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Abstract: Recently, it was shown that vector beams can be utilized for fast kinematic sensing
via measurements of their global polarization state [Optica 2, 864 (2015)]. The method relies
on correlations between the spatial and polarization degrees of freedom of the illuminating
field which result from its nonseparable mode structure. Here, we extend the method to the
nonparaxial regime. We study experimentally and theoretically the far-field polarization state
generated by the scattering of a dielectric microsphere in a tightly focused vector beam as a
function of the particle position. Using polarization measurements only, we demonstrate position
sensing of a Mie particle in three dimensions. Our work extends the concept of back focal plane
interferometry and highlights the potential of polarization analysis in optical tweezers employing
structured light.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical beams with a nonseparable mode structure [1,2] have recently garnered attention in a
wide range of subfields in optics, including generalized optical coherence theory [3], simulations
of quantum algorithms [4], quantum channel characterization and correction [5], diffraction-free
beam propagation [6], broad-band cavity design [7], and metrology [8]. In this context, vectorial
structured light plays a major role [9]. The nonseparability occurring between polarization
and spatial degrees of vector beams was recently utilized for fast kinematic sensing based on
polarization measurements [10].

In the present work, we extend the idea of position sensing with nonseparable modes to
the nonparaxial regime, relevant to optical tweezers [11,12] and nano-optics [13–16]. In this
regime, Gauss’s law ∇ · E = 0 couples different polarization components of laterally bounded
fields, leading to a complex polarization structure in the focal region even for fields which are
homogeneously polarized in the paraxial approximation [17–21]. Both radially polarized beams
[22–27] and polarization effects [28–31] have been studied in optical tweezers in the past, and
existing approaches to 3D sensing include methods with multiple beams [32], imaging [33,34],
and digital holography [35]. Of particular interest for the present work is the concept of back
focal plane interferometry [36–42], where a particle-position-dependent phase delay between
incoming and scattered field, due to the Gouy phase, is exploited for axial position sensing. In
this approach, the lateral position is detected with a quadrant diode. A theoretical analysis of
optimal position measurements of a dipole in a strongly focused field with polarization-insensitive
detectors was recently given in [43].

Here, instead of spatially partitioning the field with a quadrant diode, we consider a partition
in polarization space. First, we investigate the polarization state of forward scattered light
from dielectric microspheres in the focal region of a tightly focused radially polarized beam
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as a function of particle position. We find a strong correlation between particle position and
far-field polarization state. Through numerical simulations, we show that the essential features
of the observed polarization structure can be reproduced by an electric dipole model, and
that a similar, albeit weaker, particle-position-dependent polarization structure arises also for
a linearly polarized Gaussian beam, which has separable degrees of freedom in the paraxial
approximation. We numerically compare the signals obtained from polarization measurements
with those obtained from quadrant diode detection for the same system. Next, we demonstrate
experimentally that three-dimensional position sensing of a particle moving in the focal region of
a tightly focused radially polarized beam is feasible using polarization data only. Our results
suggest that polarization analysis in optical tweezers, combined with structured input light,
presents a promising complement to existing approaches.

2. Methods

2.1. Theory

The main principle of the investigated scheme is described in Fig. 1(a). It is equivalent to the
experimental setting. An incoming tightly focused beam of light — wave fronts marked as gray
lines — interacts with a dielectric micron-sized particle (small gray circle). The local field
distribution of the beam at the particle position excites a mode inside the particle, scattering light
into the far-field. This scattered light (red phase fronts) interferes with the transmitted beam,
changing the overall far-field intensity and polarization of the diverging beam, depending on the
position of the particle relative to the focus. We partially collect this far field with a microscope
objective and measure its Stokes parameters with a detection system. Since the position of the
particle is encoded in the intensity and polarization state of the transmitted light, we can infer the
position of the particle relative to the beam using the measured Stokes parameters.

