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We employ the approach of Roderick and Farquhar (2011) to assess the sensitivity of runoff (R) given changes in
precipitation (P), potential evapotranspiration (Ep), and other properties that change the partitioning of P (n) by
estimating coefficients that predict the weight of each variable in the relative change of R. We use this framework
usingdifferent data sources andproducts forP, actual evapotranspiration (E), andEp within theAmazonRiver basin
to quantify the uncertainty of the hydrologic response at the subcatchment scale. We show that when estimating
results from the different combinations of datasets for the entire river basin (at Óbidos), a 10% increase in P would
increase R on average 16%, while a 10% increase in Ep would decrease R about 6%. In addition, a 10% change in the
parameter n would affect the hydrological response of the entire basin around 5%. However, results change from
catchment to catchment and are dependent on the combination of datasets. Finally, results suggest that enhanced
estimates of E and Ep are needed to improve our understanding of the future scenarios of hydrological sensitivity
with implications for the quantification of climate change impacts at the regional (subcatchment and subbasin)
scale in Amazonia.
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Introduction

The Amazon River basin (ARB) is one of the few
environmental tipping points of the Earth’s system.
In this context, the term tipping point is employed
to define a critical threshold at which a small per-
turbation can qualitatively alter the state or devel-
opment of a system.1–3 Indeed, there is a strong
body of the literature showing the likely die-back
of the Amazon rainforest owing to the positive
feedbacks between reduction in rainfall, tempera-
ture increase, and deforestation.4,5 Such transition
would not be gradual but suddenwhere certain crit-
ical thresholds are surpassed, such as a 4 °C increase
in temperature or a 40% increase in deforestation.

At those critical points, the forest ceases to behave
as a carbon sink and becomes a source, such that the
forest collapses and is replaced by a savanna-type
vegetation.1–3,6–14 On the other hand, in terms of
hydrological regulation,15 it shows that catchments
in the ARB can shift from a regulated to a nonregu-
lated state when deforestation surpasses 30–40% of
the forest cover. Then, floods and droughts become
exacerbated, therefore, amplifying the variance of
hydrological extremes, owing to the loss of regula-
tion capacity in the “forest reservoir.” Such a shift in
the hydroclimatic and ecological functioning of the
whole ARB could have long-term consequences for
the climatic system worldwide since the hydrolog-
ical, climatological, and biogeochemical dynamics
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Table 1. Summary of possible dataset combinations

Dataset
combination

Precipitation
P (mm yr–1)

Actual
evapotranspiration

E (mm yr–1)

Potential
evapotranspiration

Ep (mm yr–1)

Maximum
number of

subcatchments

1 HYBAM MPI Hargreaves 146
2 HYBAM MPI Priestley and Taylor 146
3 HYBAM GLEAM Hargreaves 146
4 HYBAM GLEAM Priestley and Taylor 146
5 GPCC MPI Hargreaves 146
6 GPCC MPI Priestley and Taylor 146
7 GPCC GLEAM Hargreaves 146
8 GPCC GLEAM Priestley and Taylor 146
9 HYBAM P–R Hargreaves 100
10 HYBAM P–R Priestley and Taylor 100
11 GPCC P–R Hargreaves 100
12 GPCC P–R Priestley and Taylor 100

play an important role in regulating water, energy,
and carbon budgets not only in South America but
also are key hydroclimatic drivers at continental and
global scales.
Multiple studies have dealt with the estimation

of the long-term mean surface water balance of
the ARB since it provides a coherent framework to
understand the spatiotemporal dynamics of hydro-
logic fluxes across river basins (see Table 1 of Ref.
16). In general, these studies have addressed the
water balance for the entire river basin (at Óbidos
gauging station) and fewof them report near steady-
state conditions or almost exact water balance clo-
sure. However, as pointed out by Builes-Jaramillo
and Poveda,16 such results of perfect closure are
mostly influenced by the dependence of datasets
in estimations of evapotranspiration (E), that is, E
derived from precipitation (P) products. Another
source for the lack of a perfect closure of the long-
term water balance is the possible existence of
trends in a series of rainfall and river flows that
violate the mean value theorem, and thus R �= P–
E. Studies by Greve et al.17 and Moussa et al.18
have provided insights to deal with this problem.
At smaller spatial scales in the ARB (subcatch-
ment scale), calculations of the closure of the water
balance present major discrepancies, especially
between observed data and reanalysis datasets.16

Thus, estimation of hydrologic fluxes is depen-
dent on the chosen datasets in terms of their qual-
ity, accuracy, record lengths, and the presence of

trends and changes. These inconsistencies in water
balance estimations affect runoff calculations and
the quantification of the combined impacts from
climate variability, anthropogenic climate change,
and deforestation and land use changes, given
the complex nature of hydroclimatological pro-
cesses. Thus, a deeper understanding of the spa-
tiotemporal dynamics of river basins is required.
This analysis could include the coupling between
water and energy budgets, considering that water
cycle in Amazonia is sensitive to perturbations
caused by human-related activities19 and it is also
driven by diverse natural climate variability phe-
nomena, including the El Niño–Southern Oscilla-
tion (ENSO)20–26 and changes in sea surface tem-
peratures in the Tropical North Atlantic, among
others.27–29
The theoretical framework introduced by

