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In today’s digital information society, mathematical and computational skills are becoming 
increasingly important. With the demand for mathematical and computational literacy 
rising, the question of how these skills can be effectively taught in schools is among the 
top priorities in education. Game-based learning promises to diversify education, increase 
students’ interest and motivation, and offer positive and effective learning experiences. 
Especially digital game-based learning (DGBL) is considered an effective educational tool 
for improving education in classrooms of the future. Yet, learning is a complex psychological  
phenomenon and the effectiveness of digital games for learning cannot be taken for  
granted. This is partly due to a diversity of methodological approaches in the literature 
and partly due to theoretical and practical considerations. We present core elements of 
psychological theories of learning and derive arguments for and against DGBL and 
non-DGBL. We discuss previous literature on DGBL in mathematics education from a 
methodological point of view and infer the need for randomized controlled trials for 
effectiveness evaluations. To increase comparability of empirical results, we propose 
methodological standards for future educational research. The value of multidisciplinary 
research projects to advance the field of DGBL is discussed and a synergy of Affective 
Computing and Optimal Experimental Design (OED) techniques is proposed for the 
implementation of adaptive technologies in digital learning games. Finally, we make 
suggestions for game content, which would be suitable for preparing students for 
university-level mathematics and computer science education, and discuss the potential 
limitations of DGBL in the classroom.
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INTRODUCTION

Mathematical and computational skills have become an integral 
component of basic literacy, and improving students’ proficiency 
in mathematical and computational thinking plays a key role 
in many countries’ education strategies (Committee on STEM 
Education, 2018; European Schoolnet, 2018).

Yet, while over the last decades Organisation for Economic 
Co-operation and Development (OECD) countries’ expenditure 
per student increased on average by 15%, students’ performance 
did not change significantly (OECD, 2019b). Pertaining issues 
are the significant and robust relationship between socioeconomic 
status and academic performance, especially in science and 
mathematics (Thomson, 2018; OECD, 2019b), a negative 
association between countries’ socioeconomic inequality and 
performance in the Programme for International Student 
Assessment (PISA; Parker et al., 2018), and decreasing mobility 
between socioeconomic backgrounds (OECD, 2018). Students 
generally tend to lose motivation, competency beliefs, and 
interest along the educational chain (Wigfield et  al., 1991; 
Jacobs et  al., 2002; Frenzel et  al., 2010), which in turn affects 
academic performance (Singh et  al., 2002; Arens et  al., 2016) 
and course selection (Köller et al., 2001). Accordingly, educational 
interventions are needed which effectively decrease achievement 
gaps, sustain motivation, engagement, and interest in mathematics 
and computational subjects and provide educational opportunities 
which all students profit from (van den Hurk et  al., 2019).

Playful learning (Hirsh-Pasek et  al., 2009) has long been 
advocated as a promising pedagogical approach for effectively 
teaching students mathematics and computer science in an 
engaging, fun and motivating way (Mayo, 2009; Papastergiou, 
2009; Zosh et  al., 2016). Game-based learning interventions are 
supposed to offer students active self-guided learning opportunities 
and positively affect attitudes, emotions, motivation, and 
engagement (Vandercruysse et  al., 2012; Weisberg et  al., 2016).

With PISA’s focus for 2024 being on the “ability of students 
to learn in a digital world,”1 the importance of digital learning, 
including digital game-based learning (DGBL), can be expected 
to rise. The anticipated benefits of digital over non-digital 
learning tools lie in their flexibility, adaptiveness, and 
interactivity which foster non-linear and self-directed (no 
preset order, students can actively choose the next step) 
learning (Hsiao et  al., 2010; Brusilovsky, 2012; Kärkkäinen 
and Vincent-Lancrin, 2013; Committee on STEM Education, 
2018). Yet, to ensure the effectiveness of digital learning, the 
design and development of digital learning environments 
should be  evidence-based and grounded on psychological 
theory. Furthermore, rigorous scientific evaluations of digital 
learning tools are required to systematically assess their relative 
effectiveness regarding learning outcomes and psychological 
effects (Kickmeier-Rust et al., 2006; Kickmeier-Rust and Albert, 
2010; Nussbaumer et al., 2019). In the following, we  briefly 
review key psychological literature on the relationship between 
emotion, motivation, mode of information acquisition, and 
learning. Based on the reviewed evidence, we  develop our 

1 http://www.oecd.org/pisa/

arguments for and against DGBL, infer the need for 
interdisciplinary research and advanced technology, and propose 
methodological standards for effectiveness evaluations.

