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On the mass and momentum transfer between short 
gravity waves and larger-scale motions 

By K. HASSELMANNT 
Institut fur Geophysik, Universitat Hamburg 

(Received 16 September 1970 and in revised form 10 June 1971) 

Interactions between short gravity waves and larger-scale flows are investigated 
in the two-scale approximation. The effect of the wave field on the mean flow is 
described by an interaction stress tensor and a surface mass transfer. The results 
are applied to Phillips’ and Longuet-Higgins’ model of short waves breaking 
on the crests of long carrier waves. It is found that the work done on the long 
waves by the interaction stresses (corresponding to Longuet-Higgins’ ‘maser ’ 
mechanism of wave generation) is almost exactly balanced by the loss of potential 
energy arising from the mass transfer. The residual energy transfer leads to 
attenuation of the long waves, independent of their propagation direction 
relative to the short waves. Damping factors are estimated from the upwind- 
downwind ratios of radar backscatter cross-sections. It is found that interactions 
with waves shorter than 35cm yield attenuation rates about an order of 
magnitude smaller than the observed growth rates due to the wind. 

1. Introduction 
The interactions of short gravity waves propagating through a large-scale fluid 

motion have been the subject of a number of recent studies. Common to most 
apprdaches is some form of WKBJ approximation, in which the short waves 
are averaged over a space-time region large compared with the periodicities of 
the waves but small compared with the characteristic dimensions of the large- 
scale (mean) flow. 

The effect of the mean flow on the wave propagation can be derived elegantly 
by Whitham’s (1967) averaged Lagrangian method (see also Bretherton & 
Garrett 1968; Bisshopp 1969). For linear waves the main features follow from 
the conservation of wave action along wave-group trajectories. An alternative 
treatment has been given by Longuet-Higgins & Stewart (1961). 

The Lagrangian method can also be applied to determine the back interaction 
of the wave field on the mean flow. In  this case the averaged Lagrangian density 
is varied with respect to the mean-flow parameters rather than the wave field. 
However the resulting Lagrangian equations are generally less convenient than 
the more usual Eulerian description. We shall accordingly derive the mean-flow 
equations here by the standard method of averaging the Eulerian equations of 
motion, together with the appropriate boundary conditions. 

Present address: Woods Hole Oceanographic Institution. 
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190 K .  Hasselmann 

The wave field is found to act on the mean flow in two ways. The usual Reynolds 
stresses can be combined with the mean pressure induced by the fluctuating 
wave velocities into an interaction stress tensor, which governs the transfer of 
momentum from the waves to the mean motion. Additionally, there is a transfer 
of mass due to the divergence of the Stokes mass transport. This term appears 
to have been overlooked in previous investigations. 

The interaction stress is related to, but differs from, the radiation stress con- 
sidered by Longuet-Higgins & Stewart (1960, 1964). The radiation stress enters 
in the overall momentum balance of the complete flow consisting of the mean 
motion plus wave field. The interaction stress describes the transfer of momentum 
between the mean motion and the wave field. In  simple cases, the net effect of 
both mass and momentum transfer can be deduced from the overall momentum 
balance and can therefore be expressed in terms of the radiation stress. However, 
in general the transfer processes need to be considered separately. 

This is illustrated for the case of short waves interacting with long ‘ carrier ’ 
waves. It has been suggested by Phillips (1963) and Longuet-Higgins ( 1 9 6 9 ~ )  
that the hydrodynamic modulation of very short waves by longer carrier waves 
tends to cause breaking of the short waveson thelong-wave crests. Thesubsequent 
regeneration of the short waves by the wind leads to a non-symmetrical dis- 
tribution of the short-wave energy relative to the wave crests. Phillips in- 
vestigated the back interaction of the resultant short-wave energy distribution 
on the long waves and concluded that the long waves would be attenuated. 
Recently Longuet-Higgins (19694 has argued that the effect considered by 
Phillips is small compared with the energy transferred to the long waves during 
the white-capping process itself. A loss of momentum AM of short waves breaking 
on the long-wave crests is assumed to correspond to an energy gain AE = AM .u 
of the long waves, where u is the orbital velocity of the long waves at  the crests. 
AE is positive if short and long waves are propagating in the same direction, 
and negative if the propagation directions are opposite. Thus in a growing sea 
the long waves would gain energy from the short waves, and it was suggested 
that this may be an important mechanism for wave generation. 