Budyko provides a functional relationship to
understand the coupling between water and energy
budgets in river basins. It has been used to address
fundamental questions in hydrology, such as water
availability and management, runoff prediction,
and climate change studies.17,30–43 It has also
been used at various spatial and temporal scales
to perform diagnostic analyses of the long-term
mean annual water balances in catchments and to
study the interactions between hydroclimate, soil,
vegetation, and topography.44–50
This study aims to: (1) estimate the closure of

the surface water balance across subcatchments of
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Figure 1. Location of the six major river basins within the Amazon River basin.

the ARB comparing different datasets of P, E, and
Ep; (2) employ Budyko’s framework using Roderick
and Farquhar’s approach35 to assess the sensitivity
of runoff (R) in the ARB, given changes in climatic
variables (P) and potential evapotranspiration (Ep),
as well as in other properties that affect the parti-
tioning of P, represented by the parameter n, by esti-
mating the sensitivity coefficients that analytically
predict the weight of each variable (P, Ep, and n) in
the relative change of R across the ARB and its six
major subbasins. In particular, we aim to (3) inves-
tigate the spatial variability of three sensitivity coef-
ficients across the major subcatchments of the ARB
and to (4) quantify the uncertainty in the estima-
tion of the sensitivity coefficients given the currently
available datasets on the water budget components
of the ARB catchments.

Materials and methods

Study area and datasets
The ARB is the largest river basin in the world and
constitutes a singular biogeographic, physiographic,
hydrological, and climatic entity rich in biodiver-
sity. It is located in tropical South America, between
5°N and 20°S, and 80°Wand 50°W, approximately. It
drains an area of about 6,700,000 km2 across impor-
tant portions of Brazil, Bolivia, Colombia, Ecuador,
Peru, Venezuela, Suriname, and French Guyana. Its
main channel has a length of 6280 km with a mean
annual flow of 209,000 m3 s−1 at its farthest down-
stream gauging station, Óbidos.51 This river basin
can be divided into 146 subcatchments, which, in
turn, can be grouped into six major river sub-
basins (Fig. 1): Solimões, Purus, Negro, Madeira,
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Tapajós, and Xingú. There are approximately 15,000
tributaries in the ARB, including theMadeira River,
which is considered the longest one (3380 km), and
the Negro River with the largest discharge of up to
100,000 m3 s−1 (Ref. 52).
Since one of our goals is to estimate the clo-

sure of the surface water balance across the ARB
and to quantify the uncertainty in the estimation
of the sensitivity coefficients comparing different
datasets, we used at least two sources of data for each
hydrological variable, except for runoff. P [LT−1]
and river discharges,Q [L3T−1], were obtained from
the Observation Service SO-HYBAM (formerly
the Environmental Research Observatory ORE-
HYBAM), available at http://www.ore-hybam.org/.
Precipitation data were also used from the Global
Precipitation Climatology Centre (GPCC), calcu-
lated from global station data.53 River discharge
records, Q, were transformed into runoff, R [LT−1],
considering that R = Q/A, with A [L2] being the
drainage area of each subcatchment. Data regard-
ing actual E [LT−1] were obtained from a global
monitoring network combined with meteorolog-
ical observations and remote sensing data, com-
piled by the Max Planck Institute for Biogeochem-
istry (MPI)54 as well as from the Global Land
Evaporation Amsterdam Model (GLEAM), a set
of algorithms that separately estimate the differ-
ent components of land evapotranspiration.55,56 We
also used actual E estimated from the water bal-
ance equation (E = P–R) with data from precipi-
tation (HYBAM and GPCC) and observed runoff.
For Ep [LT−1], we also used two different meth-
ods. First, we used the often-applied Hargreaves
equation:57

Ep = 0.0023 (Tmax − Tmin)0.5 (Tmean + 17.8)Ra, (1)

where Tmax, Tmin, and Tmean are the maximum,
minimum, and mean air temperatures (°C), respec-
tively, andRa is the extraterrestrial radiation or solar
radiation at the top of the atmosphere. We used
this equation following Trabucco and Zomer58 who
compared four different temperature-based meth-
ods for Ep and concluded that for South America,
this model is one of the most suitable ways to esti-
mate Ep. The Hargreaves equation was estimated
using station data of daily minimum and maxi-
mum temperatures from theClimatic ResearchUnit

(CRU).59 Finally, Ep was also estimated using the
Priestley–Taylor equation:60

Ep = α

(
�

� + γ

)
(Rn − G) , (2)

with the Priestley–Taylor empirical parameter α =
1.26, the slope of the saturation vapor pressure curve
(�) as a function of temperature, the psychrometric
constant γ, net radiation Rn, and ground heat flux
G. We used annual average data from the remote
sensing product of the Surface Radiation Budget
(SRB; https://eosweb.larc.nasa.gov/project/srb/srb_
table),61 at 1-degree resolution for net radiation and
surface temperature to estimate�. The ground heat
flux was neglected since we use annual mean data.
All variables (P, R, E, and Ep) were available

at a monthly temporal resolution (mm month−1)
from January 1984 toDecember 2007, thus covering
24 years of data. Also, P and Ewere available for 146
subcatchments, whileQwas available only for 100 of
them. For this reason, the analysis requiring calcu-
lations of runoff was only carried out for this subset
of subcatchments. Table 1 summarizes the 12 possi-
ble combinations of datasets used in this study.

