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We re-analyse the gravitational-wave event GW190412 with state-of-the-art phenomenological waveform
models. This event, which has been associated with a black hole merger, is interesting due to the significant
contribution from subdominant harmonics. We use both frequency-domain and time-domain waveform mod-
els. The PhenomX waveform models constitute the fourth generation of frequency-domain phenomenological
waveforms for black hole binary coalescence; they have more recently been complemented by the time-domain
PhenomT models, which open up new strategies to model precession and eccentricity, and to perform tests of
general relativity with the phenomenological waveforms approach. Both PhenomX and PhenomT have been
constructed with similar techniques and accuracy goals, and due to their computational efficiency this “generation
X” model family allows the routine use of subdominant spherical harmonics in Bayesian inference. We show
the good agreement between these and other state-of-the-art waveform models for GW190412, and discuss the
improvements over the previous generation of phenomenological waveform models. We also discuss practical
aspects of Bayesian inference such as run convergence, variations of sampling parameters, and computational
cost.

PACS numbers: 04.30.-w, 04.80.Nn, 04.25.D-, 04.25.dg 04.25.Nx,

I. INTRODUCTION

The analysis of gravitational wave (GW) data from compact
binary coalescences (CBCs) has long focused on the dominant
quadrupole spherical harmonics, and the use of sub-dominant
spherical harmonics has only recently started to play a promi-
nent role for observational results [1–4] with the ground-based
detectors Advanced LIGO [5] and Advanced Virgo [6]. The
use of waveform models including sub-dominant harmonics
can often break degeneracies between source parameters and
improve the overall parameter estimation results even if the con-
tent of sub-dominant harmonics is weak for the most likely set
of parameters, since the additional harmonics help to exclude
parameter-space regions which are not consistent with the data
under the more complete models.
Here we argue that models including subdominant harmon-

ics should now be used routinely in GW parameter estimation,
and how this is facilitated by the computational efficiency and
accuracy of the “generation X” of phenomenological wave-
form models: the frequency-domain IMRPhenomX models [7–
10], and the complementary time-domain IMRPhenomT mod-
els [11, 12]. In particular we demonstrate the capability of the
generation X waveform family to deliver a suite of Bayesian
inference results both quickly, and with relatively low total com-
putational cost. One interesting application is on measuring
the source distance, where breaking the degeneracy with the bi-
nary’s inclination through inclusion of subdominant harmonics
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significantly improves accuracy [1, 13]. A quick turnaround
on such precise distance measurements is particularly impor-
tant in the context of electromagnetic counterparts, which have
recently become more interesting also in the context of binary
black hole (BBH) mergers, as discussed in connection with
the discovery of GW190521 [3, 4]. Moreover, being able to
efficiently compare posteriors for multiple models from the
same family including different amount of physics (aligned
spins only vs. precession, dominant modes only vs. inclusion
of subdominant modes) allows detailed studies of waveform
modelling systematics, increasing the confidence in the final
parameter estimates for an event.

To provide a guide to the routine use of subdominant har-
monics in practical parameter estimation and to demonstrate
the capabilities of the “generation X” phenomenological wave-
form models on a specific example, in this paper we present
improved parameter estimation results for the event GW190412
first published in [1]. GW190412 is special among the CBC
observations reported by LIGO and Virgo to date [1–3, 14, 15]
as the first BBH signal with clear evidence for significantly
unequal component masses. Since the effect of sub-dominant
spherical harmonic modes is stronger in unequal-mass systems,
this event also provided the first observational evidence for their
presence. On the other hand, as for previous BBH detections,
only limited amounts of information about the spins of the
black holes could be extracted in [1]. The event is of astrophys-
ical interest as the unusual mass ratio hints at a more diverse
population of merging BBHs in the Universe than the ‘vanilla’
events previously observed [14, 16] and starts to provide dis-
criminating evidence between possible formation channels for
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these systems [1, 17–25].
In general, the measurement of CBC source properties