Fig. 1. (a) Experimental concept. A tightly focused beam excites a dielectric particle
located in the focal region. The excited field is shown here as a linear electric dipole for
simplicity, although for our beams it is in general a spinning dipole. The Stokes parameters
of the electric field transmitted in the forward direction are measured as a function of the
particle position. (b) Simulated electric energy density components in the focal plane of a
tightly focused radially polarized beam (top) and an x-polarized Gaussian beam (bottom).
The insets show the phase distribution for each component.

For an exemplary theoretical description of our concept, we first consider the incoming tightly
focused monochromatic beam of light. The vectorial angular spectrum (VAS) of the beam
Ẽ
(︁
kx, ky

)︁
— the VAS is defined with respect to the x-y-plane (focal plane with z = 0) — and the

real space field distribution E (r) with r = (x, y, z), are linked by a vectorial Fourier transformation



Research Article Vol. 29, No. 8 / 12 April 2021 / Optics Express 12431

[20],
E (r) =

∬
dkxdky Ẽ

(︁
kx, ky

)︁
exp (ıkr) . (1)

All plane waves propagate in the positive z-direction (kz>0). The theoretical electric field
distribution in the focal plane for two beam types is shown in Fig. 1(b). The real space field
distribution determines the interaction with the particle. For the sake of simplicity, we only
consider the fundamental electric dipolar mode of the dielectric particle, neglecting all magnetic
and higher order electric resonances. The excited electric dipole moment is proportional to the
local electric field, p (r0) = αeE (r0), with αe being the electric polarizability of the particle and
r0 its position. The particle-position-dependent emission of the excited electric dipole moment
in the VAS representation reads [20]

ẼED
(︁
kx, ky, r0

)︁
= [M]E (r0) , (2)

where
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The superposition of the VAS of the incoming beam with the VAS of the excited dipole
moment results in the total VAS,

ẼT
(︁
kx, ky, r0

)︁
= ẼED

(︁
kx, ky, r0

)︁
+ Ẽ

(︁
kx, ky

)︁
. (3)

As a next step, we take into account the detection geometry and calculate the total field
distribution behind an aplanatic microscope objective with focal length f used for collecting the
transmitted beam and the scattered light. The objective is confocally aligned with respect to the
incoming tightly focused beam, implying that the field behind the objective is collimated (paraxial)
with Ez

T ≈ 0 as long as the particle is close to the focal plane (z ≪ f ). Using the formalism
introduced in [17] to describe the rotation of the field vectors and the energy conservation at
the reference sphere of the microscope objective, we arrive at the x- and y-components of the
transmitted field, ⎛⎜⎝

Ex
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Finally, we calculate the local Stokes parameters defined by: S0 = |Ex |
2+|Ey |

2, S1 = |Ex |
2−|Ey |

2,
S2 = 2 Re ExE∗

y and S3 = −2 Im ExE∗
y . An integration over the full back focal plane of the collecting

objective results in the particle-position-dependent global Stokes vector S (r0). Throughout this
paper, we use a unitless convention whereby s0(r0) represents the integrated intensity normalized
to the background value (i.e. without a particle), while s1, s2, s3(r0) are normalized to the local
intensity. The position dependence of s (r0) is one of the main results of the manuscript.
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2.2. Simulation

Based on the theoretical model described in Sec. 2.1, a numerical simulation of the far-field
Stokes vector s(r0) was carried out for both a radially polarized beam and a linearly polarized
Gaussian beam. The initial VAS was computed numerically with a custom Matlab program
implementing the vectorial diffraction theory due to Debye [44], Richards and Wolf [17] for the
respective paraxial input fields with 200 plane wave components.