PSYCHOLOGICAL THEORY OF 
LEARNING

Learning-related cognitive, motivational and emotional processes 
shape the learning process (Arens et  al., 2016; Pekrun et  al., 
2017), as well as the way information is acquired (Bruner, 
1961; Schunk, 1990; Gureckis and Markant, 2012; Ruggeri 
et  al., 2019). These variables are closely interrelated and 
significantly shape the learning process. Thus, they deserve 
special consideration in any educational setting.

Academic Emotion
Academic emotions are defined as emotions students experience 
in an academic setting, i.e., emotions associated with achievement, 
instruction, and the learning process (Pekrun et  al., 2002, 
2017). Mathematics emotions are closely related to mathematics 
achievement: over a 5  years period of annual testing (grades 
5–9), mathematics performance, measured by end-of-the-year 
grades and standardized test scores, and mathematics emotions, 
measured with the Achievement Emotions Questionnaire (AEQ)-
Mathematics (Pekrun et  al., 2011), reciprocally affected each 
other (Pekrun et  al., 2017). Mathematics anxiety has been 
consistently shown to be negatively associated with mathematics 
performance, with effect sizes being moderate (Ma, 1999; 
Namkung et  al., 2019).

Emotions have a subjective, a cognitive and a behavioral 
component. Due to their complexity, they often cannot 
be  pinpointed to one concrete sensation. For example, when 
working on a challenging task, students can be  anxious that 
they might fail, motivated to master the challenge, and proud 
when they master sub-goals – all at the same time. Given 
that emotions are associated with other learning-relevant 
psychological resources such as motivation, attitudes, and interest, 
stimulating positive academic emotions, accurately detecting 
students’ emotions, and reacting to them appropriately are of 
crucial importance in educational settings.

Emotion and Motivation: Control Value 
Theory of Achievement Emotions
Control value theory of achievement emotions describes the 
relationship between academic emotions and motivation (Pekrun 
et al., 2007a; Pekrun and Stephens, 2010). Students’ expectations, 
attributions, and competency beliefs influence their perceived 
control, which evokes an emotional reaction. For example, when 
being asked a question by the teacher, low perceived controllability 
of the situation may arise from the belief that one is not talented 
in mathematics. This creates the expectation of being unable 
to answer the question correctly, which in turn may evoke 
anxiety, helplessness, or sadness. In contrast, when feeling in 
control, a student may enjoy the opportunity to answer a question 
and be the focus of attention. The perceived value of an academic 
activity shapes the strength of the experienced emotion.  
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For example, a high or low test score in a mathematics exam 
may not evoke strong emotions in a student who thinks that 
mathematics is not important for her future life, in contrast 
to a student who values mathematics very highly.

Active Learning and Flow Theory
Active learning environments give students the opportunity to 
self-regulate, develop intrinsic motivation, and exert control over 
the learning process (Bandura, 1991; Zimmerman et  al., 1992; 
Zimmerman, 2002), which are beneficial for children’s 
psychological development and learning outcomes (Bruner, 1961; 
Kolb, 1984; Boekaerts, 1997). From a cognitive and computational 
perspective, active information acquisition and control over the 
flow of incoming information positively affect efficiency of 
information acquisition, learning, and memory (Gureckis and 
Markant, 2012; Ruggeri et al., 2019). Flow theory (Csikszentmihalyi, 
1975; Csiksentmihalyi and Schiefele, 1993) states that intrinsically 
motivated behavior and the experience of flow are fostered in 
situations, which are shaped by a learner and characterized by 
a fit between learners’ abilities and the demands of a situation.