through matched filtering and Bayesian inference relies cru-
cially on the quality of the waveform models used as the tem-
plates. Waveform models are typically synthesized from pertur-
bative results (notably the post-Newtonian [26] and effective-
one-body [27–29] frameworks and results for the ringdown
frequencies of Kerr black holes[30]), and catalogues of numer-
ical relativity (NR) simulations, such as the large catalogue
of waveforms from the SXS collaboration [31, 32]. Several
such models of varying complexity have been used in [1] to
measure the source properties of GW190412. None of those
models includes orbital eccentricity, but two of them include
both precession and subdominant harmonics: the frequency-
domain model IMRPhenomPv3HM [33] and the time-domain
model SEOBNRv4PHM [34]. Both are members of families of
models which also include simpler models without precession
or subdominant harmonics, which have been used for model
comparison to determine the evidence for the presence of these
effects in the data. Systematic errors in such waveform models,
in particular regarding precession and sub-dominant harmonics,
are not yet well understood, and the high computational cost for
both the IMRPhenomPv3HM and SEOBNRv4PHM models
is one reason why investigations of potential systematics are
challenging. None of the models used to analyze GW190412
in [1] is calibrated to precessing NR waveforms, and only in
SEOBNRv4PHM have the subdominant harmonics been cal-
ibrated to NR, with IMRPhenomPv3HM using approximate
scalings to include their effects.

Our re-analysis of GW190412 focuses on the IMRPhenomX
family of inspiral-merger-ringdown waveform models [7–10]
which constitute a thorough upgrade of previous versions of
the family of frequency-domain phenomenological waveform
models [33, 35–40] that is currently routinely used in CBC
data analysis, including the IMRPhenomPv3HM model men-
tioned above. In addition we study this event with the new
IMRPhenomT family of phenomenological time-domain wave-
forms (with the versions currently implemented in the LAL-
Suite [41] package not yet including precession). An alternative
re-analysis focusing on the NRSur7dq4 [42] model has been
presented in [43]. NRSur7dq4 is based on reduced-order-
modelling (ROM) [44] and has been calibrated to numerical
relativity waveforms. It does however not span a sufficiently
wide frequency range to cover the entire LIGO and Virgo bands
for the mass range of GW190412, and [43] studies variations
of the lower cutoff frequency.

None of the IMRPhenomX models have yet been calibrated
to precessing NR waveforms, but IMRPhenomXHM, IMR-
PhenomXPHM and IMRPhenomTHM are calibrated to sub-
dominant harmonics from NR waveforms. The modularity and
flexibility of the model family allows to compare different ap-
proximations for the effects of spin precession and different
choices for the final spin of the remnant black hole. Further-
more the drastically reduced computational cost of the new
waveforms allows us to test in detail the impact of varying
some of the settings of the Bayesian sampling algorithms we

use [45–47]. We find that by replacing IMRPhenomPv3HM
with our upgraded precessing higher-modes model IMRPhe-
nomXPHM, the disagreement between the frequency and time-
domainmodels observed in [1] can be reduced significantly, and
the uncertainty intervals for key parameters can be tightened.
The agreement between frequency and time-domain models is
further improved when assuming that the source does not show
significant spin-precession, which we confirm to be consistent
with the observational data. A summary of our parameter esti-
mation results and a comparison with the results from [1] can
be found in Table I and is discussed below.

The paper is organized as follows. In Sec. II we collect pre-
liminaries: remarks on notation, a summary of the results found
in [1] on the event GW190412 and brief descriptions of the
different waveform models and Bayesian inference methods
used there and in the present paper. We then present our main
parameter estimation results on GW190412 in Sec. III, further
investigations on systematic and sampling errors in Sec. IV,
and a summary and our conclusions in Sec. V. Further compar-
isons are presented in appendices: while all our main results
are obtained with the parallel Bilby code [45–47], in appendix
A we also compare these results with comparison runs of the
LALInference code [48]. And in appendix B we compare our
main Bilby runs, which have been obtained with marginalisa-
tion over distance in order to improve convergence, with runs
that do not use this approximation. Different IMRPhenomX
implementations of precession and approximations for the spin
of the merger remnant are studied in appendix C. Finally, we
compare results in more detail against the IMRPhenomPv3HM
model in appendix D and study the impact of alternative spin
priors in appendix E.

