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Theta rhythmicity governs human behavior and
hippocampal signals during memory-dependent
tasks
Marije ter Wal 1✉, Juan Linde-Domingo 1,2, Julia Lifanov1, Frédéric Roux1, Luca D. Kolibius1,3,

Stephanie Gollwitzer4, Johannes Lang 4, Hajo Hamer 4, David Rollings5, Vijay Sawlani5,

Ramesh Chelvarajah5, Bernhard Staresina 1,6, Simon Hanslmayr 1,3 & Maria Wimber 1,3✉

Memory formation and reinstatement are thought to lock to the hippocampal theta rhythm,

predicting that encoding and retrieval processes appear rhythmic themselves. Here, we show

that rhythmicity can be observed in behavioral responses from memory tasks, where parti-

cipants indicate, using button presses, the timing of encoding and recall of cue-object

associative memories. We find no evidence for rhythmicity in button presses for visual tasks

using the same stimuli, or for questions about already retrieved objects. The oscillations for

correctly remembered trials center in the slow theta frequency range (1-5 Hz). Using intra-

cranial EEG recordings, we show that the memory task induces temporally extended phase

consistency in hippocampal local field potentials at slow theta frequencies, but significantly

more for remembered than forgotten trials, providing a potential mechanistic underpinning

for the theta oscillations found in behavioral responses.
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In everyday life, our brains receive a virtually never-ending
stream of information that needs to be stored for future
reference or requires integrating with pre-existing knowledge.

The hippocampus is the hub where encoding and retrieval of
information is coordinated (for reviews see refs. 1–3). Information
streams within hippocampus and between hippocampus and
cortex are thought to be orchestrated by the phase of the theta
rhythm4–6. Here, we ask whether theta oscillations clock
responses during memory tasks, producing rhythmicity in
behavior.

During memory formation, information processed by cortical
regions is sent to the hippocampus and presumably encoded in
the form of a sparse, associative index. Conversely, during
retrieval, cues trigger the completion of existing patterns encoded
in hippocampus, eliciting reinstatement of the memory in asso-
ciated cortical regions. Both memory encoding and retrieval have
been associated with changes in oscillatory patterns in hippo-
campal local field potentials (LFPs). The LFP of rodents is
dominated by oscillations in the 4–8 Hz theta frequency band,
while a broader low-frequency band is apparent in humans, with
frequencies in intracranial recordings often peaking between 1
and 5 Hz during memory tasks7–10. Several studies have shown
that encoding of later-remembered items is accompanied by
higher theta power compared to later-forgotten items9,11–13, but
see ref. 14. Similarly, phase–amplitude coupling between theta and
gamma oscillations increases during successful encoding12,15,16.
Finally, spiking activity of hippocampal neurons was reported to
lock to the LFP at theta frequencies17 specifically during suc-
cessful encoding18.

During memory retrieval, theta power increases in cortical
areas that are involved in reinstatement19 and synchronization
between these areas and hippocampus increased at theta
frequencies20–24. Intriguingly, recall signals in hippocampus
precede reinstatement in the cortex by about one theta cycle,
suggesting hippocampus and cortex communicate within theta
“windows” during memory recall3. In recent human studies,
reinstatement of remembered associations was found to be theta-
rhythmic25, and remembered spatial goal locations were repre-
sented at different phases of the theta rhythm26,27.

Theoretical work in the memory domain proposes that
destructive interference between new information entering hip-
pocampus and stored, reactivated information is reduced by
locking to opposing theta phases28. Indeed, strengthening of
synaptic connections (long-term potentiation) is more likely to
occur around the trough of theta cycles29,30, while synaptic
depression is more pronounced at the peak30. In line with these
findings, rodent work suggests that communication of new
information from cortex to hippocampus predominantly occurs
around the theta trough, while retrieval-related spiking activity in
hippocampus is observed around the theta peak31–34. Intracranial
recordings from epilepsy patients suggest similar network
dynamics, with entorhinal cortex and hippocampus synchroniz-
ing their theta phase during encoding, while hippocampus locked
to the downstream subiculum during retrieval35. Furthermore,
optogenetically suppressing neural activity during task-irrelevant
phases of the theta oscillation improves performance36, demon-
strating that the theta phase has a functional link to memory
performance.

Consistent locking of encoding and retrieval processes to the
theta rhythm predicts that these processes appear as rhythmic.
Rhythmicity might therefore be visible in behavioral markers that
depend on long-term memory. To our knowledge, no work has
tested for such rhythmicity in memory-dependent tasks. However,
recent studies on attentional scanning in both monkeys and
humans suggest that oscillatory activity can manifest in behavioral
performance, reflecting periodic switches in attended locations37–42.

Here, we ask whether the presumed clocking of neural memory
processes by the theta rhythm translates into an observable
oscillatory modulation of behavior. We analyze responses from
hundreds of participants completing a memory task, in which
they press buttons to indicate the exact time points at which they
formed or recalled associative memories. We find significant
oscillations in both encoding and retrieval responses, with peak
frequencies in the lower theta frequency band (1–5 Hz8,9). No
oscillatory signatures are observed in button presses from task
phases that do not depend on memory. Moreover, incorrect trials
do not lock to the rhythm identified for correct trials. To
underpin our behavioral findings with a neural mechanism, we
analyze hippocampal LFPs recorded in epilepsy patients. These
exhibit temporally extended phase locking in the low theta range
during memory-dependent task phases, for correct but not
incorrect trials. Finally, we show that encoding and retrieval trials
show maximal phase alignment at opposite phases of the theta
rhythm. Together, our results demonstrate that theta-rhythmicity
of memory processing can be detected in human behavior and
direct hippocampal recordings.

Results
Button presses indicate the timing of memory-dependent and
-independent processing. In this study we asked whether sig-
natures of hippocampal rhythms can be found in behavioral
responses during memory encoding and retrieval. We analyzed
the data from 226 participants who performed associative
memory tasks, consisting of multiple blocks with encoding, dis-
tractor, and retrieval phases (Fig. 1A). During encoding phases,
participants viewed a cue (verb or scene image), followed by a
stimulus (photo or drawing of an object). They pressed a button
when they made an association between cue and stimulus, pro-
viding us with an estimate of the timing of memory formation
(Encoding button press). During retrieval phases, cues were
shown in random order and participants were asked to remember
the associated objects. Participants in group 1 (n= 71) indicated
the moment they remembered the object by pressing a button
(Retrieval button press) and then answered one or two catch
questions (e.g., “animate or inanimate?”) about the already
reinstated object (Catch-after-retrieval button press). Participants
in group 2 (n= 155) were shown the catch question before the
cue appeared. This group mentally reinstated the object and
pressed the button as soon as they were able to answer the
question (Catch-with-retrieval button press), indicating the time
of subjective memory retrieval in this group. Each participant
memorized between 64 and 128 cue–object pairs. Objects, cues,
and catch questions varied between experiments; for details see
“Methods” and Supplementary Table 1.

In order to separate memory processes from perceptual task
elements, a separate group (group 3; n= 95) performed visual
control tasks using the same questions and objects (Fig. 1B).
Participants were shown a question (e.g., “animate or inanimate”)
followed by an object, and they answered the question by pressing
a button (Visual button press). Note that the button presses from
the visual task do not depend on episodic memory, as they
pertain to objects that are constantly visible. Answers to the catch
question for memory group 1 (Catch-after-retrieval button press)
are also not expected to rely on hippocampal memory retrieval,
since they are asked after objects are reinstated. Answering these
questions is, however, likely to rely on maintenance of the
retrieved object in working memory. We use the term memory-
dependent as relying on hippocampus-dependent associative
memory.

We analyzed performance of each participant based on the
catch questions. Participants who performed at chance level
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(binomial test) were excluded from further analyses (n= 12 for
memory task; n= 0 for visual task, Supplementary Fig. 1A). In
addition, 32 (1) participants with sufficient performance had a
low trial count for the encoding (retrieval) phase due to trial time-
outs, and hence were excluded for encoding (retrieval) phase
analyses (Supplementary Fig. 1A). In general, participants
responded well within the allotted response times (Supplementary
Fig. 1C and Supplementary Table 3). The included participants
(Fig. 1C) had an average performance of 84.0% (range
56.3–100%) for the memory groups and 96.3% (range
78.2–100%) for the visual group (Supplementary Fig. 1B). For
the number of responses and reaction times per task phase see
Supplementary Fig. 1 and Supplementary Table 3.

Oscillatory patterns can be detected in behavioral responses
using the O-score. The button presses from the memory tasks
provided us with estimates of when participants formed and
reinstated memories on each trial. Figure 2A shows the button
presses from all retrieval trials of one participant, as well as the
smoothed response density across trials. We asked whether the
response densities showed oscillations, as suggested by the trend-
removed trace in Fig. 2A (right), and whether these patterns
differed between memory-dependent and -independent task
phases.

