eta  - 1 is the mean stay of a single agent in the infectious compartment. We
now set \beta = npop\alpha \lambda , which can be interpreted in this model as the daily amount of
(potentially) infectious contacts a single agent has.

Since S(t) + I(t) +R(t) = 1 for all t, we obtain the classical SIR compartmental
model:

(2.1)

\.S(t) =  - \beta S(t)I(t),
\.I(t) = \beta S(t)I(t) - \eta I(t),

\.R(t) = \eta I(t).

To determine suitable parameter values for \beta and \eta in this model, we reiterate that
these are best thought of in the probabilistic setting. For the coefficients of the linear
terms on the right-hand side, the interpretation is straightforward: it is the rate of the
exponential distribution underlying the time until an agent leaves the compartment.
Its inverse is the mean stay in this compartment.

For coefficients of interaction (product) terms, here \beta , the interpretation is the
rate at which an agent in the first compartment causes other agents to leave the second
compartment. In our setting, this is the daily amount of infections one infectious agent
causes which can readily be seen from the definition of \beta . See section 3 for a more
detailed discussion of the parameter values we use in our model. As mentioned above,
these interpretations for the parameters carry over in a straightforward manner to
more sophisticated models such as the one considered in the following.

2.2. A compartmental model for COVID-19. The SIR model provides a
good starting point to study the dynamics of pandemics. However, due to its simple
structure it is not suited to model the COVID-19 pandemic adequately. In particular
it does not include hospitalization, age-specific disease progressions, and interventions.
Therefore, we extend the SIR model in three ways.

1. We introduce eight additional compartments. In detail, we take into account
that people can be infected, but not yet infectious. We call them exposed
(or latent) and denote the compartment by E; see also [27]. Moreover, we
split the infectious compartment into three depending on how the course of
the infection will be. We distinguish between severe cases IS that are going
to need intensive care, i.e., they will move to HICU at some point in time;
mild cases IM that are going to visit a physician and hence be quarantined,
i.e., removed; and asymptomatic cases IA that might recover without being
detected. Furthermore, we incorporate the possibility of being tested but not
yet detected by introducing the compartments TS (severe) and TO (other).
We assume that the patients with severe cases will visit a physician at some
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S150 GRUNDEL ET AL.

point before being sent to an ICU. To this end, we introduce P as a pre-
ICU compartment which comprises isolated patients at home or on a regular
hospital ward. Moreover, we split the compartment of removed people into
known and unknown cases R = RU +RK .

2. Each compartment is further divided into ng groups, ng \in \BbbN , depending on
the age of a subject in order to study how these groups affect each other.

3. Social distancing and hygiene measures affect the contact rate as well as
the transmission probability. Therefore, \beta can be used as a time-dependent
control input \beta (t).

The resulting susceptible-exposed-infectious-tested-prehospitalized-hospitalized-removed
(SEITPHR) model reads as

\.Si(t) =  - 
ng\sum 
j=1

\beta ij(t)Si(t)
\bigl[ 
ISj (t) + IMj (t) + IAj (t) + TS

j (t) + TO
j (t)

\bigr] 
,(2.2a)

\.Ei(t) =

ng\sum 
j=1

\beta ij(t)Si(t)
\bigl[ 
ISj (t) + IMj (t) + IAj (t) + TS

j (t) + TO
j (t)

\bigr] 
 - \gamma Ei(t),(2.2b)

\.ISi (t) = \pi S
i \gamma Ei(t) - (\eta S + \theta i(t))I

S
i (t),(2.2c)

\.IMi (t) = \pi M
i \gamma Ei(t) - (\eta M + \theta i(t))I

M
i (t),(2.2d)

\.IAi (t) = \pi A
i \gamma Ei(t) - (\eta A + \theta i(t))I

A
i (t),(2.2e)

\.TS
i (t) = \theta i(t)I

S
i (t) - \tau STS

i (t),(2.2f)

\.TO
i (t) = \theta i(t)

\bigl[ 
IMi (t) + IAi (t)

\bigr] 
 - \tau OTO

i (t),(2.2g)

\.Pi(t) = \eta SISi (t) + \tau STS
i (t) - \rho Pi(t),(2.2h)

\.HICU
i (t) = \rho Pi(t) - \sigma HICU

i (t),(2.2i)

\.RK
i (t) = \eta MIMi (t) + \tau OTO

i (t) + \sigma HICU
i (t),(2.2j)

\.RU
i (t) = \eta AIAi (t),(2.2k)

where the subscript i \in \{ 1, 2, . . . , ng\} denotes the age group in ascending order. We
enforce

\sum ng

i=1 Ni = 1, where Ni denotes the relative size of age group i. We assume
a mean incubation time \gamma  - 1 independent of both the course of infection and the
age of the patient. However, depending on the age, there are different probabilities
\pi S
i , \pi M

i , and \pi A
i for the three courses of infection, where \pi S

i + \pi M
i + \pi A

i = 1 for
all i. Similar to the SIR model (2.1), the parameters denoted by \eta correspond to
people being removed from the system, i.e., \eta S and \eta M denote those who visit a
physician and, therefore, are put into quarantine immediately, while \eta A represents
unreported recovery. We denote the total number of susceptibles and unreported
cases by Ui = Si + Ei + ISi + IMi + IAi + RU

i . The control input \theta i : \BbbR \geq 0 \rightarrow \BbbR \geq 0

describes the rate of those being tested per day, where tests are distributed uniformly
at random among all individuals in Ui. In addition, symptomatic cases who visit
physicians are assumed to be tested as well. Therefore, the total number of tests at
time t \geq 0 is given by

T tot(t) = npop \cdot 

\Biggl( 
ng\sum 
i=1

\theta i(t)Ui(t) + \eta SISi (t) + \eta MIMi (t)

\Biggr) 
.

Note that testing does not affect the state of noninfectious subjects. Parameters \tau S

and \tau O denote the rate from being tested positive to being detected, and hence being

D
ow

nl
oa

de
d 

06
/1

7/
22

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TESTING AND SOCIAL DISTANCING TO CONTROL COVID-19 S151

put into quarantine. Furthermore, \rho is the rate from prehospital quarantine to hospi-
talization and \sigma from hospitalization to being reportedly removed, i.e., \sigma incorporates
both mortality and recovery rate of hospitalized patients. The basic structure of the
SEITPHR model (2.2) is depicted in Figure 1.

