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A B S T R A C T   

Background: The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a 
geometrical invariant that has high functional relevance because of its importance in determining neuronal 
conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g- 
ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the 
nervous system: how it functions, and how it is impacted by disease. 
New method: This is the second review on the topic of g-ratio mapping using MRI. 
Results: This review summarizes the most recent developments in the field, while also providing methodological 
background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these 
approaches. 
Comparison with existing methods: Using simulations based on recently published data, this review reveals caveats 
to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need 
to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin 
volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other 
challenges discussed in this review further evidence the need for gold standard measurements of human brain 
tissue from ex vivo histology. 
Conclusions: We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio 
mapping is ongoing, with the full potential of many novel techniques yet to be investigated.   

1. Introduction 

The g-ratio is a geometrical invariant of axons quantifying their de-
gree of myelination relative to their cross-sectional size. It is computed 
as the ratio of the inner axonal diameter, or radius, relative to that of the 
axon plus the myelin sheath that encases it (Fig. 1a). Coupled with the 
axonal diameter, the g-ratio is a key determinate of neuronal conduction 
velocity (Rushton, 1951; Chomiak and Hu, 2009; Schmidt and Knösche, 
2019). Signal transmission along different axonal fibres can be regulated 
and synchronised by varying the degree of myelination, and therefore 
the g-ratio, to optimize cognitive function, sensory integration and 
motor skills (Fields, 2015). As the central nervous system appears to 
communicate at physical limits to constrain metabolic demands (Salami 
et al., 2003; Hartline and Colman, 2007; Coggan et al., 2015), small 
deviations from the optimal g-ratio value (0.6− 0.8, (Rushton, 1951; 

Chomiak and Hu, 2009)) may have strong functional impact. 
Until recently, information about axonal features, such as their g- 

ratio, have only been accessible by invasive methods such as ex vivo 
electron microscopy (Hildebrand and Hahn, 1978), which restricted 
analyses to small numbers of axons and a limited number of small brain 
regions or pathways. The g-ratio measured by such techniques is 
denoted the microscopic g-ratio because of the extremely fine spatial 
resolution that can be achieved. Clearly, using MRI to investigate the 
g-ratio in vivo would be highly desirable as it could provide whole brain 
information on a voxel-wise basis. Stikov et al. proposed the method-
ology by which such a non-invasive MR-based “aggregate” g-ratio could 
be measured (Stikov et al., 2011, 2015), which we denote in this review 
interchangeably the “MR g-ratio” or “g-ratio mapping”. The MR g-ratio 
framework measures the ensemble average across a voxel of an under-
lying, unresolved, microstructural distribution of g-ratios. Making a 
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strong assumption that the g-ratio is constant within a voxel, Stikov et al. 
demonstrated, via a geometrical plausibility argument (Stikov et al., 
2011, 2015), that this aggregate MR g-ratio can be computed on a 
voxel-wise basis from the ratio of the myelin and axonal volume frac-
tions (MVF and AVF respectively). Establishing this relation was 
important because both the MVF and AVF can be estimated by 
combining biophysical models (Alexander et al., 2019; Novikov et al., 
2019) and quantitative MRI within a framework known as in vivo his-
tology using MRI (Weiskopf et al., 2015). As compared to standard 
quantitative MRI techniques, such as diffusion tensor imaging (DTI), the 
MR g-ratio and its constituents, available via in vivo histology, are more 
specific to the tissue microstructure and thus make promising clinical 
biomarkers. For example, in Alzheimer’s disease (Teipel et al., 2015), 
the g-ratio is expected to increase if the underlying disease mechanism is 
solely driven by demeylination processes that only affect the myelin 
sheath (blue disk in Fig. 1b, top relative to the “healthy” case) but leave 
the axonal body intact (yellow circle, Fig. 1b, top). Whereas an axonal 
degeneration process can potentially leave the g-ratio unchanged, but 
affect both its constituents, i.e. the myelin sheath and axonal body (as 
illustrated by a smaller volume fraction of blue and yellow compart-
ments in Fig. 1b, bottom). To differentiate such processes and under-
stand their functional implications, clinical research and diagnostics 
would benefit greatly from the capacity to measure the g-ratio of fibre 
pathways in vivo. 

The challenge for, and validity of, in vivo g-ratio mapping centres on 
how precisely and accurately the AVF and MVF can be measured with 
the chosen MRI techniques. Three years ago, Campbell et al. thoroughly 
reviewed the methods of g-ratio mapping and highlighted potential 
pitfalls (Campbell et al., 2018a). A key outcome of their review was the 
introduction of the qualifying term “weighted” into the name MR 
g-ratio, i.e. aggregated g-ratio weighted mapping. They proposed this 
qualifier to acknowledge the impact that any miscalibration between the 
MR-based myelin proxy and the true MVF would have. Typically, ex vivo 

electron microscopy (EM) measures of the MVF act as the gold standard 
for methodological assessment and calibration. 

Despite the challenges associated with accurate measurement and 
calibration of the MVF and AVF, many studies have exploited the po-
tential of in vivo g-ratio weighted imaging for a variety of different ap-
plications (see Table 1 for full details). These have ranged from g-ratio 
mapping in infants (Melbourne et al., 2016) and children (Dean et al., 
2016) to healthy adults (Mohammadi et al., 2015; Mancini et al., 2018; 
Berman et al., 2019; Drakesmith et al., 2019a), during healthy aging 
(Cercignani et al., 2017; Berman et al., 2018) and as a result of patho-
logical change (Hagiwara et al., 2017; Hori et al., 2018; Kamagata et al., 
2019; Yu et al., 2019). 

The review by Campbell et al. (Campbell et al., 2018a), increased 
awareness around the importance of calibrating the MVF proxy. Since 
then, a series of validation studies have been conducted by the Does lab 
(Kelm et al., 2016; West et al., 2018a, 2018b) based on extensive his-
tological data and ex vivo MRI. These studies probed a broad dynamic 
range of MVF and g-ratio enabling insights into the validity and sensi-
tivity of MR-based g-ratio mapping and its relationship with various 
MVF proxies. A number of methodological studies have also been pub-
lished on g-ratio weighted mapping in recent years, e.g. to assess its 
repeatability (Duval et al., 2018; Ellerbrock and Mohammadi, 2018a), 
and the reproducibility when the particular proxies used for the AVF and 
MVF are varied (Ellerbrock and Mohammadi, 2018a). 

In this review, we explore these methodological advances and seek to 
unify the nomenclature describing the various myelin and diffusion 
models. To do this, we provide the background to MRI methodologies 
that have been used to quantify the MVF and AVF (or fibre volume 
fraction, FVF) in vivo, focusing specifically on the techniques that have 
been used to date in the context of g-ratio mapping. We use the afore-
mentioned validation studies in simulation-based experiments to further 
understand the impact of currently used calibration methods on the 
accuracy of the estimated MR g-ratio using three common myelin 

Fig. 1. Illustration of how the MR g-ratio can facilitate non-invasive imaging of specific microscopic processes aka in vivo histology using MRI. (a) Schematic of a 
myelinated axon. (b) Coloured regions in a whole-brain DTI image highlighting where significant reduction of factional anisotropy (FA, adapted from (Teipel et al., 
2015)) had been identified in patients with Alzheimer’s disease relative to healthy controls. While DTI is sensitive to neurodegenerative microstructural changes, it is 
not specific. This is illustrated by two well-known disease mechanisms that can lead to the same observed reduction in FA: (top) demyelination and (bottom) axonal 
degeneration. Today, these disease mechanisms can only be disentangled post-mortem using ex vivo histology, e.g.: electron microscopy for demyelination (top) or 
confocal laser scanning microscopy of axonal tracers for axonal degeneration (bottom). Note, these images were taken from human tissue for which there is no 
specific diagnosis of disease. The difference in tissue quality of the images are most probably caused by autolysis rather than pathology processes but were declared as 
“healthy” and “impaired” for illustration purposes only. The MR g-ratio (red box), together with its constituents: axonal volume fraction (AVF) in yellow and myelin 
volume fraction (MVF) in blue, can disentangle these two mechanisms noninvasively: while demyelination would only reduce MVF and thus increase the MR g-ratio, 
axonal degeneration would reduce both, MVF and AVF, and leave the MR g-ratio potentially unaffected. 
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markers: the bound pool fraction, the macromolecular tissue volume, 
and the myelin water fraction. We conclude with an outlook on 
emerging approaches and what we think will be required to make g-ratio 
mapping with MRI a viable clinical tool. 

2. Methodology 

Biological tissue is formed of multiple microenvironments, which we 
refer to as compartments or pools. From an MRI perspective, key com-
partments in an imaging voxel comprised of human brain tissue, are 
those formed of aqueous and non-aqueous protons (Fig. 2a). The 
aqueous protons (fW) appear in a variety of microenvironments 
including water trapped within the myelin sheaths of fibre pathways 

(fMW), or contained within the intra- (fAW) and extra-cellular spaces 
(fEW), and cerebrospinal fluid (fCSF). The non-aqueous protons are bound 
to macromolecules (fB), including lipids and proteins in the myelin (fBM) 
as well as in other macromolecules (fBNM), e.g. glial cells. We express 
these compartments as fractions of the imaging voxel under the 
simplifying assumption that, while the relative contribution will 
spatially vary, every voxel is fully described by its content of water and 
bound protons, i.e. fW + fB = 1. Of these tissue compartments, it is the 
axonal and myelin-associated compartments that are important in the 
context of in vivo g-ratio mapping (Section 2.1). With MRI we tailor our 
experiments to maximise our sensitivity to specific compartments with 
the aim of quantifying the MVF and AVF respectively. To date, g-ratio 
mapping studies have either used relaxometry (Fig. 2b) or magnetisation 

Table 1 
Summary of in vivo MR g-ratio mapping studies. Limitations associated with the biomarkers for MVF (LM) and AVF/FVF (LA) are summarized in Table A2 (in Appendix 
B).   

Biomarkers Subjects or 
Participants 

Remarks  

Axonal or Fibre volume 
fraction (AVF or FVF) 

Myelin volume fraction 
(MVF)  

LA.x and LM.x refer to limitations pertinent, respectively, to the AVF or MVF 
measure used. 

Stikov et al., 2011 DWI1 (DTI) SPGR (qMT) 5C First model relating g-ratio to MVF and AVF. It assumed constant g-ratio in a 
voxel, and parallel axons. Fractional anisotropy was related to FVF assuming 
parallel fibres. LA.1, LM.1, LM.9 

Stikov et al., 2015 DWI2.5 (NODDI) SPGR (qMT) 1C; 1 P; 1Mc; Revised g-ratio model. In this model, the g-ratio is still assumed to be constant 
in a voxel but the model was extended to nonparallel axons. LA.3,LA.4,LM.1, 
LM.9 

Mohammadi et al., 
2015 

DWI1 (TFD) MPM with multi-echo 
SPGR (MTsat) 

36C First group study on g-ratio mapping using the MPM and DTI protocol as 
biomarkers for MVF and FVF. LA.2, LM.1, LM.2, LM.9 

West et al., 2016 – – 6M Revised MR g-ratio model validated on volume fractions from electron 
microscopy, revealing that the MR g-ratio, constructed under the assumption 
of constant intra-voxel g-ratios, is in fact a fibre area-weighted average of the 
true distribution of microscopic g-ratios. 

Melbourne et al., 
2016 

DWI2 (NODDI) 2D GRASE (MET2) 37PI The g-ratio of preterm infants scanned at 27 and 58 weeks. LA.3, LA.4, LM.6, 
LM.7 

Dean et al., 2016 DWI2 (NODDI) SPGR & bSSFP 
(mcDESPOT) 

18I g-ratio index changes across childhood (3 months to 7.5 years of age).LA.3, 
LA.4, LM.3, LM.9 

Hagiwara et al., 2017 DWI2 (NODDI) SyMRI 20P g-ratio index in patients with multiple sclerosis. MVF was estimated via the 
SyMRI model (Warntjes et al., 2016). LA.3, LA.4, LM.10 

Duval et al., 2017 DWI20 (CHARMED) SPGR (MTV) 9C g-ratio index in human spinal cord. LA.6, LM.4, LM.1, LM.9 
Cercignani et al., 

2017 
DWI2.4 (NODDI) bSSFP (qMT) 38C qMT was calculated via in-house software. B1+ correction was not reported. 

Change of g-ratio as a function of age. LA.3,LA.4, LM.1, LM.9 
Ellerbrock and 

Mohammadi, 
2018a 

DWI1 (TFD), DWI2 
(NODDI) 

MPM with multi-echo 
SPGR (MTsat, MTV) 

12C, 10C Four different g-ratio index maps were compared in a scan-rescan experiment 
between two groups of subjects (12 and 10 subjects). LA.2, LA.3, LA.4, LM.1, 
LM.2, LM.9 

Berman et al., 2018 DWI1 (DTI) SPGR (MTV) 92C; M15* Change of g-ratio as a function of age. LA.1, LM.1, LM.4, LM.9 
Duval et al., 2018 As in (Stikov et al., 2011) SPGR (MTV) 8C Scan-rescan of g-ratio in spinal cord. LA.1, LM.1, LM.4, LM.9 
Hori et al., 2018 DWI1 (NODDI) MPM with multi-echo 

SPGR (MTsat) 
24P Clinical study: G-ratio maps of the spinal cord in Cervical Spondylotic 

Myelopathy. LA.3, LA.4, LM.2, LM.9 
Jung et al., 2018 DWI2 (NODDI) Multi-echo SPGR 

(MET2*) 
5C; 15M* Two calibration methods for estimating MVF from myelin-water fraction. 

