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Topological properties of light attract tremendous attention in
the optics communities and beyond. For instance, light beams
gain robustness against certain deformations when carrying
topological features, enabling intriguing applications. We
report on the observation of a topological structure contained
in an optical beam, i.e., a twisted ribbon formed by the elec-
tric field vector per se, in stark contrast to recently reported
studies dealing with topological structures based on the dis-
tribution of the time averaged polarization ellipse. Moreover,
our ribbons are spinning in time at a frequency given by the
optical frequency divided by the total angular momentum of
the incoming beam. The number of full twists of the ribbon
is equal to the orbital angular momentum of the longitudinal
component of the employed light beam upon tight focusing,
which is a direct consequence of spin-to-orbit coupling. We
study this angular-momentum-transfer-assisted generation
of the twisted ribbon structures theoretically and experimen-
tally for tightly focused circularly polarized beams of different
vorticity, paving the way to tailored topologically robust exci-
tations of novel coherent light–matter states. © 2020 Optical

Society of America under the terms of the OSAOpen Access Publishing
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The topological structure of light beams is enriched by spin–orbit
interactions (SOI) or the interplay of spin angular momentum
(SAM), associated with the polarization of light, and the orbital
angular momentum (OAM), which is related to the spatial struc-
ture of the beam’s wavefront [1,2]. While complex topological
structures such as optical vortices, polarization knots [3,4], and
optical polarization Möbius strips [5,6] were extensively studied
and even observed experimentally [3,4,7–10], surprisingly, the
experimental observation of an optical twisted ribbon was inves-
tigated less actively and reported only very recently [11]. This is
despite the fact that an optical ribbon is a ubiquitous structure [12].

It is important to note here that polarization topological structures
reported so far have solely been discussed in the context of the
polarization ellipse and its major and minor semiaxes [5–8,11,12]
or higher-order Lissajous figures [13,14]. In the present study, it is
the electric field vector itself, which twists and turns to form a rib-
bon. Additionally, quite elaborate schemes including interference
of several beams or the focusing of multiple co-propagating modes
are often required to observe topologies such as optical polarization
Möbius strips or ribbons [7,10,11]. In the present work, we show
that focusing a circularly polarized light beam with or even without
a central phase vortex generates a twisted ribbon of the focal electric
field per se, spinning in time around the optical axis. Importantly,
our optical ribbon can be a “pure” or “true” ribbon in the sense
that it manifests itself around a point of zero field intensity and
exists by itself while not being accompanied/surrounded by other
topological structures. The number of full ribbon twists corre-
sponds to the total angular momentum (AM) in accordance with
the index theorem (and equal to the OAM of the longitudinal
component of the focused beam) [15]. The theoretical predictions
are fully corroborated by experimental results recorded utiliz-
ing a nano-interferometric amplitude and phase reconstruction
technique [16].

In order to prove the proposed concept of optical twisted rib-
bons in the time-instantaneous electromagnetic field, we study
topological structures created by tight focusing of fundamental
Gaussian and first-order Laguerre–Gaussian beams resulting in
electric (and magnetic) field ribbons of low twist numbers. For
comparison with the full-field experimental data retrieved for the
aforementioned tightly focused light beams, we use theoretical data
calculated based on vectorial diffraction theory [17]. However, we
start our discussion by representing the general structure of highly
confined light beams via an approximate analytical model, which
will allow us to retrieve a fundamental connection between the
AM of the input beam and the twist number of the resulting field
ribbons. In this model, we use at the input a narrow ring aperture
(see also [18,19]), simplifying the integral equations of vectorial
diffraction theory to analytic expressions. For the limiting case of
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NA→ 1, one obtains the field components of a circularly polarized
annular beam with azimuthal index m in a cylindrical [20] as well
as Cartesian basis [19],

E circ
m ± (ρ, ϕ, z)≈Ce i(m±1)ϕ Aθ (z)

×

 Jm(kρ)+ Jm±2(kρ)
±i{Jm(kρ)− Jm±2(kρ)}
∓2i Jm±1(kρ)


ρ,ϕ,z

=C Aθ (z)×

 e imϕ Jm(kρ)+ e i(m±2)ϕ Jm±2(kρ)
±i
{
e imϕ Jm(kρ)− e i(m±2)ϕ Jm±2(kρ)

}
∓2i e i(m±1)ϕ Jm±1(kρ)


x ,y ,z

.