To address this we used the Oscillation score43. This procedure
identifies the dominant frequency in the response time stamps,
and provides a normalized amplitude at this frequency: the O-
score. In brief, after removal of early and late outliers (Fig. 2B,
step I), we computed the O-score following the procedure in
ref. 43 (Fig. 2B, blue box): The auto-correlation histogram (ACH)
is computed for the button presses from correct trials and
smoothed with a Gaussian kernel (σ= 2 ms) to reduce noise. The
central peak of the ACH is removed. All remaining positive lags
are Fourier transformed, and the frequency with the highest
magnitude is found within a frequency range of interest (adjusted

per participant based on the signal length (lower bound) and
number of responses (upper bound), with a minimum of 0.5 Hz
and maximum of 40 Hz). The O-score is computed by dividing
the peak magnitude by the average of the entire spectrum.

The O-score indicates how much the spectral peak stands out,
but does not take into account the overall response structure
(gray trend curves in Fig. 2) and the limited number of data
points, which could introduce a frequency bias. To account for
this, we fitted a trend curve (Gamma distribution) for each
participant and generated 500 random series of button presses
based on this structure, with the same number of data points as
the original dataset (Fig. 2B, II, see “Methods” for details). We
computed the O-score at the peak frequency from the intact data
for each randomization, and Z-transformed the original O-score
against the 500 reference O-scores (Fig. 2B, III). This allowed us
to statistically assess the strength of the behavioral oscillation for
each participant and task phase, and perform second-level
statistical assessments across participants.

We validated the performance of the O-score and Z-scoring
methods using simulated data that mimicked the characteristics
of the behavioral dataset (Supplementary Note 2 and Supple-
mentary Fig. 14). This provided several important validations: (1)
when no or very weak oscillations were present in the simulated
data, the O-score was never significant at the population level; (2)
when the O-score reached significance for our simulated
populations, the O-score identified the correct frequency; and
(3) the O-score procedure performed well for different task
phases, despite differences in participant count, number of
responses, or average reaction time.

Behavioral responses oscillate at theta frequencies for memory-
dependent task phases. Significant O-scores were observed for
encoding and retrieval button presses from both versions of the
memory task (Fig. 3A), specifically Encoding (t(181)= 6.20,
p < 0.001); Retrieval (t(68)= 4.58, p < 0.001); and Catch-with-
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retrieval (t(143)= 5.08, p < 0.001; all Bonferroni-corrected for five
comparisons; effect sizes in Supplementary Table 5). Additionally,
the proportion of participants with significant O-scores was high
(Fig. 3B): 74.7% for Encoding, 69.6% for Retrieval, and 76.4% for
Catch-with-retrieval. On the other hand, no evidence for a
behavioral oscillation was found for memory-independent task
phases, with non-significant O-scores for the catch questions after
reinstatement and the visual task (Catch-after-retrieval:
t(69)= 1.69, p= 0.240; Visual: t(94)=−4.10, p= 1.00;
Bonferroni-corrected for five comparisons; the t-value captures
deviation from the reference-defined threshold; hence, both non-
significant and negative t-values signify lack of evidence for
oscillations). Note that the Catch-after-retrieval data were
obtained from the participants in memory task group 1, while the
Visual task was recorded in an independent group of participants
(see Fig. 1C). The proportion of participants with significant O-
scores was lower than for memory-dependent phases: 64.3% for
Catch-after-retrieval and 37.9% for the Visual task. Raw O-scores
showed a similar pattern across task phases (Supplementary
Fig. 4A).

To test whether memory-dependent task phases had signifi-
cantly higher O-scores than memory-independent phases, we

fitted a linear mixed-effects model to the Z-scored O-scores. Fixed
terms in this model were memory dependence and length of the
time series, which varied substantially between task phases
(Supplementary Fig. 1C); we included the intercept per subject as
random effect, to address potential dependencies due to
participants of the memory task contributing 2 or 3 data points.
We found strong support for an effect of memory dependency on
O-score, with significantly higher Z-scores for memory-
dependent than memory-independent task phases (Fig. 3A;
coefficient= 0.28; 95% CI: 0.19–0.36; t(556)= 6.55; p < 0.001).
This was unaffected by time series length (coefficient= 0.0022;
95% CI: −0.0035 to 0.0080; t(556)= 0.768; p= 0.443). Post hoc
(paired) t-tests confirmed these trends within memory groups 1
and 2, and demonstrated that the visual task had significantly
lower O-scores than all other task phases (Supplementary
Fig. 4B–D and Supplementary Table 4, effect sizes in Supple-
mentary Table 5). These trends were qualitatively similar within
all included experiments (see Fig. 4E) and were hence not driven
by a single experimental setup or stimulus set.

The high O-scores we found for memory-dependent task
phases are a strong indication of rhythmicity of behavior.
Interestingly, the peak frequencies of significant O-scores from
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memory-dependent task phases were non-uniformly distributed
(Kolmogorov–Smirnoff test for uniformity; Encoding:
D*= 0.395, p < 0.001; Retrieval: D*= 0.381, p < 0.001; Catch-
with-Retrieval: D*= 0.236, p < 0.001; corrected for five compar-
isons). Most participants showed peak frequencies (Fig. 3C)
between 1 and 5 Hz or harmonics of this range. These frequencies
align with the low theta band identified in human hippocampal
recordings during memory tasks8,9. Conversely, peak frequencies
were broadly distributed for Catch-after-retrieval and the Visual
task (Kolmogorov–Smirnoff test for uniformity; Catch-after-
Retrieval: D*= 0.158, p= 0.957; Visual: D*= 0.0894, p= 1.00;
corrected for five comparisons). To directly test for a difference
between the frequencies of memory-dependent and -independent
task phases, we fitted a linear mixed model to the frequencies of
significant O-scores, with memory dependency and time series
length as fixed effects, and participant as random effect. This
revealed that frequencies for memory-dependent task phases were
significantly lower than for memory-independent tasks (coeffi-
cient=−5.09; 95% CI: −7.52 to 2.67; t(371)= 6.55; p < 0.001,
post hoc tests in Supplementary Table 6). There was a small effect
of time series length on frequency (coefficient=−0.202; 95% CI:
−0.358 to 0.0461; t(371)=−2.55; p= 0.011), with higher

frequencies for memory-independence corresponding to shorter
time series. To ensure that the results were not amplified by the
lower-frequency limit in the O-score procedure, set to 1/3 of the
time series length, we loosened this bound to twice the time series
length and recomputed the O-scores. This produced similar
results (Supplementary Fig. 6; Catch-after-retrieval: t(69)= 0.908,
p= 0.917; Visual: t(94)=−6.20, p= 1.00; Bonferroni-corrected
for five comparisons), reaffirming that the identified difference
between memory-dependent and -independent task phases is not
caused by differences in response times.

Reaction times of incorrect trials are not locked to the beha-
vioral oscillation. The O-scores reported in Fig. 3 were based on
correct trials only. Due to a low number of incorrect trials, it was
not possible to establish whether incorrect trials show oscillatory
modulation. However, we were able to test whether incorrect
trials locked to the oscillation of the correct trials (correcting for
fitting bias, see below) for every participant with a significant O-
score. The instantaneous phase of the oscillation was determined
by smoothing and filtering the correct response trace around the
participant’s peak frequency (example in Fig. 2A, solid green line)
and performing a Hilbert transform. We then determined the
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phases at which the incorrect button presses occurred (Fig. 4,
purple lines). Similarly, we found the phase of each correct
response relative to all other correct trials, by recomputing the
instantaneous phase without the trial of interest, avoiding circu-
larity (Fig. 4, green). As expected, for all memory-dependent task
phases, correct trials more often occurred around the peak of the
oscillation (V-test for non-uniformity around 0°; Encoding:
V (11398)= 1861.1, p < 0.001; Retrieval: V (8036)= 1174.3,
p < 0.001; Catch-with-retrieval: V (23815)= 2847.5, p < 0.001;
Bonferroni-corrected for three comparisons; Note that the high
trial count can inflate test results). On the other hand, phase
distributions were uniform for incorrect trials (Encoding:
V (1270)= 44.1, p= 0.120; Retrieval: V (954)= 11.2, p= 0.911;
Catch-with-retrieval: V (5328)=73.8, p= 0.229; Bonferroni-
corrected for three comparisons). This suggests that incorrect
responses did not lock to the rhythm of the correct trials, while
correct responses were locked to the oscillation from other correct
trials, pointing to the behavioral relevance of the identified
oscillation. We did not perform this analysis for memory-
independent task phases, as we found no evidence for oscillations.