LA.3, LA.4, LM.1, LM.6, LM.8 
Mancini et al., 2018 DWI2.4 (1), DWI2.9 (2) 

(NODDI) 
bSSFP (1), SPGR (2) 
(qMT) 

16C,15C Same as in Cercignani et al., 2017. Two datasets, dataset one acquired at 1.5 T 
(1) and dataset two (2) at 3 T, each on a different imaging site. G-ratio used to 
introduce axonal myelination in connectomics. B1+ correction was not 
reported for site (1). LA.3, LA.4, LM.1, LM.9 

West et al., 2018a DWI6 (NODDI, WMTI, 
mcSMT) 

3D MSE (MET2) 15M Electron microscopy and ex vivo MRI of mouse models with varying degrees of 
myelination using multi-shell diffusion MRI and a 3D spin echo sequence. 
LA.3, LA.4, LA.5, LM.1, LM.6, LM.8 

Kamagata et al., 2019 DWI2 (NODDI) MPM with multi-echo 
SPGR (MTsat) 

14C;14P The brain network topology was assessed using g-ratio as a marker for the 
connectivity strength, comparison between healthy controls and patients with 
multiple sclerosis. LA.3, LA.4, LM.1, LM.2, LM.9 

Yu et al., 2019 DWI17.8 (3CM) SPGR (MTV) 19C; 30P g-ratio and axon diameter mapping in patients with multiple sclerosis and 
healthy controls. LA.6, LM.4, LM.9 

Berman et al., 2019 DWI1 (DTI) SPGR (MTV) 37C Estimating conduction velocities in fibre pathways using g-ratio and 
tractography in 37 subjects (20 younger and 17 older humans). LM.1, LM.4, 
LM.9 

Drakesmith et al., 
2019a 

DWI6 (CHARMED) SPGR & SSFP 
(mcDESPOT) 

21C Estimating conduction velocities in the corpus callosum using g-ratio and axon 
diameters. LA.6, LM.3,LM.9 

Thapaliya et al., 2018 – Complex SPGR 10C This method uses only relaxometry data and has yet to be compared to other 
methods combining myelin and diffusion MRI. 

C = health human controls; I = infants; M = mice; Mc = macaque; P = human patients; PI = preterm infants; 3CM = ActiveAx-like model (Alexander et al., 2010); * The 
mice data from (West et al., 2018a) were used. 
The number that comes after DWI refers to the highest b-shell (in ms/μm2) that was used in the experiment. The study of Thapaliya et al. is in italics to highlight that it is 
the only study that does not rely on combining two different MRI contrasts. 
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transfer (Fig. 2c) techniques to quantify the myelin compartment (sec-
tion 2.2), while mostly diffusion imaging has been used to quantify the 
axonal compartment (Fig. 2d and Section 2.3). These different imaging 
techniques have each evolved specific nomenclature over the course of 
their development. In this review, we aim, wherever possible, to unify 
these disparate notations using the fractional contributions outlined 
above and illustrated in Fig. 2. 

2.1. The aggregate g-ratio model 

Assuming a circular cross-section of axons, the microscopic g-ratio of 
an individual axon is defined as g = RI

RO, where RI and RO are the inner 
and outer radii of the fibre respectively (see Fig. 1a). All further con-
siderations are targeting the white matter (WM), which is considered to 
be composed of three discrete, non-overlapping compartments: axonal, 
myelin, and extracellular space. In this case, any sample volume of WM 
can be described by the axonal (AVF), myelin (MVF), and extracellular 
(EVF) volume fractions of each compartment, which sum to one, i.e.: 
AVF+ MVF+ EVF = 1. Using this WM model, Stikov and colleagues 
(Stikov et al., 2011, 2015) suggested that the aggregated g-ratio in an 
MRI volume (Fig. 3a) can also be defined in terms of volume fractions as: 

gMRI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
MVF

MVF + AVF

√

(1) 

To derive the relationship in Eq. (1) (see also (Stikov et al., 2011, 
2015)), the g-ratio in an MRI voxel is assumed to be constant (Fig. 3b), 
whereas there is no restriction on the orientation of the axons in the 
voxel (Fig. 3c). Shortly after the g-ratio model was introduced, (West 
et al., 2016) suggested that gMRI, which assumes constant intra-voxel 
g-ratio, is in fact capturing the fibre-area-weighted mean (Fig. 3d) of 
all the microscopic g-ratios within the voxel (Fig. 3e). If the assumptions 
of Eq. (1) hold, this model can also be used with other imaging modal-
ities (e.g., electron microscopy, where the MVF and AVF have been 

measured after segmentation of the image (West et al., 2016). This 
efficient process allows the microscopic information obtained by these 
other modalities to be summarised over a spatial scale comparable to an 
MRI voxel, and therefore to be compared directly with the MR-based 
g-ratio in validation studies. The aggregate g-ratio model has been 
developed specifically for white matter (Stikov et al., 2011, 2015; 
Campbell et al., 2018a), where biomarkers of the MVF and AVF can be 
measured with MRI. In the following sections we will first outline the 
methods that have been used to date to quantify MVF and AVF in the 
context of g-ratio mapping. 

2.2. Myelin volume fraction 

A variety of different MRI-based measures have been used to char-
acterise the myelin content within a voxel (Alonso-Ortiz et al., 2015; 
MacKay and Laule, 2016; Sled, 2018). Here we focus on myelin-water 
imaging (MWI) and magnetization transfer (MT) imaging. In both 
cases, each of which will be discussed in turn, the measure aims to be 
reflective of the fractional myelin content within the imaging volume, i. 
e. the MVF. This is done by quantifying either the myelin water fraction 
(MWF =

fMW
fW , Fig. 2b) or the bound pool fraction (BPF =

fB
fW+fB, Fig. 2c). In 

either case, an additional calibration step is clearly required to convert 
the measure to the MVF (fMW+fBM

fW+fB ) in order to accurately compute the 
g-ratio (West et al., 2018b). As noted by Campbell et al. (Campbell et al., 
2018a) this calibration step is crucial to the accuracy and precision of 
g-ratio mapping and will be discussed in detail in Section 3. 

2.2.1. MWF based on myelin water imaging 
Starting from Fig. 2, the simplest water imaging model quantifies the 

density of free water protons within an imaging voxel, i.e. the proton 
density (PD) (Tofts, 2004). Under an assumption of complete longitu-
dinal recovery within each repetition time, TR, the extrapolated MR 
signal at an echo time, TE, of 0 ms (S0) is proportional to the product of 

Fig. 2. Unified nomenclature for myelin and axonal volume fraction imaging. To facilitate modelling, brain tissue is decomposed into four distinct tissue com-
partments (plus CSF) that are of key relevance from an MRI perspective. These cover two broad categories: non-aqueous macromolecule-bound (fB) and aqueous (fW) 
protons, each of which may (fMW, fBM) or may not (fAW, fEW, fCSF, fBNM) be associated with myelin (a). Myelin water imaging specifically focuses on characterising the 
distinct water micro-environments, fMW, to quantify the myelin water fraction, MWF (b). Magnetisation transfer approaches focus instead on distinct 
macromolecular-bound and free water compartments, which can exchange magnetisation to quantify the bound pool fraction (BPF = fB/(fB+fW), c). The diffusion 
weighted signal is sensitive to intra-axonal and extra-axonal water compartments, and potentially to an isotropic diffusion compartment such as CSF. By decomposing 
the signal, the intra-axonal water fraction (AWF = fAW/(fAW+fEW+fCSF) can be isolated (d). 
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the fractional water content, fW, a calibration factor, C, that accounts for 
the concentration of protons in the voxel relative to that of free water, 
and the spatially-varying receive field sensitivity, R: S0 = R C fW such 
that fW + fB = 1 (Fig. 2c). The receive field modulation must be esti-
mated and removed (S’

0 = C fW, see Section 2.2.3) prior to final cali-
bration, which is done with respect to a reference, e.g. cerebrospinal 

fluid, CSF: PD =
S’

0
S’

0,CSF
= fW. This is equivalent to assuming that the 

volume fraction of macromolecules in CSF is zero (i.e. fB ≈ 0 and 
fW ≈ 1), i.e. S’

0,CSF = C. The remaining contents of the voxel have 
recently been referred to as the macromolecular tissue volume (MTV =

1 − PD = fB) (Mezer et al., 2013). Quantifying the fractional bound pool 
size in this manner assumes that the molar concentration of protons in 
macromolecules is the same as in free water, though it is estimated to be 
in the region of 15–20 % lower (West et al., 2018b). PD mapping typi-
cally makes no distinction between different water microenvironments 
(e.g. myelin water vs. non-myelin water) and instead estimates the sum 
of contributions from all compartments (Fig. 2b,c) under the assumption 
of a mono-exponential signal decay. Therefore, fB (or MTV) might vary 
with the minimum echo time, as well as the echo spacing, at which the 
signal was sampled (more details can be found in (Tofts, 2004)). 

By contrast, myelin water imaging (MWI, (Alonso-Ortiz et al., 2015)) 
extends this model to encompass multiple distinct water compartments, 
each with specific relaxation behaviour contingent on the local micro-
environment. MWI quantifies myelin-associated aqueous protons in a 
voxel as a fraction of the total MR visible water signal, i.e. MWF =

fMW
fW 

as 
defined in Fig. 2b. To date, three main approaches to myelin water 
imaging have been used for g-ratio mapping using MRI (Table 1). Each 
technique exploits a different relaxation property to stratify the different 

tissue water compartments (MacKay and Laule, 2016): (1) multi-echo 
spin echo imaging to quantify compartment-specific transverse relaxa-
tion times (Melbourne et al., 2016; West et al., 2018a), T2, (2) 
multi-echo gradient echo imaging to quantify compartment-specific 
effective transverse relaxation times (Jung et al., 2018), T2*, and (3) 
multi-compartment driven equilibrium single pulse observation of T1 
and T2 (mcDESPOT, (Deoni et al., 2008; Dean et al., 2016; Drakesmith 
et al., 2019a)) to distinguish fast and slow relaxing compartments based 
on their distinct T1 and T2 relaxation and exchange behaviour. 

In MWI, the MWF is most commonly estimated by characterising the 
proportion of the water signal originating from different microstructural 
environments based on their distinct transverse relaxation times (T2). To 
do this, it is assumed that the residency time, τ, of the protons in each 
water pool is sufficiently long that their distinct relaxation behaviour 
can be discerned. The case τ >> T2 indicates a slow exchange regime, 
which can equivalently be described by an exchange rate k = 1/τ << 1/ 
T2 (Zimmerman and Brittin, 1957). In this case, multi-exponential 
behaviour, with a component originating from each of the water pools 
having distinct amplitude and relaxation times, can be discerned. 
Indeed, T2 distributions from normal brain have been shown to contain 
multiple peaks that can be attributed to myelin water trapped between 
the lipid bilayers, intra/extracellular water and cerebral spinal fluid 
(Whittall et al., 1997; MacKay and Laule, 2016). 

To quantify distinct T2 times, data are typically acquired using a 
multi-echo spin echo readout with a range of echo times. Each voxel is 
assumed to contain contributions from an unspecified number of slow or 
non-exchanging environments, each with distinct T2 decay times. Fitting 
the data to this model is typically done with a regularised non-negative 
least squares approach (Whittall and MacKay, 1989; MacKay et al., 

Fig. 3. Schematic summary of the aggregated 
g-ratio model and its relation to the microscopic 
g-ratios. Myelinated axons are represented by 
cylindrical axonal (yellow) and annular myelin 
(blue) compartments (a–e), while other micro-
structural compartments are agglomerated in 
the background (grey). The aggregated g-ratio 
(gMRI) can be formulated as a function of the 
axonal and myelin volume fractions (AVF and 
MVF respectively, a). In this model, all axons 
within a voxel are assumed to have the same g- 
ratio. In the initial model suggested by Stikov 
et al. in 2011, the axons were also assumed to 
be orientated in parallel (b). This assumption 
was subsequently relaxed (Stikov et al., 2015), 
allowing arbitrary axonal orientation (c). West 
et al. (2016) showed that the aggregated g-ratio 
is related to the fibre area-weighted mean of the 
microscopic g-ratios (e) – in the figure the 
weights are represented by the degree of 
transparency to indicate the weighting towards 
larger fibres (d).   
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2006), in which the regularisation ensures smoothly varying signal 
amplitudes as a function of T2. After fitting, the myelin compartment is 
assigned to the short T2 peaks, requiring a threshold T2 time to be 
specified. The MWF is then estimated as the area under the peaks below 
this threshold T2 time relative to the area under all peaks, i.e. fMW

fW 

(MacKay et al., 2006). Clearly, the resulting pool size will vary 
depending on how this threshold, which will be field strength depen-
dent, is set. MWI ignores any differential weighting that might be pre-
sent, for example due to compartment-specific T1 times (Birkl et al., 
2020). For software available for fitting such models, see e.g. (Doucette 
et al., 2020; markdoes, 2020). 

In white matter, at least two different T2 relaxation times have been 
reported, which are associated with different tissue compartments 
(MacKay et al., 2006; Cercignani et al., 2018): (1) myelin water having a 
T2 of about 15–30 ms, and (2) water in the intra- and extra cellular 
spaces with a T2 of about 80–90 ms, at 3 T. It should also be noted that 
the T2 relaxation times of the intra- and extra cellular spaces likely differ 
(Dortch et al., 2013; Veraart et al., 2018; McKinnon and Jensen, 2019) 
and that there is exchange between these two compartments that also 
influences the T2 distribution in white matter (Sled et al., 2004). These 
effects will be revisited in Section 3.1.1 but have also been discussed in 
detail elsewhere (Does, 2018). A similar approach uses a multi-echo 
gradient echo acquisition in lieu of acquiring spin echoes. In this case 
compartment-specific T2* times are estimated instead of T2 (Lenz et al., 
2012; Sati et al., 2013). 