The water balance equation
In a now-classic paper, Dooge62 stated that the fun-
damental business of hydrology is to solve the water
balance equation at a wide range of spatial and tem-
poral scales. It is the differential equation represent-
ing the conservation of mass within a control vol-
ume defined by a river basin, and expressed as:63

dS
dt

= P (t ) − R (t ) − E (t ) , (3)

where S(t) represents water storage in soils and
groundwater as a function of time, P(t) and E(t)
denote, respectively, P and actual E in the river
basin, and R(t) denotes the surface runoff at the
basin’s outlet. Integration of Eq. (3) over long time
periods (15–20 years), the change in water storage
with time (left-hand side) becomes negligible when
compared with the other terms of the equation. In
the long term, the right-hand side terms P(t), E(t),
and R(t) converge to their long-term mean values
provided that the probability distribution function
of the variables is stationary, according to the mean
value theorem. Therefore, Eq. (3) becomes:

R̄ = P̄ − Ē. (4)
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The terms in Eq. (4) have units of [LT−1], and
thus the river basin drainage area, A, becomes the
scaling factor of runoff to obtain the long-term
mean river streamflow, Q [L3T−1] = R [LT−1] A
[L2]. Hereinafter, we leave out the bars in Eq. (4)
to denote the long-term annual mean values of the
respective terms.

The Budyko framework
This theory relates actual E with two variables
representing the water and energy budgets, respec-
tively: P and Ep for river basins over long timescales,
and thus E = f (P, Ep). Such a relationship is con-
strained by two physical limits: (1) E → Ep as P →
∞ (energy-limited wet environments); and (2) E
→ P as Ep → ∞ (water-limited dry environments).
Budyko64 went on to propose that E/P = f (Ep/P),
where the nondimensional variable Ep/P is referred
to as the aridity index (�), and, therefore, the pre-
vious two limits become: (1) E/P → � as � → 0 (E
is energy-limited); and (2) E/P → 1 as � → ∞ (E
is water-limited). The ratio E/P can be considered
a measure of the long-term mean annual water
balance in a river basin, since it is the fraction of
the water falling as precipitation that is partitioned
into evapotranspiration. On the other hand, � is
a measure of the long-term mean climate-related
energy availability to water availability. Small values
of � (� < 1) are associated with humid catch-
ments where precipitation is significant, and the
energy supply is the limiting factor for evapotran-
spiration. Conversely, large values of � (� > 1)
are found in arid regions where precipitation is
low, and evapotranspiration is limited by water
supply.
In this paper, we used the Budyko framework

to study the relative change in runoff in a given
catchment as a function of relative changes in
two climatic variables (P and Ep) and in other
properties that affect the partitioning of P, repre-
sented by the parameter n. For this purpose, we
employ the approach by Roderick and Farquhar35
and the following equations (see Ref. 35 for their
derivation):

dR
R

=
[
P
R

(
1 − ∂E

∂P

)]
dP
P

−
[
Ep
R

∂E
∂Ep

]
dEp
Ep

−
[
n
R

∂E
∂n

]
dn
n

. (5)

The three terms in the brackets of Eq. (5) are
referred to as runoff sensitivity coefficients, such
that:

εP =
[
P
R

(
1 − ∂E

∂P

)]
, (6)

εEp =
[
Ep
R

∂E
∂Ep

]
, (7)

εn =
[
n
R

∂E
∂n

]
. (8)

In these equations, the water balance constraint
implies that the runoff sensitivity coefficients of P
and Ep add up to one, as εP + εEp = 1.65 Also, in
Eqs. (5)–(8), n represents other factors that change
the partitioning of P between E and R.35 That is,
n captures all factors that are known to influence
runoff generation, such as topography, soils, and
vegetation and other aspects like changes in precip-
itation intensity or changes in the spatial distribu-
tion, and/or seasonal timing of P and Ep. For exam-
ple, Yang and Yang66 suggested that n increases in
catchments with the amount of water available for
E, thus, a large value of n indicates that there is suf-
ficient green water available for E to achieve close
to its maximum value under any climatic condition.
For Eq. (8), n was fitted for each subcatchment and
each combination of datasets using interannual data
and the Budyko-type equation by Yang et al.67
The formulation by Roderick and Farquhar35

assumes steady-state water balance conditions and,
therefore, calculations require a timescale whereby
changes in catchment storage are small relative to
the magnitude of fluxes. For this reason, monthly
values ofP,E,Ep, andRwere converted to long-term
means. Also, before any further analysis was carried
out, we confirmed that the 12 possible combinations
of datasets (mentioned above) follow the Budyko
framework. This was done by plotting the location
of each dataset in the Budyko space (� versus E/P).
We found that not only this framework holds when
using the proposed datasets but alsomost subcatch-
ments are located in the humid space (where � <