We next directly tested the phase modulation of correct versus
incorrect trials, accounting for potential biases caused by
differences in trial count and procedure. We shuffled correct
and incorrect trial labels 500 times per participant (i.e. keeping
the original trial counts and response times), and computed the
V-statistics of shuffled-correct and shuffled-incorrect trials as
described previously. The difference in phase modulation
between real-correct and real-incorrect responses was signifi-
cantly higher than expected based on the difference between the
shuffled-correct and -incorrect trials (Encoding: p < 0.002;
Retrieval: p < 0.002; Catch-with-retrieval: p < 0.002).

For participants with at least 10 incorrect trials we also
compensated for trial number biases by subsampling the number
of correct trials to the number of incorrect trials (repeated 100
times), and recomputing the phases of both the selected correct
and the incorrect trials relative to the remaining correct trials
(Fig. 4, right panels). This procedure also demonstrated
significantly higher phase modulation for correct than for
incorrect trials for each of the memory-dependent task phases

(two-tailed paired t-test; Encoding: t(51)= 4.07, p < 0.001, 95%
CI: <0.0001–0.14; Retrieval: t(38)= 5.41, p < 0.001, 95% CI:
<0.0001–0.024; Catch-with-retrieval: t(101)= 7.25; p < 0.001;
95% CI: <0.0001; Bonferroni-corrected for three comparisons).
In conclusion, all comparisons show that correct responses are
substantially more phase-locked to each other than to incorrect
trials. Note that we cannot rule out that incorrect trials lock to
each other at a different frequency. Combining these findings
with our previous analyses, our data suggest that correct trials
show substantial behavioral oscillations, but that incorrect trials
do not lock to this oscillation.

Increased phase locking of hippocampal LFPs during encoding
and retrieval. The data reported so far indicate that across trials,
memory-relevant behavioral responses fall onto a consistent
phase of a theta oscillation. The presence of such an oscillation,
determined on the basis of one response per trial, implies phase
consistency across trials in the neural oscillations in hippocampus
presumed to underly memory formation and reinstatement, as
previously shown by Kota et al.44, and Fell et al.45. We hypo-
thesized that this phase consistency, induced by events in the trial,
persists until the participant successfully encodes or retrieves the
memory (expected to slightly precede the button press).

To test these predictions, we recorded hippocampal LFPs in 10
epilepsy patients undergoing seizure monitoring using intracra-
nial EEG. These patients performed the same memory task as
healthy participants, and their behavioral data are included in the
previous results. We recorded from 42 Behnke–Fried micro-
electrodes located in hippocampus (Fig. 5A), which ensures a
truly local hippocampal signal, minimizing influence of volume
conduction from neighboring cortical regions and connections.
We wavelet-transformed the LFPs and computed the pairwise
phase consistency (PPC; ref. 46) across trials for every frequency
and time point. The PPC quantifies how similar the LFP phases
are across trials. We performed this analysis separately for cue-,
stimulus- and response-locked data and for correct (Fig. 5B) and
incorrect trials (Fig. 5C).

In line with our predictions, PPC across correct trials
significantly increased after stimulus onset for encoding, and
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after cue onset for retrieval trials (α= 0.05; cluster-based
permutation test against 100 time-shuffled datasets47). The
clusters of significantly increased PPC (red outlines in Fig. 5B)
covered a range of frequencies shortly after cue/stimulus onset,
but extended in time in a frequency band between 2 and 3 Hz.
This pattern was seen along the long axis of the hippocampus
(Supplementary Fig. 10B) and in both hemispheres (Supplemen-
tary Fig. 10C), and was also observed for individual patients

(Supplementary Fig. 9), resulting in a high consensus across
patients (Supplementary Fig. 10A). The PPC peak frequencies
and -values generally aligned with the frequencies and O-scores
found in the behavioral data of these patients (see Supplementary
Fig. 11). This lower theta cluster lasted up to the response
(Fig. 5D), and resulted in a significant response-locked PPC
cluster for retrieval (encoding showed increased but non-
significant response-locked PPC). PPC increases were also visible
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in the raw data (Supplementary Fig. 8B) and appeared as theta
oscillations in event-related potentials (Supplementary Fig. 8D),
confirming that these effects were not caused by changes in
baseline. Qualitatively similar PPC increases were found in
recordings from hippocampal macro contacts in the same
patients (Supplementary Note 1 and Supplementary Fig. 13).
Increases in phase consistency were accompanied by increased
power during retrieval, but not encoding and catch questions (see
Supplementary Fig. 8C), in line with44, suggesting that amplitude
and phase were modulated independently.

In line with the behavioral data, we found no significant
increases in PPC for incorrect trials, neither for encoding nor
retrieval. When comparing the PPC for correct and incorrect
trials within electrodes (cluster-based permutation test against
100 trial-shuffled reference data sets), we found that the PPC
increase after cue/stimulus onset in the 2–3 Hz frequency band
was significantly stronger for correct than for incorrect trials
(α= 0.05; black outlines in Fig. 5B, C). The intracranial
recordings therefore support our hypothesis that task events
induce temporally extended theta phase consistency in hippo-
campus across correct, but not incorrect trials. By showing that
behavioral responses indicating the timing of completed memory
encoding and retrieval were preceded by consistent hippocampal
theta phases, these findings suggest a potential mechanism for our
behavioral findings.

Encoding and retrieval occur at different phases of the theta
rhythm. The PPC analyses in Fig. 5 demonstrate that theta phases
are consistent across trials during both encoding and retrieval
phases of the memory task. The identification of phase con-
sistency allows us to ask whether the dominant phases of
encoding and retrieval trials differ, which is a prominent sug-
gestion in the computational literature28. To this end, we iden-
tified the time point and frequency at which PPC was maximal
for both stimulus- and response-locked trials during encoding,
and cue-locked and response-locked trials for retrieval, for each
patient. We then computed the phase differences between
encoding and retrieval at the corresponding frequencies and time
points for every electrode. Indeed, phase differences between
encoding and retrieval trials were non-uniformly distributed
around 250.7 ± 14.1° for cue/stimulus-locked trials (Rayleigh’s
Z= 30.9; p < 0.001) and differed on average 162.4 ± 30.6° for
response-locked trials (Rayleigh’s Z= 7.35; p= 0.001). Both
analyses provided support for a half-cycle difference between
encoding and retrieval (V-test around 180°; cue/stimulus locked:
V= 33.1, p= 0.005; response-locked: V= 46.7, p= 0.001;
n= 326). We tested for inflation of these statistics due to the high
channel count (by comparing the V-statistics against 500 time-
shuffled datasets) and conclude that phase opposition for the
response-locked trials was unlikely to be obtained by chance
(p= 0.042), while for stimulus/cue-locked data (p= 0.126), the
observed V-statistic could, in part, be inflated by channel count or
a phase bias, for example, due to asymmetry in the theta cycles48.
To test whether phase opposition generalized beyond the time

and frequency with the highest PPC, we computed response-
locked event-related potentials for each hippocampal electrode
bundle, and filtered these in the theta band (Fig. 6C). We
compared the phase of encoding and retrieval ERPs using V-tests
in 200 ms sliding windows. After FDR-correction, 55.8% of tested
windows supported phase opposition between encoding and
retrieval, which is unlikely to be produced by chance. These
results further confirm the PPC analyses in Fig. 5 by
demonstrating extended phase concentration in the period
leading up to and around the button presses, and show that the
dominant phases for encoding and retrieval are approximately

180° apart. Together, these results support both theoretical and
empirical findings from previous studies that encoding and
retrieval processes occur at different phases of the hippocampal
theta rhythm, and generalize these findings to LFP recordings
from the human hippocampus.

Discussion
In this study we demonstrated that oscillations can be detected in
behavioral responses from associative memory tasks. Using the
Oscillation score43, we showed that button presses that indicate
the timing of memory encoding and retrieval were rhythmically
modulated, i.e. periodically more or less likely to occur, pre-
dominantly in the 1–5 Hz frequency band. We found no evidence
for behavioral oscillations for memory-independent task phases.
Button presses from forgotten trials did not lock to the oscillation
of remembered trials, a distinction that was echoed by hippo-
campal LFP recordings from 10 epilepsy patients: phase con-
sistency across trials significantly increased in the slow theta
range during the encoding and retrieval of later remembered, but
not forgotten associations. Finally, phase consistency during
encoding and retrieval peaked at opposite phases of the theta
cycle, aligning with earlier work suggesting that encoding- and
retrieval-related information flows are orchestrated by the phase
of the hippocampal theta rhythm. Our data show that these
hippocampal mechanisms influence the timing of overt human
behavior.