Figure 2 shows the simulated position-dependent global polarization state in the far field for
two types of input fields, a radially polarized beam and a linearly polarized Gaussian beam. For
both beams, the on-axis s0 values display a positive gradient as the particle moves through focus
in the +z-direction. This is a known effect which can be intuitively understood by considering
the Gouy phase shift incurred by the incoming field [36–42] (it should be noted that the NA of
the detection path is smaller than the NA of the incoming path). Depending on the axial particle
position, the phase relation – in the far field – between incoming field and the dipole field leads to
destructive or constructive interference. The same principle also causes a lateral gradient. This,
too, is inverted as the particle passes through focus in the axial direction.

Fig. 2. Numerical simulation of the global polarization state in the far-field as a function
of the position of a ∅ 2 µm (= 1.88 λ, n = 2.6) particle in the focal region of a radially
polarized beam (top) and a linearly polarized Gaussian beam (bottom), with focusing NA
0.87 and collection NA 0.22. Note that the axes indiate particle position (i.e., this figure does
not show a spatial field distribution). s0 (intensity) is normalised to the background value
(without a particle), while s1, s2, s3 are normalised to the corresponding value of s0 at each
coordinate. For the Gaussian beam, the y-polarized intensity component |Ey |2 is shown in
place of s1, as this Stokes parameter is dominated by the x-polarized input state. For clarity,
background values are rendered transparently, and the front quadrant is cut out to reveal a
cross-section of the axial values (missing values can be inferred from symmetry). Each
panel spans a volume of 6 × 6 × 10 µm3. The focal plane at z = 0 is indicated in grey. Insets
to the right of each volume show transverse cross-sections at {±2; 0} µm. Multiplicative
numbers indicate gain applied for better visibility. See the text for discussion.

In Fig. 3, we compare the simulated signal for conventional quadrant diode detection with the
simulated signal for polarization detection for a laterally displaced particle in the focal plane of a
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tightly focused radially polarized beam. The signals are simulated for two particle refractive
indices, one corresponding to the particles used in the experiment (n = 2.6) and one arbitrary
lower value (n = 1.7). The polarization detection is sensitive to the particle’s refractive index and
yields higher values when the index is lower. This increase in sensitivity is observed in all planes,
not just the focal plane shown in Fig. 3. By contrast, the quadrant detection is more sensitive
to the collection NA, changing both amplitude and sign across the three simulated values 0.3,
0.6 and 0.9. This agrees with existing numerical and experimental results for Gaussian beams
[37,39]. Polarization detection is hardly affected by the collection NA in the focal plane, but
we observe that limiting the collection NA leads to larger signals outside of the focal plane.
Consequently, there is a trade-off between the axial sensitivity and the size of the volume in
which lateral displacements can be detected.

Fig. 3. Simulated response for the lateral displacement of a particle in the focal plane of
a radially polarized beam for a quadrant diode measurement (dotted) and a polarization
measurement (line), for selected particle refractive indices (left, right) and collection NAs
(green, purple, red). The quadrant diode signal sx represents the intensity difference between
the right and left half-planes at the collection aperture. The remaining simulation parameters
are chosen in accordance with the experiment (see Sec. 2.3).

In quadrant detection, the maximum gradient occurs on-axis, allowing for accurate measurement
of small displacements about the origin. On the other hand, for a radially polarized beam the
polarization detection’s maximum gradient occurs off-axis, close to the zero gradient of the
quadrant signal. This suggests that the linear range of lateral displacement measurements can be
enhanced by including the polarization degree of freedom (note that quadrant- and polarization
detection can, in principle, be performed simultaneously without optical losses).

We have seen that quadrant detection and polarization detection yield very different results
for the same beam and particle. For polarization detection, the choice of input field also greatly
affects the observable signals, as seen by comparing the radially polarized and Gaussian beams
in Fig. 2. The optimal input field will ultimately depend on the application. For the problem of
particle tracking, fields of the “full Poincaré” (FP) type [45] may be promising candidates, since
they possess a one-to-one correspondence between polarization and transverse position in the
paraxial approximation. A full exploration of different input fields is beyond the scope of this
work. Here, we implement a proof-of-principle experiment using a radially polarized beam.