It will be shown below that Longuet-Higgins’ transfer term corresponds 
formally to the work done by the interaction stresses. However, a further energy 
transfer of opposite sign arises through the mass transfer. The modulation of 
the short waves by the long waves causes a divergence of the short-wave mass 
transport, which is balanced by a corresponding mass transfer to the long waves. 
Since mass is added and subtracted at  different potential levels within the long- 
wave cycle, this leads to a net transfer of potential energy. Thus if the short-wave 
mass transport is greater on the forward face of the long waves, mass of high 
potential energy is taken from the long-wave crests and is returned at  a lower 
potential level in the wave troughs. To first order the potential energy lost in 
this way exactly balances the energy gained by the interaction stresses. The 
residual second-order transfer leads always to attenuation of the long waves, 
independent of their propagation direction relative to the short waves. 

The attenuation factors can be determined experimentally from the quad- 
rature component of the wave bispectrum. Unfortunately, in the normal fre- 
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Interactions between short gravity waves and larger-scab flow 191 

quency range of ocean wave records ( < 1 c/s), the quadrature bispectrum appears 
to be rather small and difficult to measure above the inherent statistical noise. 
However, measurements of radar return from the sea surface indicate a strong 
quadrature bispectrum at shorter wavelengths in the cm-dm range. Estimates of 
the attenuation factors from the upwind-downwind ratio of backscatter cross- 
sections yield - 35 5 10 db per wave period - about an order of magnitude smaller 
than observed growth rates. However, this value should be regarded as a lower 
limit, since it excludes interactions with waves longer than 35 em which lie beyond 
the conventional radar bands. 

2. Equations of motion of the mean flow 

x3 = [(x,, x2, t) is governed by the equations 
The motion of an ideal homogeneous fluid of depth h(x,, x2) with a free surface 

(momentum equation), 

8uj/axi = 0, -h  < x3 < 6 (incompressibility), (2) 
p - gc = pa at x3 = c (given pressure p a  at surface), (3) 

(4) 

u, ah/axa + u3 = 0 at  x3 = - h (zero flow through bottom), ( 5 )  

%[+ua--u3 a ac = 0 at x3 = c (zero flow through surface), 
axa 

together with appropriate conditions at the lateral boundaries. Latin indices 
run from 1 to 3, Greek indices from 1 to 2, and p denotes the kinematic pressure 
minus the equilibrium pressure -gx3; the notation is otherwise standard. 

We shall consider solutions consisting of a rapidly oscillating wave field ui, [' 
superposed on a mean flow Zi, 5 which varies slowly with respect to the horizontal 
co-ordinates and time. The mean properties of the wave field and the depth are 
also regarded as slowly varying functions. Means are defined in the usual manner 
as horizontal and time averages over dimensions intermediate between the 
periodicities of the wave field and the characteristic scales of the slowly varying 
fields. 

The equations of motion of the mean flow can be derived by averaging ( 1)-(5), 
the interactions with the wave field arising through the non-linear terms and the 
pressure field. Applying the boundary conditions for the mean flow at the mean 
free surface x3 = [, the equations take the form 
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192 K. Hmselmann 

where 

and 

In averages such as (12) it  is assumed (as in linear or weakly non-linear wave 
theory) that for < 0 the fields can be continued analytically to the mean 
surface x3 = c. 

The coupling with the wave field is expressed by two source terms: a force, 
given by the divergence of the interaction stress tensor T$t, and a surface mass 
transfer due to the divergence of the wave mass transport M:. - 

The interaction stress consists of the Reynolds stress -u;u(i and the con- 
tribution pw to the mean pressure field j?i = pm +pw arising from the wave field, 
the mean-flow pressure fieldpm being defined as the mean pressure in the absence 
of the wave field, i.e. the pressure field as determined from the usual Laplace 
equation and boundary conditions for the pressure with the fluctuating velo- 
cities and surface displacements set equal to zero.? 

The wave mass transport (12) represents the mean mass flow in the surface 
layer bounded by the instantaneous surface z3 = [+c and the mean surface 
z3 = [. The source term - aM:/ax, in (9) follows by noting that according to (12) 

which is identical with the expression obtained by subtracting the left-hand sides 
of the mean flow boundary condition (9) and the mean of the boundary con- 
dition (4). Physically, condition (9) states that since there can be no mass flux 
through the instantaneous surface, the divergence aM;/ax, of the horizontal 
mass flux in the surface layer must be balanced by an equal flux upwards 
through the mean surface (cf. figure 1). 