Si Ei IMi

ISi

IAi

Pi

T S
i

H ICU
i

RK
i

TO
i

RU
i

βij

πS
i γ

πM
i γ

πA
i γ

θi

ηS

τS

ρ

σ

ηM

θi

θi

τO

ηA

Fig. 1. Flow of the SEITPHR model for one age group. The controls are indicated with dashed
red edges. Unreported compartments are highlighted by the left red triangle, while tested and detected
compartments are highlighted by the right blue trapezium. (Color is available online only.)

The purpose of our model is to make qualitative statements on how counter-
measures affect the spread of COVID-19 and how these countermeasures should be
coordinated. Therefore, we make some simplifying assumptions about the nonphar-
maceutical countermeasures and the underlying sociodynamics. Specifically, we do
not attempt to quantify the effects of individual nonpharmaceutical countermeasures,
such as masks and travel restrictions, on the overall transmission rate; see [30] for a
discussion on how such effects can be quantified. Furthermore, we assume that polit-
ical measures such as contact restrictions become active immediately after they are
announced, i.e., we disregard delays; see [38] for a discussion of such delays. The latter
assumption reflects the situation in Germany well since the population adapts quickly
to changes in the contact restrictions. For instance, an emergency-break policy (Bun-
desnotbremse) was established in April 2021, where restrictions were enforced/lifted
districtwise based on the 7-day-incidence value [1]. See [37, 12, 10] for work involving
spatially differentiated contact restrictions.

For a concise notation we stack the state vectors into x = (x1, . . . , xng) and the
controls into u = (\beta , \theta ), where xi = (Si, Ei, I

S
i , I

M
i , IAi , TS

i , TO
i , Pi, H

ICU
i , RU

i , R
K
i ),

\beta = (\beta ij)
ng

i,j=1 with \beta ij : \BbbR \geq 0 \rightarrow \BbbR \geq 0 and \theta = (\theta 1, . . . , \theta ng
). Similarly, we denote

\pi \in \BbbR 3ng , \tau \in \BbbR 2, and \eta \in \BbbR 3. Thus, we write system (2.2) as

\.x(t) = f(x(t), u(t), p),(2.3)

where p = (\pi , \eta , \tau , \rho , \sigma , \gamma ) \in \BbbR 3ng+8 collects all parameters. Furthermore, we intro-
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Table 1
Overview of the parameter values used and their sources.

Parameter Description i = 1 i = 2 i = 3 References

Age-dependent parameters

Ni fraction of population 0.14 0.58 0.28 [51]

\beta 0
i1 base contact rate age group 1 0.46 0.48 0.12 [39, 43]

\beta 0
i2 base contact rate age group 2 0.48 0.63 0.29 [39, 43]

\beta 0
i3 base contact rate age group 3 0.12 0.29 0.18 [39, 43]

\pi S
i fraction severe cases (in \%) 0.53 0.31 3.02 [49]

\pi M
i fraction mild cases (in \%) 12.11 22.01 25.12 [49]

\pi A
i fraction asymptomatic cases (in \%) 87.37 77.68 71.86 [49]

Age-independent parameters

\gamma incubation time 0.19 [35]
\eta S removal rate for severe case 0.25 [26, 57]
\eta M removal rate for mild case 0.25 [26, 57]
\eta A removal rate for asymptomatic case 0.17 [26, 57]
\tau S removal rate for tested severe cases 0.75 ---
\tau 0 removal rate for tested nonsevere case 0.92 ---
\rho ICU admittance rate 0.09 [17]
\sigma ICU removal rate 0.1 [17]
HICU

max max. ICU capacity 10, 000 [16]

Tmax max. daily test capacity 1,200,000
7

---

duce the initial condition x(0) = x0 for some x0 \in \Omega , where

\Omega =

\left\{   x \in \BbbR 11\cdot ng

\geq 0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
11\cdot ng\sum 
j=1

xj = 1

\right\}   
denotes the set of possible states. Note that \Omega is forward invariant under (2.3), i.e.,
if x0 \in \Omega , then x(t) \in \Omega for all t \geq 0.

3. Parameters. We selected the parameter values based on a literature research
on the epidemiology of SARS-CoV-2. For parameter identification, which is outside
the scope of this paper, we refer the reader to [11]. Before we present our choices for
the parameter values of model (2.2), an overview of which can be found in Table 1,
let us reiterate that some of the parameters of our model depend on age. We indicate
this dependence by an appropriate index which we drop if the parameter is constant
across age groups. For example, \pi S

i is the age-dependent probability of having a
severe course of disease while we assume \eta A, the rate with which asymptomatic cases
recover, to be age-independent.

\bfitN \bfiti . We use data on the population size of Germany at the end of 2019 from the
GENESIS-Online Database of the Federal Statistical Office (DESTATIS) [51]. The
first age group consists of individuals younger than 15 years, the second of those older
than 15 but younger than 60 years, and the last comprises all individuals older than
60 years. These groupings result in proportions N1 = 0.14, N2 = 0.58, and N3 = 0.28.

\bfitbeta \bfzero 
\bfiti \bfitj . The rate at which an infected agent in compartment Ij infects susceptibles

in compartment Si depends on the contact structure of a population as well as the
probability that a contact between a susceptible and infectious agent leads to a trans-
mission of the virus. We base our contact process on data from the POLYMOD study
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on daily contacts in several European countries [39]. From this data we calculate
a contact matrix C = (cij) whose (i, j)th entry is the mean amount of contacts an
individual in age group i has with age group j; here we only consider those contacts
labeled as physical, since those are more likely to lead to viral transmission.