(1)

Here «±» represents either clockwise (cw; +) or counterclock-
wise (ccw; −) circular polarization, with the direction of rotation
defined as seen by an observer toward whom the wave is propagat-
ing. m is the azimuthal order or vorticity of the initial light field.
A corresponds to the resulting amplitude function imprinted by
the geometry of the ring aperture at a focusing angle of θ , and Jm is
the mth order Bessel function of first kind, with k the wavenumber
of the incident light, C =−k f im+1

2
√

2
a prefactor with f the focal

length of the focusing lens, and (ρ, ϕ, z) the employed cylindrical
coordinates. The time dependence exp[iωt] is here implicit. The
main features contained in the above equation hold even for a finite
annular aperture of 20◦ angular width [21]. Consequently, it is
justified to use Eq. (1) for our analysis. The main difference to the
experimental realization is the appearance of noteworthy sidelobes
for the annular aperture case, as known from Bessel-like light fields
[22,23]. The SOI-induced transformation of the SAM, or «±»
circular polarization, to OAM is expressed in an increase/decrease
of the vorticity of the longitudinal, i.e., z component by 1 [24].
More importantly, we see that the relative phase change of this
component upon a full 360◦ rotation around the optical axis (2π
change in the azimuthal angle ϕ) of 2π(m ± 1), together with the
behavior of the transverse components (which are phase-shifted
by π

2 relative to each other) determine the number of full twists
of the topological structure (ribbon) formed by the electric (or
magnetic) field vector for a snapshot in time. This statement will
also be proven numerically and experimentally below. Also note
that for cw, or “+” circular polarization, and m 6= [−2, 0], the
intensity in the center of the pattern described by Bessel functions
with order 1 or higher is zero, rendering our topological structure a
“pure” or “true” one for these cases. A similar situation is achieved
for “−” or ccw circular polarization and m 6= [0, 2].

Next, we discuss the time evolution of the aforementioned
ribbon structure. The components of the electric field in
cylindrical coordinates [see Eq. (1)] have their azimuthal coor-
dinate dependence solely given by the common phase factor
exp[i(m ± 1)ϕ − iωt]. The temporal evolution of the field is thus
uniquely linked to an azimuthal coordinate change by dϕ

dt =
ω

m±1 .
Consequently, the topological structure of the instantaneous elec-
tric field vector generated upon tight focusing rotates on a circular
trace in the focal plane at a 1

m±1 fraction of the optical frequency
[25], or inversely proportional to the total AM of the full field,
which is equal to m ± 1.

To demonstrate experimentally the appearance of twisted
ribbons in the time-instantaneous electric field distribution, we
use the experimental setup shown in Fig. 1, which consists of a

x

y

Fig. 1. Sketch of the experimental setup employed to reconstruct
the full vectorial focal field distribution of the tightly focused Laguerre–
Gaussian and Gaussian beams. The insets show an SEM image of
the gold nano-probe, as well as a resulting Fourier-space image of the
transmitted and forward-scattered light through the underlying glass
substrate—shown for a circularly polarized Laguerre–Gaussian input
beam LGcirc+

1 —used to reconstruct the full vectorial light field.