2.3. Experiment

A cw laser centered at λ = 1064 nm, emitting in a linearly polarized Gaussian mode, was passed
through a liquid crystal mode converter followed by a Fourier filter to generate a radially polarized
beam. The beam was focused with an aplanatic oil immersion objective (effective NA 0.9) onto
single titania microspheres (TiO2, ∅ 2 µm, n ∼ 2.5) embedded in thiodiethanol (TDE, nm = 1.50)
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[46]. The typical optical power in the plane of the particle was 10 mW. The transmitted light was
collimated by a second objective and directed to a beam splitter cascade for the detection of the
individual Stokes parameters.

For free particle measurements, a single particle was trapped in the beam. We used the
piezoelectric motion stage on which the probe was mounted to nudge the particle in different
directions out of the trap while recording the Stokes parameters s(t). Reconstructing the trajectory
from polarization data requires the particle-position-dependent Stokes vector s(r0), which we
measured experimentally. Following a free measurement, we temporarily increased the trap
stiffness by increasing the optical power to 40 mW and shifted the piezo stage in the +z-direction
until the lower substrate made contact with the particle. This resulted in the particle becoming
attached to the substrate, and its position perfectly correlated with the subsequent motion of the
piezo stage. The particle was then scanned laterally across a plane centered on the beam axis. By
repetition, the particle-position-dependent Stokes vector s(r0) was built up on a 6 × 6 × 10 µm3

volume. The trajectory was reconstructed using an algorithm conceptually equivalent to [10].
Further details on the experimental setup and the tracking algorithm can be found in Supplement
1.

3. Experimental results

3.1. Particle-position-dependent Stokes parameters

Figure 4 shows the experimentally recorded particle-position-dependent Stokes parameters
s0, s1, s2 for a 2 µm TiO2 particle scanned through a radially polarized beam. The full set of
40 planes (spaced by 200 nm) is visualised in Fig. 5. The results reproduce the key features
predicted by the simple theoretical model based on dipole scattering shown in Fig. 1(a) and
Fig. 2, including the axial s0-dependence, lateral dependence of s1, s2, and sign inversion relative
to the focus. s1 and s2 are qualitatively identical up to a 45° rotation, as expected from the focal
field distribution. When the particle is several Rayleigh ranges away from the focal plane, the
parameters strongly resemble the polarization distribution of the paraxial mode, which agrees
with intuition.

The polarization state of an ideal radially polarized beam in the paraxial regime is characterized
by s3 = 0 both locally and globally. The ideal global far-field polarization state is still s3 = 0
when a particle is placed in the focal region, for any position of the particle. This is because any
regions of locally circular polarization are cancelled in the global polarization state by another
region of the opposite sign due to the symmetry of the ideal mode. The measured s3 component
(not shown) displayed an asymmetric nonzero pattern due to asymmetries in the prepared mode
and potentially also due to a spatially inhomogeneous coupling in the detection plane. The pattern
did not arise from the properties of individual particles because it was reproduced identically
between scans of different particles. This allowed us to include the nonzero s3 component in the
map s(r0) used for position sensing.

3.2. Position sensing

Figure 6 shows the results for position sensing of a free TiO2 particle placed in the focal region
of a tightly focused radially polarized beam. In Panel 6(a), the particle is at equilibrium in
the optical trap potential behind the focal plane. In Panels 6(b)–(e), the particle was nudged
out of the trap by initiating a motion of the piezo stage supporting the medium in the +x-,
+y-, +z-, and −z-directions, respectively. The trajectory shown was inferred based on the
measured polarization data only, demonstrating motion detection in three dimensions from
polarization-resolved measurements of forward-scattered structured light.