Let us denote by \beta 0
ij the rate at which a single infectious agent from age group

j infects susceptible agents from age group i if no countermeasures, such as social
distancing, are in place. We model \beta 0

ij to be proportional to cij , and let \alpha be the
corresponding proportionality constant. Consider a single infectious agent who is
introduced into the otherwise completely susceptible population. Such a population
is often called a virgin population, for which we also assume that no countermeasures
are in place. The mean amount of secondary cases this agent causes is the basic
reproduction number \scrR 0, which we approximate by

\scrR 0 \approx 
ng\sum 

i,j=1

NiNj\beta 
0
ij

1

\eta 
=

ng\sum 
i,j=1

NiNjcij
\alpha 

\eta 
.(3.1)

Recall from the end of section 2.1 that in a simple SIR model a single infectious agent
would cause on average \beta many new infections per time unit and stays infectious for
a mean duration of \eta  - 1 time units, yielding a mean reproduction number of \beta \eta  - 1.
With this in mind we note that (3.1) is a straightforward extension of this to our
age-stratified model: an infectious agent belonging to age group i would cause Nj\beta 

0
ij

many cases in age group j per unit of time and the probability of this agent being in
age group i is Ni.

There is a wide variety of estimates for \scrR 0 in the literature [43], with most
estimates in the interval [2, 3.5]. We choose a value of \scrR 0 = 2.5 as early, higher
estimates might be biased upwards due to imported and undetected cases. Fixing
\eta  - 1 = 6 (see the discussion on \eta A below) we calculate \alpha = 5.79\% and in turn \beta 0

ij =
\alpha cij from (3.1):

(\beta 0
ij)1\leq i,j\leq ng =

\left(  0.46 0.48 0.12
0.48 0.63 0.29
0.12 0.29 0.18

\right)  .(3.2)

\bfitgamma . The rate at which latent cases become infectious is the inverse of the mean
incubation time. This parameter is modeled age-independent and chosen to be 0.19,
which corresponds to a mean incubation time of 5.2 days [35].

\bfitpi \bfitS 
\bfiti , \bfitpi 

\bfitM 
\bfiti , \bfitpi \bfitA 

\bfiti . These parameters denote the proportion of individuals in age group
i that have severe, mild, or asymptomatic course of disease. For Germany, the Robert
Koch Institut (RKI) has published data on severity of disease progression for 12, 178
cases by age groups [49]. For our purposes we define a severe case to be a case that will
eventually be admitted to intensive care, a mild case being one developing influenza-
like symptoms, pneumonia, or being admitted to hospital for other reasons. All other
cases we classify as asymptomatic.

Based on the data in [49] we choose \pi i = (\pi S
i , \pi 

M
i , \pi A

i ), the proportion of severe,
mild, and asymptomatic cases in age group i, respectively, as

(\pi 1, \pi 2, \pi 3) =
1

100

\left(  0.53 0.31 3.02
12.11 22.01 25.12
87.37 77.68 71.86

\right)  .
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Observe that the oldest age group is at highest risk with 3.02\% of infected individuals
admitted to ICU. Also the proportion of severe cases in the youngest age group is
higher than in the middle age group. This might be explained by the fact that cases
in the youngest age group are detected less frequently due to them being tested less,
leading to overreporting of severe cases.

\bfiteta \bfitS , \bfiteta \bfitM , \bfiteta \bfitA . These are the rates at which infectious individuals are removed from
the infection process, if no mass-testing is implemented, i.e., if \theta i = 0. For individuals
with severe or mild course of disease we assume this to occur when they develop
symptoms leading to self-isolation, quarantine prescribed by a physician, or to direct
hospitalization.

One characteristic of COVID-19 is that even presymptomatic cases transmit
SARS-CoV2 [26]. We assume the time from being infectious to symptom onset to
be two days after which we add two more days which it takes before the infectee visits
a physician. Thus we choose \eta S = 0.25.

For mild progressions we assume the same mean duration from being infectious to
symptomatic, though in this case individuals self-isolate, visit a physician, or receive
a positive test result after a mean waiting time of again two more days; consequently,
we also set \eta M = 0.25.

For asymptomatic cases in IAi the only way to be removed from the infection
process is by recovery from the infection. In [57] positive virus samples were found in
patients' throats for up to eight days after symptom onset. Assuming a lower viral
load for asymptomatic cases with only four days of potential infectiousness and adding
the two days of presymptomatic transmission we chose \eta A = 0.17, corresponding to
a mean time of six days to recovery for asymptomatic cases.

\bfittau \bfitO , \bfittau \bfitS . As we assume the testing related to the controls \theta i to be of a random
nature, tested individuals are not yet removed from the infection process. Instead
we assume positive test results to become available after a mean delay of two days.
However, severe cases may visit a physician and thus go into immediate quarantine
before receiving their test result. The latter transition occurs with rate \eta S , and hence
the faster transition occurs with rate \tau S = 1

2 + \eta S = 0.75.
Nonsevere cases that are tested, TO

i , are removed if they recover naturally (with
rate \eta A), or receive a positive test result, or visit a physician, which leads to \tau O =
\eta M + \eta A + 1

2 = 0.92 for each age group.
\bfitrho . This parameter is the rate at which severe cases move from being in the pre-

ICU state to the ICU. This includes time spent in quarantine at home as well as time
spent in the hospital in normal care while being isolated.

In [17] the median time from symptom onset to being in intensive care for 50
patients was 9 days. As the median of an exponential distribution Exp(\zeta ) is log 2

\zeta we

choose a mean stay of 9
log 2  - 2 \approx 10.98 = \rho  - 1 days, accounting for the mean two days

from symptom onset to the transition into the pre-ICU compartment.
\bfitsigma . This is the inverse of the mean time spent on intensive care until discharge or

death. According to [17] patients with acute respiratory distress symptoms (ARDS)
spent a median amount of 13 days in intensive care and patients without ARDS spent
a median amount of two days in intensive care. Of the 50 patients considered in this
study, 24 were afflicted with ARDS. Converting again between median and mean for
the assumed exponential distribution yields a mean time of \sigma  - 1 = 13

log 2
24
50 +

2
log 2

26
50 =

10.5 days spent in intensive care.
\bfitH \bfI \bfC \bfU 

\bfm \bfa \bfx . The DIVI-Intensivregister offers daily information on the amount of free
intensive care hospital beds in Germany. On October 20, 2020 they reported a capacity
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of 8, 872 free beds with 879 actively treated COVID-19 patients [16]. We therefore
round the maximal ICU-beds available for COVID-19 patients to 10, 000.