Rather than modelling distinct tissue compartments solely from the 
decay of the transverse magnetisation, the mcDESPOT approach in-
tegrates spoiled gradient echo (SPGR) and balanced steady-state free 
precision (bSSFP) images, acquired with different nominal flip angles, to 
fit a two compartment model of the steady state signal (Deoni et al., 
2008). The combination of these two acquisition types allows both T1 
(SPGR) and T2 (bSSFP) to be estimated (Deoni et al., 2013). In the 
mcDESPOT model distinct relaxation times are determined for a fast and 
a slow relaxing pool, as well as the exchange rate (k), or residency time 
(τ) of the two pools in the condition of thermal equilibrium (i.e. for two 
pools A and B, kABMA = kBAMB, where MX is the magnetisation in the 
pool). The fast relaxing pool is subsequently assumed to be 
myelin-associated water allowing the MWF to be quantified. The 
relaxation and exchange of these two pools is modelled using the 
Bloch-McConnell equations, which allows analytical solutions for the 
steady state signal to be derived (McConnell, 1958; Liu et al., 2016). 
Fitting the acquired data to these signal models requires seven distinct 
model parameters to be estimated: T1, T2 and fractional amplitude for 
each compartment as well as the exchange between them. 

2.2.2. BPF based on magnetisation transfer 
Like PD mapping, magnetisation transfer (MT) based approaches 

simplify the characterisation of white matter to two distinct pools 
(Fig. 2c). In this case one is comprised of an aqueous environment, fW, 
and the other a non-aqueous environment, fB, that, in the context of g- 
ratio mapping, is assumed to be associated with myelin. “Free” water, 
such as found within the intra- or extra-cellular compartments, has a 
sharp resonance linewidth, which is significantly broadened for the 
“bound” non-aqueous protons due to the restricted motion of this pool 
that leads to longer auto-correlation times and very short T2 in the range 
of tens of microseconds (Tofts, 2004). This means that the transverse 
magnetisation component is undetectable with MRI, unless ultra-short 
TE approaches are adopted (Sheth et al., 2016; Jang et al., 2020; 
Weiger et al., 2020), but also that the bound pool can be selectively 
saturated through the application of an off-resonance radiofrequency 
pulse prior to conventional excitation and signal detection. This 
pre-pulse can selectively saturate the longitudinal magnetisation of the 
bound pool while leaving the free pool largely unaffected. Subsequently, 
the process of magnetisation transfer (MT), primarily occurring through 
dipolar coupling between the bound and free pools, leads to an 

observable reduction in the measured signal intensity (Wolff and Bala-
ban, 1989; Sled and Pike, 2001; Sled, 2018; van Zijl et al., 2018). MT 
techniques capture the proportion of magnetisation in the bound pool 
relative to the free pool through the pool size ratio (PSR =

fB
fW 

(Sled and 
Pike, 2001) and Fig. 2c) or, analogously to the MWF in MWI, relative to 
the total magnetisation in both pools via the bound pool fraction 
(BPF =

fB
fW+fB 

(Sled, 2018) and Fig. 2c). In the first g-ratio mapping 
studies, the measured BPF was calibrated against histological data to 
convert it to an estimate of the MVF and combined with a 
diffusion-based measure of the FVF to estimate the g-ratio (Stikov et al., 
2011, 2015). 

The simplest means of probing the macromolecular bound pool via 
MT is to acquire an image using a pre-pulse with a single off-resonance 
frequency interleaved with a standard excitation pulse. The magnet-
isation transfer ratio (MTR) is defined as the normalised signal decrease 
relative to a reference image with only the standard excitation pulses 
(Henkelman et al., 2001). While this measure has been shown to be 
reflective of myelin content via histological analysis (Schmierer et al., 
2004) it also depends on hardware, most notably the transmit field ef-
ficiency, B1

+, and the T1 time, which reduces its comparability across 
individuals (Callaghan et al., 2015). Magnetisation transfer saturation 
(MTsat) incorporates corrections for both spatially varying T1 and B1

+

effects to quantify the percent saturation per TR of the steady state SPGR 
signal that would result from a dual excitation sequence. This measure 
depends on the BPF (Helms et al., 2008), which has been verified 
empirically (Campbell et al., 2018a). It is also more robust to B1

+ in-
homogeneity than MTR (Callaghan et al., 2015). Note that, unlike MWF 
or BPF, MTsat is not a volume fraction and therefore always requires 
calibration (see Section 3.2 and Fig. 7b). 

More comprehensive modelling of the two magnetisation pools is 
obtained through quantitative MT (qMT) imaging. This approach aims 
to separate the contributions of the free and bound pools by explicitly 
modelling the distinct T1 and T2 relaxation times of the pools and 
incorporating the exchange between them, under the assumption of 
thermal equilibrium. The absorption lineshape of the bound pool must 
also be modelled, and is often assumed to be super-Lorentzian, with a T2 
in the region of tens of microseconds (Morrison and Henkelman, 1995). 
With this approach, the BPF can be estimated from the fractional mag-
netisation contributions of the two pools. To estimate this extended set 
of parameters, multiple images, sampling the so called z-spectrum, are 
acquired, each using a pre-pulse with a different off-resonance fre-
quency (Sled and Pike, 2001; Cabana et al., 2015; Sled, 2018). 

An intriguing, but not yet validated, approach that has also been used 
in the context of g-ratio mapping is to use multi-compartment Bloch 
simulations to model the myelin volume fraction within the voxel 
directly (Warntjes et al., 2016; Hagiwara et al., 2017). 

2.2.3. Protocol considerations for MVF mapping 
Key protocol-specific limitations associated with the various ap-

proaches to quantifying the MVF that have been used to date in the 
context of g-ratio mapping are provided in Table A2 (in Appendix B). 

Protocols to estimate the proton density, and by consequence the 
macromolecular tissue volume (Warntjes et al., 2007; Volz et al., 2012; 
Baudrexel et al., 2016; Mezer et al., 2016; Wang et al., 2018; Callaghan 
et al., 2019; Lorio et al., 2019) require an estimate of the receive field 
sensitivity, R, which can be obtained by constrained model fitting or 
measurement (Mezer et al., 2016). The normalisation step to express PD 
as a fraction, or more commonly a percentage, of the concentration of 
protons in pure water requires a reference region to be defined, e.g. 
within the CSF-filled ventricles. However, the optimal choice of the 
normalisation region will depend on the acquisition scheme since suf-
ficient signal-to-noise rate (SNR) is required for robust estimation (CSF 
was used in (Berman et al., 2018) and white matter in (Ellerbrock and 
Mohammadi, 2018a)). The accuracy and precision of the PD estimation 
will in turn dictate the accuracy and precision of the MTV estimate. The 
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mapping of PD was introduced in the context of fully relaxed signal (i.e. 
TR >> T1). However, for reasonable scan times, this requirement can be 
relaxed, but in this case it is necessary to correct for spatially varying T1 
recovery. Any transverse decay must also be accounted for by extrapo-
lating to a TE of 0 ms to prevent biases, e.g. under-estimation in regions 
with high iron content. 

Multi-compartment MWI necessitates short echo times to adequately 
sample the decay of the short T2 myelin-associated water compartment 
but also sufficiently long echo times to capture slowly relaxing contri-
butions such as CSF (Whittall et al., 1999; Wiggermann et al., 2020). 
This extends the minimum achievable TR and can lead to long acquisi-
tion times, particularly for spin echo based approaches, unless spatial 
coverage or resolution are sacrificed, though significant acceleration has 
recently been achieved using compressed sensing (Dvorak et al., 2020). 
Acquiring multiple spin echoes in a single readout increases temporal 
efficiency, but the train of pulses can lead to the refocusing of echoes 
from unwanted pathways, i.e. the production of stimulated echoes, when 
B1
+ is inhomogeneous. Correction schemes based on simulating the 

impact of these echoes (e.g. (Lebel and Wilman, 2010)) have been 
proposed and can be incorporated into the fitting procedure. 2D 
slice-selective approaches are also vulnerable to magnetisation transfer 
and distorted slice profile effects. The latter can be mitigated either by 
modifying the sequence to ensure a sufficiently broad refocusing width, 
or by accounting for the effect during processing (Lebel and Wilman, 
2010; Nöth et al., 2017). The large number of refocusing pulses also 
increases the specific absorption rate (SAR) of the sequence, which is 

particularly important with the move to ultra-high field (≥7 T). Gradient 
echo approaches quantifying T2* are generally more time efficient since 
characterising a shorter time constant, and are less demanding from a 
SAR perspective, but suffer from reduced SNR as a result of the more 
rapid decay. Complex-valued fitting can be particularly beneficial (Nam 
et al., 2015b) in addressing the general problem of Rician bias that re-
sults when fitting magnitude data with long echo times, where signifi-
cant biases can be introduced and greatly alter the measured T2

(*) values 
(Bjarnason et al., 2013). 

MTR and MTsat are time efficient means of quantifying the effect of 
magnetisation transfer. As highlighted earlier, MTsat is more hardware 
robust. In addition, high resolution maps can be obtained with whole 
brain coverage in reasonable scan times making it particularly appealing 
for clinical studies. This efficient method was used in the first group 
study mapping the g-ratio in vivo (Mohammadi et al., 2015). However, a 
limitation of these rapid approaches is that they are semi-quantitative. 
The saturation of the bound pool, and therefore of the free pool via 
magnetisation transfer, will depend on the particular off-resonance 
pulse used, most notably the power and offset frequency. For further 
details, acquisition protocols and software for estimating this parameter 
see e.g. (Tabelow et al., 2019). 

qMT approaches circumvent this limitation by quantifying specific 
physical parameters. However, the extended datasets required to fit the 
full qMT model lead to a trade-off between scanning durations and 
spatial resolution and/or coverage. To constrain the model fits, pa-
rameters can be fixed, e.g. the T1 of the free and bound pools can be set 

Fig. 4. Depicted are the compartments of the g-ratio white matter (WM) tissue model as seen by diffusion MRI (a). An axial view of the human brain (b) is used to 
indicate WM regions where two example signal models that have been used to estimate the axonal water fraction (AWF) are applicable (c,d). (a.i): The cross-section 
of a representative myelinated axon and the associated tissue compartments in the g-ratio model: axonal (A in yellow), myelin (M in blue), and extra-cellular (E in 
gray) volume fractions (VF). (a.ii): Only two out of three compartments of (a.i) contribute to the diffusion signal: SE and SA. The contribution from myelin is 
negligible because of its short T2, i.e. SM = 0. (a.iii): Typical diffusion models assume that the axonal compartment is composed of a population of sticks (depicted 
lengthwise in yellow) in which there is measureable diffusivity only along the length of the sticks (i.e. DA,|| > 0 and DA,⊥ ≈ 0). (c): The White Matter Tissue Integrity 
(WMTI) model is comprised of distinct signal contributions from within axons (SA) and from the extra-cellular space (SE) with corresponding signal fractions: ν and 
(1 − ν) respectively as well as compartment-specific diffusivities: DA,||, DE,|| and DE,⊥. However, WMTI can only be applied to WM regions with well-aligned fibre 
pathways because it assumes parallel sticks thereby excluding disperse fibre orientations. To satisfy this model assumption it has been used only within the corpus 
callosum (see (b)). (d) The Neurite and Orientation Dispersion in Diffusion Imaging (NODDI) model is comprised of axonal (SA) extracellular (SE) and isotropic (Siso) 
signal compartments with signal fractions ν, (1 − ν) and ν0 respectively. To improve fitting stability, the NODDI model makes very strong assumptions, e.g.: the intra- 
(DA,||) and extra-axonal parallel diffusivities (DE,||) are assumed to be the same and are fixed, as is the diffusivity of the isotropic compartment (D0) corresponding to 
CSF. The parallel and perpendicular diffusivities are assumed to be related via the tortuosity model: DE,⊥ = DE,||(1 − ν). The depicted values are for the healthy in vivo 
case. However, NODDI does not assume parallel fibres, but rather accounts for fibre dispersion (κ), which is described by a Watson distribution (Stoyan, 1988). 
NODDI can therefore be used in regions with more disperse fibre orientations (as depicted in (b)). 
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equal to each other, or an “observed” T1 can be separately measured and 
integrated into the fitting to relate the T1 times of the bound and free 
pools. For further details and software available for fitting such models, 
see e.g. (Cabana et al., 2015). 

Clearly, brain tissue can be characterised by a very broad range of 
physical parameters. The multi-parameter mapping (MPM) quantitative 
MRI protocol offers a comprehensive approach providing high resolu-
tion, whole brain estimates of (single compartment) T1, T2*, PD, MTV 
and MTsat, with correction for transmit and receive field effects, in 
clinically feasible scan times (Weiskopf et al., 2013; Callaghan et al., 
2019; Tabelow et al., 2019). As such it provides simple proxies for both 
the macromolecular (via MTsat & MTV) and free water pools (PD) in a 
single protocol. 

2.3. Axonal volume fraction and fibre volume fraction 

Diffusion MRI is the method of choice to separate the intra- and 
extra-axonal tissue compartments (fAW and fEW, Fig. 2d) because of the 
distinct diffusion properties of water in these compartments. However, 
as detailed above, the myelin-associated water compartment has a short 
T2. This means that diffusion-weighted MRI is insensitive to myelin 
water because of the comparatively long minimum echo time required to 
accommodate the application of diffusion gradients. 

Although, there are several different diffusion-based approaches 
available to probe the intra-axonal tissue compartment (e.g. (Alexander 
et al., 2019; Novikov et al., 2019)), we will specifically focus on those 
approaches that have been used to date to estimate the intra-axonal 
volume fraction for the purpose of computing the aggregated g-ratio. 
These studies can be subdivided into two categories: the studies that 
have used standard DTI data and those that have used multi-shell (and 
even more advanced) diffusion MRI protocols. Each category will be 
discussed in turn. 