A Psychological Argument for 
Game-Based Learning
This brief discourse into the psychology of learning elucidates 
the complex interrelation between characteristics of the learning 
environment, students’ academic motivation and emotions, and 
learning outcomes. Well-designed learning games are interactive 
learning environments which give students the opportunity to 
acquire knowledge and practical skills in a playful and self-
directed way, experience engagement and flow and develop 
positive attitudes, feelings, and competency-beliefs (Gee, 2008; 
Kapp, 2012; Plass et al., 2015; Weisberg et al., 2016; Becker, 2017). 
Digital learning games are expected to even expand these 
positive characteristics of learning games, given their high 
flexibility, engagement, and fun due to their digital nature 
(Prensky, 2003). Yet, to successfully exploit the psychological, 
pedagogical, and academic potentials of games in DGBL 
environments, not only a firm grounding in psychological and 
pedagogical theories (Malone, 1981; Ryan et  al., 2006; Starks, 
2014) but also adherence to standards in digital educational 
game design (Göbel et  al., 2018), advanced technologies and 
rigorous effectiveness evaluations are of fundamental importance. 
In the following, we  discuss previous literature on DGBL and 
make methodological suggestions for future research in the 
field. We  stress the need for interdisciplinary research projects 
and advances in technology research, especially for implementing 
adaptivity in learning games. We also highlight possible limitations 
of DGBL and suggest ways to overcome these limitations.

DIGITAL GAME-BASED LEARNING 
RESEARCH: CURRENT PRACTICE AND 
FUTURE DEVELOPMENTS

Research on DGBL paints a complex picture: it is generally 
characterized by a multitude of approaches, terminologies, 
and methodologies (Connolly et  al., 2012; Boyle et  al., 2016; 

de Freitas, 2018). While some studies report overall positive 
effects of digital game-play on learning outcomes (Chang 
et  al., 2015) and motivational variables (Hung et  al., 2014; 
Partovi and Razavi, 2019), others report no general advantage 
of digital games over standard teaching methods (Ke, 2008a; 
Brom et  al., 2011). In the context of mathematics education, 
Erickson (2015) evaluated 30 digital mathematics games and 
found that only five scored high on all the three identified 
motivational dimensions (ease of understanding, control, and 
immersion). The investigated games differed in the degree 
to which they provided cognitive scaffolding and offered 
opportunities for proficiency development and reflection upon 
learning strategies. In a recent meta-analysis which included 
17 studies, Byun and Joung (2018) found an overall weighted 
effect size of d  =  0.37 for the relative effectiveness of digital 
games for learning mathematics. Yet, effect sizes vary largely 
between the analyzed studies. For example, while an effect 
size as small as d  =  0.13 was reported by Ke (2008b), very 
high effect sizes above two were found in two studies by 
Sedig (2007, 2008) and a set of experiments by Shin et  al. 
(2012). Besides these extreme cases, the remaining studies 
found small (van Eck, 2006; Ke and Grabowski, 2007; 
Ke, 2008a; Bai et  al., 2012; Kolovou et  al., 2013; Lin et  al., 
2013; van den Heuvel-Panhuizen et  al., 2013; Pareto, 2014; 
Bakker et  al., 2016), medium (Kebritchi et  al., 2010; 
Plass et al., 2013) or large (Sedig, 2007; Yang and Chen, 2010; 
Ke, 2013) effects.