The measurement precision is affected by pointing instabilities (which we attempted to
minimize with large active photodiode areas, ∅ 500 µm), as well as laser noise and detector noise.

https://doi.org/10.6084/m9.figshare.14334089
https://doi.org/10.6084/m9.figshare.14334089
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Fig. 4. Experimentally measured particle-position-dependent Stokes parameters
{s0, s1, s2}(r0) in the far field for a ∅ 2 µm TiO2 particle in the focal region of a tightly
focused radially polarized beam. Offsets (indicated in parentheses) were applied uniformly
to s1 and s2 to make their background values zero for clarity of presentation.

Fig. 5. The full dataset of Fig. 4 visualized for all 40 planes. As in Fig. 2, the front quadrant
has been cut out for clarity. This makes s1 appear more intense than s2, but as shown by the
insets, the components are approximately balanced.
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Fig. 6. Experimental results for three-dimensional position sensing of a TiO2 microsphere
in the focal region of a tightly focused radially polarized beam. In Panel (a), the particle
is undergoing Brownian motion in the trap potential, while in Panels (b)–(e) it is nudged
in the +x-, +y-, +z-, and −z-directions, respectively. Motion is induced by moving the
substrate supporting the medium in which the particle is suspended along the respective
axes. Color indicates the time coordinate, normalized in each panel to match the duration
of the measurement. The gray backdrops indicate the distribution of s0(r0) in the plane
through the origin, similar to Fig. 5 (brighter backdrop corresponds to higher values of s0).

These sources of error equally affect quadrant detectors. However, our computational approach
means that our method is additionally affected by any mismatch between s(r0) (the calibration
measurement) and s(t) (the free particle measurement). Such a mismatch can lead to distorted
trajectories and adversely affects accuracy. In our prototype implementation, we frequently
observed a mismatch caused by slow drifts occurring between calibration and measurement.
We worked around this drift by recording the background value s(r0 → ∞) over time, and
calculated a linear correction factor for each measurement. This correction factor was applied to
the measured Stokes vector si(t) in post-processing, resulting in the trajectories shown in Fig. 6.
While the inferred trajectories agree with the expected trajectories, it is not clear, for example,
whether the curved trajectory in panel 6(e) is due to the actual physical trajectory or a mismatch
artefact. Overcoming calibration table mismatch is crucial to improving the tracking accuracy
with this method.
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4. Conclusion

We have investigated the far-field particle-position-dependent global polarization state resulting
from a dielectric microsphere placed in a tightly focused vector beam. A simple dipole scattering
model was shown to reproduce the main qualitative features of the observed position-dependent
polarization, providing insight into the underlying physical principle. Our work thus extends
the idea of back focal plane interferometry to the polarization degree of freedom. Using this
idea, we have demonstrated three-dimensional position sensing from polarization measurements
without spatially resolving the scattered field. For this we calibrated our system for a specific
combination of focal field and particle, and collected data traces for free particles which allowed
the particle position to be obtained computationally.

Although all fields display some degree of polarization coupling when tightly focused, we have
shown that paraxial vector beams lead to particularly large polarization gradients in the focal
region compared to the more commonly used Gaussian beams, placing our work in the context of
structured light with nonseparable degrees of freedom. Our numerical simulations indicate that
polarization measurements, when combined with structured input light, can extend the transverse
range of linearity of conventional quadrant diode detection schemes. It is therefore conceivable
that polarization analysis combined with structured input light could complement quadrant diode
detection in optical tweezers. Measurements of this kind could, for example, be realized by
placing a quadrant diode in each output port of a polarizing beam splitter, and considering the
differences between the total intensities as well as the individual quadrant signals. The approach
can be extended to vector beams with other polarization patterns, such as azimuthally polarized
beams, "spiral" beams, their counter-rotating versions, more exotic beams displaying nonzero net
transverse angular momentum [47], full Poincaré beams [45], as well as different wavelength
regimes, opening many interesting avenues for exploration.
Funding. H2020 Future and Emerging Technologies (732894 HOT, 829116 SuperPixels).
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