\bfitT \bfm \bfa \bfx . In late August until the beginning of October the RKI conducted between
1 and 1.2 million weekly SARS-CoV-2 tests in Germany. This motivates our upper
bound Tmax = 1,200,000

7 of daily tests.
\bfitx \bfzero . We initialize our model at time t = 0 with entries of x0 set to 0 except for

those related to the susceptible, latent, and infectious compartments. Our choice of
initial values is informed by the number of active cases reported by the RKI in late
march assuming the proportion of underreporting to be 50\%. We hence set the total
number of infectious agents at t = 0 to 524 and the number of latent agents to 1672
distributed among the age groups according to Ni. As we explain in Remark 4.1 the
solutions of the optimal control problems we consider in section 4 are robust against
misspecification of the initial values.

Figure 2 demonstrates the simulation capabilities of our model. Here, the course
of the pandemic is visualized if no countermeasures are implemented, i.e., no social
distancing (\beta (t) = \beta 0) and no mass-testing (\theta (t) = 0). As expected, the pandemic

Fig. 2. Evolution of the pandemic without countermeasures for one and three age groups over
one year; the dashed black horizontal line in the middle figure marks HICU

max .

evolves too fast to satisfy any reasonable cap on the number of required ICUs. In
particular, the number HICU of required ICUs exceeds 100,000 whereas we noted
above that in Germany only about 10,000 ICUs are available to treat COVID-19
patients. Therefore, countermeasures are indispensable to avoid an overload on the
hospitals. Note that if we distinguish different age groups, the pandemic evolves faster,
but less ICUs are required, as the pandemic spreads mostly in the less vulnerable,
younger age groups. Similar observations, viz. herd immunity being achieved faster
in heterogeneous populations in comparison to homogeneous ones, have already been
made by [7].

4. Optimal testing and social distancing. In this section, we provide infor-
mation on how to keep the epidemic manageable. To this end, we formulate suitable
optimal control problems (OCPs) and solve them numerically. Since we neither take
vaccines nor reinfections into account, we consider the epidemic to be over once herd
immunity is achieved, i.e., a state where the introduction of new infectious agents
does not lead to an outbreak. Therefore, our main goal is to reach herd immunity
with as little social distancing as possible while maintaining strict limits on the ICU
occupancy to avoid a breakdown of the healthcare system. We call a control u = (\beta , \theta )
of the system (2.3) feasible if \beta ij(t) \in [0, \beta 0

ij ], \theta i(t) \geq 0, i, j \in \{ 1, . . . , ng\} , and

npop \cdot 
ng\sum 
i=1

HICU
i (t) \leq HICU

max

is satisfied for all t.
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A natural stopping point for simulations is when the share of susceptibles has
decreased enough to ensure herd immunity even when all countermeasures are lifted
completely. The time-dependent effective reproduction number \scrR (t), that is, the
mean number of secondary cases a primary case will cause at time t, can be used to
determine whether herd immunity has been reached: this will be the case if\scrR (t) is less
than 1. If there is only one infected compartment, as in a simple SIR model, the latter
condition is equivalent to \.I(t) < 0. If there is more than one infected compartment,
as in model (2.2), [15, 54] have suggested computing \scrR NGM, the largest eigenvalue
of the so-called next-generation matrix evaluated at the disease-free equilibrium, i.e.,
Si = Ni for all i = 1, . . . , ng and all other compartments equal to 0. To account for
the depletion of susceptibles over time we define \scrR NGM(t) to be the largest eigenvalue
of the next-generation matrix evaluated at another disease-free equilibrium Si = Si(t)
and Ri = Ri(t) = Ni  - Si(t) for i = 1, . . . , ng. Here, Ri(t) accounts for all removed
people in age group i at time t; the ratio between detected and undetected does
not effect the next-generation matrix. Then, \scrR NGM(t) exhibits the same threshold
property as \scrR (t), that is, \scrR NGM(t) < 1 implies herd immunity for an epidemic in
a population with a fraction of S(t) susceptibles. Thus we use \scrR NGM(t) to check
whether our simulations have reached herd immunity. A time horizon of two years
(104 weeks) turned out to be sufficient for all our simulations.

This section is structured as follows. In section 4.1, we verify the existence of
a feasible testing strategy, i.e., without enforcing social distancing. Due to delays
in testing, the existence of a solution is not trivial and depends on, e.g., the initial
condition x0 and the upper bound HICU

max . Next, we enforce an upper bound on the
daily number of tests and investigate to what extent social distancing is required to
ensure feasibility. We consider both age-homogeneous and age-differentiated social
distancing in sections 4.2 and 4.3, respectively. In section 4.4, we present closed-
loop optimal testing and social distancing strategies which only involve short-term
predictions, and in section 4.5, we investigate the sensitivity of these strategies to the
amount of available tests and the acceptable ICU occupancy. Finally, in section 4.6,
we comment on the numerical solution of the OCPs.

Throughout our simulations, we assume the length of each control interval to be
one week. This reflects the practical constraint that the government cannot change
policies arbitrarily often but more realistically on a weekly basis.

4.1. Optimal testing strategy. Here, our goal is to maintain a hard cap on
the number of required ICUs with as few tests as possible without enforcing social
distancing, i.e., \beta \equiv \beta 0. To this end, we solve the OCP

min
\theta 

J1(\theta ) =

\int tf

t0

T tot(t) dt(4.1a)

s.t. npop \cdot 
ng\sum 
i=1

HICU
i (t) \leq HICU

max \forall t \in [t0, tf ],(4.1b)

\.x(t) = f(x(t), u(t), p) \forall t \in [t0, tf ], x(0) = x0,(4.1c)

\beta (t) = \beta 0 \forall t \in [t0, tf ],(4.1d)

\theta i(t) \geq 0 \forall t \in [t0, tf ], i \in \{ 1, 2, . . . , ng\} .(4.1e)

The objective function penalizes the total number of tests over the entire time hori-
zon [t0, tf ] with tf > t0 \geq 0. The equality constraint (4.1c) captures the system
dynamics while the one-sided box constraints (4.1e) ensure that the testing rates
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cannot be negative.
Figure 3 depicts the optimal controls as well as the total number of tests and the

number of detected cases per day while Figure 4 shows the impact on the evolution
of the epidemic. Here, we computed the effective reproduction number \scrR NGM(t) at
each time step, demonstrating that we reached herd immunity.