In our study, we relied on button presses that explicitly marked
the timing of memory formation and recall. Though these
responses are subjective and rely on multiple neural processes,
our results allow us to exclude several alternative explanations.
Firstly, the behavioral oscillations cannot be explained by
rhythmicity in visual processing, as the Encoding and Visual task
phases shared identical visual inputs. Secondly, a behavioral
oscillation was detectable when memory reinstatement was
combined with a catch question (Catch-with-retrieval), but not
when the catch question was asked 3 s after reinstatement (Catch-
after-retrieval), suggesting that (1) the observed oscillation did
not result from motor processes and (2) the lack of oscillations in
memory-independent phases cannot be attributed to the nature
or content of the catch questions. The data also show that
rhythmic clocking is not universal within memory tasks: correct
but not incorrect trials showed locking to a theta oscillation, and
this result was mirrored in electrophysiology.

We did not observe significant oscillations in behavior for
processes that we a priori marked as memory-independent,
namely answering catch questions after reinstatement and the
visual task. These task phases also did not contain an attentional
selection element and did not rely on memory-guided visual
search. These cognitive processes were previously linked to theta
rhythmic modulation of behavior37–42 and saccadic eye
movements49–51, respectively. We did however find increased
PPC in hippocampal signals after catch questions appeared on
screen. O-scores for the corresponding Catch-after-retrieval task
phase, although not significant, were higher than for the visual
task. Possible explanations are that retrieval-induced oscillations
extend in time, or that catch questions induce a second, weaker
reinstatement of the memory, leading to behavioral oscillations
that are too weak to detect robustly. Alternatively, the oscillations
observed for the catch questions could result from maintaining
the retrieved object in working memory. Working memory has
been proposed to be mediated by theta-nested gamma bursts52,53,
synchronizing a network of cortical memory areas19,54–57, as well
as the hippocampus58 (for reviews see refs. 59,60). The micro-
electrode recordings presented here do not allow us to distinguish
between retrieval- or maintenance-related theta oscillations, and
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further work is needed to understand if the behavioral oscillations
reported here are specific to long-term memory.

The behavioral theta oscillations for memory-dependent task
phases, together with increased PPC in hippocampal LFPs across
trials, suggest that events in the memory task (i.e. cue/stimulus
onset) induce consistent phase resets in the hippocampal theta
rhythm. Our findings suggest this phase reset is most pronounced
in the slow 1–5 Hz theta band. Several human intracranial EEG
studies have reported prominent slow theta oscillations during
episodic memory tasks7–10, while the higher 4-8 Hz frequency
band typically observed in rodents seems to be linked to move-
ment or spatial processing7. LFP phase resets and phase locking
after task events have been reported for the slow theta band in
memory paradigms16,18,61,62, and phase consistency directly
preceding11 and following44,45 stimulus presentation has been
shown to predict memory performance. In line with our finding,
a recent study44 reported a dissociation between theta power and
phase consistency, with power decreasing during encoding, but
increasing during retrieval, while phase consistency increased for
both processes. Like in rodents, human hippocampal neurons
lock their firing to theta oscillations shortly before and during the
encoding of later-recognized but not later-forgotten images, for
both slow and fast theta bands18. In line with our findings, theta
phases were found to differ between encoding and retrieval62,
although the effects were limited to an early time window after
stimulus presentation, and theta frequencies below 4 Hz were not
included in that study. Our intracranial EEG results extend pre-
vious findings by demonstrating that post-stimulus phase con-
sistency and encoding-retrieval phase consistency and opposition
extend in time in a narrow frequency band, providing a potential
neurophysiological mechanism for the theta-clocked behavior.

Our behavioral results align closely with the PPC analyses in terms
of dominant frequency and subsequent memory effect; the presence
of both LFP phase consistency and behavioral oscillations for correct
trials, but absence of both during incorrect trials, suggest a link
between the hippocampal rhythms and behavior. Further work is
needed to establish how oscillations in hippocampal processes
translate to oscillations in behavioral responses. In principle, it is
sufficient for hippocampal output to cortical areas to fluctuate
rhythmically, i.e., for encoding and recall signals from hippocampus

to occur more frequently at certain time windows. Such fluctuations
will then be maintained, though at a delay, in subsequent processing
steps that lead up to the motor response, without the necessity for
cortical areas to show theta oscillations themselves. Alternatively,
behavioral oscillations could arise from theta rhythms in cortical
areas that are entrained to or induced by the hippocampal theta
rhythm. Coherence with the hippocampus at theta frequencies has
been demonstrated for entorhinal35, parietal63, and frontal cortices26

during memory tasks, but it remains to be determined whether
hippocampal–cortical theta coherence underlies the behavioral
oscillations reported here. Along with optogenetic techniques in
rodents36,64, transcranial magnetic stimulation over lateral parietal
cortex in humans might provide a promising way of establishing
causality between hippocampal theta and behavior, since it was
shown to improve memory performance65 and hippocampal–cortical
coherence particularly when stimulating in theta-bursts66. If theta-
frequency TMS can enhance memory performance by boosting or
entraining theta oscillations, this approach could potentially establish
a direct link between hippocampal and behavioral oscillations in
healthy humans.

Phase coding is a powerful candidate neural mechanism for
optimizing specificity and sensitivity on the one hand, and flexibility
on the other. Outside the memory domain, rhythmic switching of
visual attention has been demonstrated at theta frequencies38–41. In
memory tasks, potentially interfering mnemonic information has
been shown to recur at different phases12,26 of the hippocampal theta
rhythm. Items kept in working memory are thought to be repre-
sented in gamma cycles separated in the theta/alpha phase52,55.
Visual stimulation at relevant theta/alpha phases, but not opposite
phases, boosted working memory performance67. Our findings
support the notion that not only sensory inputs are sampled peri-
odically by attention, but that internal, mnemonic information is
sampled rhythmically as well. Empirical evidence is thus accumu-
lating in both humans and other animals for a powerful role of phase
coding and sampling in cognitive processes.

Detecting oscillations in sparse behavioral data is not a trivial
task, particularly in memory paradigms that rely on one-shot
learning, like the task presented here. The trial counts for these
tasks are limited by the number of unique trials participants can
perform, which ultimately limits the detectability of oscillations.
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We showed that, despite these limitations, the O-score method43,
a method to detect oscillations in spike trains, and our Z-scoring
approach were sensitive enough to detect oscillations in beha-
vioral data. Based on simulated datasets, we identified that the
sensitivity of the O-score method improved with a higher density
of the responses. Interestingly, in our dataset response density
was lowest for the encoding task phase, which produced sig-
nificant O-scores despite the expected reduced sensitivity, sug-
gesting these oscillations are of substantial amplitude. In addition,
the simulations showed the O-score method maintained good
selectivity in all tested conditions, i.e., did not produce spurious
results for weak or absent oscillations, and identified the correct
frequency when O-scores were significant. In summary, the O-
score method was both sensitive and selective to oscillations for
all task phases. It is important to note, however, that a reliable
analysis of oscillations in sparse data requires repeated mea-
surements, either in the form of repeated trials43 or across a large
number of participants, like we have done here.

Our results suggest that theta-rhythmicity of memory encoding
and retrieval processes can not only be found in neural correlates
but also has a clear behavioral signature: the likelihood that a
memory is formed or recalled rhythmically fluctuates within a
trial, at a slow theta frequency, resulting in rhythmicity of button
presses relying on these processes. Our findings suggest that
behavior can be a relatively straightforward, yet powerful way to
assess rhythmicity of neural memory processes, an approach that
can potentially be extended to many other cognitive domains.
Together, our behavioral data and hippocampal LFP recordings
point to an important mechanistic role for lasting phase con-
sistency in the hippocampal theta rhythm during memory-
dependent processing.

Methods
Participants. A total of 216 healthy participants took part in behavioral, EEG and
fMRI/EEG studies using the memory tasks described in the next section. A group
of 10 epilepsy patients also performed a very similar memory task, more details
about this group are given in section “iEEG recordings: patients and recording
setup”. A separate group of 95 healthy participants completed the visual tasks. All
healthy participants volunteered to participate in the studies and were compensated
for their time through a cash payment (£6–8 per hour) or the University’s course
credit system. All participants gave written informed consent before starting the
study. None of the healthy participants reported a history of neurological or
psychiatric disorders and all had normal or corrected-to-normal vision. Partici-
pants only took part in one version of the task, e.g., participants in the behavioral
visual task could not take part in the memory EEG study. Only the behavioral data
are presented here. A subset of the behavioral data (visual experiments 1 and 2, and
memory experiments 5 and 6), as well as the EEG data from experiment 10 (see
Supplementary Table 1), were previously reported in ref. 68, while data from
experiment 9 were previously reported in ref. 69. All studies with healthy partici-
pants took place in facilities of the University of Birmingham, and the participants
were recruited through the university’s research participation scheme. All studies
were approved by the Science, Technology, Engineering and Mathematics Ethical
Review Committee of the University of Birmingham. Demographic information for
each of the participant groups is available in Supplementary Table 1.