2.3.1. FVF from DTI data 
The first category of g-ratio studies required only a limited set of 

measurement parameters, including only a single b-value and a modest 
number of diffusion directions, as defined by the DTI protocol because 
they refrained from explicitly modelling more than one tissue 
compartment. A feature of these studies was the interpretation of 
diffusion-MRI based measurements of the axonal compartment as the 
FVF rather than the AVF, which, given the insensitivity of the conven-
tional diffusion MRI signal to the myelin water pool, is flawed as we will 
discuss further in the next section. Note that there is still an indirect 
contribution of myelin on the diffusion MRI signal, e.g., through the 
increase in diffusion anisotropy. This is why these models still show a 
correlation to FVF (Campbell et al., 2018b). 

DTI: The first g-ratio mapping study by Stikov et al. (Stikov et al., 
2011) used simulations, in which axons were modelled as straight, 
parallel cylinders to establish a second order relationship between the 
fractional anisotropy (FA) of the diffusion tensor and the total FVF. The 
assumption of straight and parallel cylinders, however, restricted the 
application of this model to white matter regions with well aligned fi-
bres. As a result, it has only been applied to the corpus callosum to date 
(Stikov et al., 2011; Berman et al., 2018). 

TFD: Again using a single b-value, the TFD was derived from fibre 
orientation distributions (Reisert et al., 2013) and assumed to be directly 
proportional to the FVF. This FVF model, which was first used by 
Mohammadi et al. (Mohammadi et al., 2015) for g-ratio mapping, is not 
restricted to well-aligned fibre pathways and thus could be applied 
across the whole brain. A proportionality constant that related TFD to 
FVF was combined with the calibration coefficient that related the 
MTsat myelin marker used to capture MVF and estimated by referencing 
against a ground truth g-ratio value from literature (Mohammadi et al., 
2015). This calibration approach will be further discussed in the context 
of myelin biomarkers in Section 3.2. However, Ellerbrock et al. (Eller-
brock and Mohammadi, 2018a) recently showed the TFD-based FVF 

parameter to be less stable in terms of repeatability and comparability 
than FVF estimates derived from the Neurite and Orientation Dispersion 
in Diffusion Imaging (aka NODDI) model (Zhang et al., 2012), discussed 
in more detail in the next section. 

2.3.2. AVF from multi-shell diffusion MRI data 
Using a more extensive set of experimental measurements, i.e. mul-

tiple b-values or diffusion shells, allows the second category of studies to 
use a more principled model for the diffusion signal, the so-called 
“standard model” (Novikov et al., 2019). The standard model is built 
upon well-established signal models for two tissue compartments (for a 
summary see, e.g., (Novikov et al., 2019)), the axonal (AVF) and 
extra-cellular (EVF) volume fractions (Fig. 4a.ii). A restricted signal 
component is assumed to come from the axonal compartment, which is 
modelled as impermeable sticks (Fig. 4a.iii). A hindered signal compo-
nent describes the extra-cellular space, which is modelled using a 3D 
anisotropic diffusion tensor. For example, the White Matter Tissue 
Integrity (WMTI) model is depicted in Fig. 4c showing the 
axially-symmetric ellipsoidal tensor composed of axial (DE,||) and 
perpendicular (DE,⊥) extra-cellular diffusivities. 

In contrast to g-ratio studies based on DTI data, those using multi- 
shell diffusion MRI data acknowledge the fact that the direct contribu-
tion of myelin water in the diffusion MRI signal is negligible (Fig. 4a.ii). 
As a consequence, their models take into account that the axonal 
compartment estimated from the visible MRI signal in a typical diffusion 
experiment is not AVF = AVF

MVF+AVF+EVF (Fig. 4a.i) but rather the axon 
water fraction (AWF), i.e. intra-axonal signal divided by the signal from 
the extra- and intra-cellular space: AWF =

fAW
fAW+fEW 

(Fig. 2d) and thus 
AWF = AVF

AVF+EVF (Fig. 4a.ii). These studies follow the suggestion of Stikov 
et al. (Stikov et al., 2015) to estimate AVF by rescaling the AWF ac-
counting for the unsampled MVF, i.e.: 

AVF = (1 − MVF) AWF (2) 

This rescaling inherently assumes that the entire bound (i.e. MR 
invisible) pool is associated with myelin, i.e. that fBNM = 0. 

WMTI: The WMTI model (Fieremans et al., 2011) contains signal 
contributions from intra-axonal (SA) and extra-cellular (SE) compart-
ments in line with the “standard model”. The signal fraction of sticks 
(ν =

fAW
fAW+fEW

, Fig. 2d) is directly used as proxy for AWF while 1 − ν (=
fEW

fAW+fEW
, Fig. 2d) estimates the extra-cellular water fraction (Fig. 4c). 

WMTI simultaneously estimates AWF, the intra-axonal diffusivity (DA,||) 
and two extra-cellular diffusivities (DE,⊥ and DE,||) of an 
axially-symmetric ellipsoidal tensor. However, it assumes parallel fibres 
and therefore has only been applied to the corpus callosum (West et al., 
2018a). 

mcSMT: Like WMTI, the multi-compartment Spherical Mean Tech-
nique (mcSMT) model developed by Kaden et al. (Kaden et al., 2016) is 
based on the “standard model”. But, instead of assuming parallel fibres, 
it uses the SMT to factor out the contribution of fibre orientation. As a 
result, it can be applied to the whole brain. Similar to the WMTI model, 
mcSMT estimates the signal fraction of the intra-axonal space, ν. This 
has been used as a proxy for the AWF in g-ratio mapping (West et al., 
2018a). In the mcSMT model, the intra- and extra-cellular parallel dif-
fusivities are assumed to be equal (DA,|| = DE,||) and the tortuosity model 
(Szafer et al., 1995) is used to relate the extra-cellular parallel and 
perpendicular diffusivities to each other via ν: DE,⊥= (1 − ν)DE,||. 

NODDI: The most commonly used method to estimate the AWF in g- 
ratio mapping has been the NODDI model (Fig. 4d, (Zhang et al., 2012; 
Stikov et al., 2015)). NODDI extends the standard model to 3 compart-
ments by not only modelling the two signal compartments from the 
intra-axonal and extra-cellular spaces but also an isotropic signal 
component (Siso with an associated signal fraction ν0 =

fCSF
fAW+fEW+fCSF

, 
Fig. 2d) to account for any partial-volume contamination by freely 
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diffusing water, e.g., as in CSF. To compensate for the increased number 
of model parameters and stabilize model fitting, the diffusion constants 
are fixed (Fig. 4d). To this end, as in the mcSMT model, the tortuosity 
model is used to relate the extra-axonal diffusivities via ν: 
(DE,⊥= (1 − ν)DE,||). Moreover, the intra-axonal and extra-axonal paral-
lel diffusivities are assumed to be equal (DA,|| = DE,||) and have a pre-
defined value, as does the diffusivity of the isotropic compartment (D0). 
To account for the 3-compartment nature of NODDI, Stikov et al. (2015) 
suggested the following relation between the NODDI signal fractions 
(Fig. 4d) and the AWF : AWF = ν(1 − ν0) By scaling ν with 1 − ν0, 

(ν(1 − ν0) =
fAW

fAW+fEW

(

1 −
fCSF

fAW+fEW+fCSF

)

=
fAW

fAW+fEW+fCSF
) such that the 

intra-axonal signal fraction is corrected for the contribution of the CSF 
compartment, to ensure the g-ratio WM model assumption, i.e. AVF+

MVF+ EVF = 1. 
NODDI accounts for fibre dispersion using the single-parameter 

Watson distribution (Stoyan, 1988; Jespersen et al., 2012), making it 
applicable for whole brain AVF mapping. 

CHARMED: Compared to other diffusion models that have been used 
for g-ratio mapping, the Combined Hindered and Restricted Models of 
water diffusion (CHARMED) approach makes the fewest assumptions. It 
models diffusion in the extra-cellular space by a full ellipsoidal tensor 
(whereas the NODDI and WMTI models assume an axially-symmetric 
ellipsoid), and, in principle, it can account for crossing fibre configura-
tions (Assaf et al., 2004; Assaf and Basser, 2005) unlike the standard 
NODDI approach. The CHARMED model can be further extended to 
additionally estimate axon diameters (e.g. (Assaf et al., 2008; Alexander 
et al., 2010; Huang et al., 2016)). This has been used by Duval et al. for 
g-ratio mapping in the spinal cord (Duval et al., 2017) and by Yu et al. 
(Yu et al., 2019) in patients with multiple sclerosis. However, such a 
protocol requires more extensive (and time-consuming) data 
acquisition. 

2.3.3. Protocols for AVF mapping 
While the first category of studies requires only a standard single- 

shell DTI protocol (Stikov et al., 2011; Mohammadi et al., 2015; Ber-
man et al., 2018), the minimum requirement protocol for the second 
category of studies depends on the model to be used for AWF mapping. 
The WMTI model parameters can be estimated from the diffusion kur-
tosis tensor measurement (Fieremans et al., 2011; Jespersen et al., 
2018). The NODDI, mcSMT, and WMTI model parameters can be esti-
mated from a two-shell diffusion MRI protocol composed of a “lower” 
(b ∼ 1 ms

μm2) and a “higher” diffusion weighting (b ∼ 2 ms
μm2)1 . In contrast to 

the aforementioned models, the CHARMED model typically requires a 
more extended diffusion MRI protocol: Drakesmith et al. used a five shell 
diffusion MRI dataset for g-ratio weighted imaging (Drakesmith et al., 
2019a). Extending the CHARMED model to also estimate axon diameters 
requires an even more advanced protocol where the b-values and 
additional diffusion parameters such as diffusion sensitization times also 
have to be changed (see (Duval et al., 2017) for g-ratio mapping). 

Typical protocol-associated issues that can introduce biases are: 
ceiling effects (i.e. ν = 1) in white matter, which can be encountered 
with NODDI if b-shells are sub-optimally sampled (recommendations for 
optimal sampling are provided in (Zhang et al., 2012)). Rician bias in 
low SNR data can also distort AWF estimates. Mapping accurate AWF 
parameters in the spinal cord comes with additional challenges because 
of increased susceptibility to nonlinear motion (e.g. due to swallowing, 
(Yiannakas et al., 2012)), physiological noise (e.g. (David et al., 2017)), 
or partial volume effects due to its small size (1 cm in diameter). 

3. Challenges for aggregated g-ratio mapping 

An important prerequisite of g-ratio mapping with MRI is that the 
biomarkers of MVF and AVF be accurate. Two key requirements for an 
accurate biomarker are model validity and a one-to-one correspondence 
between the MRI-biomarker and the gold standard volume fractions. 
While the first point can be investigated by theoretical evaluation of the 
model, the second point is typically not fulfilled, necessitating a cali-
bration step. Another important challenge is related to imaging artefacts 
and their impact on the multi-modal combination of MVF and AVF 
biomarkers. In this section, we will first discuss the question of model 
validity associated with MRI-based MVF and AVF biomarkers, then we 
will use a simulation experiment based on ex vivo data to improve our 
understanding of the calibration step, and finally we discuss imaging 
artefacts associated with the multi-modal combination of MRI data. 

3.1. Model validity 

It is important to bear in mind that “all models are wrong but some 
are useful”2 . In the following sections we will cover some of the key 
model assumptions made to facilitate in vivo mapping of the AVF and 
MVF and enable g-ratio mapping. We will also discuss the consequent 
limitations of application. We focus solely on white matter for which the 
presented g-ratio models have been developed. 

3.1.1. MVF models 
The simplest model for estimating fB is based on PD mapping, in 

which a mono-exponential, i.e. single water compartment, is typically 
assumed when extrapolating the signal to a TE of 0 ms to remove con-
founding T2

(*) decay. This is clearly not valid and constituent water 
compartments within a voxel will have variable influence depending on 
the echo times and spacings used (Whittall et al., 1999; Wiggermann 
et al., 2020). This will be the case for both PD mapping and MWI. In 
general, longer apparent T2

(*), and smaller fractional contribution from 
short T2 components, are observed as the first TE is increased or SNR 
lowers (Cercignani et al., 2018; Wiggermann et al., 2020). It is also 
important to fully sample the decay, which requires sufficiently long 
echo times to capture any slowly decaying compartments, e.g. CSF. See 
Section 2.2.3 and Table A1 (in Appendix A) for further details on pro-
tocol considerations. 

Moreover, it has recently been shown that MWF depends on iron 
content (Birkl et al., 2019), the orientation of fibres with respect to the 
external magnetic field and on the TR used (Birkl et al., 2020) and exact 
processing details (Wiggermann et al., 2020). Sensitivity to B0 in-
homogeneity can also bias model fits as can phase errors caused by 
physiological effects, such as breathing, eddy currents (Nam et al., 
2015a) and motion, which distorts the decay (Magerkurth et al., 2011). 
Vulnerability to physiology and motion, together with partial volume 
effects, are particularly problematic for spinal cord imaging (Duval 
et al., 2017, 2018; Hori et al., 2018). More generally, these potential 
sources of artefact can manifest differently in vivo and ex vivo, meaning 
that while some techniques may work well in post mortem data, e.g. 
achieving cross-validation with histological data, they may not neces-
sarily work well in vivo. 

Models assuming two pools, either distinct non-exchanging water 
pools in myelin water imaging (Fig. 2b) or a bound and a free pool that 
interact via magnetisation transfer (Fig. 2c), are also limited by the fact 
that they do not describe the full complexity of the tissue’s micro-
structure. Higher numbers of pools are undoubtedly present (c.f. even 
the simplified model of Fig. 2a) but are unlikely to be distinguishable 
based on observable relaxation behaviour either because of exchange 

1 Note that these parameters are for in vivo imaging and will be different for 
ex vivo MRI. For example, in the study by (West et al., 2018a) the low and 
higher diffusion weighting were at b~3 ms

μm2 and b ∼ 6 ms
μm2, respectively. 