Fig. 3. Optimal testing strategy for three age groups over two years. The middle-age group
(most contacts) is prioritized, then children, and, finally, the elderly.

Fig. 4. Evolution of the epidemic corresponding to the optimal testing strategy visualized in
Figure 3 and reproduction number based on the next-generation matrix. The dashed black line in
the middle plot depicts the maximal capacity of ICUs.

We observe that there exists a testing strategy that ensures feasibility, which
was not obvious from the outset because of the assumed delays. In particular, the
bound (4.1b) is active once it's reached, i.e., HICU \equiv HICU

max , and becomes inactive
when the number of susceptible people falls below a certain threshold and \scrR NGM(t) <
1 indicating the onset of herd immunity.

Remark 4.1. The steady-state like behavior with respect to HICU suggests that
problem (4.1) satisfies the so-called turnpike property [13, 32, 23]. Typically, turnpikes
indicate the optimal operating state of a system. These are steady states at which the
running costs are minimized. In our example, since we do not penalize the number
of required ICUs, the best strategy is to stay at the upper bound while saving tests.
Once the objective function value is zero the system leaves the state eventually. In
particular, regardless of the initial value, the system is steered towards this optimal
operating point. As a consequence, a rough estimation suffices as the initial guess
for our simulations. A rigorous analysis of these turnpikes, however, is left for future
research.

However, these results are only of theoretical interest, since this optimal testing
strategy would be prohibitively expensive and might not even be implementable at
all. For instance, regarding Figure 3, one observes that the mean testing rate reaches
about 0.5, which corresponds to being tested every two days on average. Moreover,
the total number of tests per day required for this approach is more than 12,000,000 on
average (over 65 weeks), compared to Tmax \approx 170, 000 daily tests, which are currently
conducted in Germany. Note that, even with this enormous testing effort, the number
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of detected cases, T S + TO, is rather small since the number of infectious individuals
is small compared to the total population.

In conclusion, mass-testing alone currently does not suffice to maintain hospi-
talization caps in reality. These arguments support the government's decision to
introduce additional measures like social distancing and hygiene concepts. However,
cheap rapid test kits might change the situation favorably as they could be made
widely available and self-administered while giving immediate test results.

In the following subsections, we enforce Tmax as an upper bound on the amount of
daily tests. Under this additional constraint we then determine the minimal amount
of social distancing required to reach herd immunity. The success of such measures
depends on the acceptance and thus compliance by the general population.

4.2. Optimal homogeneous social distancing. In a first step, we determine
an optimal social distancing strategy by penalizing the deviation of \beta from \beta 0 equally
over all age groups. This might increase acceptance in the general population due to
the (perceived) fairness of such measures: everyone is treated equally and contacts are
reduced by the same proportion for everyone. In reality such strategies may be hard
to conceive as different measures affect the age groups differently, i.e., closing schools
and nurseries affects those in the lowest age group the most while leaving the oldest
age group unaffected. Nevertheless, a mixture of many different nonpharmaceutical
measures may be able to achieve such a reduction in contacts.

We introduce a time-varying factor \delta = \delta (t) describing the amount of social
distancing that is implemented. Moreover, we choose to penalize the \ell 2 deviation of
this control input from \delta = 1 in the objective function in order to smooth the optimal
control. For instance, penalizing the \ell 1 deviation yields bang-bang controls, i.e., the
optimal solution jumps back and forth between the two extremal options: no contact
restrictions and lockdown (simulations not shown). See, e.g., [55] for the relation
between \ell 1 minimization and bang-bang optimal control. Therefore, we determine an
optimal homogeneous social distancing policy by solving

min
\theta ,\delta 

J2(\theta , \delta ) =

\int tf

t0

\bigl( 
1 - \delta (t)

\bigr) 2
+ \kappa 

ng\sum 
i=1

\theta i(t) dt(4.2a)

s.t. npop \cdot 
ng\sum 
i=1

HICU
i (t) \leq HICU

max \forall t \in [t0, tf ],(4.2b)

\beta ij(t) = \delta (t)\beta 0
ij \forall i, j \in \{ 1, . . . , ng\} ,(4.2c)

\.x(t) = f(x(t), u(t), p) \forall t \in [t0, tf ], x(0) = x0,(4.2d)

T tot(t) \leq Tmax \forall t \in [t0, tf ],(4.2e)

\delta (t) \in [0, 1] \forall t \in [t0, tf ],(4.2f)

\theta i(t) \geq 0 \forall t \in [t0, tf ], i \in \{ 1, 2, . . . , ng\} .(4.2g)

Note that we allow one to distribute the tests among the age groups by not fixing \theta i,
but enforcing (4.2e) and (4.2g). Furthermore, we introduce a regularization term with
weight \kappa = 10 - 5; see section 4.6 for a detailed discussion. In contrast to OCP (4.1),
we always find a feasible solution of OCP (4.2) if the epidemic has not yet evolved too
far. More precisely, by choosing \delta = 0, which corresponds to a complete lockdown, we
are (theoretically) able to stop the spread. Therefore, if the initial number of people
with a severe course of infection is sufficiently low, the upper bound on the number
of ICUs will not be violated.

D
ow

nl
oa

de
d 

06
/1

7/
22

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TESTING AND SOCIAL DISTANCING TO CONTROL COVID-19 S159

Fig. 5. The impact of constant contact reduction rate \delta \in [0.4, 0.6] on the speed of evolution of
the epidemic and on the number of required ICUs.