Task versions. In this manuscript we present behavioral and intracranial EEG data
recorded during a series of visual and memory experiments. The experiments were
originally designed to address the following question: is perceptual information
about a stimulus analyzed earlier or later than semantic information, and is this
processing order similar when viewing a stimulus compared with reinstating the
same stimulus from memory? Data from five experiments (experiments 1, 2, 5, 6,
and 10, see Supplementary Table 1) and the analyses addressing the original
research question have previously been reported in ref. 68. Data from experiment 9
(see Supplementary Table 1) were previously reported in ref. 69. In the present
manuscript, we analyze the button presses for perceptual and semantic questions
together. We also include the behavioral data from an additional eight follow-up
experiments that took place after the collection of the initial datasets.

The experiments can be divided into three main categories (Fig. 1): memory
reaction time experiments; electrophysiology memory experiments; and visual
reaction time experiments. We give a general description of each category of
experiments below, as well as specific differences between experiments within each
category. The numbers of participants per task version and their demographic

information is given in Fig. 1 and Supplementary Table 1. The characteristics of
each of the 13 task versions are summarized in Supplementary Table 2.

Groups 1 and 2: Memory experiments. In the memory experiments, participants
first learned associations between cues and objects and later, after a distractor task,
memories were reinstated in a cued recall phase, described in more detail below.
Participants learned a total of 128 associations, divided into blocks of between four
and eight trials. Each block consisted of an encoding phase, a distractor phase, and
a retrieval phase. Cues consisted of action verbs (e.g., spin, decorate, hold, …) for
all experiments except experiment 12 (details below).

In general, the memory tasks were set up as follows: Each encoding trial started
with the presentation of a fixation cross for between 500 and 1500 ms to jitter the
onset of the trial. The cue then appeared in the center of the screen for 2 s. After
presentation of a fixation cross for 0.5–1.5 s the stimulus (stimuli in experiment 6)
appeared. Participants were asked to indicate when they made the association
between cue and stimulus by pressing a button (encoding button press). The
stimulus remained on the screen for 7 s. After the encoding phase, the participants
performed a distractor task in which they judged whether numbers presented on
the screen were odd or even. The distractor task lasted 60 s, after which the retrieval
phase started. In the retrieval phase the participants were presented with the same
cues as during encoding, though in a randomly different order, and asked to recall
the associated objects. They then answered either a perceptual or the semantic
question about the reinstated object. The trial timed out if the participant did not
answer within 10 s. Trials were separated by a fixation cross shown for
500–1500 ms.

The structure of the retrieval phases differed slightly between experiments. We
therefore make a further distinction within the memory experiments: the
electrophysiology experiments (group 1; experiments 10–13) and the behavioral
experiments (group 2; experiments 5–9).

For group 1, we aimed to separate the reinstatement processes from the
formulation of the answer to the catch question. To this end, participants were
asked to indicate, through a button press, when they had a clear image of the
associated object in mind. The trial timed out if the participant did not press the
button within 10 s. They then kept the image in mind for 3 s, during which time the
screen was blank. Finally, the answer options for the catch question appeared on
the screen, after which the participants responded as quickly as possible.
Participants had 3 s to respond. As a result, the retrieval trials of the
electrophysiology experiments produced two button presses: a retrieval button
press and a catch-after-retrieval button press. These button presses are analyzed
separately. Only the reinstatement button press is considered memory-dependent,
because the catch question appears at a time point when the object has supposedly
already been fully retrieved.

For group 2, the answer options were shown on the screen for 3 s before the
retrieval cue appeared. The catch-with-retrieval button presses obtained for the
memory reaction time experiments can therefore be assumed to represent the time
point when sufficient information has been retrieved about the object to answer the
catch question.

The number of times we asked participants to retrieve associations was varied
between behavioral experiments in group 2. In experiments 5, 7, and 8, every object
was probed twice, and participants answered both the perceptual and semantic
question for each object in random order. In experiment 9, every object was
reinstated six times in the retrieval phase of the block, and twice during a delayed
retest 2 days later. The data from the delayed test are not included here due to poor
performance (average performance 49.6%, only 16 out of 52 participants
performed above chance). In experiment 6, participants learned associations of
triplets instead of pairs, consisting of cue, object, and scene image. During the
retrieval phase of this experiment, each object was probed only once, and in
addition to the perceptual and semantic questions participants were asked a
question about the background image (indoor or outdoor?), such that each
question was answered on 1/3 of the trials.

The group 1 memory task was used for EEG recordings (experiment 10), combined
EEG/fMRI recordings (experiment 11) and intracranial EEG recordings in epilepsy
patients (experiments 12 and 13, also see section “iEEG recordings: patients and
recording setup”). Several small adjustments were made to the task to accommodate
electrophysiology. First, to minimize the duration of the testing sessions, the duration of
the distractor phase was reduced to 20 s in the EEG/fMRI experiment, while in the EEG
and iEEG task versions, every object was reinstated only once. To compensate for the
corresponding drop in the number of catch questions, participants answered both
perceptual and semantic catch questions on every trial, one after the other, in random
order. The doubling of the number of catch questions per trial was introduced after the
first three EEG participants and three iEEG patients were recorded. In addition, the first
three iEEG patients learned pairs of background scenes and objects, instead of
verb–object pairs, with the background scenes functioning as cues during the retrieval
phase (experiment 12). These patients only learned a total of 64 pairs. The reaction time
data from these three patients showed no difference to that of the other seven patients
(see Supplementary Fig. 1) and no qualitative differences were found in the PPC
analysis (PPC per patient is shown in Supplementary Fig. 9A). During encoding trials,
the background and object appeared on the screen at the same time. As a result, the
encoding trials of these three participants do not have a separate cue period.

We made two further modifications to the task for the iEEG recordings in all
epilepsy patients. First, the task was made fully self-paced, such that length of verb
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presentation and the period needed to associate cue and object were determined by
the patient on each trial. The patients pressed a button when they were ready to
move on. Second, to avoid loss of attention/motivation and/or to accommodate
medical procedures, visitors, and rest periods, the task was divided into two or
three sessions, recorded at different times or on different days. Data from different
sessions were pooled and analyzed together. Details of the electrophysiological
recordings included in this manuscript can be found in the section “iEEG
recordings: patients and recording setup”.

Group 3: Visual reaction time experiments. In the visual experiments, participants
were shown a series of stimuli on the screen, and were asked either a perceptual or
a semantic question about each stimulus. The stimuli and questions used in the
visual experiments were identical to those in the memory experiments. To get
accurate estimates of the reaction times, the answer options were shown for 3 s
prior to stimulus presentation. Stimuli were presented in the center of the screen.
Each trial was preceded by a fixation cross for a random duration of between 500
and 1500 ms, so the onset of the trial could not be predicted. Like in memory group
2, participants were instructed to answer as fast as possible.

In experiments 1, 3, and 4, all 128 stimuli were shown twice, once followed by a
perceptual and once by a semantic question (in random order), so both questions
were answered for every object. In experiment 2, in which the object images were
shown with a background, all stimuli were presented only once, followed by one of
three questions: perceptual, semantic, or contextual, with the later referring to the
background (indoor or outdoor). All button presses were included here. We refer
to ref. 68 for analyses comparing the different catch questions.

Stimulus sets. Across the experiments, three different stimulus sets were used,
referred to as Standard, Shape, and Size. Supplementary Table 2 specifies for each
experiment which stimulus set was used. Each stimulus set consisted of 128
emotionally neutral, everyday objects. Each object fell into one of two perceptual
categories and one of two semantic categories. Participants were instructed about
the perceptual and semantic categorizations before onset of the study and were
shown examples that were not included in the remainder of the study. In the
Standard stimulus set, used in most experiments, the semantic dimension divided
the objects into animate and inanimate objects, while in the Shape and Size sti-
mulus sets, used in experiments 3, 4, 7, and 8, objects were categorized as natural or
man-made. Furthermore, three different perceptual dimensions were used across
the tasks. In the Standard stimulus set, half of the stimuli were colored photographs
and the other half were black-and-white drawings. In the Shape and Size stimulus
sets only colored photographs were used. Instead, stimuli were categorized as either
long or round objects (Shape stimulus set, exp. 3 and 7), or stimuli were presented
as large or small pictures on the screen (Size stimulus set, exp. 4 and 8). Stimuli
were selected from the BOSS database70 or other royalty-free online sources.