1), as it was thoroughly shown for the catchments
of the ARB by Carmona et al.39 These results are
not shown here for the sake of brevity. We also
calculated the Spearman’s rank correlation coeffi-
cient between � and E/P for each dataset. This test
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Figure 2. Long-term mean annual rainfall maps for the 146 catchments of the Amazon River basin, estimated with different
datasets: HYBAM 1984–2007 (A), GPCC 1984–2007 (B), and TRMM 2001–2009 (C).

evaluates how well the relationship between two
variables can be described using a monotonic func-
tion, with values from +1 (perfect positive asso-
ciation) to −1 (perfect negative association). The
closer ρ is to zero, the weaker the association
between the ranks. Results show moderate (+0.5)
to strong (+0.7) correlations between our variables
(Ep/P and E/P). This suggests that all combina-
tions of datasets are useful for the analysis presented
in this manuscript. However, according to these
results, the best combinations are #1 (PHYBAM– E
MPI – Ep Hargreaves, ρ = 0.95) and #5 (P GPCC –
EMPI – Ep Hargreaves, ρ = 0.96), and the worst is
#12 (P GPCC– E = P–R– Ep Priestley–Taylor, ρ =
0.50).We also found that among all, theweakest cor-
relations are obtained when using E estimated from
the water balance equation (P–R) as in combina-
tions 9–12 in Table 1.

Finally, we follow the approach by Jung et al.68
to quantify the relative contribution of uncertainty.
Therefore, we carried out a multilinear regression
linking the differences between the ensembles of
datasets for each subcatchment using the following
equations:

� εp = a∗�P + b∗�E + c∗�Ep, (9)

�εEp = a∗�P + b∗�E + c∗�Ep, (10)

�εn = a∗�P + b∗�E + c∗�Ep. (11)

In these equations, �P, �Ep, and �E are the dif-
ference of each dataset of a variable (P, E, or Ep) and
the mean value of all combinations of datasets for
that variable. For example, �P is the difference of
each precipitation product (HYBAMorGPCC) and
the mean value of P using all precipitation products
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Figure 3. Long-term mean annual potential evapotranspiration (Ep) maps for the 146 catchments of the Amazon River basin,
estimated using the data of meanmonthly temperature range andmeanmonthly extraterrestrial radiation from the CRU (A) and
the surface radiation budget (SRB) (B).

(i.e., �P = P HYBAM – P mean). Also, �εp, �εEp ,
and �εn are the difference of each sensitivity coeffi-
cient (in Eqs. 6–8) of each dataset combination and
the overall mean of the ensemble of 12 dataset com-
binations in Table 1. Equations (9)–(11) are used to
estimate the relative contribution of each variable
to each sensitivity coefficient in each subcatchment.
Also, a, b, and c are the coefficients of themultilinear
regression.

Results

Recalling the objectives of the present study, we dis-
cuss below the spatial distribution of P, Ep, and E,
and their variability across the ARB. The following
subsection is focused on the estimation of the water
balance closure using different measurements and
estimations of P and E and observed R to determine
which combination of datasets yields the best runoff
estimates. Finally, we estimate the sensitivity coeffi-
cients that analytically predict the weight of P, Ep,
and n in the relative change of R across the ARB.We
also explore their spatial variability across themajor
subcatchments and quantify the uncertainty in their
calculation.

Spatial variability of P
Long-term mean annual rainfall fields estimated
withHYBAMandGPCCdata are shown in Figure 2
(panels A and B, respectively). For spatial compari-
son purposes, data from the Tropical Rainfall Mea-

suring Mission (TRMM69) for the period spanning
from 2001 to 2009 were also plotted (Fig. 2C). The
three maps show similar regional precipitation pat-
terns, indicating that the long-term mean annual
precipitation in the ARB ranges from 1100mmyr−1

to up to 3800 mm yr−1, and that the highest annual
precipitation intensities occur in the Colombian
Amazon (northwestern region), while the lowest
precipitation rates are witnessed in Peru (western
region), Bolivia (southwestern region), and some
parts of Brazil (southeastern region). To quantify
the differences or similarities between the HYBAM
and GPCC data, the relative difference between
these datasets was estimated. These relative differ-
ences are of the order of 10% (−10% to 10%) in 75%
of the 146 subcatchments, while in 25% subcatch-
ments, this difference is higher than 10% (ranging
from −20% to 66%).