Since the wave mass transport in Eulerian co-ordinates is a surface phenomenon 
restricted to the region between the wave troughs and wave crests, the mass 
transfer affects the mean flow through a surface boundary condition (9). In the 
limit of infinitesimal surface displacements, the wave mass transport may be 
regarded formally as it surface current analogous to the electric surface current 
of an infinitely conducting medium. Conceptually, the Lagrangian description 
of the mass transport as a continuous particle drift extending about 4 wavelength 
below the surface appears at first sight somewhat simpler. However, the momen- 
tum transfer is less easy to interpret in the Lagrangian reference frame. We have 
chosen a Eulerian approach here primarily to  retain the accustomed interpreta- 
tion of the momentum transfer in terms of mean Reynolds stresses and pressures 
acting on fixed surfaces. 

t Thus equation (8) is not obtained by averaging (3), but by definition of the boundary 
condition for pm. The difference between (8) and the average of (3) then yields a boundary 
condition for p w .  
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Interactions between short gravity waves und larger-scale $ow 193 

There is also a formal reason. We wish to distinguish between the mean flow 
and the wave field solely by averaging. In  an entirely Lagrangian picture the 
wave mass transport would then appear as part of the mean flow, rather than a 
wave phenomenon. The wave-induced term is normally identified by referring 
also to Eulerian means: the Stokes drift is defined as the difference between the 
mean Lagrangian and the mean Eulerian current. Thus in both Lagrangian and 
Eulerian descriptions of the wave mass transport, the reference mean flow is 
defined in the Eulerian sense. For this reason it appears simpler to work entirely 
in the Eulerian frame, where the wave and mean-flow transports automatically 
separate into surface and interior contributions. 

Mass balance Momentum balance 

FIGURE 1. Mass and momentum transfer between waves and mean motion. The wave 
momentum (Stokes mass transport) is concentrated in the surface layer between z3 = 
and x3 = c+C. For better representation, the mean surface has been drawn below its 
true position through the centre of the waves. 

We note that although we have referred to the field u',[' throughout as the 
'wave ' field, we have up to this point made no assumption regarding the dynamics 
of the fluctuating field. We have also nowhere invoked expansions of the boundary 
conditions with respect to 6' about the mean surface x3 = c (except in the rather 
weak assumption of unique continuation of the fields for 5' < 0 up to the mean 
surface x3 = c). Thus (6)-(12) apply equally well to interactions with turbulence, 
or with a wave field which is modified by strongly non-linear dissipative processes 
such as white-capping. 

The equations are not closed. The dependence of the interaction stress tensor 
and mass transfer on the mean flow is governed by the dynamics of the field 
u', [ I ,  which must be described by further equations. It is well known from 
theories of weak and strong interactions that a rigorously closed set of equations 
can be derived for the complete system only if the fluctuating field is an approxi- 
mately linear wave field. However, we shall not be concerned in the following with 
the evaluation of the complete coupled system, but only with the back interaction 
of a given fluctuating field on the mean flow. In  view of later applications to 
dissipative white-capping waves, it is important to recognize that (6)-( 12) are 
not limited in this case to quasi-linear waves. 

If the fluctuating field is, in fact, approximately linear, the expressions (1 l), 
(12) for the interaction stress and the mass transfer can be reduced to simple 

13 F L M  5 0  
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194 K .  Husselmann 

quadratic forms. Expanding the surface boundary condition for the pressure - 
with respect to c, the wave-induced mean pressure is readily seen to bepw = - d2 
(Longuet-Higgins & Stewart 1964), in accordance with the well-known expression 
for turbulent boundary-layers without a free surface. Hence 

- 
Tat = u'za..-uT 3 23 i j. P l a )  

Similarly, the expansion of (12) with respect to gl yields 

For an undamped deep-water gravity wave 5' - cos (k.x-wt) the relations 
become 

Thus in principal co-ordinates the interaction stress tensor reduces to a single 
horizontal component w 2 e 2 k X s p  parallel to the wave crests. If the wave is 
dissipative, additional components appear, including in particular the vertical 
shear stress terms T g .  A rotation of the system introduces further vertical 
components (Hasselmann 1970) but these are not relevant for the applications 
considered here. 

3. The vertically integrated momentum balance 
Previous investigations of wave-mean flow interactions have often been based 

on the concept of the radiation stress (Longuet-Higgins & Stewart 1960, 1964). 
The distinction between the interaction stress and the radiation stress is best 
seen by considering the vertically integrated momentum balance of (a)  the 
mean flow, ( 6 )  the complete flow and (c) the surface layer between x3 = and 
x3 = [+ c' containing the 'wave' mass transport. The three equations are not 
independent, since the momentum M2 of the surface layer is given by the 
difference between the mean momentum i@, of the complete field and the 
momentum H r  of the mean flow, 

The rate of change of the mean-flow momentum follows by integrating the 
horizontal mean-flow equations of motion (6) from -h  to c. After some re- 
arranging using the boundary conditions, the equation may be expressed in the 
form (which can also be obtained directly by considering the mean-flow momen- 
tum balance of the wedge in figure 1)  
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Interactions between short gravity waves and larger-scale $ow 195 

where 

and 

r 3  = J ' Tgidx,, 
-h 

The first parentheses on the right-hand side contain the usual momentum flux 
and pressure terms of the mean flow itself. The remaining terms arise from 
interactions with the fluctuating field; they consist of surface, bottom, and 
vertically integrated interaction stresses and an additional momentum transfer 
term due to the mass influx from the surface layer. (The interaction stress at 
the bottom reduces to the wave-pressure term (ah/axu)p!!h, since the Reynolds 
stress contribution for an ideal fluid vanishes on account of the zero momen- 
tum convection through the bottom.) 