Stimulus presentation and pace. The task presentation was performed using
MATLAB 2015a-2018a (The Mathworks Inc.), with Psychophysics Toolbox Ver-
sion 3 (Releases between January 2017 and April 2019; https://github.com/
Psychtoolbox-3/Psychtoolbox-3). With the exception of the fMRI/EEG and iEEG
experiments, all experiments took place in dedicated testing rooms at the Uni-
versity of Birmingham, with the participants seated at a desk and watching a
computer screen. The computer screens had a refresh rate of 60 Hz. A standard
keyboard was used to record the responses. For the fMRI experiment, stimuli were
projected onto a screen behind the scanner with a refresh rate of 60 Hz and viewed
through a mirror. Participants answered using NATA response boxes. The iEEG
experiment was presented and responses were recorded using a laptop (Toshiba
Tecra W50) with a screen refresh rate of 60 Hz.

For encoding blocks, trials took on average 9.8 s to complete, resulting in an
average of 0.31 visual events per seconds (cue onset, stimulus onset, and stimulus
offset). For group 1 retrieval trials took on average 9.0 s for trials with one catch
question (0.45 events per second) and 15.2 s for trials with two catch questions
(0.39 events per second), while for group 2 retrieval trials took on average 6.8 s
(0.44 events per second). Visual task trials took on average 5.8 s, resulting in on
average 0.52 events per second. The event rates were below the lower frequency
bound of O-score analysis for the behavioral oscillation (minimum of 0.5 Hz, see
“RT analysis: O-score and statistics per participant”) and were below the 1 Hz
lower bound of the PPC analyses, while the screen refresh rate was higher than the
upper frequency bound for both the O-score (maximum of 40 Hz) and PPC
(12 Hz) procedures. It is therefore not expected that visual events can be the cause
of the behavioral oscillations or PPC effects reported here.

Assessment of performance and exclusion of participants. Prior to reaction
time analyses, the performance of each of the participants was analyzed based on their
accuracy in answering the catch questions. Answers to catch question were considered
incorrect when subjects chose the wrong answer, when the indicated they had for-
gotten the answer (for memory tasks) or when they did not answer on time (for
healthy participants only). The data of a participant were only included in the analysis
of a task phase if the following two requirements were met: (1) catch question
accuracy across trials exceeding chance level and (2) a minimum of 10 correct button
presses per participant in the task phase of interest. The first criterium was assessed
using a one-sided binomial test against a guessing rate of 50% with α= 0.05. The

second criterium had to be set as some participants repeatedly failed to provide
encoding (reinstatement) button presses before trial time-out, leaving too few trials to
run further analyses for the Encoding (Retrieval) phase, despite sufficient performance
when answering the catch questions. The inclusion criteria were set a priori. The
number of participants included in each of the task phases is shown in Fig. 1 and the
number of excluded participants can be found in Supplementary Fig. 1A.

Of the participants who performed the memory tasks, 28 participants answered
two catch questions per retrieval trial, while the remaining 198 answered one. To
bring the analyses of the 28 participants with 2 catch questions per trial in line with
the data from the other 198 participants, we considered a 2-catch trial to be
correctly reinstated if one or both catch questions were answered correctly (on
average, across 28 subjects: one catch question correct: 12.5% of trials; two catch
questions correct: 76.0% of trials, see Supplementary Fig. 1D).

RT analysis: O-score and statistics per participant. To assess the presence and
strength of oscillations in behavioral responses we used the Oscillation score (O-
score, Fig. 2B), a method that was developed to analyze oscillations in spike
trains43. Like spikes, the button presses we study here are discreet, all or nothing
events, and can be summarized as trains of button presses across trials. The O-score
method identifies the dominant frequency in those trains, and produces a nor-
malized measure of the strength of the oscillation that can be compared across
conditions.

The O-score method does not make assumptions about the source underlying
the discreet events and can therefore be applied to button presses in a similar way
as to spikes, even when the button presses arise from different trials. We did
however add an additional processing step before computing the O-score, to
compensate for the fact that behavioral responses, unlike spikes, have no baseline
rate (e.g., they cannot occur before cue/stimulus onset). Extremely early and late
responses therefore have to be considered outliers. We removed these outliers prior
to O-score computation by removing the first and last 5% of the button press trace
of each participant, i.e., maintaining the middle 90% of the button presses.
Supplementary Figure 3B shows that reducing the fraction of button presses
included in the analyses affected the ability to identify oscillations, but did not
affect the differences found between the task phases.

The button presses from correctly answered trials that remained after outlier
removal entered the O-score computation. We made two modifications to the
procedure described in ref. 43 to match the characteristics of our dataset. The O-
score procedure and our modifications are described below.

The O-score analysis requires the experimenter to define a frequency range of
interest. We a priori defined a wide frequency range of interest of between
f initmin = 0.5 and f initmax = 40 Hz, as we did not want to limit the analyses to a specific
frequency band, yet did not expect to detect frequencies in the higher gamma
frequency band. Given the wide variety in the number of responses and response
times, we checked for every participant and task phase whether these pre-set
frequency bounds were valid. Following ref. 43, we increased the lower bound to
1=cmin of the width of the response distribution (in seconds) of the participant, with
cmin= 3, such that at least three cycles of the lowest detectable frequency were
present in the data. We reduced the upper bound to the average response rate
(button presses per second), if the participant did not have enough button presses
to resolve the upper frequency limit. The O-score was then computed through the
following series of steps:

Step 1: As described in ref. 43, we computed the ACH of the button presses with
a time bin size of 1 ms (f s = 1000 Hz).

Step 2: The ACH was smoothed with a Gaussian kernel with a standard
deviation σ fast of 2 ms. As estimated in ref. 43, this smoothing kernel attenuated
frequencies up to 67 Hz by less than 3 dB, allowing us to detect frequencies in the
entire frequency range of interest.

Step 3: We identified the width of the peak in the ACH using the method
described in ref. 43. However, to avoid the introduction of low frequencies by
replacing the peak, we opted to only use positive lags beyond the detected ACH
peak for further steps, as the peak-replacement approach would not allow us to
detect frequencies toward the lower bound of our frequency range of interest. To
identify the peak, we smoothed the ACH with a Gaussian kernel with σslow of 8 ms,
resulting in the smoothed ACH trace Aslow lð Þ, with l the lag. We then identified the
left boundary lag of the central peak lleft by

lleft ¼ l
�
�ΔAslowðlÞ

2 lmax þ 1
Aslowð0Þ

≤ tan
10 π
180

� �

ð1Þ

where lmax is the highest lag included in the ACH and Aslowð0Þ is the value of the
peak of the ACH (i.e. at lag 0).

Step 4: The remaining part of the ACH was subsequently truncated/zero padded
to size w, where

w ¼ 2
max log2 2cmin

f s
fmin

� �

;log2
f s
2

� �� �j k

þ 1 ð2Þ

We then applied a Hanning taper and the Fourier transform was computed.
Step 5: We identified the frequency with the highest power in the participant-

adjusted frequency bounds, as well as the average magnitude of the spectrum
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between 0 and f s/2 Hz. The O-score was then computed as

O ¼ Mpeak

Mavg
ð3Þ

In their paper, Muresan and colleagues propose a method to estimate the
confidence interval of the O-score, allowing for a statistical assessment at the single
cell level. However, this approach requires multiple repeated recordings, which are
not available for the data presented here, nor do the datasets contain enough data
points to create independent folds. Instead, we opted to generate a participant-
specific reference distribution of O-scores for the identified frequency, to which we
could compare the observed O-score. To this end, we randomly generated 500 time
series for each participant matching the trial count and overall response density
function of the participant’s original button presses. First, a gamma probability
function rgammaðtÞ was fitted to the participant’s response distribution using the
fitdist function from the Statistics and Machine Learning Toolbox (v11.3) for
MATLAB 2018a (The Mathworks Inc.; for an example see the gray lines in Fig. 2),
and scaled to the number of responses of the participant. We then generated 500
Poisson time series, with the probability of a response in a time step 4t = 0.5 ms,
given by

Prespðt ! t þ ΔtÞ ¼ rgammaðtÞΔt ð4Þ
If a gamma distribution could not be fitted (as assessed through a χ2 goodness-

of-fit test with α= 0.05), the participant’s button presses were instead randomly
redistributed in time, with the new time per button press uniformly drawn from a
window defined by one period of the participant’s peak frequency and centered
around the time of the original button press. Redistributing within one period of
the identified oscillation ensured that this oscillation frequency of interest was not
maintained in the reference data set, while minimizing changes to the overall
response distribution.