The high variability of results in research on DBGL in 
mathematics education is indicative of differences in research 
methodologies and practices, which makes general 
conclusions about the effectiveness of DGBL in mathematics 
difficult. Among the most striking differences between 
studies are design and content of the games used, research 
designs (RCT or quasi-experiment; mixed or quantitative 
methods), age groups (primary, secondary, or university 
education), and number of participants as well as effectiveness 
criteria and instruments employed in the effectiveness 
evaluation. The most prevalent research design is the quasi-
experiment; less often randomly controlled experimental 
designs are realized (Boyle et  al., 2016). Group assignment 
is usually conducted on a class level (Papastergiou, 2009; 
Kebritchi et  al., 2010; Bai et  al., 2012; Kim et  al., 2017; 
Brezovszky et  al., 2019) and seldom on a school level 
(Rutherford et  al., 2014), and very few studies follow an 
experimental approach with randomization on subject level 
(Plass et  al., 2013). Whereas most studies include a control 
group, studies without a control group can also be  found 
(for example, Iten and Petko, 2016). Often multiple 
measurement points are reported, differing in time intervals 
between measurements (Bottino et al., 2007; Kebritchi et al., 
2010; Habgood and Ainsworth, 2011; Bai et  al., 2012; Shin 
et  al., 2012; Bakker et  al., 2015). Methodologies entail 
qualitative, quantitative, and mixed methods, with the latter 
two being the most prevalent (for a comprehensive overview, 
see Byun and Joung, 2018).
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The Need for Preregistered Randomly 
Controlled Trials, Standardized 
Procedures, and Methods
Even though quasi-experimental research designs and 
randomization on a class level may be the most feasible approach 
for educational research, randomly controlled experiments with 
randomizing on a subject level are fundamental for generating 
solid empirical evidence. Preregistering experiments (or even 
using preregistered reports) increase credibility of results and 
limit questionable research practices (Nosek et  al., 2018). 
Furthermore, standardizing pre‐ and post-test measures raises 
comparability between studies. We  suggest using standardized 
scales from the international studies PISA and TIMMS if 
applicable (International Association for the Evaluation of 
Educational Achievement, 2015; OECD, 2019a) and standardized 
psychological instruments, for example, scales measuring 
academic emotion (Pekrun et al., 2011; Lichtenfeld et al., 2012), 
self-concept (Pekrun et  al., 2007b; Arens et  al., 2016), and 
motivation (Schwarzer and Jerusalem, 1995; Midgley et  al., 
1998). For evaluations of the relative effectiveness of digital 
learning games for learning outcomes, standardized tests are 
not always available. These tests should then be  developed in 
collaboration with experts (e.g., cognitive scientists, psychologists, 
or teachers), validated, and tested for reliability. To further 
standardize timing of measurements, we  suggest conducting 
the pre-test a week before the intervention to avoid effects of 
testing on experimental results and to generate a non-biased 
baseline. The post-test is conducted on the day of the intervention 
in case of a single intervention to measure immediate effects. 
In case of a longitudinal study, it may be  advisable to have 
measurements on each intervention day as well as one day 
after the intervention is completed to balance out daily variability. 
Follow-up tests are important to evaluate the persistence of 
effects; their timing depends on the study design and the 
resulting shape of the forgetting curve, as well as the claims 
authors make regarding the effectiveness of their intervention 
(Murre and Dros, 2015; Nussbaumer et  al., 2019). Enriching 
quantitative measures with qualitative measures and classroom 
discussion can be  informative to determine the feasibility of 
a method, better understand the underlying mechanisms, and 
solidify students’ learning, yet the core criterion in effectiveness 
evaluations should be  preregistered statistical analyses of 
experimentally obtained data.

Interdisciplinary Research on Adaptive 
Game-Based Learning
A promising way to improve learning experiences in digital 
learning environments is adaptive technology. Adaptive learning 
tools promise to offer students the learning experiences they 
need in a given moment by recognizing their cognitive, 
motivational, and emotional states. International and 
interdisciplinary research on evidence-based digital education 
platforms which adapt to students’ individual needs is growing. 
Projects range from adaptive structuring of learning experiences 
on digital learning platforms (Hsiao et al., 2010; Brusilovsky, 2012) 
to adaptive DGBL interventions (Brezovszky et  al., 2019), 

developing sophisticated software components for adaptive 
learning based on sound psychological and pedagogical principles 
(Kickmeier-Rust et  al., 2006; Maurer et  al., 2017; Nussbaumer 
et al., 2019). The authors distinguish different levels of adaptivity 
and corresponding software assets:

1.  Pre-game adaptation: personalization of the initial stages of the 
game based on student characteristics, which are measured 
prior to game-play using standardized instruments.

2.  Competence-based in-game adaptivity: monitoring learning 
progress to adapt learning path, instructions, and support.

3.  Psychological in-game adaptivity: monitoring psychological 
state and adapting game characteristics accordingly (e.g., adapt 
difficulty level, offer support, and change game design).

As the body of research on adaptive digital learning games 
is growing, meta-analyses are needed to determine the relative 
effectiveness of different kinds of adaptivity, e.g., based on 
performance, motivation and/or emotion, adaptation of game 
design, instruction, and/or game content. Importantly, adaptive 
learning games, which are currently available online, are not 
necessarily scientifically evaluated, and teachers and parents 
should be  made aware of this. A way to give users guidance 
would be  a quality seal, which indicates the level of scientific 
evidence (research methodology, see “The Need for Preregistered 
Randomly Controlled Trials, Standardized Procedures, and 
Methods,” and outcomes) for the effectiveness of an adaptive 
digital learning game.