A highly fluctuating social distancing strategy may lead to low acceptance in the
population, because people have to adapt to new rules every few weeks. Thus before
we solve OCP (4.2) let us have a look at what happens if we consider a constant value
for \delta over time, i.e., a social distancing strategy without fluctuations. Figure 5 (left)
shows that fewer contacts result in a longer time for the epidemic to abate on the one
hand, but a lower number of total infections within the considered time horizon on the
other hand. Moreover, Figure 5 (middle) visualizes that quite strict social distancing
is needed in order to meet the ICU capacities. The maximal value of \delta to stay feasible
is 0.487, i.e., contacts needed to be more than halved over three years. Furthermore,
once we lift the restrictions (see Figure 6) there might be another outbreak. In
particular, the stronger the restrictions were in the beginning, the stronger the second
outbreak will be. Therefore, it is essential to establish herd immunity before lifting
all restrictions, and to adapt the policy over time.

Fig. 6. Solution for fixed \delta for three years and complete lift of restrictions afterwards.

A visualization of the optimal solution of OCP (4.2) can be found in Figures 7
and 8. As mentioned above, the bound on HICU is not violated. Since the weight \kappa 
is chosen sufficiently small, the upper bound on the total number of tests per day is
active as long as the upper bound on \delta is not. However, note that not all age groups
are tested equally. More precisely, only the middle-aged group is tested at all. The
reason is that this group is the largest (N2 > N1 +N3) and has the highest contact
rates (cf. (3.2)) and therefore contributes more to the spread of the epidemic than the
other groups. Furthermore, we observe that the social distancing policy has to be quite
strict in the beginning. In particular, mint \delta (t) \approx 0.3 which corresponds to a reduction
of average contacts per person by 70\%. However, this can be qualitatively compared
to the measures taken in Germany starting in mid March 2020 when contacts were
reduced by school and restaurant closures as well as other contact restrictions.

In conclusion, social distancing is an effective tool to keep the epidemic man-
ageable. Comparing the results of (4.2) to the simulations with constant \delta we see
that a (partial) lockdown appears inevitable. However, our simulations suggest to let
the epidemic evolve for a few weeks and then enforce a contact reduction down to
approximately 30\% for 2--4 weeks before slowly lifting the restrictions over the next
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Fig. 7. Optimal combination of testing and (homogeneous, time-varying) social distancing for
three age groups over two years. The dashed black line in the second subplot depicts the upper bound
on the total number of tests per day.

Fig. 8. Evolution of the epidemic based on the controls visualized in Figure 7. The dashed
black line in the plot of HICU depicts the upper bound on the number of available ICUs.

12 months until herd immunity is achieved.

4.3. Age-dependent social distancing. The constraint that contacts are re-
duced by the same proportion for each age group is restrictive and it is plausible that
more efficient solutions exist when contact reductions are distributed differently across
age groups. One reason to consider such a strategy is that it may be more efficient
at stopping the spread of the epidemic; as mentioned above the middle-age group is
the driver of the epidemic while the oldest age group consists of the most vulnerable
individuals. In any case, such an age-differentiated social distancing strategy needs
to be accepted by the whole population to be successful.

Hence, we improve the social distancing policy computed above by allowing it to
depend on age. Given the solution (\theta  \star , \delta  \star ) of (4.2), we solve the OCP

min
\theta ,\beta 

J3(\theta , \beta ) =

\int tf

t0

ng\sum 
i,j=1

NiNj

\bigl( 
\beta ij(t) - \beta 0

ij

\bigr) 2
+ \kappa \theta i(t) dt(4.3a)

s.t. npop \cdot 
ng\sum 
i=1

HICU
i (t) \leq HICU

max \forall t \in [t0, tf ],(4.3b)

\.x(t) = f
\bigl( 
x(t), u(t), p

\bigr) 
\forall t \in [t0, tf ], x(0) = x0,(4.3c)

T tot(t) \leq Tmax \forall t \in [t0, tf ],(4.3d)

\theta i(t) \geq 0 \forall t \in [t0, tf ], i \in \{ 1, 2, . . . , ng\} ,(4.3e)

\beta ij(t) \in [\beta min
ij , \beta 0

ij ] \forall t \in [t0, tf ], i, j \in \{ 1, 2, . . . , ng\} .(4.3f)

Here, we use \delta  \star to define \beta min
ij = mint \delta 

 \star (t)\beta nom
ij , i.e., the lower bound on \beta in (4.3) is

the worst case of (4.2). Therefore, no one is treated worse than when applying homo-
geneous social distancing. Note that (\theta  \star , \beta ) with \beta = \delta  \star \beta 0 is feasible for OCP (4.3).
As in (4.2) we penalize testing as soon as \beta (t) = \beta 0 holds.
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Fig. 9. Optimal age-dependent social-distancing strategy for three age groups over two years.

Fig. 10. Evolution of the compartments associated with controls depicted in Figure 9.

Results for OCP (4.3) can be found in Figures 9 and 10, where

\=\beta (t) =

ng\sum 
i,j=1

NiNj\beta ij(t)

describes the average number of contacts per person and day in a heterogeneous
population. The corresponding value for \beta 0 is \=\beta 0 = 0.4167. We used again \kappa = 10 - 5.
This allows one to compare the solution \beta ij(t) with \=\beta 0\delta  \star (t) obtained from (4.2).
Similar to the solution of (4.2), the upper bound on testing is active most of the time,
while essentially only the middle-aged group is tested. The social distancing measures
are less restrictive than for (4.2) which makes compliance with the measures more
likely. However, the measures could be perceived as unfair, since the contacts of the
oldest age group are restricted most. Moreover, the contacts of the middle-age group
are least restricted. Therefore, the working class would be allowed to go to work,
which is beneficial from an economic point of view. The reason for this imbalance lies
within the problem formulation. Since we try to minimize the total amount of social
distancing, the age-differentiated strategy allows for a complete lift of restrictions
almost three months earlier; see Figure 9 (bottom, left). On the other hand, the main
constraint is to maintain the ICU capacity. Therefore, it is essential to reduce the
contacts of the most vulnerable group. Note that people who are allowed to have
more contacts need to get tested more frequently.

In conclusion, social distancing is crucial to avoid an overload on the hospitals.
In addition, testing middle-aged people helps to reduce the required amount of social
distancing. Furthermore, all presented strategies support a lockdown for a few weeks
into the epidemic, which is followed by lifting the restrictions step by step until herd
immunity sets in. Age-differentiated social distancing might be hard to argue for,
but it helps to end the epidemic several months earlier and, therefore, support the
economy.
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Fig. 11. Optimal control for solving (4.3) in closed loop for varying prediction horizon length.
For the sake of readability, we depicted average values of \theta and sums of T tot over the age groups.