Spatial variability of Ep

Figure 3 presents the long-term mean annual
fields of Ep estimated using the Hargreaves equa-
tion (panel A) with data from the CRU, and the
Priestley–Taylor equation (panel B) using data from
the SRB. Unlike for precipitation, this figure shows
that both datasets produce very different spatial
estimates, only coinciding in a few catchments
located toward the center of the ARB. The Harg-
reaves method locates the highest Ep values (up to
1885 mm yr−1) over the eastern part of the ARB
decreasing westward, while the Priestley–Taylor
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Figure 4. Spatial distribution of long-termmean annual actual evapotranspiration (E) in the Amazon River basin with four dif-
ferent datasets: (A)MPI, (B) GLEAM, (C) difference between long-termmean P fromHYBAMand observedR, and (D) difference
between long-term mean P from GPCC and observed runoff.

estimates locate the highest Ep values toward the
northeast, decreasing systematically toward the
southwest. It should be kept in mind that values in
Figure 3A were calculated using temperature data
and mean monthly extraterrestrial radiation, while
values in Figure 3B were calculated using short- and
longwave radiation. Estimated relative differences
between datasets are about 10% (−10% to 10%) in
55% of the 146 subcatchments, while for 45% of
them, the difference is higher than 10%, ranging
from −20% to 26%.

Spatial variability of actual E
Figure 4 presents the long-term mean annual fields
of actual E obtained from MPI (Fig. 4A) and
GLEAM (Fig. 4B). These two datasets produce quite
different spatial patterns in the long-term mean

annual actual E, although both coincide in that
the region with the lowest values of E located near
Perú and Bolivia (Fig. 4A and B). For compari-
son purposes in those subcatchments where Q data
were available, E was also estimated using the water
balance equation as E = P–R using precipitation
data from HYBAM (Fig. 4C) and GPCC (Fig. 4D).
Figure 4 shows that GLEAM estimates of E exhibit a
similar pattern to Ep estimates using the Priestley–
Taylor equation, showing the highest values toward
the northeast. This is mostly because GLEAM also
uses the Priestley–Taylor equation to calculate Ep
based on the observations of surface net radiation
and near-surface air temperature. Also, Figure 4
shows that MPI estimates show less spatial vari-
ability compared with results using GLEAM or the
water balance closure.
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Figure 5. Comparison of estimated R using four combinations of datasets of P and E versus observed runoff.

Relative differences between datasets were esti-
mated using E from the water balance (P–R) as a
reference, in order to compare results between MPI
and GLEAM. These results show a possible dis-
agreement between remote sensing actual E and the
water budget at the climatological mean. Results
from the relative difference between E from MPI
and E calculated with P from HYBAM are among
10% in 55% of the subcatchments, while in 45% of
catchments, these differences are higher than 10%
(from −36% to 136%). For E from GLEAM and
E with P from HYBAM, in 48% of the subcatch-
ments, differences are among 10%, while in 52%
of subcatchments, differences are higher than 10%
(from −26% to 154%). When using E calculated
with P from GPCC, these percentages change as
follows: (1) for E from MPI, in 39% of the sub-
catchments, differences are among 10%, and in 61%
of them, differences are higher than 10% (ranging
from −41% to 238%), and (2) for E from GLEAM,
in 34% of the subcatchments, differences are among
10%, and in 66%of them, differences are higher than
10% (ranging from −45% to 210%). In general, dif-
ferences seem to be smaller when using E fromMPI
compared with E from GLEAM. Also, relative dif-
ferences increase when using E calculated using P
data from GPCC.

Closure of the water balance
The water balance closure was examined for 100
subcatchments of the ARB in terms of the esti-
mation of R, using four combinations of P and E
datasets: (1) P Hybam + E MPI (R1); (2) P Hybam
+ E Gleam (R2); (3) P GPCC + E MPI (R3); and
(4) P GPCC + E Gleam (R4). Then, the values
of estimated R = P–E were compared with the
observed values of R. Figure 5 plots R estimated
using each combination of datasets with observed
R. In this Figure, each dot represents one catchment.
The coefficient of determination (R2) and the root-
mean-square error (RMSE) are used as ameasure of
how well observed outcomes are replicated by each
model. As shown in Figure 5, results for the water
balance closure of the 100 subcatchments indicate
that the lowest RMSE values are obtained when
calculating R using P from HYBAM with actual E
from MPI (RMSE = 220 mm yr−1) and GLEAM
(RMSE = 227 mm yr−1). It is worth noticing in
Figure 5 that high RMSE results are almost inde-
pendent of the E estimate but better with P from
HYBAM than from GPCC.
We also quantified deviations of R catchment per

catchment as the relative difference between esti-
mated and observed runoff. Assuming we accept a
10% difference, for the entire ARB (at Óbidos), the
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Table 2. Percentage of catchments with 10% or less than 10% difference between observed and estimated R using
the four combinations of datasets

Runoff models RMSE (mm yr–1)