2 The aphorism is generally attributed to the statistician George Box, 
although the underlying concept predates Box’s writings (https://en.wikipedia. 
org/wiki/All_models_are_wrong). 
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conditions or because it would require unattainable measurement pre-
cision. Simulation studies of more complete models have helped us to 
better understand the limitations of these simplifications. 

In MWI, a slow exchange rate is central to the possibility of differ-
entiating water pools, and their fractional sizes, based on experimentally 
distinguishable T2 times. As the exchange rate increases to a more in-
termediate regime, distinct compartments may still be discernible, but 
the relaxation times will appear reduced, as will the MWF (Does, 2018). 
The situation is further complicated by the presence of noise, which, 
even at low levels, can further broaden the distribution of apparent 
relaxation times, and lead to distinct water environments merging in the 
three pool case (Does, 2018). 

The rate of magnetisation transfer exchange between macromolec-
ular and water pools is an order of magnitude larger than the diffusion- 
driven exchange rate between water compartments (c.f. non-directional 
exchange rates of 10s− 1 and 100s− 1 respectively, (Levesque and Pike, 
2009)). Theoretical analysis of a four pool model (analogous to Fig. 2a) 
has also shown that inter-compartmental exchange could substantially 
alter the estimated MWF, but that the qMT-based BPF is more robust 
(Levesque and Pike, 2009). 

In support of these theoretical analyses, much greater variation in 
MWF than BPF has been seen in the spinal cord, not only ex vivo (Dula 
et al., 2010) but also in vivo (Harkins et al., 2012). The variability 
observed across tracts was consistent with variable exchange due to 
differences in axon diameter and myelin thickness, the key determinants 
of the g-ratio. Much of the extensive validation work for the MWI 
technique has been conducted ex vivo, and often with samples at room 
temperatures. Both of these factors serve to slow the rate of exchange 
increasing the validity of the slow exchange assumption (Does, 2018). 
Therefore, one must exercise caution extrapolating the validity of MWF 
metrics from ex vivo findings to the in vivo situation. 

Although these three and four pool models are likely to be closer to 
the true tissue microarchitecture, inversion of such a complex model 
would be difficult in terms of both precision and bias. Indeed, even in the 
context of the two pool models that have been used to date for g-ratio 
mapping, the parameterisation must be supported by the data. The 
comparatively high parameterisation of the mcDESPOT model has 
necessitated the use of advanced fitting procedures, such as stochastic 
genetic or region contraction algorithms (Deoni et al., 2008, 2013). The 
achievable precision and accuracy of the approach has been called into 
question (Lankford and Does, 2013; West et al., 2019) and it has been 
shown to suffer from degeneracy when seeking to determine optimal 
model parameters, which is only resolved by using a simpler model, 
excluding exchange (West et al., 2019). A common requirement of all 
model types, including those capturing the AWF, is that any fixed pa-
rameters, e.g. as might be assumed in qMT models where the T1 of the 
free and bound pools may be assumed to be equal (Cabana et al., 2015), 
be appropriate to the population under consideration be they adults, 
children or indeed patients. 

While it is also incorrect to assume that the non-aqueous compart-
ment of tissue is entirely comprised of myelin, this has been shown to be 
the dominant source of the MT contrast mechanism in WM (Eng et al., 
1991). In reality, the bound pool, fB, can be associated not only with the 
lipids and proteins of the myelin sheath, fBM, but also with any other 
macromolecule-bound protons, fBNM (see Fig. 2a), e.g. glial cells 
(MacKay and Laule, 2016). 

MWF will not only capture water within myelin sheaths surrounding 
axons but also that associated with any myelin debris in pathological 
cases, as has been shown in peripheral nerve (Webb et al., 2003). 
Similarly, MT-based measures lack specificity. Hence it should be borne 
in mind that although alterations in myelin content will change the 
measured MT effect, an alteration in MT effects cannot be uniquely 
attributed to a change in myelin and may be driven by other macro-
molecular changes, or changes in T1 or T2. The derived MVF is also used 
to correct for the fact that the diffusion signal is insensitive to this 
compartment (by rescaling AWF). However, this neglects the 

non-myelin-macromolecular contribution within the imaging voxel, i.e. 
fBNM (Fig. 2a). 

3.1.2. AVF models 
Diffusion MRI typically measures AWF and uses knowledge of the 

MVF to rescale it to the AVF (Section 2.3.2). As a result, the accuracy of 
both the AWF and MVF dictates that of the AVF. Examples of strong 
simplifications used by the AWF models are that the restricted 
compartment is solely associated with axons that can be modelled as 
impermeable sticks without cross-section, and that diffusion in the 
extra-cellular space is assumed to be Gaussian. The assumption that the 
restricted compartment is solely associated with axons is expected to be 
approximately correct in white matter if the density of other cells is 
small relative to the density of axons. 

In addition to these model limitations, there is another problem 
associated with all of the approaches used for g-ratio mapping to date: 
they are based on the standard model comprised of compartments ac-
counting for restricted and hindered diffusion. This model is known to 
suffer from a degeneracy of parameter estimates (Jelescu et al., 2016a) 
when measured with a linear diffusion weighting approach, i.e. the 
typical Stejskal and Tanner (Stejskal and Tanner, 1965) diffusion 
weighting scheme, which has been the case for all the aforementioned 
g-ratio mapping studies. 

Prior assumptions motivated by the biological composition of the 
tissue can be imposed to stabilize the parameter estimation. The NODDI, 
mcSMT, and WMTI models make particularly strong use of priors to 
allow the remaining model parameters to be estimated from data that 
can be acquired in a clinically feasible imaging time (see Section 2.3.3). 
Parameter estimation is commonly stabilized by imposing the tortuosity 
assumption (Szafer et al., 1995), as is the case for both the NODDI and 
mcSMT models. This assumption constrains the perpendicular and 
parallel extra-axonal diffusivities via “one minus the neurite density”: 
(DE,⊥= (1 − ν)DE,||), i.e. the higher the neurite density in the tissue the 
lower the perpendicular diffusivity. However, the validity of this tor-
tuosity constraint in densely packed axons has been questioned (Jelescu 
and Budde, 2017). Common to all models is the fact that they are 
measuring signal fractions, which are not corrected for potentially 
different T2 relaxation times, e.g., in the intra- and extra-axonal water 
(Veraart et al., 2018; Lampinen et al., 2019; McKinnon and Jensen, 
2019; Gong et al., 2020). If the tortuosity constraint were indeed valid, it 
should relate extra-axonal diffusivities to the extra-cellular space 
(EVF = 1 − FVF) rather than signal fraction of the hindered compart-
ment, ν (Jelescu et al., 2015). In other words, the relationship between 
the parallel and perpendicular extra-cellular diffusivities should effec-
tively be: DE,⊥= (1 − FVF)DE,||. 

NODDI and mcSMT also impose a one-to-one scaling between the 
intra- and extra-cellular parallel diffusivities: DA,|| = DE,||. The difference 
between NODDI and mcSMT (and WMTI) centres on the additional 
compartment that is estimated in NODDI (ν0). To facilitate the estima-
tion of ν0, NODDI fixes the remaining diffusivity to a constant value (for 
in vivo healthy adults the diffusivities are usually assumed to be (Alex-
ander et al., 2010; Guerrero et al., 2019): DA,|| = DE,|| =

1.7μm2

ms and D0 =

3μm2

ms ), whereas mcSMT estimates it. Although, it can be advantageous to 
estimate ν0 in certain situations (e.g. when partial volume effects are 
expected), it comes at the price of fixing the diffusivities which might be 
problematic, e.g. in children, patients, or post mortem brains, where 
these fixed diffusivities may no longer hold. WMTI, on the other hand, 
does estimate these diffusivities but assumes that all fibres are aligned in 
parallel restricting its application to anatomical regions that better, 
though not fully, support this assumption, e.g. the corpus callosum 
(West et al., 2018a). This might be another reason (in addition to fixed 
diffusivities used in NODDI) for the systematically smaller AWF esti-
mates obtained with WMTI compared to NODDI as reported, e.g., in 
(Jelescu et al., 2015). 

The Watson distribution used in NODDI can model fibre dispersion in 
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a single fibre population, but cannot describe more complex fibre sce-
narios, such as crossing fibres. Nevertheless, it accounts, to a certain 
degree, for the variability of fibre-alignment within fibre pathways and 
thus might be better suited for g-ratio mapping across the entire white 
matter than models that assume strictly parallel fibre configurations. 

Of course this list of model assumptions is not exhaustive. Additional 
considerations are discussed elsewhere (Jelescu and Budde, 2017; 
Novikov et al., 2019). 

3.2. Calibration for MVF 

Assuming that the diffusion-based AWF is accurate3, the relation 
between the myelin biomarker and the MVF still needs to be established 
via a calibration step. This calibration is particularly important since it is 
not only required to quantify the MVF, but also to convert the AWF to 
AVF (Eq. 2). Histological investigations suggest that the relationship 
between typical myelin biomarkers (which we will collectively denote 
MMRI in this section) and the MVF is linear (Fig. 5, (West et al., 2018b)): 

MVFMRI = αMMRI + β (3)  

where α and β are unknown coefficients that need to be calibrated. It is 
expected that these coefficients will depend on instrumental variables 
and may therefore vary with MR systems, sequence parameters, as well 
as myelin biomarker models. For example, B1+ inhomogeneity increases 
with field strength, and may lead to system-dependent residual differ-
ences and therefore different βs. Such dependency clearly limits the 
reproducibility and comparability of the MR-based g-ratio. Using sim-
ulations, Campbell et al. (2018) demonstrated that imperfect calibration 
can not only introduce a bias in the g-ratio, but can even cause the g- 
ratio to depend on the fibre volume fraction, negating a major strength 
of the g-ratio, i.e. that it is independent of FVF. Their simulations 
revealed that this dependence was different if the miscalibration was 
present only in the offset or only in the slope. They coined the phrase 
aggregated g-ratio weighted imaging to acknowledge this limitation 
(Campbell et al., 2018a). 

To reduce these dependencies, two calibration methods have been 
used for in vivo g-ratio mapping. These have utilised a region of interest 
(ROI) in which either (a) the myelin biomarker was calibrated against a 
reference MVF, first employed by (Stikov et al., 2015) or (b) the 

measured g-ratio was calibrated against a reference g-ratio, first 
employed by (Mohammadi et al., 2015). We refer to these approaches 
collectively as single-point calibration methods since both are cali-
brating against a single reference value. Reformulating Eq. 3 within a 
specific ROI, it is clear that the single-point calibration methods estimate 
one effective proportionality constant (αeff), i.e.: 

MVFMRI(ROI,αeff) =

(

α +
β

MMRI(ROI)

)

MMRI(ROI)

≡ αeff(α, β,MMRI) MMRI(ROI) (4)  

From Eq. (4) it is clear that the single-point calibration methods are 
insufficient to establish a one-to-one correspondence between the MVF 
and the MRI-based myelin biomarker. One problem, for example, could 
be that αeff will depend on the myelin biomarker within the reference 
ROI if β ∕= 0 (see Eq. (4)). The MVF-based single-point calibration 
method would simply set Eq. 4 to a reference MVF value within the ROI: 
MVFMRI(ROI,αeff,opt) = MVFREF and rearrange the equation with respect 
to αeff, opt. The g-ratio based single-point calibration would minimize the 
following equation: 

αeff,opt = min
αeff

⃦
⃦g

(
αeff ,ROI

)
− gREF(ROI)

⃦
⃦ (5)  

with g
(
αeff ,ROI

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
MVFMRI(ROI,αeff)

MVF(ROI,αeff)+(1− MVF(ROI,αeff))AWF(ROI)

√

where 

gREF(ROI) and AWF(ROI) are the reference g-ratio and the measured 
AWF values within the ROI respectively. 

The key questions that ensue from this single-point calibration are: 
what are the typical magnitudes of the slope α and offset β in experi-
mental conditions and therefore what is the magnitude of the error 
propagated by αeff, opt? How much does the MR-based g-ratio deviate 
from the ground truth? How large is this deviation relative to the ex-
pected dynamic range of the g-ratio, e.g. pathology-related differences? 

Although the simulations in (Campbell et al., 2018a) improved our 
understanding of the pitfalls of g-ratio mapping, they did not directly 
answer these questions. However, experimental data from the Does lab 
(Kelm et al., 2016; West et al., 2018b, 2018a) could help to now answer 
them. In those experiments, the authors reported the changes of the 
g-ratio and the associated MVF in a range of mouse models spanning 
hypo- to hyper-myelination using both MRI and electron microscopy. 
The MRI based data included three biomarkers of myelin content: MWF 
(fMW), BPF, and MTV. Since in this case MTV was derived from the MWI 
experiment (i.e. with a multi-compartment model) we denote it MTVMWI. 

Fig. 5. Depicted are the linear relations between the myelin-volume fraction (MVF) from gold standard electron microscopy and three MRI-based biomarkers for 
myelin: (a) Bound Pool Fraction (BPF) from quantitative magnetization transfer imaging, (b) calibrated Myelin Water Fraction (fMW) from myelin water imaging, (c) 
the Normalized Water Content (NWC). The estimated linear relations (red boxes) are used in our simulation experiment (see Section 3.2 & Appendix). Macromo-
lecular Tissue Volume (MTV) was calculated from NWC according to Berman et al. (Berman et al., 2018). Modified and reproduced with permission from West et al. 
(West et al., 2018b). 

3 This assumption is probably wrong – see model validity in Section 3.1. 
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In the following, we will use the data from the Does lab to generate 
ground truth parameters for a subsequent simulation-based experiment 
to probe the potential and pitfalls of single-point calibration (details of 
which can be found in the appendix and supplementary material). Note 
that in this simulation experiment we only focus on the myelin proxies 
assuming that there is no error in the AVF measurement. 