To obtain the rate of change of the mean total momentum, we integrate first 
the horizontal equations of motion of the complete flow and then take averages. 
Making use of the boundary conditions, the result readily reduces to the form 
(which can again be inferred directly from figure 1) 

aBa - = at 

where TE is the mean momentum transfer from the atmosphere associated with 
the fluctuating component of the atmospheric surface stress (including both 
surface pressure and shear stresses), and the radiation stress 

(16) cy = ray + r:; 
is defined as the sum of the interaction stress and the mean stress 

(pSa/q + ZcaUj) ax3 (17) 

acting on the surface layer. 

field or surface layer 
Subtracting (14) from (15) we obtain the momentum balance of the 'wave' 

S l  

+ - ri",.t. (18) at axj 
-=- 

For an approximately linear wave field, the surface-layer stress simplifies to 

(17a) p 1  - 
a8 - - &Z2 Sap. 

In  the case of a deep-water wave 6' N cos (k . x - wt), the stresses? r3t and 

-f Stresses denoted by T have the dimension of a surface tension (force per line segment) 
rather than a stress in the usual sense of force per area. All stresses are defined in accordance 
with the standard sign convection (as used for Reynolds stresses, etc.). Longuet-Higgins & 
Stewart (1964) define the radiation stress With an opposite sign. 

13-2 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

71
00

25
20

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

ax
-P

la
nc

k-
In

st
itu

t f
ue

r 
M

et
eo

ro
lo

gi
e,

 o
n 

06
 M

ay
 2

02
1 

at
 1

0:
51

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112071002520
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


196 K .  Hasselmann 

The stresses are equal in magnitude but perpendicular, the interaction stress 
acting parallel to the wave crests, whereas the radiation stress acts parallel to 
the direction of wave propagation. 

The relations between the various stresses occurring in the three momentum 
balance equations (14), (15) and (18) are shown in figure 1. 

We note that the radiation stress enters only in the overall momentum 
balance of the waves plus mean flow. This has caused some difficulties in applying 
radiation stress arguments to interactions between wave fields and slowly varying 
mean flows. A divergence of the radiation stress implies a rate of change of the 
overall momentum of the flow, but says nothing about the partition of this 
momentum change between the mean flow and the wave field; this can be 
inferred only from the interaction stress - or indirectly from additional con- 
sideration of the dynamics of the small-scale motions. 

For approximately linear monochromatic deep-water waves propagating in 
the x, direction, the momentum balance equation (18) for the wave field may 
be written 

where v is the group velocity of the waves. Thus, for given atmospheric input TT, 
the momentum transfer pFt, which enters as an important driving term in the 
mean-flow momentum equation (14), can be determined from the spatial and 
time derivatives of the wave momentum in ( 1 8 ~ ) .  The latter quantities can be 
determined directly from wave spectral measurements. We shaII make use of 
this relation in $94 and 5. 

The vertically integrated momentum-balance equations are particularly useful 
when the mean flow can be treated in the linear shallow-water approximation. 
In  this case, the equations can be solved simultaneously with the verticaIly 
integrated continuity equation 

and the hydrostatic pressure relation pm = gc. Equation (21) follows from (9) 
by replacing (;i23)r,=o by 

- a ( j E, za dx3) 18%. 

where x3 = 0 is the undisturbed free surface. 
If the characteristic propagation velocities of the transfer terms are small 

compared with the shallow-water phase velocity (gh)*, the mean-flow response 
is quasi-static, and the term ac/:jat in (21) may be neglected. If the flow is further- 
more independent of x2, continuity yields MY + MY = gl = const. : the mass flow 
must be the same at each section. But this implies constant total vertically 
integrated momentum. Hence the radiation and atmospheric stresses occurring 
in the overall momentum balance (15) must be opposed by an equally large 
hydrostatic pressure gradient. (For small bottom slope, the wave-pressure term 
(ah/axa)pw_, acting a t  the bottom may be neglected, since pw = -uAz x 0 at 
x3 = - h on account of the bottom boundary condition (5 ) .  Similarly, for small 

- 
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Interactions between short gravity waves and larger-scale $ow 197 

mean currents and surface slopes the terms ar,,/ax, and pa</laza may be 
neglected.) The corresponding surface slope is given by 

ag wad 
ax, ax, 

gh- = -+TT,". 