Affective Computing and Optimal 
Experimental Design for Software 
Adaptivity
One research stream on adaptive digital learning is based on 
insights from Affective Computing. Affective Computing is 
defined as “computing that relates to, arises from, or influences 
emotions” (Picard, 1997, p.  1). It is a relatively young field 
of research, yet it has rapidly grown over the last decades 
(Picard, 2015). A recent systematic review (Aranha et al., 2019) 
revealed that education is the most frequent application area 
of Affective Computing. A majority of studies investigate 
affectively adaptive digital games, yet affective learning (Picard 
et al., 2004) also refers to affectively intelligent tutoring, dialogue, 
agent-based, and other learning systems (Santos, 2016).

The general goal of affective learning research is to develop 
software which recognizes users’ affective state and adapts its 
interactive behavior accordingly, based on sophisticated models 
of emotion-cognition interaction (D’Mello et al., 2008; Hudlicka, 
2008, 2017; Cooper et  al., 2011; D’Mello and Graesser, 2015). 
Despite the theoretical complexity and methodological difficulties 
in emotion research, advances have been made in the modeling 
of emotion-cognition interactions (Hudlicka, 2011, 2017) and the 
development of formal emotion languages (Schröder et al., 2015). 
The methodologies used for emotion detection include 
psychophysiological methods (electrodermal activity, heart rate 
recording, EEG, and EMG measures), camera-based methods 
(capturing facial expressions, eye-movements, and voice), and 
behavioral measures (user input and in-game behavior). 
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Emotionally adaptive learning games promise to offer students 
learning experiences which are tailored to their emotional needs. 
Yet, emotional adaptivity must be  handled with care: adaptivity 
requires the collection of sensitive data, which may or may not 
be  adequate in a given context. Due to the still low accuracy 
in emotion detection, predictions may be  inaccurate (Aranha 
et  al., 2019), indicating the need for further advances in the 
development of non-intrusive and reliable emotion detection 
mechanisms. This also requires improved software infrastructure 
for interoperability between systems, adequate  and contextual 
feedback, and interaction mechanisms (Santos, 2016). Lastly, 
educators may prioritize giving students the option to experience 
a wide range of situations and emotions, including those which 
are not adapted to their learning profile. Keeping these 
considerations in mind, how can adaptive technology be enhanced?

Computational methods which have previously been employed 
to implement adaptivity are supervised classification, probabilistic 
models, and regression analyses (Santos, 2016). We  propose 
Optimal Experimental Design (OED), a computational method 
which optimizes experimental designs for discrimination among 
multiple psychological models (Myung and Pitt, 2009), as a 
novel tool for effectively implementing software adaptivity in 
learning games. Game-play situations can be regarded as mini-
experiments, and their outcomes can inform the system’s 
knowledge base about the user. OED confronts the learner 
with those situations which are most informative for the system’s 
construction of the learner model. It can be  integrated into 
the system’s profiling asset (Maurer et  al., 2017) and support 
in-game adaptivity based on performance, motivation, 
engagement, and emotional state of the learner, allowing the 
system to build an increasingly fine-grained model of the 
learner and personalize learner-system interactions. A python 
package, ADOpy (Yang et  al., 2019), is available as an open 
source resource to the public2.

Computational and Mathematical Topics 
for Game-Based Primary Education
Even though the number of digital educational games for 
learning mathematics (Erickson, 2015; Byun and Joung, 2018) 
and programming (Lindberg et  al., 2018) has been growing, 
evidence-based digital learning games for computer science in 
primary education are rare. In a recent systematic literature 
review, only two studies were identified which investigated 
DGBL in elementary computer science education, both of which 
were of relatively low quality in terms of study design, 
appropriateness of methods and analyses, generalizability, 
relevance, and trustworthiness of findings (Hainey et al., 2016).

The university guidelines for undergraduate computer science 
curricula from ACM and IEEE (2013) include the following 
topics, which we  suggest for game-based learning in primary 
and secondary education and which have already been 
successfully implemented in games: basic principles of machine 
learning (Wallace et  al., 2008; Stöckl, 2019), algorithms and 
complexity (Hong and Kung, 1981; Battistella et  al., 2017), 

2 https://github.com/adopy/adopy

information theory (Greeff et al., 2017), and computer architecture 
(Tlili et  al., 2016). In mathematics education, the majority of 
learning games focus on numbers and operations, algebra, 
geometry, measurement, and data analysis and probability (Byun 
and Joung, 2018). Additional topics for game-based learning 
in mathematics are combinatorics, probabilities, functions, and 
number systems. Besides educational content, the so-called 
“21st century skills” (Binkley et al., 2012), which include critical 
thinking skills such as scientific reasoning, systems thinking, 
computational thinking, decision making, and problem solving, 
can be  taught in a gamified way (Qian and Clark, 2016).