We will evaluate the difference between the ground truth g-ratio, 
gGT, and that obtained by simulated MRI measures, gMRI. To do so, we 
will use bias and error as determined with Bland-Altman analyses (Bland 
and Altman, 1986). The Bland-Altman plots (Fig. 6) depict the difference 
(δg = gGT − gMRI) between the g-ratios as a function of their mean 

(mg = (gGT + gMRI)/2). According to their original publication (Bland 
and Altman, 1986), mean difference 

〈
δg
〉

and +/ − 1.96
〈
stdδg

〉
can 

respectively be interpreted as the bias and error that would result if 
replacing gGT with gMRI. Bias captures the offset from the ground truth 
g-ratio value, whereas error captures the deviation from a one-to-one 
relationship between the ground truth and the MR g-ratio. While a po-
tential bias can be retrospectively corrected, any error in the g-ratio 
mapping method will define its sensitivity and ability to detect change 
or differences between individuals, groups or over time. Any error must 
be lower than the expected difference between groups or due to pa-
thology if the g-ratio mapping method using MRI is to be of use as a 

Fig. 7. Illustration of the inter-relation between MR g-ratios derived from magnetisation transfer imaging (a: simulated gBPF) and (b,c: in vivo gMT) or from the 
macromolecular tissue volume (a: simulated gMTV) and (b,c: in vivo gMTV) for two scenarios: omitting (gnone) or using single-point calibration (gSPC) with a reference of 
gREF = 0.71 in the medullary pyramid, estimated from (Graf von Keyserlingk and Schramm, 1984). The dynamic ranges of the MR g-ratios observed in simulation ex 
vivo (a) or via in vivo measurement (b,c) are very different. In both cases (a,b), there is a shift towards the identity line after SPC, but with much greater agreement 
between the measures in vivo. Note that the MTsat-based g-ratio is undefined without calibration because the range of MTsat within white matter exceeds 1. The maps 
in (c), adapted with permission from (Ellerbrock and Mohammadi, 2018a), were acquired using the protocol described in the caption of Fig. 8. Note that the MR 
g-ratios (“g3” and “g4”) in the original publication were erroneous due to a reported mistake, see corrigendum (Ellerbrock and Mohammadi, 2018b). Here, the 
correct maps are depicted. 

Fig. 6. Depicted are scatter (a–c) and Bland- 
Altmann plots (d–f) of the ground truth (gGT) 
and the MRI-based g-ratios using no calibration 
(a,d) or the single-point calibration approaches 
based on the g-ratio (b,e) or MVF (c,f) from a 
reference region of interest. The MRI-based g- 
ratios were calculated using different bio-
markers for myelin: bound pool fraction (BPF,
blue crosses), calibrated myelin-water fraction 
(fMW, green crosses), and macromolecular tissue 
volume (MTV, black crosses). The Bland- 
Altman plots (Bland and Altman, 1986) assess 
the bias and error when seeking to replace the 
ground truth g-ratio with the MRI-based mea-
sures. The plots depict the difference 
(δg = gGT − gMRI) against the mean 
(mg = (gGT + gMRI)/2) of g-ratios with the solid 
line indicating the mean difference 

〈
δg
〉
, and 

the dashed lines indicating 
〈
δg
〉

plus/minus 
1.96 times the standard deviation of the dif-
ferences 

〈
stdδg

〉
to encompass 95 % of the 

normal distribution. The results are summa-
rized in Table A1 and in Appendix A.   
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reliable biomarker (Alberich-Bayarri et al., 2020). 

3.2.1. What we can learn from the simulation experiment 
Overall, this simulation showed (Fig. 6, Table A1 (in Appendix A)) 

that the single-point calibration can reduce the bias in the g-ratio (i.e. 
two out of three MRI-based g-ratio values became, on average, closer to 
the ground truth) but it comes at the cost of an increased error (i.e. the 
deviation from a one-to-one correspondence between the MR and the 
ground truth g-ratio increased after calibration, particularly for those 
two with decreased bias). We expect that the latter feature, i.e. the error, 
is of more relevance to typical g-ratio studies, where longitudinal 
changes or changes between groups will likely be investigated. In more 
detail, the simulations showed that fMW and MTVMWI are better bio-
markers for the g-ratio in terms of their error. Perhaps surprisingly, they 
perform best, in terms of error, when no calibration was performed. BPF, 
on the other hand, performed poorly as an MVF biomarker independent 
of whether or not a calibration was performed. Interestingly, the two 
better performing MVF biomarkers, i.e. fMW and MTVMWI, involved a 
calibration step in their computation, unlike the BPF. For fMW the cali-
bration was purely based on literature values, whereas MTVMWI was 
calibrated against a grey matter value specific to each brain. 

Based on these simulations, a number of conclusions can be drawn. 
First, the single-point calibration method is insufficient to calibrate the 
g-ratio for the investigated scenarios with non-zero offset parameter. 
The impact of the calibration will depend on the specific markers 
sensitivity to myelin and other quantities (i.e. the slope and offset, Eq. 3). 
Second, of the particular markers investigated here the BPF-based g- 
ratio would require a more sophisticated calibration. On the other hand, 
the fMW and MTVMWI based measures could in fact be used without even 
a single-point calibration with the knowledge that this trades larger bias 
for sensitivity. 

While the key take home message is that the impact of the calibration 
will depend on the sensitivity of the marker to the underlying MVF, care 
must be exercised in extrapolating the specific findings to corresponding 
in vivo measures of BPF, MTV and MWF. The use of ex vivo data was 
necessary for this simulation experiment due to the lack of gold standard 
information in vivo. However, myelin markers can be expected to have 
different dependence on the MVF when measured in vivo in humans than 
seen here in the case of fixed tissue from ex vivo mice. Indeed, the scatter 
plots in Fig. 7, which depict the g-ratio estimates before4 and after 
calibration obtained via simulation (Fig. 7a) and from in vivo experi-
ments using MTsat and MTV (Fig. 7b), do not manifest the same rela-
tionship. The MTsat-based in vivo g-ratio map, in fact, shows a greater 
dynamic range and higher correspondence to the MTV-based in vivo g- 
ratio map after single point calibration (Fig. 7b and c). This contrasting 
observation might be due to the use of somewhat different techniques in 
vivo and ex vivo, or due to fixation issues, e.g. fixation has been shown to 
strongly increase the BPF in normal appearing white matter (Schmierer 
et al., 2008). Additional important differences are potentially different 
model validity (see Section 3.1.1) and data quality, most notably the 
absence of physiological and motion noise sources ex vivo, the capacity 
for markedly longer scanning protocols, and the use of different MRI 
techniques and non-clinical imaging systems (West et al., 2018b). It 
should also be noted that the simulations assumed (1) no noise, (2) that 
the reference values for the g-ratio or MVF have no bias (3) knowledge of 
the true AVF, not AWF, and (4) modelled the specific case of the g-ratio 
changing due to demyelination. 

In summary, these simulations show that the single-point calibration, 

Fig. 8. Depicted are whole brain views (a) (and magnifications (b)) of the aggregated g-ratio weighted map ((v): gMTsat/NODDI), its constituting two qMRI maps: the 
calibrated myelin biomarker ((i): MTsat), the axonal-water fraction ((ii): AWF), and the associated white-matter tissue probability maps (P(WM)) after their respective 
segmentation ((iii): P(WM)MT), (iv): P(WM)AWF). Although, a distortion-corrected AWF maps with negligible residual distortions was used, P(WM)AWF is lower than 
the P(WM)MT (see contours in the magnification (b)). To prevent artefactual g-ratio values in regions where one of the two constituent biomarkers is ill-defined, we 
suggest generating g-ratio values only in voxels where both tissue probabilities exceed a pre-defined threshold (here 0.5). Details of the MPM protocol can be found in 
Streubel et al. (2020), Streubel et al. (2020); AWF was estimated from a 3 shell DWI (b-values: 500, 1000, 2500 mm/s2). The spatial distortions were reduced using 
the ACID toolbox (www.diffusiontools.com). 

4 Note that MTsat cannot be used without calibration, since it is not scaled 
between 0 and 1. As a consequence we used single-point calibration for both 
MTsat-based g-ratios in Fig. 7b. 
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used in virtually all in vivo g-ratio mapping studies to date (Table 1), 
does not fully resolve the issue of converting MR proxies to the true MVF 
and can even increase bias and error in the g-ratio estimates. Therefore, 
further methodological development and validation is required to find 
the optimal means of ensuring the necessary validity and sensitivity of 
the MR g-ratio. 

3.3. Unification of multi-modal data 

The aggregated g-ratio weighted imaging approach combines two 
complementary MRI contrasts, sensitive to the axonal-water and myelin 
volume fractions respectively. Given that each quantitative MRI tech-
nique is typically vulnerable to a specific set of artefacts, the combina-
tion of multiple data types needs to take care not to amplify these 
artefacts such that they obscure or corrupt the quantity of interest. For 
example, we have previously demonstrated that modality-specific 
spatial distortions, arising from inhomogeneous magnetic susceptibil-
ity distributions in the brain and around air cavities, can prevent voxel- 
wise spatial correspondence of the AWF and MVF proxies being ach-
ieved and lead to erroneous g-ratio estimates (Mohammadi et al., 2015). 
Even after correcting the susceptibility-induced distortions using dedi-
cated tools (Ruthotto et al., 2012, 2013), residual misalignments be-
tween the EPI-based diffusion data and the MRI-biomarkers for MVF can 
persist. The most obvious reason for residual misalignment is, of course, 
insufficient susceptibility distortion correction, but partial-volume ef-
fects in the EPI-based diffusion data associated with the typically lower 
spatial resolution, the EPI-readout, and eddy current distortions can also 
lead to lower white-matter tissue probability in the diffusion data rela-
tive to the MTsat map (Fig. 8). Here, we suggest combining the overlap 
between two modality-specific white-matter tissue probability maps 
(TPMs) to remove regions in the resulting g-ratio maps (Fig. 8a.v and b. 
v) that do not overlap between the two MRI contrasts, i.e. the region 
outside the red contours in Fig. 8a.iii and b.iii. In the example of Fig. 8, 
the TPM was generated from the MTsat (Fig. 8a.iii and b.iii) and NODDI 
(Fig. 8a.iv and b.iv) map, respectively. 

3.4. Validation of g-ratio mapping 

In vivo validation of g-ratio mapping is highly desirable, but gener-
ally unfeasible. We therefore typically rely on ex vivo histology for 
validation. A number of differences between these two imaging sce-
narios have been highlighted in previous sections. Here we summarise 
key points pertinent to the ex vivo histology gold standard scenario. It is 
important to ensure that the axons, sampled with ex vivo histology, are 
representative of the ensemble of axons that have been measured with 
MRI. For example, electron microscopy typically samples 100–1000 
axons (e.g. (Aboitiz et al., 1992; Liewald et al., 2014)) whereas a typical 
in vivo MRI voxel contains 100k-1000k axons. Moreover, one has to 
consider the change in tissue composition that occurs when going from 
the in vivo to the ex vivo situation. In this case, the MRI signal and its 
parameters can significantly change due to, e.g. (i) autolysis (varying 
post-mortem interval (Shepherd et al., 2009)), (ii) fixation and the 
associated changes of cross-linking proteins, tissue shrinkage, and 
slowed diffusion processes (Schmierer et al., 2008; Shepherd et al., 
2009), and (iii) temperature changes (Birkl et al., 2016). These changes 
affect diffusion (Dyrby et al., 2011) and other important MR parameters, 
such as T2, T1, and T2* (Streubel et al., 2019) and susceptibility (based 
on signal phase) contrasts. However, despite these changes, the most 
important MRI mechanisms (e.g. diffusion anisotropy and relaxation 
mechanisms) are still present after fixation (Roebroeck et al., 2008). 
Nonetheless, it is necessary to characterize these differences in MRI 
parameters to enable translation and interpretation across in vivo and ex 
vivo measurements. 

3.4.1. g-ratio 
To date, only two studies have compared g-ratio measurements from 

ex vivo histology with MRI (Stikov et al., 2015; West et al., 2018a). 
Stikov et al. (2015) compared the g-ratio measured with in vivo MRI and 
ex vivo histology on a macaque monkey. West et al. (2018a) compared 
g-ratio maps based on the WMTI, mcSMT and NODDI models to the 
equivalent g-ratio measured using gold standard histology techniques in 
mouse models. All three methods showed a moderate linear corre-
spondence. It is important to note that the fixed diffusivities of NODDI 
had to be adjusted empirically for the ex vivo data. Another interesting 
finding was that a simplified g-ratio model, in which the extra-axonal 
volume fraction was assumed to be zero, such that AVF = 1 – MVF, 
performed equally well to the above mentioned diffusion signal models. 
The conclusions from this finding could be quite radical, i.e. that it is not 
necessary to measure both diffusion MRI and myelin markers to estimate 
changes in g-ratio across a strongly myelinating process. However, again 
caution is required since the gold-standard g-ratio (measured by his-
tology) did not account for the contribution of unmyelinated axons, 
which the MRI g-ratio is also expected to depend on. Finally, it is 
important to highlight that, to date, no human specimen has been used 
to validate the g-ratio. This, however, would be a crucial step in linking 
ex vivo histology with our target in vivo application, i.e. g-ratio mapping 
in the human brain. 