In  this particular case the solution (due to Longuet-Higgins & Stewart 1964) 
is seen to depend only on the radiation stress acting on the complete system, 
and not on the interaction stress and mass transfer. This is a specific consequence 
of the quasi-static approximation. In  general, if the inertial forces are non- 
negligible, the mean flow can be determined only by simultaneous consideration 
of both the mass and the momentum transfer. 

In  the following, we shall consider a mean flow consisting of long gravity 
waves, for which the inertial and potential forces are comparable. After de- 
termining the energy transfer from the short waves to the mean flow in terms of 
the interaction stress and the mass transfer, the final expression will again be 
found to depend only on the radiation stress, and a simple interpretation can 
again be given in terms of the momentum balance of the overall flow. In  this case, 
the argument is based on the particular circumstance that the mean flow is a 
linear free-wave solution. 

4. The energy transfer between short and long gravity waves 
Consider now a 'mean' flow consisting of a statistical ensemble of long gravity 

waves. Averages of a quantity q over the long-wave ensemble will be denoted 
by (a}; short-wave averages are denoted as before by q. The complete system 
is assumed to be statistically homogeneous, a(q)/ax, = 0. We assume further 
that the mean-flow equations can be linearized with respect to the long-wave 
amplitudes, and that the depth is infinite. 

We derive first from the mean-flow equations of motion and boundary con- 
ditions (6)-(10) the rate of change of the mean-flow kinetic energy 

and potential energy EPot = &g(<z) : 

Thus the rate of change of the total energy E = E,,, + Epot is given byF 

t Generally, it can be shown that the energy transferred to a quasi-stationary linear 
system by external forces correlated with the overall motion of the system is divided 
among the individual modes of the system in proportion to  their contribution to the 
relevant correlation products. In other words, equations of the form (22) apply t o  eaeh 
mode separately. This establishes that the energy change (22) does indeed refer to the 
long waves, and not to other mean motions such aa €ow-frequency currents. 

13-3 
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198 K. Hasselmann 

The first term represents the work done by the interaction stress at  the surface. 
Only part of this energy goes into the mean motion; the rest is transferred back 
into the short waves via the second ‘dissipation’ term. The third term represents 
the net potential energy gained by adding mass at  the rate -aM;/ax, at the 
variable potential level 5. 

If the short waves are approximately linear, the cross products on the right- 
hand side of (22) can be determined by expansion of the non-linear hydrodynamic 
wave equations. To lowest order, it is found that the short-wave energy is 
modulated in phase with the long-wave surface displacement. This implies that 
all three mean products in (22) vanish. However, out-of-phase terms leading to 
an energy transfer occur a t  higher order, in analogy with the higher-order transfer 
due to resonant interactions (cf. Phillips 1960; Hasselmann 1962).? 

An alternative, non-conservative transfer mechanism has been suggested by 
Phillips (1963) and Longuet-Higgins (1969a).  Longuet-Higgins & Stewart (1960) 
have shown that the convergence of the flow on the forward face of the long waves 
tends to contract and steepen short waves as they are carried up towards the 
long-wave crests. If the short waves are near saturation, they will therefore tend 
to break near the wave crests. The effect is enhanced by the downward accelera- 
tion at the wave crests, which increases the white-capping instability by reducing 
the local virtual gravity. The subsequent regeneration of the short waves by 
the wind then leads to a non-symmetrical distribution of the short-wave energy 
relative to the wave crests, with the maximum short-wave energy shifted to the 
forward face of the long waves. 

For our purposes the origin of the asymmetry leading to an energy transfer 
is irrelevant. We regard the short-wave field as given, assuming only that it 
satisfies the momentum-balance equation in the general form (18) (which contains 
no restriction with respect to the short-wave dynamics). 

The momentum balance of the short waves can be used now to relate the work 
done by the surface interaction stress to the potential energy transfer. Assuming 
that the momentum transfer TZ from the atmosphere is not modulated by the 
long waves, the mean product of (1 8) with (ZJ0 yields 

where the stress @Lnt in (18) has been replaced by (T~ t ) z8=o  on account of the 
linearity of the long-wave field. Adding the potential energy transfer, we obtain 

where the derivatives in the last term on the right-hand side have been inter- 
changed by invoking homogeneity and quasi-stationarity . But for a linear wave 

The present WKBJ limit is nevertheless basically different from the two-timing limit 
used in the random-field theory of resonant interactions. The conditions for the two forms 
of asymptotic expansion are mutually exclusive, so that the theories cannot be matched in a 
.common region of validity (cf. Hasselmann & Schieler 1970). 
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field, (a?i,/at), + g a[/ax, = 0 (equations (1) and (3)). Hence the last term vanishes, 
and the energy equation (22) reduces to 