Posterior samples from our preferred run for each waveform
model are released in [49].

II. PRELIMINARIES

A. Notation and conventions

We will report all masses in units of the solar mass M�.
Masses are reported both in the detector frame, where they
appear redshifted, and in the source frame, assuming a standard
cosmology [50] (see Appendix B of [14]). We will report
source-frame masses with a superscript s, as in ms

1 to denote the
mass of the larger black hole in the source frame. We will drop
the superscript to denote masses in the detector frame, and to
represent general relations between different mass parameters.
Individual component masses are denoted by mi, the total mass
is M = m1 + m2, and the chirp mass byM = (m1 m2)3/5M−1/5.
The mass ratio is defined as q = m2/m1 ≤ 1.

We also define two effective spin parameters which are com-
monly used in waveform modelling and parameter estimation.
First, the parameter χeff [27, 51, 52] is defined as

χeff =
m1χ1 + m2χ2

m1 + m2
, (2.1)
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where the χi are the projections of the spin vectors of the individ-
ual black holes onto the orbital angular momentum. Second, the
effective spin precession parameter χp [53] has been designed
to capture the dominant effect of precession. It corresponds
to an approximate average over many precession cycles of the
spin in the precessing orbital plane, and is defined in terms of
the average spin magnitude S p, [37, 53]

S p =
1
2

(
A1S 1,⊥ + A2S 2,⊥ + |A1S 1,⊥ − A2S 2,⊥|

)
, (2.2)

= max
(
A1S 1,⊥, A2S 2,⊥

)
, (2.3)

where A1 = 2 + 3/(2q), and χp is then defined as

χp =
S p

A1m2
1

. (2.4)

Both χeff and χp are dimensionless and thus independent of the
frame (source or detector).
Throughout this work we will employ waveforms with sev-

eral multipoles beyond the quadrupolar contribution. Unless
otherwise stated, we will consider pairs of both positive and
negative modes when referring to a particular multipole. For
example, to refer to a set of multipoles (l,m) = (2,±2), (2,±1)
we will use the simplified notation (l, |m|) = (2, 2), (2, 1) or
simply (2, 2), (2, 1).

B. Summary of the event GW190412

GW190412 is the first BBH detection from the O3 observing
run published [1] by the LIGO-Virgo Collaboration (LVC). It
was observed by all three detectors, with a network signal-to-
noise ratio (SNR) of 19.1+0.1

−0.3 from the final coherent Bayesian
analysis reported in [1]. In briefly summarizing the event
properties, we concentrate here on the results from Bayesian
inference using the Bilby [45–47], LALInference [48] and
RIFT [54, 55] packages and the SEOBNRv4PHM [34] and
IMRPhenomPv3HM [33] waveform models. These LVC es-
timates of the properties of GW190412’s source are listed in
Table I together with our own results.

In summary, GW190412 came from a BBH with individ-
ually unremarkable source-frame masses ms

1 ≈ 30M� and
ms

2 ≈ 8M�, but the mass ratio q = m2/m1 ≈ 0.3 (< 0.5 at
99% probability) is much lower than inferred for any previous
detection. The system’s effective spin parameter appears to be
low, but significantly different from zero: χeff = 0.25+0.08

−0.11 when
combining results from both waveforms. The effective preces-
sion parameter has also been constrained, but more weakly, to
χp = 0.31+0.19

−0.16. While there is some information gain compared
to the prior on this quantity, and the posterior is peaked away
from zero, it prefers lower values than the prior. The results
from SEOBNRv4PHM and IMRPhenomPv3HM agree within
90% uncertainties for all quantities reported in [1], but do show
some qualitative differences – for example,
the IMRPhenomPv3HM posteriors tend to less unequal q

together with lower χeff .