Catchments with 10% (or less)
difference between observed and

estimated R

R1 (HYB-MPI) 220 55%
R2 (HYB-GLEAM) 227 53%
R3 (GPCC-MPI) 262 44%
R4 (GPCC-GLEAM) 275 40%

water balance closes better when using data from
HYBAM and MPI (7%) or HYBAM and GLEAM
(10%). For data using GPCC and MPI or GPCC
and GLEAM, deviations are 11% and 14%, respec-
tively. However, the closure of the long-term water
budget is not entirely guaranteed with these combi-
nations of datasets for all the subcatchments, since
only for 40% (with R4) and up to 55% (with R1)
of them we could say that the water balance does
close or that the temporal changes in storage can be
considered negligible. This is shown in Table 2 and
Figure 6, which presents the frequency of the rela-
tive differences and their ranges. This figure shows
that for most subcatchments, runoff is better esti-
mated using P from HYBAM and actual E from
MPI. Also, there are seven subcatchments with
imbalances equal to 80% or up. These imbalances
seem to be due to great differences between precip-
itation datasets. From these seven subcatchments,
four belong to the subbasin Madeira (south of the
ARB) and three are located northeast, close to the
mouth of the main Amazon River. For example, in
the subcatchment Serra DoMoa, P fromHYBAM is
1440 mm yr−1, while P from GPCC is 2395 mm
yr−1; and for the subbasin Madeira (at Fazenda
Vista Alegre), P from HYBAM is 1862 mm yr−1,
while P from GPCC is 2429 mm yr−1. Given the
location of the subcatchments (south of the ARB)
and their runoff data, it seems that the GPCC
dataset is overestimating P since both have low
observed R.
Figure 7 shows the spatial distribution of runoff

for each combination of datasets. Results show that
regardless of the used model, all maps show a
similar spatial pattern with the highest (lowest)
runoff located in the northwestern (southern)
region of the ARB. These results coincide withmaps
of precipitation (Fig. 2), indicating that regional

runoff patterns in the ARB are drivenmostly by pre-
cipitation distribution in the basin.

Results for the runoff sensitivity coefficients
Here, we perform an in-depth analysis of the runoff
sensitivity coefficients in Eq. (5) and their constitu-
tive terms (Eqs. 6–8) for each of the 100 subcatch-
ments with runoff data, with the aim of quantifying
relative changes inR as a function of relative changes
in climate (P and Ep) and in the parameter n, using
12 different combinations of P, E, and Ep datasets in
Table 1.
Table 3 shows the minimum, maximum, and

mean values of the sensitivity coefficients calculated
using long-term data for the ARB at its further-
most gauging station, Óbidos, and for the main six
subbasins: Solimões, Negro, Purus,Madeira, Xingú,
and Tapajós (Fig. 1). It also shows the standard devi-
ation (SD) as a measure of the amount of variation
or dispersion between 12 different combinations of
datasets.
In summary, our results suggest that depend-

ing on the dataset combination, at Óbidos, a 10%
increase in P would increase R between 15% and
17%, while a 10% increase in Ep would decrease R
between 5% and 7%. In addition, a 10% change in
factors embedded in the parameter n would affect
the entire basin between 5% and 6%. Note that
results presented in Table 3 evidence the water bal-
ance constraint65 since εP is in all cases a unit higher
than εEp and thus, SDεP = SDεEp .

Comparison between the six major subbasins in
Table 3 shows that Madeira exhibits the highest dif-
ferences between datasets, evidenced in its SD. In
this subbasin, a 10% increase in P would increase R
between 15% and 33%, a 10% increase in Ep would
decrease R between 5% and 23%, and 10% change
in the parameter n would affect the entire basin
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Figure 6. Histograms of relative differences between estimated and observed runoff for 100 subcatchments in the ARB.

between 2% and 7%. This subbasin was identified
to be one with the highest imbalance in runoff esti-
mation depending on the dataset.
Results at a smaller spatial scale (subcatchment

scale) are presented in Figure 8. This figure shows
the spatial variability of the mean value of the
sensitivity coefficients (Fig. 8A and B) and their
respective SD (Fig. 8C and D) for all the 100 sub-
catchments. Only maps for εP and εn are plotted
given the water balance constraint between εP and
εEp , evidenced in Table 3. In Figure 8A andB, darker
colors represent regions with higher values of both
εP and εn. Thus, these regions are subcatchments
in which changes in P (Fig. 8A) or in other fac-
tors that affect the partitioning of P (Fig. 8B) would
affect runoff the most. Panels 8A and D show those
regions in which there is a higher (lower) devi-
ation from the results estimated using the differ-
ent datasets, represented by their SD. Thus, those
subcatchments have the highest uncertainty in the
results. Regarding SD of εP, most of these subcatch-
ments also belong to Madeira, located south of the
ARB, coinciding with imbalances in water balance
closure. As for uncertainty in εn, again higher val-
ues are evidenced toward the south (inMadeira) but
also to the west near the Andes and to the northeast
close to the mouth of the ARB.