The residual terms on the right-hand side of (24) are small compared with 
either the work done by the surface interaction stresses or the potential energy 
transfer. The orders of magnitude of the various terms can be estimated from the 
expressions ( 1 1 b) ,  ( 12 b )  and (1 7 a )  for a linear wave field, 

where the indices S and L refer to the short and long waves, respectively. Sub- 
stituting (22) and (24), it follows that the potential energy transfer and the work 
done by the surface interaction stress are both of order wslwL larger than the 
dissipation integral. However to first order both terms cancel, the residual being 
of the same order as the dissipation. 

The right-hand side of (24) can be further simplified. Since the interaction 
stress is confined to a thin surface layer of order k;l within which the long-wave 
orbital velocity is essentially constant, the factor aZ;/axj in the second term can 
be taken outside the integral. The contribution from the vertical shear stress 
components Ts t  is then seen to be of order kL/ks = ( O J ~ / W ~ ) ~  smaller than 
(Ti,"(U,),) = O(g(gaNy/ax,)). Since the first term on the right-hand side of (24) 
is only of order wL/ws smaller than g([aMZ/ax,), the vertical shear stress terms 
can be neglected. The vertical normal stress Tiift is presumably also small com- 
pared with the horizontal terms Tzt ,  since for a linear (but dissipative) wave 
field it vanishesidentically (equation ( 11 b ) )  . The remaining horizontal components 
then combine with the surface-layer stress in the first term to yield the radiation 
stress (equation (16)), so that finally 

Equation (25) may be compared with Longuet-Higgins' ( 1 9 6 9 4  result. By 
regarding only the momentum transferred from the short waves to the long 
waves, Longuet-Higgins essentially considered the work done by the surface 
interaction stress, (T~$(Za)o). If short-wave momentum is lost at  the wave crests, 
the term is positive if short and long waves propagate in the same direction, and 
negative if the propagation directions are opposite. But the term is almost 
exactly balanced by the potential energy transfer (figure 2); the residual transfer 
(25) leads always to attenuation of the long waves, independent of the relative 
propagation directions of short and long waves. For example, in the simplest 
case of a quasi-linear monochromatic wave travelling parallel to the x1 direction, 
the radiation stress (20) reduces to the single component rf"ld = - igp, which is 
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independent of propagation direction. If the short-wave energy is greater on 
the forward face of the long waves, a7;td/axl is then of opposite sign to (ill),, on 
the wave crests, and the mean product ((a7;;d/ax,) (Ea)J  is negative. 

The occurrence of the radiation stress in the final expression (25) is at  first 
sight surprising, since the radiation stress enters only in the momentum balance 
of the overall flow and not the mean motion. However, a simple physical ex- 
planation is suggested by considering the response of the overall flow to a 
variable radiation stress. Since the radiation stress is concentrated near the 
surface, it generates an oscillatory boundary layer of variable displacement 
thickness. By definition of the ‘mean overall flow’ the boundary layer includes 

FIGURE 2. Mass transfer between long gravity waves and short modulated waves. Both 
waves are propagating from left to right. High-potential mass leaving the long waves at  
the crests is returned a t  lower potential in the troughs, resulting in a net extraction of 
potential energy from the long waves. 

both the short-wave momentum in the ‘infinitesimal’ surface layer between 
x3 = [ and x3 = [+c’ and the mean-flow contribution from the finite surface 
layer below this (of about $ wavelength thickness) which is driven by the inter- 
action stress. The variations in the displacement thickness lead t o  hydrostatic 
pressure variations beneath the boundary layer, which can then transfer energy 
to the mean motion by doing work against the mean vertical (long-wave) velocity. 

The problem of a thin stress-driven boundary layer superposed on a free wave 
has been investigated in a related context by Longuet-Higgins (1969b).t  It was 
shown that the work done by the pressure forces against the vertical orbital 
velocity was equal to the work done by the shear stress against the horizontal 
orbital velocity - which is identical with the expression on the right-hand side of 
(25). The argument is based on the total boundary-layer variation and is therefore 
independent of the mass and momentum transfer between short and long waves. 
However, the equality of the work done by the shear stress and by the hydro- 
static pressure applies only to a free-wave flow, so that the occurrence of the 
radiation stress in the energy balance of the mean flow is in a sense coincidental: 
although lengthier, the derivation in terms of the interaction stresses and mass 
transfer driving the mean motion yields perhaps a more direct physical descrip- 
tion of the transfer process. 

t See also Longuet-Higgins & Stewart (1964, $ 5 ) .  