4.4. Short-term decision making. The control strategies derived in the pre-
vious subsections provide rough guidelines to contain the epidemic. However, from a
decision maker's perspective, it will be hard to argue for policies taking effect in the far
future. In particular, there are many uncertainties that might affect the performance
of the control strategy over the time span of two years, and hence the control strategy
needs to be adjusted over time. One major source of uncertainty lies in the model's
parameters, which change over time; see, e.g., [33] for the duration of acute infection
with the B.1.1.7 mutant. Therefore, solving any of the above mentioned OCPs over
two years based on the data available in March 2020 would result in completely dif-
ferent and (most likely) not at all optimal solutions. Throughout the pandemic huge
amounts of data are gathered, based on which the model parameters can be updated
continuously and sometimes it can be beneficial to start countermeasures only after
one has reduced the uncertainties in the parameters [52]. Model predictive control
(MPC) provides a state-of-the-art methodology to make use of newly gathered in-
formation. The basic idea of MPC is to consecutively solve a series of OCPs over a
smaller horizon of K control intervals rather than solving a single OCP over the whole
horizon. Then, only the first part of the optimal control derived by solving such an
auxiliary OCP is implemented. Next, the time window is shifted, and the procedure
is repeated based on updated measurements. For a detailed introduction to MPC we
refer the reader to [46]. Here, we tackle (4.3) via MPC since it is the most elaborated
one; the earlier problems can be treated analogously. The MPC scheme for (4.3) is
summarized in Algorithm 4.1.

Algorithm 4.1 MPC scheme for solving OCP (4.3)

Input: Prediction horizon length K, length of control interval \Delta t. Set time t = t0.
Repeat:

1. Obtain current states \^x = x(t).
2. Determine optimal solution u \star : [t, t + K\Delta t) \rightarrow \BbbR 9 of (4.3) on [t, t + K\Delta t)

with x(t0) = \^x.
3. Implement u \star | [t,t+\Delta t). Increment time t\leftarrow t+\Delta t.

Results based on varying prediction horizon lengths are shown in Figures 11
and 12. The basic structure of both the optimal control and the associated states is
comparable to the open-loop solution presented in the previous subsection. Therefore,
we stopped the simulations after one and a half years. The length of the prediction
horizon affects mainly the optimal social distancing policy. In particular, the larger
the prediction horizon, the less social distancing is needed in total. More precisely,
for bigger K, we implement a slightly stricter lockdown but can start it later and
relax it earlier. Furthermore, the larger K gets the closer the optimal solution is to
the open-loop solution. In particular, the MPC solutions qualitatively resemble the
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Fig. 12. Evolution of the epidemic based on the controls depicted in Figure 11. For the sake of
readability, only the sum over the age groups is visualized.

open-loop solution: after an early lockdown, social distancing is slowly lifted.
For K = 3, the ICU capacity reaches its upper limit earlier due to the laissez-

faire policy in the beginning. However, this constraint also becomes inactive earlier.
For even shorter prediction horizons the ICU cap might be violated, i.e., recursive
feasibility cannot be guaranteed (simulations not shown).

Moreover, in [22] we extend the model in order to incorporate vaccination. Here,
the choice of the prediction horizon length crucially affects the optimal control. In
particular, for short prediction horizon lengths K it is optimal to vaccinate the elderly
first (immediate impact on ICU compartment), whereas with increasing K the people
with highest contact rates should be prioritized.

4.5. Impact of upper bounds on number of tests and ICUs. So far, we
assumed both the upper bounds on the number of tests per day and the number of
ICUs to be fixed at our chosen values. In practice, these conditions may change:
free ICU capacity might exhibit seasonal patterns and the number of possible tests
per day depends on infrastructure and available personnel. In addition, varying the
upper bounds is useful to illustrate the benefits of increased testing and higher ICU
capacities. In this subsection, we investigate the impact of these parameters on the
optimal social distancing policy numerically.

First, we study the effect Tmax has on the social distancing by solving (4.2) via
MPC; see Figure 13 (left). As pointed out in the previous subsection, the prediction
horizon length affects the start and end time of measures as well as its peak (simu-
lations not shown). In addition, increasing Tmax by some factor Tmax

fac \geq 1 shifts the
whole \delta curve upwards, i.e., as expected, the more tests are available, the less social
distancing is required. Furthermore, Figure 13 (left) visualizes the impact of Tmax on
the objective function value of (4.2).

Second, we investigate the impact of the number of ICUs on the optimal solu-
tion of (4.3). Results can be found in Figures 13 and 14. For the simulations in
Figure 13 (middle and right) we used MPC with prediction horizon K = 12 weeks.
Figure 13 (middle) clearly shows that the number of available ICUs directly affects
the cost function value, while for a small value of HICU

max , every additional ICU con-
tributes, for large values, a saturation seems to take place. In particular, doubling
the current number of available ICUs does help, but the benefit becomes negligible
when increasing it further. These phenomena are almost unaffected by doubling or
halving Tmax. However, when there are not enough ICUs, then the upper bound on
T tot is always active (see Figure 13 (right)), where T tot is at its maximum value all
the time. Moreover, an increase in the number of ICUs clearly leads to a reduction
in the social distancing measures, as can be seen in Figure 14.

In summary, increasing test capacities and/or ICU capacities helps to reduce
measures like social distancing. However, the impact of the number of available ICUs
appears to be much stronger. Nonetheless the qualitative shape of the solutions over
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Fig. 13. Impact of Tmax on social distancing costs (left) and of HICU
max on both social distancing

costs (middle) and testing (right). In the last two subfigures the currently available number of ICUs
in Germany is highlighted by a vertical dashed line. The dashed horizontal lines in the rightmost
figure indicate the total testing capacities over the entire simulation horizon. Factor of modification
of Tmax denoted by Tmax

fac .

Fig. 14. Impact of the available number HICU
max of ICUs and the prediction horizon K on the

average social distancing. The dotted cyan line refers to the number of currently available ICUs
in Germany. The vertical dotted black line marks the end of social distancing measures for that
setting. (Color is available online only.)

time is not affected by varying these constraints.