Input data uncertainty of streamflow
sensitivity
Next, we disentangle the different impacts of data
uncertainty on the sensitivity coefficients εP and εn
using Eqs. (9) and (11). We only show results for
εP and εn, since results for εP and εEpare the same
given the aforementioned water balance constraint
evidenced for the Amazon at Óbidos and the six
main river basins in Table 2. Table 4 shows results
of the relative contributions of P, E, and Ep to the
sensitivity coefficients for the entire river basin (at
Óbidos) and within the six main subbasins.
Table 4 shows that for the entire Amazon and its

major subbasins, the relative contribution of actual
E to the sensitivity of P is higher than the respec-
tive relative contribution of P and Ep. Also, regard-
ing results for the sensitivity of factors embedded in
n, εn, Table 4 shows that for the entire Amazon at
Óbidos, the relative contribution ofEp to εn is higher
than the contribution of P and E to εn. However,
results vary from catchment to catchment. Spatial
variability of the relative contribution of each vari-
able to εp and εn for 100 subcatchments in the ARB
is shown in Figure 9. This figure shows that at the
subcatchment scale, relative contributions of E to εP
(Fig. 9B) dominate the picture in the ARB, followed
by the relative contribution of P to εP (Fig. 9A). On
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Figure 7. Comparison of spatial patterns of estimated R using four combinations of datasets of P, E, and observed R. Observed
R is the middle of the figure (A) allowing for comparison with R1 (B), R2 (C), R3 (D), and R4 (E).

the other hand, in 62% of the subcatchments, the
relative contribution of Ep to εn (Fig. 9F) is higher
than the relative contribution of P to εn and E to εn.

Discussion

In this study, we analyze the implications of using
different datasets and products to assess the rela-
tive changes in runoff R in the ARB, given relative
changes in climatic variables (P and Ep), as well as
in other properties that affect the partitioning of P,
represented by n.
First, we study the variability of different datasets

and products of P, actual E, and Ep and their
regional distribution across the ARB. We show that
all precipitation datasets exhibit similar regional
patterns of P with the highest values of annual
precipitation occurring in the Colombian Amazon
(northwestern region), while the lowest precipita-

tion rates are depicted in Peru (western region),
Bolivia (southwestern region), and some parts of
Brazil (southeastern region). These observations
coincide with macroclimatic factors, such as the
migration of the Intertropical Convergence Zone
(ITZC) and the South Atlantic Convergence Zone
(SACZ), the activity of aerial rivers, and large-scale
circulation patterns across South America,70–74
including the Eastern Andean jet, also known as the
Orinoco jet (northernmost leg of the SALJET),75,76
and the two phases of the ENSO,20,23,24 land
surface–atmosphere interactions,21,77–79 vegetation
activity, and precipitation recycling.80–82 Regarding
Ep, we show that both Ep products produce quite
different spatial results. The Hargreaves method
locates the highest Ep values (of up to 1885 mm
yr−1) over the eastern part of the ARB decreas-
ing westward, while the Priestley–Taylor estimates
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Table 3. Results for the sensitivity coefficients in the Amazon River basin and its six major river basins

Amazon
(Óbidos) Negro Purus Solimões Madeira Tapajós Xingú

εp Minimum 1.51 1.40 1.35 1.40 1.51 1.66 1.85
Maximum 1.74 1.73 1.62 1.56 3.32 2.19 2.36
Mean 1.64 1.56 1.50 1.49 2.06 1.83 2.04
SD 0.08 0.10 0.10 0.06 0.62 0.17 0.19

εEp Minimum 0.51 0.40 0.35 0.40 0.51 0.66 0.85
Maximum 0.74 0.73 0.62 0.56 2.32 1.19 1.36
Mean 0.64 0.56 0.50 0.49 1.06 0.83 1.04
SD 0.08 0.10 0.10 0.06 0.62 0.17 0.19

εn Minimum 0.50 0.45 0.44 0.40 0.17 0.49 0.70
Maximum 0.58 0.54 0.47 0.47 0.70 0.68 0.86
Mean 0.53 0.49 0.46 0.44 0.52 0.58 0.74
SD 0.02 0.03 0.01 0.03 0.20 0.07 0.05

locate the highest Ep values toward the northeast,
decreasing systematically toward the southwest.
The key difference is that we use remote sensing–
based observations of surface net radiation for the
Priestley–Taylor based estimate, whereas the often-
used Hargreaves equation is solely based on daily
average and diurnal temperature range data and
extraterrestrial radiation. Thereby, the Hargreaves
equation contains empirical coefficients that have
been established at local scales and these may not
be constant throughout the region. As for the results
for actual E, the two datasets used, namely, MPI and
GLEAM, produce different spatial patterns in the
long-termmean annual actual E, and although both
coincide in that the region with the lowest values of
E appear to be near Perú and Bolivia. For compari-
son purposes in those subcatchments where Q data
were available, E was also estimated using the water
balance equation asE=P–R. Results showdisagree-
ment between remote sensing actualE and thewater
budget at the climatological mean.
Above, we attempted to estimate the closure of

the water balance. Our results allow us to conclude
that the closure of the long-term water budget is
not entirely guaranteed with these combinations
of datasets for all the subcatchments. Assuming
that we accept a 10% difference between estimated
and observed values of R for each subcatchment,
for 40% and up to 55% of the subcatchments
(depending on the combination of datasets), we
could say that the water balance does close or that
the changes in storage can be considered negligi-