3.4.2. MVF 
Here we discuss comparisons between myelin-sensitive MRI-based 

metrics and the gold standard MVF measured via histology that have 
been carried out in the context of g-ratio mapping. In early work, Stikov 
et al. compared the PSR estimated via MRI with the MVF estimated from 
electron microscopy in the corpus callosum of a macaque (Stikov et al., 
2015). They did not find a significant relationship, perhaps due to 
limited myelin-related variance present in the data. Using mouse models 
spanning hypo- and hyper-myelinated conditions has allowed a broader 
variance in myelination to be investigated (West et al., 2018b). West 
et al. used this approach to explore the relationship between the histo-
logical MVF, again derived from electron microscopy, and MRI-based 
measures in the same animals made using both MWI and qMT tech-
niques (West et al., 2018b). They demonstrated a linear correlation 
between the MVF and both the MWF (r = 0.81) and the BPF (r = 0.84). 
These metrics have shown similar correlations with an MR-derived MVF, 
though the exact degree of correlation depended on the details of the 
MVF calibration (Jung et al., 2018; West et al., 2018b). Berman et al. 
(Berman et al., 2018) used data from the same study to explore the 
dependence of the MTV on MVF. Unlike the typical quantification 
approach used in vivo, this ex vivo MTV measure was derived from a PD 
estimate obtained by extrapolating the MWI data to a TE of 0 ms. A 
linear dependence on MVF was also demonstrated for this ex vivo MTV 
measure (R2 = 0.74). While these ex vivo observations of linear depen-
dence of myelin-sensitive MR metrics on MVF lend credence to the 
calibration approach investigated in Section 3.1, they nonetheless 
reinforce the need for calibration since none show an offset-free 1:1 
relationship. The previously outlined caveats regarding the translation 
of the methods from ex vivo to in vivo experiments must also be borne in 
mind. 

3.4.3. AVF 
Validation of AVF presents some distinct challenges. The AVF esti-

mated from diffusion-based metrics is sensitive to the pool of myelinated 
axons but also influenced by the unmyelinated axons via AWF (Beaulieu 
and Allen, 1994a, 1994b; Beaulieu, 2009; Jones, 2010) and non-myelin 
macromolecules via the extra-cellular volume fraction (EVF), i.e. AVF =

(1 − (MVF + EVFNM) )AWF. By contrast, gold standard EM-based 
assessment of volume fractions often focus on the myelinated axons 
only (Kelm et al., 2016; West et al., 2018b, 2018a; Zaimi et al., 2018; 
Tabarin et al., 2019). The myelin sheath provides protection against 
autolysis and acts as a contrast-enhancer for microscopy, making 
myelinated axons likely to be present and more easily detectible than 
unmyelinated axons (Olivares et al., 2001). In 2D EM, unmyelinated 
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axons can also be confused with non-neuronal processes from cells like 
astrocytes or microglia. Ideally, a high-resolution microscopy approach 
combined with a neuron-specific stain, e.g. for neurofilaments, should 
be used to assess the AVF by encompassing all axons. (Jelescu et al., 
2016b) compared MRI-based AWF with a histological counterpart (via 
Eq. (2)), including both myelinated axons and an estimate of unmy-
elinated axons, in mouse models with different degrees of myelination. 
They found a linear relation, though not a 1:1 correspondence. This is an 
indication that MRI-based AWF also needs to be calibrated. 

4. Conclusion and outlook 

This review provides methodological background for the MRI tech-
niques pertinent to aggregate g-ratio weighted mapping with the aim of 
improving understanding of the currently used biomarkers, as well as 
providing insight into the potentials and particularly the pitfalls. G-ratio 
weighted mapping has the potential to achieve non-invasive mapping of 
this functionally-relevant microstructural parameter by utilising the 
strength of multi-contrast quantitative MRI and biophysical models (also 
known as in vivo histology using MRI (Weiskopf et al., 2015)). The main 
take-home messages of this review are that: (1) to fully benefit from the 
advantages of the aggregate g-ratio model, further work on a more 
appropriate calibration method is necessary to enable simultaneous 
estimation of both the slope and offset of the relationship between MRI 
markers and the true MVF; (2) more ex vivo histology gold standard 
measurements of human brain tissue are required to assess the typical 
range of MR g-ratio values that can be expected in vivo, (3) the quest to 
find the most appropriate MRI biomarkers for MVF and AVF for the in 
vivo situation is ongoing. In particular, there is currently a lack of vali-
dation studies for biomarkers of the AVF compartment using 
diffusion-based metrics. A major challenge here will be the estimation of 
the contribution to the AVF from unmyelinated axons (and cells 
potentially) via histology. 

Other models that combine WMTI parameters and fibre dispersion 
(as defined by Watson distribution, e.g., in NODDI) (Jelescu et al., 2015; 
Jespersen et al., 2018) might have the potential to combine the sensi-
tivity of WMTI to compartmental diffusivities with the less strict 
assumption about fibre alignment of the NODDI model. However, they 
suffer from model-inherent degeneracies (Jelescu et al., 2016a). One 
proposed solution to this degeneracy is to combine linear encoding 
schemes with planar or spherical diffusion sequences (Reisert et al., 
2018; Coelho et al., 2019). A few studies have compared the diffusion 
anisotropy and intra-cellular signal fraction from linear diffusion 

weighting with planar diffusion weighting sequences: (Henriques et al., 
2019) did this ex vivo in mice and (Mohammadi et al., 2017) did it in vivo 
in humans. However, these techniques have not yet been used for 
aggregated g-ratio weighted imaging. Another study has revealed a 
one-to-one correspondence between a simplified NODDI model and the 
mean diffusivity and fractional anisotropy as measured with DTI, dub-
bed NODDI-DTI (Edwards et al., 2017). NODDI-DTI might help to link 
the models of g-ratio mapping studies based on a standard DTI protocol 
to those models based on more advanced diffusion MRI protocols. 
However, NODDI-DTI has also not yet been applied to g-ratio mapping. 

Future directions might also include the use of generative signal 
models that directly depend on the MR g-ratio (e.g., (Wharton and 
Bowtell, 2012, 2013; Papazoglou et al., 2019)) to allow its extraction 
(Tendler et al., 2015; Drakesmith et al., 2019b), or alternatively esti-
mating the g-ratio from a multi-compartment GRE signal model (Tha-
paliya et al., 2018, 2020) or solely using diffusion MRI measurements 
(Jelescu et al., 2015; Novikov et al., 2019). A great advantage of these 
techniques is that they do not depend on combining two different MRI 
contrasts but can instead estimate the MR g-ratio directly from a single 
contrast. However, further investigations are required to test their val-
idity. New approaches that promise greater specificity to myelin (e.g. 
ihMT (Varma et al., 2015; Ercan et al., 2018; Duhamel et al., 2019)) and 
intra-axonal (Shemesh et al., 2016) compartments may also improve our 
capacity to directly map the g-ratio in the human brain in vivo. 
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Appendix A. Ex vivo simulation experiment 

Methods 

To generate a realistic range of ground truth values for the MVF and AVF, we fitted the histology-based MVF and AVF values reported in (West 
et al., 2018b, 2018a) using a heuristic relation between AVF and MVF (Fig. S1a, Eq. (S1)). Then, we used Eq. (S2) to generate the ground truth g-ratio 

values (gGT, which ranged from 0.77 to 0.90, Fig. S1b).To generate the simulated gMRI, we used: gMRI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − M

M+AVFGT

√
with AVFGT being the ground 

truth AVF and M being the MRI based myelin marker. To generate the MRI-based myelin marker, we used the linear relationships reported in (West 
et al., 2018b) between the histological MVF (here: the ground truth MVF) and three myelin biomarkers: BPF = 0.45 MVF + 0.086 (Fig. 5a5), fMW =

0.89 MVF − 0.016 (Fig. 5b), and MTVMWI = 0.75 MVF − 0.047 (Fig. 5c6). Note that the calibration of MWF was independent of the experimental data 
in (West et al., 2018b) but based on literature values from an independent experiment. Therefore, fMW was used in the following simulations instead of 
MWF. On the other hand, the calibrated BPF was estimated using the experimental data in (West et al., 2018b). Also note that the MTVMWI requires an 
intrinsic calibration to normalize the water content (see Section 2.2.1). 

In this simulation experiment, we compared gGT with the non-calibrated g-ratio values (gnone
MRI ) and with the calibrated g-ratio values (gSPC

MRI) using 

5 Note that the linear equation reported in Fig. 7 (West et al., 2018b) had a negative offset, i.e.: BPF = 0.45 MVF − 0.086. But, this is assumed to be in error since it 
must be positive to describe the black curve.  

6 This linear equation was generated from the normalized water content estimated from MWI reported in Fig. 8 (West et al., 2018b) and the conversion to MTVMWI 

was done according to (Berman et al., 2018). 
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either the g-ratio (Fig. 6b,e) or MVF (Fig. 6c,f) single-point calibration (SPC) methods (depicted as scatter in Fig. 6a–c and Bland-Altman plots in 
Fig. 6d–f). The SPC-reference values were based on the average in control mice (black symbols in Fig. S1: MVFREF ≈ 0.175 and gREF ≈ 0.797). The 
index MRI described the myelin biomarker that was used to generate the g-ratio: i.e. gBPF used BPF (blue crosses), gfMW used fMW (green crosses), and 
gMTVMWI used MTVMWI (black crosses). When calculating the g-ratios, an upper and lower limit was applied meaning that if g2

MRI > 1, the g-ratio value 

was set to one (because 
(

1 − MVF
FVF

)

≤ 1) and if g2
MRI < 0, the g-ratio was set to zero (because 

(

1 − MVF
FVF

)

≥ 0). In the results, we report the bias and error 

of the Bland-Altman analyses relative to the dynamic range of simulated ground truth g-ratios: dynGT = max
(
gGT

)
− min

(
gGT

)
= 0.124.

Results 

The results are summarized in Fig. 6 and Table A1 (in Appendix A). Without calibration, the amplitude of the bias was smallest for the BPF-based g- 
ratio (23.0 %) and largest for the MTV-based g-ratio (− 82.7 %). The error was smallest for the MWF-based g-ratio (13.3 %), moderately larger for the 
MTV-based g-ratio (20.0 %) and largest for the BPF-based g-ratio (55.1 %). Regardless of single point calibration method (i.e. MVF or g-ratio reference) 
the calibration reduced the bias for the MWF-based g-ratio (≈ − 10 %) and the MTV-based g-ratio (≈− 22 %) but increased it for the BPF-based g-ratio 
(≈ 30 %). Importantly, the calibration moderately increased the error for MWF-based g-ratio (≈ 19 %) and substantially for the MTV-based g-ratio (≈
94 %) but had almost no effect on the BPF-based g-ratio (≈ 56 %). Independent of the calibration, the BPF-based g-ratio showed negative correlation to 
the ground truth g-ratio, which is caused by the relatively weak dependence of BPF on myelin (Fig. 5a). Note that the abrupt change in the slopes of the 
MTV-based g-ratio values in Fig. 6 (black crosses) were due to reaching the upper limit for the MR g-ratio (i.e. the calibration led to a ceiling effect for 
this biomarker). 

The relation between MVF and AVF from histology 

In this simulation, we used electron microscopy (EM) data in the corpus callosum of mice with hypo- and hyper-myelination as well as in control 
mice as previously published in (Kelm et al., 2016; West et al., 2018a, 2018b) to establish a heuristic relation between the AVF and the MVF. The 
functional dependence between AVF and MVF (Eq. (S1) in Fig. S1a) recapitulates the relationship between number of myelin lamellae and axon 
diameter reported in (Berthold et al., 1983). It is important to note that the heuristic relation in Fig. S1a might hold only for the investigated model 
mice here and is not necessarily transferable to other scenarios (e.g. variation in healthy white matter of human brains). 

Appendix B. Limitations and abbreviations 

Table A3 

Table A1 
The relative bias and error introduced by single-point calibration with a reference g-ratio (3rd row) or MVF (4th row) as assessed by Bland-Altman analysis (Fig. 6) for 
three different myelin biomarkers: Bound Pool Fraction (BPF, 2nd column), calibrated Myelin Water Fraction (fMW, 3rd column), and Macromolecular Tissue Volume 
(MTV, 4th column). The reference values are noted in the last column. Bias is defined as the mean difference 

〈
δg
〉

while error is defined as the interval between 
+/-1.96 〈stdδ〉 with δg = gGT − gMRI. Here, bias and error are expressed as a percentage of the dynamic range of the ground truth g-ratios: dynGT = max⁡

(
gGT

)
−

min⁡
(
gGT

)
= 0.124.  

Calibration 
BPF  fMW  MTVMWI  

Reference value 
Bias [%] Error [%] Bias [%] Error [%] Bias [%] Error [%]

none 23.0  55.1  − 31.9  13.3  − 82.7  20.0   
g-ratio 29.8  55.7  − 9.9  19.3  − 21.5  93.6  0.797  
MVF 30.1  55.7  − 10.0  19.3  − 21.8  93.6  0.175   

Table A2 
This table summarizes limitations of MRI-based techniques that have been used for MVF and AWF (FVF) measurement in the context of g-ratio mapping.   

Limitations of the AWF estimation approach (LA) 

LA.1 Assumes parallel fibres and thus can be applied only in regions where this assumption is not violated (typically it has been applied in the corpus callosum). 
LA.2 The TFD (Reisert et al., 2013) has been assumed to be proportional to the fibre volume fraction because the model does not distinguish between fibre and axonal 

compartments. It relies on a tractography algorithm and thus inherits the associated limitations. G-ratios based on this method show a larger scan-rescan variability as 
compared to NODDI-based g-ratios (Ellerbrock and Mohammadi, 2018a). 

LA.3 NODDI and mcSMT use the tortuosity model to relate the perpendicular extra-axonal diffusivity to the parallel extra-axonal diffusivity scaled by “one minus the neurite 
density”: (DE,⊥= (1 − ν)DE,||). Moreover, NODDI and mcSMT impose a one-to-one scaling between the intra- and extra-cellular parallel diffusivities: DA,|| = DE,||.  

LA.4 
NODDI fixes all diffusivities to a constant value (for in vivo healthy adults the diffusivities are usually assumed to be: DA,|| = DE,|| =

1.7μm2

ms 
and D0 =

3μm2

ms
).  