O-scores were then computed for each of the resulting reference traces, but
instead of finding the peak, the power at the peak frequency of the observed O-
score was used. This approach controls for any frequency bias that could arise due
to the length of the time series and/or the number of data points included in the
analysis. To compare the observed O-score to the reference O-scores, we first log-
transform all O-score values. This log-transformation was needed as the O-score is
a bounded measure (it cannot take values below 0) and the O-score distribution is
therefore right-skewed when O-score values are low, leading to an underestimation
of the standard deviation of the reference distribution. The log-transformed
reference O-scores were then used to perform a one-tailed Z-test for the observed
O-score at α= 0.05, establishing the significance of the oscillation at the single
participant level. For a validation that 500 reference O-scores was sufficient to
produce a stable outcome for the Z-scoring, we refer to Supplementary Fig. 3A.
Second-level t-scores were subsequently computed based on the Z-scored O-scores
for each task phase and tested with α= 0.01 (one-tailed, Bonferroni-corrected for 5
task phases). These Z-scored oscillation scores can be assumed to represent the
strength of the behavioral oscillation, and are the basis of many of our statistical
comparisons.

To test whether the O-scores of memory-dependent task phases, i.e., Encoding,
Retrieval. and Catch-with-retrieval, and memory-independent task phases, i.e.,
Catch-after-retrieval and Visual, against each other, we fitted a linear mixed model
to the Z-scored O-scores, with memory dependence and the length of the time
series used for O-score computation as fixed effects, and an intercept per
participant as random effect. We included the length of the time series, computed
as the difference (in seconds) between the last and the first RT used in the O-score
analysis, because there was a substantial difference in response times between the
task phases, with overall similar patterns as the O-scores (see Supplementary
Fig. 1). We included participants as random effects to compensate for the
difference in the number of data points contributed by memory task participants (3
data points from group 1, 2 data points from group 2) compared to visual task
participants (1 datapoint from group 3), and to account for dependencies in the
data. We fitted an identical linear mixed model to the peak frequencies
corresponding to significant O-scores. The linear mixed models were fitted using
the fitlme function from the Statistics and Machine Learning Toolbox (v11.3) for
MATLAB 2018a (The Mathworks Inc.).

The performance of the modified O-score method and Z-scoring procedure
were tested in a simulated dataset where the amplitude and frequency of the
oscillation in the simulated button presses was varied. Methods and results of these
simulations are given in Supplementary Note 2.

RT analysis: phase of response. For the task phases with significant second-level
O-scores, i.e., Encoding, Retrieval, and Catch-with-retrieval, we analyzed the phases
at which individual button presses occurred in the behavioral oscillation identified
by the O-score analysis. We performed this analysis for both correctly and
incorrectly remembered trials. As this analysis relied on the frequency identified by
the O-score analysis, only participants with significant O-scores were included.

To identify the phases of the button presses, we first established a continuous
reference trace that captured the behavioral oscillation. This was achieved by
convolving the button presses with a Gaussian kernel, with σ freq ¼ f peak=8. The
resulting continuous trace was then band-pass filtered with second-order
Butterworth filter with a 1 Hz wide pass band centered on the participant’s peak

frequency identified by the O-score. The filtered trace was then Hilbert transformed
and the instantaneous phase was computed, resulting in a phase of 0 rad for the
peak of the behavioral oscillation. Finally, for each button press, the corresponding
phase of the reference trace was determined and stored for further analyses.

We used two complementary approaches to compare the phase locking of
correct versus incorrect trials: across participants, allowing us to include correct
and incorrect trials from all participants with significant O-scores, even when the
number of incorrect button presses was low; and within participants, comparing
the phase distributions of correct and incorrect trials for participants with 10 or
more incorrect trials. These approaches are described in more detail below.

With the across-participant analysis we aimed to address the following
questions: (1) are correct and incorrect trials phase-locked to the behavioral
oscillation found for the correct trials and (2) are correct trials locked to this
oscillation more strongly than incorrect trials? For these analyses, to find the phases
of incorrect trials, we compared the timing of the incorrect button presses to the
phase trace determined on the correct trials only. To determine the phases of the
correct trials, to avoid circularity, we instead used a leave-one-out approach; for
each correct button press, a phase trace was established based on all other correct
trials. We then performed a V-test (implementation: CircStats toolbox 2012a71;
https://github.com/circstat/circstat-matlab) to assess non-uniformity of the phase
distributions around the peak of the behavioral oscillation (i.e. around phase 0 rad),
providing an answer to the first question. To address the second question, i.e.,
whether correct phase distributions were modulated more strongly than incorrect
phase distributions, we had to compensate for the trial count differences as well as
the methodological differences in determining the phase distributions for correct
and incorrect trials. To this end, we defined the permutation test statistic:

Vdiff ¼ Vcorrect � V incorrect ð5Þ

with V being the test statistic from the V-test for non-uniformity around phase 0.
For each participant with a significant O-score, we then randomly shuffled the
labels of the correct and incorrect trials, and computed the Vdiff statistic across
participants for the label-shuffled trials in the same way as described for the
observed labels. We repeated this shuffling procedure 100 times and counted the
number of times Vobserved

diff was smaller than V shuffled
diff . This procedure hence resulted

in a p value that estimated the likelihood that the observed difference in phase
modulation between correct and incorrect trials was produced by chance.

For participants with sufficient (10 or more) incorrect trials, we performed an
additional analysis to compare the phase modulation of correct and incorrect trials.
For these participants, the correct trials were randomly subsampled to match the
number of incorrect trials. The phases of the incorrect trials and the subsampled
correct trials were then determined based on the phase trace of the remaining
correct trials and V-tests were performed for both subsampled correct and
incorrect phase distributions. The V-statistics for correct trials were then compared
to those for incorrect trials using paired t-tests. The subsampling procedure was
repeated 100 times.

iEEG recordings: patients and recording setup. We recorded intracranial EEG
from 10 epilepsy patients while they were admitted to hospital for assessment for
focus resection surgery; 7 patients were recorded in the Queen Elizabeth Hospital
Birmingham (Birmingham, UK) and 3 patients in the Universitätsklinikum
Erlangen (Erlangen, Germany). For an 11th patient, task recording was aborted due
to poor performance. All patients were recruited by the clinical team, were
informed about the study and gave written informed consent before their stay in
hospital. Ethical approval was granted by the National Health Service Health
Research Authority (15/WM/2019), the Research Governance & Ethics Committee
from the University of Birmingham, and the Ethik-Kommission der Friedrich-
Alexander Universität Erlangen-Nürnberg (142_12 B).

As part of their routine clinical care, the patients were implanted with
intracranial depth electrodes targeting the medial temporal lobe, as well as other
brain areas. Patients gave written informed consent for the implantation of between
two and eight Behnke-Fried electrodes with microwire bundles (AdTech Medical
Instrument Corporation, USA) in the medial temporal lobe (see Fig. 1 for electrode
placement and Supplementary Table 7 for electrode numbers per patient). Only
data from the hippocampal electrodes are presented here. Implantation schemes
were determined by the clinical team and were based solely on clinical
requirements. Each microwire bundle contained eight high-impedance wires and
one low impedance wire, which was used as reference in most patients (see
Supplementary Table 7 for patient-specific references). Data were recorded using
an ATLAS recording setup (Neuralynx Inc, USA.) consisting of CHET-10-A pre-
amplifiers and a Digital Lynx NX amplifier and running on the Cheetah software
version 1.1.0. Data were filtered using analog filters with cut-off frequencies at 0.1
and 9000 Hz (40 Hz for patient 01) and sampled at 32,000 Hz in Birmingham and
32,768 Hz in Erlangen. All data were stored on the CaStLeS storage facility of the
University of Birmingham72.

For each patient both pre- and post-surgical T1-weighted MRI images were
acquired. The pre- and post-surgical scans were co-registered and normalized to
MNI space using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). The locations of the
tip of the macro-electrodes were determined through visual inspection using
MRIcron (v1.0.20190902; https://people.cas.sc.edu/rorden/mricron/index.html)
and electrodes were assigned one of the following anatomical labels: amygdala,
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anterior, middle or posterior hippocampus, or parahippocampal gyrus. The
locations and labels were visualized using ModelGUI (release 1.0.30; http://
www.modelgui.org) and are shown in Fig. 5A.

The patients performed the memory task described in section “Task versions”
on a laptop computer (Toshiba Tecra W50), while seated in their hospital bed or
on a chair next to their bed. The three patients who were recorded in Erlangen,
Germany, performed the task in German. Patients completed between 64 and 128
full trials, divided over between 1 and 3 recording sessions (see Supplementary
Table 8). Of the 10 patients, 3 patients performed a version of the task that used
scene images as cue (see “Task versions”), while the other patients were presented
with verbs as cues. For the image cue task version, the cue was shown at the same
time as the object; hence, the encoding data of three patients had no separate
cue phase.

iEEG analysis: LFP data preprocessing. Raw microwire data were loaded into
MATLAB 2018a using the MatlabImportExport scripts (version 6.0.0: https://
neuralynx.com/software/category/matlab-netcom-utilities) provided by Neuralynx
Inc. The data were subsequently zero-phase filtered with a third-order FIR high-
pass filter with a cut-off frequency of 0.5 Hz and a sixth-order FIR low-pass filter
with a cut-off frequency of 200 Hz using FieldTrip (v20190615 (ref. 73); https://
github.com/fieldtrip/fieldtrip). A Notch filter with a stopband of 0.5 Hz wide at
−3 dB was used to remove 50 Hz line noise and its harmonics. The data were
down-sampled to 1000 Hz and divided into encoding and retrieval trials.