homebuilt confocal-like microscope [7,16]. The chosen near-field
probe is a single gold nanosphere with a diameter of approximately
80 nm (see scanning electron micrograph in Fig. 1) that is immo-
bilized on a glass substrate. This probe can be precisely scanned
through the investigated field distribution using a piezo stage,
resulting in scattering of the local electric field at the point of the
probe. An oil-immersion microscope objective (NA= 1.3) is
collecting the forward-scattered and transmitted light from the
substrate side, leading to the angularly resolved detection of their
interference by imaging the back focal plane of the microscope
objective onto a CCD camera. This Fourier-microscopy-based
interference approach is equivalent to observing the scattering
process from various directions. Thus, it allows for retrieval of the
relative phase information between all three electric field compo-
nents in the fully vectorial distribution under study from the far
field. This technique, labeled Mie-scattering nano-interferometry
[16], was proven to achieve deep sub-wavelength spatial resolution
in the experimental study of vectorial focal fields and enabled the
experimental verification of optical polarization Möbius strips
and twisted ribbons in the distribution of the polarization ellipse
(major axis) resulting from tailored light fields [7,8,11]. Details
regarding this technique are discussed in [16].

From the full amplitude and phase information of the complex
vectorial light field reconstructed within the plane of observation,
we also retrieve information about the temporal evolution of the
field and, thus, the rotation behavior of this topological struc-
ture during an optical cycle. Given the common time-dependent
phase factor of exp[−iωt] for a harmonically oscillating field, the
instantaneous vectorial electric field distribution can be inferred
at every time step within the optical cycle by a global phase shift of
1ϕ =ω1t .

In contrast to the analytical considerations discussed above, the
highly confined focal field distribution containing a twisted ribbon
in its time-instantaneous electric field vector is experimentally
generated by focusing a circularly polarized Laguerre–Gaussian
beam of order m with the full aperture of a microscope objective
with an NA of 0.9 (no annular aperture). As stated, this affects
only the strength of the sidelobes in the focal field distribution
but not the comprised topological structure, while simplifying
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Fig. 2. Experimentally reconstructed electric energy density distribution and its 3D vector components in the focal plane of a tightly focused circularly
polarized Laguerre–Gaussian beam of (a) LGcirc−

0 and (b) LGcirc+
1 , respectively. The relative phase distribution of each of the field components is shown as

an inset above the respective energy density distribution. Note the zero intensity in the beam center in (b), caused by the presence of phase vortices with
m≥ 1 in all field components independent of the chosen coordinate basis. The dashed black (or white) circles correspond to the trace chosen to visualize the
twisted ribbon structures in Figs. 3 and 4.

the experimental setting. The input beam for m 6= 0 is generated
by transmitting a circularly polarized Gaussian beam through an
optimally tuned q-plate [26] of order q = m

2 . The resulting field
with an on-axis phase vortex of charge m and circular polarization
of opposite handedness is filtered spatially with a pinhole to obtain
the lowest radial order of the created Laguerre–Gaussian modes
[27] before being focused by the objective.

For the experimental reconstruction, we scan the nano-probe
across the highly confined focal field and apply the reconstruction
algorithm detailed in [16] to the collected far-field intensity infor-
mation. As a result, we retrieve the experimentally reconstructed
focal electric energy density and phase distributions shown in
Figs. 2(a) and 2(b) for two different input light beams LGcirc−

0 and
LGcirc+

1 , respectively. The excitation wavelength in this case was
chosen as λ= 530 nm, with the nano-probe exhibiting an exper-
imentally determined relative permittivity of ε=−3.1+ 2.5i at
this wavelength.

It can be seen that the total electric energy density (depicted on
the left of Fig. 2) strongly resembles the cylindrically symmetric
field distributions predicted by Eq. (1) as well as numerical cal-
culations via vectorial diffraction theory [17] for both cases (not
shown). While the energy density distributions of the individual
electric field components (right side of Fig. 2) show minor devia-
tions from the expected symmetries given by Eq. (1), the resulting
phase distributions (depicted as insets) exhibit the expected on-axis
phase vortices with charge m and m ± 1 for the transverse and
longitudinal field components, respectively, in the case of the
first-order Laguerre–Gaussian beam [Fig. 2(b)].