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

71
00

25
20

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

ax
-P

la
nc

k-
In

st
itu

t f
ue

r 
M

et
eo

ro
lo

gi
e,

 o
n 

06
 M

ay
 2

02
1 

at
 1

0:
51

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112071002520
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Interactions between short gravity waves and larger-scale $ow 201 

5. Estimate of attenuation factors from radar sea clutter 
In  the following, we assume that the radiation stress may be approximated by 

the relation (20) for a quasi-linear wave field. Applied to a spectrum F(k) of 
short waves, where 

= [F(k)dk, 
J 

the expression becomes 

T$ = - &g/F(k) dk. 

Thus (25) may be written 

The quantity (F(k) aTia/axj) can be determined experimentally. 
By resolving the long waves also into spectral components, the product can 

be expressed in terms of the quadrature bispectrum of the complete wave field. 
However attempts to measure the quadrature component of the bispectrum in 
the usual frequency range ( < 1 c/s) of ocean wave records appear to have been 
largely unsuccessful. Bispectral measurements by Hasselmann, Munk &, Mac- 
Donald (1  963) agreed well with lowest-order non-linear hydrodynamic theory, 
which predicts a finite co-component and zero quadrature component. Barnett 
and Cartwright (private communications) both found no significant quadrature 
components in bispectra of wave-staff and buoy records. 

However, at shorter wavelengths, evidence of a correlation between P(k) and 
aZa/axj can be deduced from radar sea clutter measurements. 

The general features of radar return from the sea surface can be well explained 
by lowest-order Bragg scattering theory. According to this model, an incident 
radar wave with wave-number Ki = (ki, ki) is scattered by a gravity wave with 
wave-number kg into two waves with wave-numbers Ks = (ki & kQ, - A $ ) .  Thus 
there are two gravity waves kg = 5 2ki which scatter into the back-scattered 
component Ks = - Ki, and the back-scattering cross-section per unit area of the 
sea surface is accordingly given by 

a(Ki) = T(8)[F(2ki) +S( - 2ki)], (27) 

where the transfer function T(8) is a function of polarization and the depression 
angle 8 relative to the horizontal. For electromagnetic waves, the ocean surface 
appears as essentially frozen. Thus the same transfer function occurs in both sum 
and difference interactions, independent of the sign of propagation of the scat- 
tering waves. The observed dependence of T on polarization and 8 has been 
shown by Wright (1968) to be in good agreement with theoretical calculations 
by Rice (1951) and Peake (1959). 

However the lowest-order Bragg model has several short-comings. The observa- 
tions indicate a significant cross-polarized return, which is not predicted by 
theory. The Doppler spectra are found to be appreciably broadened about the 
theoretical Bragg lines predicted at the Doppler frequencies w9 = -c (2gk)). And 
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there is marked upwind-downwind asymmetry of the cross-section, in con- 
tradiction with the symmetrical form (27). 

It has been suggested by Wright (1968) (see also Valenzuela 1968; Valenzuela, & 
Laing 1970; Hasselmann & Schieler 1970) that these features can be explained 
by a 'composite-wave' model, in which the scattering gravity waves are super- 
imposed on longer carrier waves. The long waves affect the local cross-sections 
through variation of the angles of incidence and polarization relative to the local 
scattering plane (electromagnetic interactions) and through modulation of the 
scattering wave spectrum (hydrodynamic interactions). 

The cross-polarized return and the Doppler broadening can be explained 
qualitatively by the electromagnetic interactions. However, electromagnetic 
interactions do not affect the symmetry of the cross-section with respect to 
positive and negative wave propagation. Thus the observed upwind-downwind 
asymmetry must be of hydrodynamic origin. It will be shown that the asymmetry 
factor is closely related to the mean product occurring in equation (26). 

If p(nl,  n,) represents the probability (horizontal density) distribution of long- 
wave slopes nu = ac/axu, the scattering cross-section in the composite-wave 
model is given by 

v = JT(8)  [ l7(2@)+l7(  -2ki)]p(n,,n,)dnldn,, 

where the tilde denotes quantities defined with respect to the local long-wave 
facet. The function T + is affected both by the change of variables 0 -+ 8, 
k* -f ii" and by a rotation of the polarization axes. The change of the spectrum 
F -+ is due to hydrodynamic interactions. We assume that the hydrodynamical 
modulation AF is small, 

P(2@ = F(2&) + AF(2k) ,  

where AF < P and F denotes the unmodulated spectrum function. 