All data were visually inspected and channels/time points that contained
electrical artefacts or epileptic activity were removed. Trials that had more than
20% of time points marked as artefactual were rejected in their entirety. In an
additional preprocessing step, the data of patient 03 were re-referenced against the
mean of the channels in each microwire bundle. This was done to bring the data
from this patient, whose data were originally recorded against ground, more in line
with the referencing schemes of the other patients, which were recorded against a
local reference wire (see Supplementary Table 7 for reference information per
patient).

iEEG analysis: wavelet transform, pairwise phase consistency and cluster
statistics. The pre-processed microwire recordings were wavelet transformed
using a complex Morlet wavelet with a bandwidth parameter of 4. We used the cwt
implementation from the Wavelet Toolbox (v5.0) for MATLAB 2018a (The
Mathworks Inc., USA) to compute the wavelet transform. The wavelet was scaled
to cover a frequency range between 1 and 12 Hz in 43 pseudo-logarithmic steps
and convolved with the data in time steps of 10 ms.

To obtain the power plots in Supplementary Fig. 8C, we extracted the absolute
value of the wavelet coefficients and assessed power changes per frequency against
a −2 to −0.5 s pre-cue baseline using a two-sided t-test for every time point. We
averaged the resulting t-maps across the wires within each bundle, as they shared a
common low impedance reference. The bundle averages were then used to
compute a second level t-score across the bundles of all participants. We performed
second-level analyses at the level of bundles, because correlations between signals
from two bundles from the same patient were low and did not differ from
correlations between signals from two bundles from two different patients,
suggesting bundle was the main source of variance (see Supplementary Fig. 10A).
The p values resulting from the second-level analysis were entered into a
Benjamini–Hochberg false discovery rate (FDR) correction procedure with
q= 0.05 to correct for multiple comparisons and the t-score map was masked at
alpha= 0.05.

The phases obtained for every frequency and time point in the trial using the
complex wavelet transform were used to compute the pairwise phase consistency
(PPC46) across trials for each time- and frequency pixel and for each microwire.
The PPC was calculated for correct and incorrect trials separately. The PPC values
were then non-parametrically tested relative to their pre-cue baseline, defined as
the period from 2 to 0.5 s prior to cue onset, using a Mann–Whitney U-test. We
opted for a non-parametric test due to the strong left-skew of the PPC data. As for
the power analyses, the resulting approximated Z-values were averaged across the
microwires in a bundle, and the averages were used to compute a second level t-
score across all bundles from all patients.

We then detected time–frequency clusters of significant PPC through the
following steps. First, the t-scored PPC values were thresholded at α= 0.05 with
df ¼ Nbundles � 1, resulting in a binary image with 0= non-significant and
1= significant. This binary image was entered into an 8-connected component
labeling algorithm to identify clusters of significant PPC values.

As we used a fixed threshold to identify the clusters, it is possible for clusters to
be made up of two or more merged peaks. This merging of peaks artificially inflates
the cluster’s size. To avoid this, we tested whether each cluster contained more than
one peak, and if so, split the cluster. To this end, for every cluster, we iteratively
increased the significance threshold towards 90% of the highest value in the cluster,
in 5% increments, and reran the cluster detection method described in the previous
paragraph. We required any resulting subclusters to be at least 5% of the size of the
original cluster, to overcome noise in the data. If no subclusters were found, the
threshold was increased further. On the other hand, if all identified subclusters
were smaller than 5% of the original cluster, we concluded that the cluster could
not be split. If subclusters of sufficient size were detected, these were stored. For all

pixels that were part of the original cluster, but were not a member of any of the
new subclusters, we computed the weighted Euclidian distance to all subclusters
and assigned them to the closest subcluster. For each resulting (sub)cluster we then
computed a cluster statistic defined as the sum of all t-scores from all pixels in the
cluster.

We took a non-parametric approach to assess the statistics at the cluster level.
To this end, we went back to the wavelet transforms and, at a random time point in
each trial, divided the trial in two parts. We then concatenated the first part of the
trial to the end of the second part. This procedure, suggested in ref. 74, left all
characteristics of the dataset intact, with the exception of the temporal structure of
the phase. We computed the PPC across these time-shuffled trials, Z-scored against
baseline, computed the second level t-score, identified clusters of significant t-
scores, and computed the cluster scores as described in the previous paragraph. We
repeated this procedure 100 times and we stored the highest cluster score for each
repetition, resulting in a reference distribution of maximum cluster scores. We then
non-parametrically compared the cluster scores from the intact data to the
reference distribution, with α= 0.05. We performed the time-shuffle analysis
independently for positive and negative changes in PPC and for correct and
incorrect trials separately.

Finally, we also compared the PPCs from correct and incorrect trials to each
other directly. We used a similar approach as described above, with two important
differences: (1) the second-level analysis was now performed on the pairwise
difference between correct and incorrect PPCs from the same bundle and (2) we
shuffled correct and incorrect trials (as opposed to time points) to obtain the
reference distribution.

Phase differences and event-related potentials. We used two different
approaches to assess whether phases between encoding and retrieval trials differed.
First, we tested whether encoding and retrieval phases differed at the moment of
peak PPC, i.e., where the effect of phase resets was optimal and trials were most
phase aligned. To this end, we detected the highest PPC value for every participant
and stored the average phase for every electrode at the corresponding time and
frequency. We then computed the phase difference per electrode by subtracting the
retrieval phases from the encoding phases. This procedure was performed on both
the cue- (for retrieval) or stimulus- (for encoding) locked data and for the
response-locked data. We subsequently performed V-tests for non-uniformity
around 180° (CircStats toolbox 2012a (ref. 71); https://github.com/circstat/circstat-
matlab) to assess whether the phases of encoding and retrieval were opposite at
peak PPC. We compared the V-statistics to V-statistics computed using the same
approach in 500 time-shuffled datasets (see previous section).

For the second approach we computed event-related potentials (ERPs) to test
for phase opposition in time windows leading up to the response. To obtain the
ERPs, we first Z-scored the raw data per electrode by subtracting the mean and
dividing by the standard deviation of all trials and time points. We then tested
whether all electrodes had the same sign. This step was essential because recordings
from different layers of the hippocampus can have opposing polarities. In
microwire recordings there is no control over the placement of the electrode, nor is
it possible to determine this placement based on scans, hence potential sign flips
have to be detected in the data, before averaging data of different electrodes. We
detected the sign by identifying the highest deflection in the trial-average of every
electrode in the 1 s time interval after cue onset during encoding. If this deflection
was negative, the data from the electrode was flipped. Note that the time interval
we used for sign testing was not included in the ERP analysis in Fig. 6. We then
averaged the trials of all wires within a microwire bundle, separating correct and
incorrect trials. The data resulting from this step are represented in Supplementary
Fig. 8D. We then filtered the averaged data in the theta-frequency band (1–5 Hz;
data in Fig. 6C) and identified the instantaneous phase using the Hilbert transform.
We subtracted the instantaneous phases from the retrieval trials of the phases from
the encoding trials for each bundle yielding the instantaneous phase difference. The
phase differences were collected in windows of 200 ms (i.e., 1 cycle at the 5 Hz
upper bound of the theta band) spaced 10 ms apart and we tested whether the
phase differences in each window were non-uniformly distributed around 180°
using a V-test (CircStats toolbox 2012a (ref. 71): https://github.com/circstat/
circstat-matlab). We used a Benjamini–Hochberg false discovery rate correction
procedure75 with q= 0.05 to account for repeated tests across the time windows.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
All behavioral data underlying the results in this study and from the iEEG dataset, the
PPC values for correct and incorrect trials, including the time- and trial-shuffled PPCs
have been deposited in the following FigShare repository: https://doi.org/10.6084/
m9.figshare.c.5192567 (ref. 76). Behavioral data from experiments 1, 2, 5, 6, and 10 (see
Supplementary Table 1) were previously reported in ref. 68. Data from experiment 9 (see
Supplementary Table 1) were previously reported in ref. 69. Intermediate processing steps
and other derived iEEG data will be made available upon reasonable request. The raw
iEEG data and patient-specific electrode locations are protected and are not available due
to data privacy laws. Source data are provided with this paper.
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Code availability
Custom MATLAB functions and scripts used to produce the results presented in this
study are publicly available via GitHub: https://github.com/marijeterwal/behavioral-
oscillations and FigShare: https://doi.org/10.6084/m9.figshare.13213769 (ref. 77).
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