4.6. Numerical solution of the optimal control problems. We use a direct
single-shooting approach [4] to transcribe the OCPs (4.1)--(4.3) to nonlinear programs
(NLPs), and as mentioned previously, we parametrize the control variables u using a
zero-order-hold (ZOH) parametrization [46], i.e., we assume that they are piecewise
constant. Furthermore, we enforce the nonlinear inequality constraints on the number
of tests and the ICU occupancy, (4.1b), (4.2b), (4.2e), (4.3b), and (4.3d), pointwise
on an equidistant time grid with intervals of 1 day. We solve the NLPs using the
sequential quadratic programming (SQP) method [40] implemented in fmincon of
MATLAB. The SQP method uses the first-order derivatives of the left-hand sides
of the nonlinear inequality constraints with respect to the control variables. We
compute these derivatives using a continuous forward method, i.e., by solving the
sensitivity equations [24] associated with the model equations (2.2). We use ode45 of
MATLAB routine for approximating the solutions to both the model equations and
the sensitivity equations.

As mentioned earlier in this section, we introduce a regularization term in the
objective functions, J2 and J3, in the OCPs (4.2) and (4.3), where \kappa is the regular-
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Table 2
The minimum, average, and maximum computation time for solving the OCP (4.3) (with

age-differentiated social distancing) in closed loop using different prediction horizons, K. The com-
putation times correspond to the results presented in section 4.4.

Prediction horizon, K 3 weeks 12 weeks 24 weeks 36 weeks

Maximum 2.2 s 12.7 s 40.1 s 60.8 s
Average 1.0 s 7.2 s 17.7 s 29.2 s
Minimum 0.5 s 2.2 s 5.1 s 8.9 s

ization parameter. The reason is that the COVID-19 outbreak can no longer sustain
itself towards the end of the considered time interval. Therefore, in this final period
of time, social distancing and mass testing are not required in order to satisfy the
upper bound on the ICU occupancy. Consequently, without a regularization term, \theta 
is not uniquely defined for this final period of time, and its value will be arbitrarily
determined by the iterations of the SQP method used to solve the NLPs. The reg-
ularization term ensures that \theta is zero during this final time period, and we choose
\kappa such that the regularization term is negligible compared to the first terms in the
objective functions, i.e., it is several orders of magnitude smaller.

On a standard desktop computer the computation times required to obtain the nu-
merical solutions to the OCPs (4.1)--(4.3) presented in sections 4.1--4.3 are 70 minutes,
49 minutes, and 12 minutes, respectively. We use the solution to (4.2) to warmstart
the solution of (4.3) which significantly reduces the computation time. Table 2 shows
the computation time of solving (4.3) in closed loop for different prediction horizons,
K. We warmstart the solution of the OCPs (except the first one) using the solution
to the previous one. As is evident, the computation time is negligible compared to the
prediction horizons and the size of the control intervals (one week). The computation
time can possibly be improved by implementing the upper bounds on the number of
tests and the ICU occupancy as soft constraints, e.g., using a barrier method or a
penalty method [40]. In that case, using an adjoint method [9] to compute the gradi-
ent of the objective function is likely faster than using a forward method. However,
these extensions are outside the scope of the present work.

5. Conclusions and outlook. In this paper, we demonstrated how mitigation
of the COVID-19 epidemic can be achieved by a combination of age-stratified testing
and social distancing measures while avoiding a breakdown of the healthcare system.
We believe that our model with the chosen parameters reflects reality sufficiently
well to provide qualitatively valid insight on how testing and social distancing can
control the spread of SARS-CoV-2. To summarize our findings, we answer the five
key questions formulated in the introduction.

(1) Is mass testing alone sufficient to avoid overloading of the ICUs? Assuming
realistic testing capacities, mass testing alone does not suffice to avoid a breakdown
of the healthcare system in Germany.

(2) If mass testing alone does not suffice, how much social distancing is then re-
quired? To this end, we designed optimal social distancing strategies with a focus
on applicability and acceptance in the general population, i.e., strategies with slowly
changing contact reductions. Our results show that one has to implement strict reduc-
tions early on and slowly relax them over the course of several months. In particular,
the social distancing measures imitate the measures actually taken in Germany, but
are lifted at a much slower pace.
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(3) How much can social distancing measures be reduced by targeting specific
age groups? Age-differentiated contact restrictions improve upon the aforementioned
results as they yield qualitatively similar social distancing strategies and prioritize
relaxing restrictions for the work-force and children at the cost of reducing contacts
of the more vulnerable older population.

(4) How do strategies obtained by short- and long-term planning differ? We used
MPC to model the process of real-life policy making where the planned countermea-
sures are reevaluated and updated at regular time intervals. Specifically, the plan is
updated weekly by solving the optimal control problem over a shifted horizon. Our
analysis shows that longer prediction horizons allow for faster lifting of the restric-
tions although long-term predictions may be infeasible in practice. While short-term
planning of measures is unable to control the exponential growth of COVID-19 cases,
medium-term planning leads to strategies that, qualitatively, do not differ from the
optimal ones.

(5) What are the benefits of increasing the daily testing capacity or the ICU
capacity? As expected, the number of available ICUs dictates how fast herd immunity
can be reached and how much total social distancing is necessary. Increasing the
testing capacity may yield a similar effect, but the required increase seems unrealistic.

However, we caution the reader against interpreting these results in a quantitative
way, as our model has not been devised to produce precise predictions. Similarly, we
want to stress that we do not provide concrete policies to implement, as the impact
of particular countermeasures on \beta is not easily quantified.

In a follow-up work, which has been published in the meantime, we extended the
model to account for vaccination [22].

Another possible extension concerns reinfections, which could be included in our
model without difficulties if parameters are available to model them. As our model
is based on ODEs, interaction effects such as contact tracing cannot be included.
Agent-based (stochastic) models are able to handle these critical effects and could be
seen as a natural extension of our (deterministic) compartmental model. To solve the
resulting stochastic optimal control problems would then require more sophisticated
techniques, however.
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