powers of nu. Since (nu) = a(&axu = 0,  the leading terms are given by 
For small-wave slopes, the functions and 2 in (28) can be expanded in 

a=8,+- ( - '" ) (mang)+ (2) {(AF(2ki)nu)+(AF( -2ki)nu))+. . . ,  
2 an,an, 0 

(29) 
where the subscript zero refers to values at nu = 0 and 

B = P(8)  [F(2@) + F( - 2ki)] 

represents the electrodynamic part of the modulated cross-section. 
The first term on the right-hand side of (29) is the unmodulated cross-section 

as given by (27 ) .  The second term describes the lowest-order electromagnetic 
correction; since 8 is an even function of nu, it is symmetrical with respect to 
the incident angle. The third term arises from the hydrodynamical modulation, 
and is asymmetrical. The mean product (AFn,) in this term is non-zero if the 
modulation of the spectrum is out of phase with the long-wave surface dis- 
placement - in accordance with the phase condition for an energy transfer 
between long and short waves. 
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If, as assumed, the energy density of the short scattering waves is greater on 
the forward than on the rearward face of the long waves, the largest contribution 
to the scattering cross-section arises from rays incident on the forward face. For 
these rays, the effective depression angle is greater in the upwind than in the 
downwind direction. Since the transfer function increases with depression angle 
(for small depression angles), equation (29) predicts upwind-downwind cross- 
section ratios greater than one. This is in accordance with observations (cf. 
Marks 1965; Daley 1966a, b) .  At larger depression angles aT/at9 decreases and 
becomes negative for vertical polarization (Wright 1968, figure 1). The trend to 
smaller upwind-downwind ratios with increasing 8 is also confirmed by observa- 
tions (within the considerable experimental scatter, cf. Daley (1966b, figure 6 and 
7)). 

With the aid of (29), the correlation between A F  and the wave slope n1 parallel 
to the wind can be expressed in terms of the upwind-downwind asymmetry 

where the wind is assumed to be blowing in the x1 direction. (The term (AFn2) 
vanishes for reasons of symmetry.) 

A reasonable mean value of Daley's measurements at the four radar wave- 
lengths 3.37, 6.75, 24.5 and 70 cm appears to be .;/ad M 2. Since the ratio tends 
to decrease rather rapidly betweed 24.5 and 70 cm, we set aulad = 1 for wave- 
lengths longer than 70 cm. 

Within the approximations of the present estimate, the wave field may be 
treated for simplicity as unidirectional. The term 8iia/axp in (26) can then be 
replaced by aiil/axl M iil/?3, where i;i is the mean frequency of the long waves. 

At scattering wavelengths, the (one-dimensional) wave spectrum can be repre- 
sented by Phillips' (1966, p. lO9ff.) saturation form P(k)  = 4ak-3, where 
a M Substituting in (26), we obtain as attenuation rate of the long waves 
per unit wave period 

where A, is the cut-off gravity wavelength, 

A, M 7012 = 35cm. 

At 8 = 15', T/(aT/a#) is of the order 0.6 for vertical polarization and 0.2 for 
horizontal polarization (Wright 1968). Taking a mean value of 0-4 and a mean- 
square amplitude E/g = 1 m2/sec, equation (31) yields @ M - This corre- 
sponds to a decay time of about half a day for a 10 sec wave. 

The maximal growth rates in a wind-generated sea are at  least an order of 
magnitude larger, Pgrowth M (Snyder & Cox 1966; Barnett & Wilkerson 
1967). A decay rate of could be significant for swell propagation, but the 
measured upwind-downwind ratios probably apply only to wind waves, since 
the slopes of ocean swell are normally too small to contribute appreciably to the 
total 'long-wave' slope Tia. This is supported by the swell-attenuation measure- 

- 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

71
00

25
20

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

ax
-P

la
nc

k-
In

st
itu

t f
ue

r 
M

et
eo

ro
lo

gi
e,

 o
n 

06
 M

ay
 2

02
1 

at
 1

0:
51

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112071002520
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


204 K.  Hasselmann 

ments of Snodgrass et al. (1966), in which well dispersed swell was found to 
propagate over distances of many thousands of kilometres in the Pacific without 
measurable attenuation ( l/38well\ < 10-5). 

We conclude tentatively that the energy loss of a wind sea due to interactions 
with waves shorter than 35 cm is of marginal significance. However, the expres- 
sion (31) depends on parameters such as a: which, for short waves, are only poorly 
known. The cut-off wavelength A, is a particularly critical parameter. A relatively 
small upwind-downwind asymmetry at radar wavelengths longer than 70 cm 
could increase the estimate of p considerably. Radar measurements in this range, 
if possible coupled with higher resolution wave measurements, would be of great 
interest in deciding whether radar return from the sea is a potentially useful 
tool for studying not only the ‘state of the sea ’, but also wave dynamics. 

This work was supported in part by the Office of Naval Research under contract 
NO00 14-69-0057. 
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