We are currently developing a game, Entropy Mastermind 
(Figure  1; Schulz et  al., 2019), to promote students’ entropy 
intuitions by providing experiential access to the relationship 
between probability distributions and the mathematical concept 
entropy (Crupi et  al., 2018). Entropy is not only an important 
concept in cognitive science, computer science, mathematics, the 
philosophy of science, and information theory but it also has 
many practical applications (Martignon et  al., 1991; Mana et  al., 
2018) and educational relevance (Haglund et al., 2010). The game 
Entropy Mastermind is an extension of the classic Mastermind 
game. In Entropy Mastermind, a secret code is generated from 
a probability distribution by random drawing with replacement. 
The player (code breaker) has to guess the secret code by testing 
out codes and getting feedback about the correctness of the 
guessed code. The feedback is comprised of three different kinds 
of smileys: a happy smiley indicating that a guessed item is 
correct in kind and position, a neutral smiley indicating that a 
guessed item is the correct kind but not in the correct position, 
and a sad smiley indicating that a guessed item is incorrect 
regarding both kind and position. Importantly, the order of smileys 
in the feedback is always the same: happy smileys come first, 
then neutral, and lastly sad smileys – the position of smileys in 
the feedback array does not correspond to the positions of items 
in the guessed code. The entropy of the distributions from which 
the secret code is generated varies between rounds of the game. 
Figure  2 displays a low entropy (left game environment) and a 
high entropy (right game environment) Entropy Mastermind 
game. The level of entropy in the underlying probability distribution 
affects the difficulty of the game (the number of queries needed 
to guess the secret code; Schulz et  al., 2019), and the resulting 
variations in difficulty give experiential access to the concept entropy.

In the Entropy Mastermind educational intervention, learning 
about entropy is evaluated using specifically designed test 
items which quantify entropy intuitions (for example, Figure 2); 
psychological effects are assessed using the AEQ (Lichtenfeld 
et al., 2012), the mathematical self-concept scale (Pekrun et al., 
2007b; Arens et  al., 2016), and the general self-efficacy scale 
(Schwarzer and Jerusalem, 1995). First studies using Entropy 
Mastermind in educational contexts have been conducted: 
these include the development and implementation of a roadmap 
for an instructional unit aimed at fostering elementary students’ 
intuitions about entropy using a non-digital version of Entropy 
Mastermind (Özel et al., n.d., submitted). Based on insights 
from this first study, a digital version of Entropy Mastermind 
was developed (Figure  1), and first pilot studies conducted 
using this digital version of the game (Bertram et  al., 2019;  
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Schulz et  al., 2019; Bertram et  al., 2020). Yet, further research 
is needed to evaluate the effect of playing Entropy Mastermind 
on entropy intuitions, knowledge about probabilities, and 
learning-related psychological variables, and to further validate 
the developed test items for assessing entropy intuitions.

Possible Limitations of Digital 
Game-Based Learning
Despite the above described potential benefits of DGBL, it is 
important to also consider its limitations. Digital worlds are reduced 
in their dimensionality compared to the physical world, lacking 
sensual experiences such as touch or smell. Embodied education 
(Shapiro and Stolz, 2019), an emerging research field rooted in 
the literature on grounded and embodied cognition (Varela et al., 
1991; Clark, 1996; Barsalou, 2008; Barsalou, 2010; Shapiro, 2019), 

education theory, and learning science (Montessori, 1972; Bresler, 
2005), stresses the fundamental role of bodily experiences in the 
learning process (Hostetter and Alibali, 2008; Tellier, 2008). In 
digital learning games, students remotely interact with the game 
environment by touching a display, using a keyboard, mouse, or 
voice control. This kind of interaction is indirect and mediated 
(the digital device is the mediator) compared to interactions in 
physical environments. Physical behavior may not only be reduced 
to finger, hand, or arm movements, but also be  incongruent to 
the actual behavior carried out in the game environment. This 
divergence between cognition and behavior may interfere with 
the learning process (Shapiro and Stolz, 2019). Yet, digital learning 
games may overcome these limitations by incorporating embodiment 
principles in the game design (Black et  al., 2012): gestural or 
natural user interfaces can be  operated via touch (touch use 
interfaces) or remotely (free form interfaces), stimulating body 
movements congruent to the learning content, and thus benefitting 
learning (Hostetter and Alibali, 2008; Tellier, 2008). For example, 
Wang et  al. (2014) successfully created a natural user interface, 
operated via body movements, to teach elementary students the 
projectile motion.