ble. In the worst cases, these imbalances seemed
to be driven by but not limited to differences in
precipitation datasets. However, recalling the sub-
section “Spatial availability of actual E,” there is a
large discrepancy in climatological water budget–
derived E and remote sensing–based estimates,
since in about 45% of subcatchments, there are
high relative differences between actual evapotran-
spiration datasets. Closing the water balance at a
regional scale is most important to improve water
resource assessment and its vulnerability to global
change. However, it should be kept in mind that
the water balance in a catchment may not close
when all assumptions in Eq. (4) are not met. These
assumptions include the requirement of long-term,
high-quality hydrological measurements (over
20–30 years of data), negligible water storage
changes from seasonal to interannual timescales,
as well as contributions of groundwater net trans-
port; and also, the stationary probability density
functions of hydrological variables according to
the mean value theorem.83 For example, Miguez-
Macho and Fan,84 and Pokhrel et al.85 explore the
role of groundwater in the Amazon water cycle,
finding large contributions of lateral groundwa-
ter exchange, while Frappart et al.86 discuss large
seasonal water storage, as derived from GRACE
estimates in the northwestern region of the ARB.
Also, historical trends in hydrological variables have
been found in Amazonia. Data show increasing
trends in temperature records,87,88 while precip-
itation shows mixed evidence of increasing and
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Figure 8. Spatial distribution of the mean value and the standard deviation (SD) of the sensitivity coefficients: sensitivity to P (A
and C) and to n (B and D), respectively.

decreasing trends throughout the ARB.89,90 Sim-
ilarly, the mean and minimum river discharges
exhibit decreasing trends in the Tapajós River,
the upstream Madeira, and the Peruvian Amazon
rivers. By contrast, increasing trends have been
detected in mean and maximum river discharges
in the northwestern Putumayo and Napo Rivers.91
Thus, these possible signs of climate change in the
ARB evidenced in trends in the long-term series
might violate the assumption of stationarity.
Later on, following Roderick and Farquhar,35 we

quantified changes in R as a function of changes
in climate (P and Ep) and in other factors rep-
resented by n, using the different combination of
datasets of E and EP. It is important to recall that the
parameter n encompasses all factors that change the
partitioning of P between evaporation and stream-

flow. Thus, it includes other climate characteristics,
such as precipitation seasonality, timing, intensity,
and form.35,44,92–94 Specifically, as pointed out by
Berghuijs andWoods,94 disregarding the role of cli-
mate intraanual variability can bias the attribution
of the parameter n toward landscape properties,
prevents landscape effects from being strictly sepa-
rated from intraanual climate effects, overestimates
the importance of landscape effects, and ignores the
role of a part of the climate effects on water yield.
Our results show that at Óbidos, the furthest

downstream gauging station along the Amazon
River, theoretical results suggest that depending on
the dataset combination, a 10% increase in P would
increase R between 15% and 17%, while a 10%
increase in Ep would decrease R between 5% and
7%. In addition, a 10% change in n would affect
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Figure 9. Relative contribution of P, E, and Ep to the sensitivity coefficients εp (maps on the left: A–C) and εn (maps on the right:
D–F).

the entire basin between 5% and 6%. Also, between
the six major subbasins, Madeira exhibits the high-
est uncertainty in results, which could be related to
its water closure imbalance identified above. Other

regions with high differences between datasets in
the sensitivity in catchment properties are located
west near the Andes and to the northeast close to
the mouth of the ARB.
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Table 4. Relative contributions of P, E, and Ep for the sensitivity coefficients of the six major river basins within
the ARB

River basin P to εp (%) E to εp (%) Ep to εp (%) P to εn (%) E to εn (%) Ep to εn (%)

Amazon (Óbidos) 3.4 91.26 2.69 3.16 26.19 58.49
Negro 10.41 103.82 1.86 24.43 12.31 51.69
Purus 1.77 100.84 0.02 69.16 14.39 0.00
Solimões 36.52 138.67 0.07 85.10 0.83 0.06
Madeira 6.49 112.89 0.01 43.60 27.52 0.00
Tapajós 15.05 113.59 3.01 61.76 1.47 41.35
Xingú 4.89 103.96 0.18 27.41 31.60 10.01

Finally, when estimating the relative contribution
of each input variable to εP, and εn for 100 subcatch-
ments in the ARB, results show that uncertainty of
the sensitivity to climatic changes (εp) is dominated
by the uncertainty in the catchment scale E. By con-
trast, the uncertainty of sensitivity of streamflow to
changes in catchment properties εn is dominated by
atmospheric demand and supply.
Our results show that in most regions of the

ARB, either E or Ep, which showedmost differences
between datasets, dominates contributions in runoff
sensitivity coefficients. On the other hand, there are
also catchments in which uncertainty is due to dif-
ferences in precipitation products, evidenced in the
imbalance of the water balance closure. Thus, we
show that using diverse combinations of datasets
can lead to different results with implications for the
quantification of climate change impacts at the sub-
catchment scale in the ARB. Specifically, our results
suggest that in order to improve our understanding
of the possible future scenarios of hydrological sen-
sitivity, enhanced estimates of E and Ep are needed
since uncertainties in E seem to dominate over the
uncertainties in P in the ARB.
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