LA.5 The WMTI model assumes parallel fibres and thus can applied only in regions where this assumption is not violated (typically it has been applied in the corpus callosum, but 
whether the model assumptions are sufficiently met there is unclear). 

LA.6 These studies provided not sufficient information to assess the specific implementation of the diffusion model.  
Limitation of the MVF estimation approach (LM) 

LM.1 Requires a conversion factor to convert MRI-based myelin marker to the myelin volume fraction, which is done via histological data in different species. If this conversion 
factor is incorrect, the g-ratio will not be decoupled from the FVF (Stikov et al., 2015). 

LM.2 MTsat depends not only on the bound pool fraction but also on the rate of exchange, k, between the bound and free pools. Moreover it is a semi-quantitative measure because 
it depends on the particular off-resonance pulse used in the sequence, most notably its power and offset frequency (Helms et al., 2008). 

LM.3 Results in biased (over-)estimates (West et al., 2019) with artifactually high precision (West et al., 2019; Lankford and Does, 2013). 

(continued on next page) 
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Appendix C. Supplementary data 

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jneumeth.2020.108990. 
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Limitations of the AWF estimation approach (LA) 

LM.4 Requires estimation of the proton density and therefore a normalisation factor, e.g. the proton density in CSF. The optimal choice of the normalisation region will depend on 
the acquisition scheme, and will dictate the precision and accuracy of the MTV estimate. The modulation of the receiver coil’s sensitivity also needs to be removed, either by 
constrained model fitting or measurement (Mezer et al., 2016). 

LM.5 The MTR suffers from the same limitations as MTsat, but retains dependence on both T1 and transmit-field inhomogeneities. These additional dependencies make it more 
prone to error as demonstrated e.g. in (Callaghan et al., 2015). 

LM.6 

When fitting magnitude multi-echo data with long echo times, significant biases can be introduced by the Rician noise distribution that can greatly alter the measured T2(*) 
values (Bjarnason et al., 2013). 
Fitting results are sensitive to the choice of the number of echoes acquired, their TEs and the echo spacing, e.g. higher apparent T2(*) and smaller fractional contributions 
from short T2 species as the first echo is increased (Whittall et al., 1999; Cercignani et al., 2018). A broad range of echo times are required to fully characterise both long and 
short T2 components. 
Short echo times are required to acquire a signal with appreciable contribution from myelin, which is particularly problematic for gradient echo imaging due to the very short 
T2* of myelin. 

LM.7 Error can result from the sensitivity to B1+ effects, both inhomogeneity, which can lead to stimulated echoes distorting the decay, and slice profile effects for 2D acquisitions 
(Lebel and Wilman, 2010). Power deposition can also be problematic, particularly at UHF. 

LM.8 Sensitivity to B0 inhomogeneity can bias model fits (Nam et al., 2015a). Phase errors caused by breathing and eddy currents can also lead to errors if uncorrected (Nam et al., 
2015b). 

LM.9 Assumes a two pool model, which is a simplification, but likely sufficient to be supported by in vivo data acquired in the human brain (Levesque and Pike, 2009). 
LM.10 The model validity is unknown.  

Table A3 
MRI Methodological Abbreviations.  

Myelin Imaging Techniques 
MWI Myelin Water Imaging 
MET2(*) Multi-Exponential fitting to map compartment-specific T2(*) 
qMT Quantitative Magnetisation Transfer 
bSSFP Balanced Steady State Free Precession 
SPGR SPoiled Gradient Recalled echo 
mcDESPOT Multi-Compartment Driven Equilibrium Single Pulse Observation of T1 and T2  

Diffusion Imaging Techniques 
DWI Diffusion Weighted Imaging 
DTI Diffusion Tensor Imaging 
NODDI Neurite Orientation and Dispersion Diffusing Imaging 
CHARMED Composite Hindered And Restricted Model of Diffusion 
WMTI White Matter Tissue Integrity 
TFD Tract Fibre Density 
mcSMT Multi-Compartment Spherical Mean Technique  

Biomarker and volume fractions 
BPF (f) Bound pool fraction Bound pool magnetisation relative to the combined bound and free pool magnetisation amplitudes as measured using qMT. 
PSR (F) Pool size ratio Bound pool magnetisation relative to free pool magnetisation amplitude as measured using qMT. 
AVF Axonal volume fraction The fraction of the imaging voxel volume that is intra-axonal. 
AWF Axonal water fraction The fraction of the MRI water signal originating from the axonal compartment. 

MVF Myelin volume fraction 
The fraction of the imaging voxel volume associated with myelin. This includes both the myelin itself and the water trapped 
between its bilayers. 

MWF Myelin water fraction The fraction of the MRI water signal identified as exhibiting faster relaxation and attributed to the water trapped within the 
myelin sheath. 

EVF Extra cellular volume fraction The fraction of the imaging voxel volume that originates outside the fibre. 
FVF Fibre volume fraction The fraction of the imaging voxel volume that originates outside the fibre. 
PD Proton density The concentration of MR-visible water relative to the concentration in the same volume comprised entirely of water. 

MTV(F) 
Macromolecular tissue volume 
(fraction) The (fractional) volume of the imaging voxel that is comprised of macromolecules, i.e. that is not MR-visible water. 

MTsat Magnetisation transfer saturation The steady state signal loss as a result of magnetisation transfer between the bound and free pools.  
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Volz, S., Nöth, U., Jurcoane, A., Ziemann, U., Hattingen, E., Deichmann, R., 2012. 
Quantitative proton density mapping: correcting the receiver sensitivity bias via 
pseudo proton densities. Neuroimage 63, 540–552. 

Wang, Y., Chen, Y., Wu, D., Wang, Y., Sethi, S.K., Yang, G., Xie, H., Xia, S., Haacke, E.M., 
2018. STrategically acquired Gradient Echo (STAGE) imaging, part II: correcting for 
RF inhomogeneities in estimating T1 and proton density. Magn. Reson. Imaging 46, 
140–150. 

Warntjes, J.B.M., Dahlqvist, O., Lundberg, P., 2007. Novel method for rapid, 
simultaneous T1, T2*, and proton density quantification. Magn. Reson. Med. 57, 
528–537. 

Warntjes, M., Engström, M., Tisell, A., Lundberg, P., 2016. Modeling the presence of 
myelin and edema in the brain based on multi-parametric quantitative MRI. Front. 

Neurol. 7. Available at: https://www.frontiersin.org/articles/10.3389/fneur.20 
16.00016/full [Accessed May 17, 2020].  

Webb, S., Munro, C.A., Midha, R., Stanisz, G.J., 2003. Is multicomponent T2 a good 
measure of myelin content in peripheral nerve? Magn. Reson. Med. 49, 638–645. 

Weiger, M., Froidevaux, R., Baadsvik, E.L., Brunner, D.O., Rösler, M.B., Pruessmann, K. 
P., 2020. Advances in MRI of the myelin bilayer. NeuroImage 217, 116888. 

Weiskopf, N., Suckling, J., Williams, G., Correia, M.M., Inkster, B., Tait, R., Ooi, C., 
Bullmore, E.T., Lutti, A., 2013. Quantitative multi-parameter mapping of R1, PD*, 
MT and R2* at 3T: a multi-center validation. Front. Neurosci. 7, 95. 

Weiskopf, N., Mohammadi, S., Lutti, A., Callaghan, M.F., 2015. Advances in MRI-based 
computational neuroanatomy: from morphometry to in-vivo histology. Curr. Opin. 
Neurol. 28, 313–322. 

West, K.L., Kelm, N.D., Carson, R.P., Does, M.D., 2016. A revised model for estimating g- 
ratio from MRI. Neuroimage 125, 1155–1158. 

West, K.L., Kelm, N.D., Carson, R.P., Alexander, D.C., Gochberg, D.F., Does, M.D., 2018a. 
Experimental studies of g-ratio MRI in ex vivo mouse brain. Neuroimage 167, 
366–371. 

West, K.L., Kelm, N.D., Carson, R.P., Gochberg, D.F., Ess, K.C., Does, M.D., 2018b. Myelin 
volume fraction imaging with MRI. Neuroimage 182, 511–521. 

West, D.J., Teixeira, R.P.A.G., Wood, T.C., Hajnal, J.V., Tournier, J.-D., Malik, S.J., 2019. 
Inherent and unpredictable bias in multi-component DESPOT myelin water fraction 
estimation. NeuroImage 195, 78–88. 

Wharton, S., Bowtell, R., 2012. Fiber orientation-dependent white matter contrast in 
gradient echo MRI. PNAS 109, 18559–18564. 

Wharton, S., Bowtell, R., 2013. Gradient echo based fiber orientation mapping using R2* 
and frequency difference measurements. NeuroImage 83, 1011–1023. 

Whittall, K.P., MacKay, A.L., 1989. Quantitative interpretation of NMR relaxation data. 
J. Magn. Reson. 84, 134–152, 1969.  

Whittall, K.P., Mackay, A.L., Graeb, D.A., Nugent, R.A., Li, D.K.B., Paty, D.W., 1997. In 
vivo measurement of T2 distributions and water contents in normal human brain. 
Magn. Reson. Med. 37, 34–43. 

Whittall, K.P., MacKay, A.L., Li, D.K.B., 1999. Are mono-exponential fits to a few echoes 
sufficient to determine T2 relaxation for in vivo human brain? Magn. Reson. Med. 
41, 1255–1257. 

Wiggermann, V., Vavasour, I.M., Kolind, S.H., MacKay, A.L., Helms, G., Rauscher, A., 
2020. Non-negative least squares computation for in vivo myelin mapping using 
simulated multi-echo spin-echo T2 decay data. NMR Biomed. e4277. 

Wolff, S.D., Balaban, R.S., 1989. Magnetization transfer contrast (MTC) and tissue water 
proton relaxation in vivo. Magn. Reson. Med. 10, 135–144. 

Yiannakas, M.C., Kearney, H., Samson, R.S., Chard, D.T., Ciccarelli, O., Miller, D.H., 
Wheeler-Kingshott, C.A.M., 2012. Feasibility of grey matter and white matter 
segmentation of the upper cervical cord in vivo: A pilot study with application to 
magnetisation transfer measurements. NeuroImage 63, 1054–1059. 

Yu, F., Fan, Q., Tian, Q., Ngamsombat, C., Machado, N., Bireley, J.D., Russo, A.W., 
Nummenmaa, A., Witzel, T., Wald, L.L., Klawiter, E.C., Huang, S.Y., 2019. Imaging 
G-Ratio in multiple sclerosis using high-gradient diffusion MRI and macromolecular 
tissue volume. AJNR Am. J. Neuroradiol. 40, 1871–1877. 

Zaimi, A., Wabartha, M., Herman, V., Antonsanti, P.-L., Perone, C.S., Cohen-Adad, J., 
2018. AxonDeepSeg: automatic axon and myelin segmentation from microscopy 
data using convolutional neural networks. Sci. Rep. 8, 3816. 

Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: 
practical in vivo neurite orientation dispersion and density imaging of the human 
brain. Neuroimage 61, 1000–1016. 

Zimmerman, J.R., Brittin, W.E., 1957. Nuclear magnetic resonance studies in multiple 
phase systems: lifetime of a water molecule in an adsorbing phase on silica gel. 
J. Phys. Chem. 61, 1328–1333. 

S. Mohammadi and M.F. Callaghan                                                                                                                                                                                                        

http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0620
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0620
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0620
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0625
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0625
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0625
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0625
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0630
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0630
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0630
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0630
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0635
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0635
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0640
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0640
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0640
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0640
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0645
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0645
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0645
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0645
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0650
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0650
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0650
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0650
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0655
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0655
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0655
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0660
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0660
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0660
https://www.frontiersin.org/articles/10.3389/fnins.2020.00271/full
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0670
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0670
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0675
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0675
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0675
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0680
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0680
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0680
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0685
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0685
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0685
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0690
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0690
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0690
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0695
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0695
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0695
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0695
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0700
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0700
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0700
https://www.frontiersin.org/articles/10.3389/fneur.2016.00016/full
https://www.frontiersin.org/articles/10.3389/fneur.2016.00016/full
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0710
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0710
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0715
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0715
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0720
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0720
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0720
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0725
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0725
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0725
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0730
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0730
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0735
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0735
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0735
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0740
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0740
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0745
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0745
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0745
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0750
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0750
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0755
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0755
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0760
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0760
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0765
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0765
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0765
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0770
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0770
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0770
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0775
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0775
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0775
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0780
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0780
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0785
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0785
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0785
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0785
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0790
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0790
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0790
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0790
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0795
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0795
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0795
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0800
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0800
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0800
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0805
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0805
http://refhub.elsevier.com/S0165-0270(20)30413-1/sbref0805

	Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging
	1 Introduction
	2 Methodology
	2.1 The aggregate g-ratio model
	2.2 Myelin volume fraction
	2.2.1 MWF based on myelin water imaging
	2.2.2 BPF based on magnetisation transfer
	2.2.3 Protocol considerations for MVF mapping

	2.3 Axonal volume fraction and fibre volume fraction
	2.3.1 FVF from DTI data
	2.3.2 AVF from multi-shell diffusion MRI data
	2.3.3 Protocols for AVF mapping


	3 Challenges for aggregated g-ratio mapping
	3.1 Model validity
	3.1.1 MVF models
	3.1.2 AVF models

	3.2 Calibration for MVF
	3.2.1 What we can learn from the simulation experiment

	3.3 Unification of multi-modal data
	3.4 Validation of g-ratio mapping
	3.4.1 g-ratio
	3.4.2 MVF
	3.4.3 AVF


	4 Conclusion and outlook
	Acknowledgements
	Appendix A Ex vivo simulation experiment
	Methods
	Results
	The relation between MVF and AVF from histology

	Appendix B Limitations and abbreviations
	Appendix C Supplementary data
	References