Other limitations arise from the potentially high costs associated 
with digital game design and the purchase of digital technologies. 
These costs are justifiable under the assumption that digital learning 
games significantly improve education. Digitalizing education is 
also a necessary step toward modernization and improvement 
of the education system. Yet, in the process of introducing digital 
learning tools into the classroom – including digital learning 
games – it is important to realistically assess the relative benefits 
of these digital learning games and conduct cost-effectiveness 
evaluations (Tobias et  al., 2014). If, for example, an adaptive 
game turns out to only have little advantage (e.g., regarding 
learning outcomes or effects on academic emotion and motivation) 
over its non-adaptive version, the development costs may exceed 
the benefits. Similarly, a digital learning game may or may not 
be  more effective for learning than its non-digital version.  

FIGURE 1 | Icon arrays representing two example code jars (in this version of the game fruit bowls) which generated the secret code. Left panel: low entropy 
code jar. The first guess and the corresponding feedback are displayed. Happy emoticon: correct fruit and correct position; neutral emoticon: correct fruit but wrong 
position; sad emoticon: incorrect fruit and position. Positions of faces do not correspond to positions in the code. Right panel: high entropy code jar. Game 
environment before the first guess was entered. Initially, each position of the code is blank, and players can cycle through the fruits by clicking on the blank field. 
Feedback is provided after players clicked on the “Check” – button. Play the game yourself: http://jonathandnelson.com/curious/masterminding.html.

FIGURE 2 | Example pre‐ and post-test questions testing entropy intuitions. 
Students are asked for each pair of code jars which of the two would 
be harder/easier to play with or whether the two urns are equally hard. 
Answers to these questions quantify entropy intuitions (Crupi et al., 2018).
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In these cases, it is advisable to consider the use of relatively 
cost-effective methods to enrich education with games, e.g., 
using haptic versions (to reduce costs associated with purchasing 
digital devices) or already programmed digital versions of classic 
games (to reduce game development costs), such as chess, 
card games, riddles, board games, code-breaking games, or 
puzzles. These games are engaging, intrinsically motivating, 
and fun to play but do not need sophisticated visuals and 
complex virtual environment simulations.

Also, it should be  carefully observed if using digital games 
in education disadvantages those students who have limited 
financial capacities and may not have access to digital devices 
at home. Equal opportunities are a key characteristic of good 
education systems and must be  constantly preserved and 
improved. Another delicate issue associated with digital learning 
is students’ digital rights: every student and/or their parents 
or legal guardians should own their data and be  able to 
decide how their data are used, for example, by giving informed 
consent about the usage of their data or by having access 
to their own data via a password. When collecting data is 
part of digital game-based education interventions, ethical 
integrity, thoughtful data handling, and strict adherence to 
data protection regulations are a prerequisite and must 
be accompanied with transparent communication with parents 
or legal guardians.

DISCUSSION

In this article, we discussed future directions in research on DGBL 
in mathematics and computer science education. We  highlighted 
the importance of a sound psychological foundation for the 
development of learning games and the need for interdisciplinary 
research projects and randomized controlled experimental designs 
to evaluate the effectiveness of games and game features. 
We  introduced a new methodology to implement adaptivity, a 
synergy of Affective Computing and OED techniques and suggested 
topics for digital mathematics and computer science games.  
We  also presented our own digital educational game, Entropy 

Mastermind, for fostering students’ intuitions about entropy.  
Lastly, we  discussed limitations of DGBL and suggested ways 
to overcome potential complications. When keeping in mind 
these potential limitations and complications, game-based digital 
and non-digital learning is a fruitful field for systematic 
interdisciplinary research and a promising practical educational 
tool for enriching educational methods and realizing equal 
opportunities in classrooms of the future – giving all students 
the opportunity to learn at their best.
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