From this experimentally determined fully vectorial complex
electric field distribution, we now trace the real-valued electric field
vector on a circular path with radius r = 150 nm around the opti-
cal axis (shown in Fig. 2 as white or black dashed lines) for a fixed
time t within an optical period T. For a fundamental Gaussian
input beam LGcirc−

0 , the electric field for t = 0 and t = T/4 traced

along the closed circle features the topological structure of a twisted
ribbon as depicted in Fig. 3(a). Dark and light blue arrows cor-
respond to the two times indicated above. When following the
trace in a ccw direction, the electric field vector rotates once in a cw
manner around the trace, corresponding to a topological charge or
twist index of the ribbon of−1 [15]. This index can also be inferred
from the projection of the electric field vector onto the transverse
plane, as shown in Fig. 3(a). To verify the experimentally obtained
twist index, we additionally calculated the focal field distribution
of a LGcirc−

0 beam with the same parameters used in Fig. 3(a) using
vectorial diffraction theory [17], resulting in the twisted ribbon
shown in Fig. 3(b). The excellent agreement of the experimentally
determined and numerically calculated topological structures con-
firms their robustness against aberrations and experimental noise.
Furthermore, our results show that such intriguing structures are

Fig. 3. 3D vector distributions of the instantaneous electric field vector
in the focal plane of a tightly focused LGcirc−

0 beam as well as its projection
onto the transverse plane, traced on a ring of radius r = 150 nm at two
different time moments of the optical period T, t = 0 and t = T/4.
(a) The experimentally reconstructed 3D electric field ribbon with twist
index −1, and (b) its numerically calculated counterpart for the same
conditions as in (a) highlight the clockwise rotation of the electric field
vector when tracing the circular path counterclockwise around the optical
axis and show the very good correspondence between experiment and
numerical calculation (see Visualization 1).

https://doi.org/10.6084/m9.figshare.11973594
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Fig. 4. 3D vector distributions of the instantaneous electric field vector
in the focal plane of a tightly focused LGcirc+

1 beam as well as its projection
onto the transverse plane, traced on a ring of radius r = 150 nm at a time
t = 0 of the optical period T. (a) The experimentally reconstructed 3D
electric field ribbon with twist index 2, and its numerically calculated
counterpart for the same conditions as in (a) arise from the counterclock-
wise rotation of the electric field vector when tracing the circular path
counterclockwise around the optical axis (see Visualization 2).

even present in the most fundamental and widely used light beams
such as a circularly polarized fundamental Gaussian beam.

Comparing the resulting twisted ribbons for both time steps
t = 0 and t = T/4 (light and dark blue arrows in Fig. 3), we can
also follow the instantaneous rotation of the topological structure
upon time evolution, confirming the analytically expected rotation
at the optical frequency ω for the shown case of m = 0 (see also
Visualization 1).

To verify the analytically determined twist index for higher-
order light beams and probe a “pure” twisted ribbon around a dark
spot of the electric field, we also plot the corresponding data for
a Laguerre–Gaussian beam LGcirc+

1 [see Fig. 2(b)]. The result-
ing twisted ribbon with twist index 2 is depicted in Fig. 4(a) and
agrees very well with the numerically determined twisted ribbon
[Fig. 4(b)]. Here, a single optical cycle will lead to a rotation of
the twisted ribbon topology by only 180◦ when traced around the
optical axis (see Visualization 2), confirming the inverse relation
between the rotation frequency of the focal field and its total AM.

In conclusion, we have analytically predicted and experimen-
tally and numerically observed twisted ribbons formed by the
time-instantaneous electric field vector per se with the number of
full twists depending on the total AM of the underlying tightly
focused light beam, m ± 1, spinning in time around the optical
axis at a 1/(m ± 1) fraction of the optical frequency. Our findings
show that beside the distribution of polarization (ellipse) and
phase, the electromagnetic field itself can also feature an interesting
topological structure. We envision that the underlying robustness
of these entities might allow for novel concepts in shaping coherent
multi-particle light–matter states such as hybrid polaritons.
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