Additional inference runs were also reported in [1] for sev-
eral waveform models with reduced physics content (see their
Table I and references therein), with the goal of estimating
the evidence for the presence of precession and HMs in the
observed signal. Clear and robust evidence was found for the
presence of HMs, with log10 Bayes factors between 3.0 and
4.1 in favour of models including HMs over those only includ-
ing ` = 2 modes, depending on the waveform model family,
sampling method and whether precession was also included at
the same time. On the other hand, there was no clear evidence
for or against precession, with the obtained Bayes factors for
that hypothesis test remaining within systematic uncertainties
for each waveform model family. We summarise Bayes factors
listed in the LVC publication, together with those obtained from
our own analysis, in Table IV.
The main astrophysical conclusions that [1] drew from

GW190412 include that the event’s properties, especially
its mass ratio, are somewhat unexpected for draws from a
BBH population as inferred from the previous two observing
runs [14, 16], but not in clear tension with it. Furthermore, the
formation of the source system challenges some astrophysical
models that mostly predict mergers with near-equal masses,
but GW190412 is still compatible with most versions of both
isolated binary evolution and dynamical assembly [56, 57]. Im-
plications for specific formation scenarios have since been the
topic of many studies [17–24], and more accurate and robust in-
ference of the system’s mass and spin parameters can be crucial
in further constraining these channels.
Additional PE analyses of GW190412 have also been re-

ported by [58], focusing on the impact of alternative spin priors,
and recently by [43], focusing on the NRSur7dq4 model and
the effect of varying the lower cutoff frequency.

C. Waveform models used

CBC parameter estimation currently mostly uses waveform
models from three different families:

• Models constructed within the effective-one-body (EOB)
framework [27–29, 62]. In a first stage these are con-
structed as time-domain models, where Hamiltonians
and GW fluxes are calibrated to NR simulations, and
the ordinary differential equations resulting from the
Hamiltonian equations are solved numerically for the
inspiral, and carried through the merger and ringdown
with phenomenological models. One of two models used
in [1] and describing both precession and subdominant
harmonics, SEOBNRv4PHM [34], and its restriction to
the dominant quadrupole content, SEOBNRv4P, belong
to this family. These models are typically computation-
ally expensive, thus it is common to produce reduced-
order-models (ROMs) to accelerate the evaluation of the
waveforms. Two such models have been used in [1]:
SEOBNRv4_ROM, which describes non-precessing sys-
tems including HMs, and SEOBNRv4HM_ROM, which
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TABLE I. Inferred parameter values for GW190412 and their 90% credible intervals, obtained using precessing models including higher
multipoles. Columns 2–4 correspond to the results from the LVC analyses [1], the fifth column gives the new results from our preferred inference
run, which is run 26 from Table III with the precessing higher-modes model IMRPhenomXPHM, and the last column combines the LVC
SEOBNRv4PHM results with IMRPhenomXPHM in the same way that they were combined with IMRPhenomPv3HM in [1].

parameter SEOBNRv4PHM IMRPhenomPv3HM LVC Combined IMRPhenomXPHM Combined
ms

1/M� 31.7+3.6
−3.5 28.1+4.8

−4.3 29.7+5.0
−5.3 30.0+5.2

−4.3 30.9+4.3
−4.4

ms
2/M� 8.0+0.9

−0.7 8.8+1.5
−1.1 8.4+1.8

−1.0 8.4+1.3
−1.1 8.2+1.2

−0.9
Ms/M� 39.7+3.0

−2.7 36.9+3.7
−2.9 38.1+4.0

−3.7 38.4+4.2
−3.2 39.1+3.6

−3.3
Ms/M� 13.3+0.3

−0.3 13.2+0.5
−0.3 13.3+0.4

−0.3 13.3+0.5
−0.4 13.3+0.4

−0.3
q 0.25+0.06

−0.04 0.31+0.12
−0.07 0.28+0.13

−0.06 0.28+0.09
−0.07 0.27+0.09

−0.06

Mf/M� 38.6+3.1
−2.8 35.7+3.8

−3.0 37.0+4.1
−3.9 37.2+4.3

−3.3 38.0+3.5
−3.3

χf 0.68+0.04
−0.04 0.67+0.07

−0.07 0.67+0.05
−0.07 0.67+0.05

−0.05 0.67+0.05
−0.04

m1/M� 36.5+4.2
−4.2 32.3+5.7

−5.2 34.2+5.7
−6.5 34.4+6.2

−5.1 35.5+5.2
−5.1

m2/M� 9.2+0.9
−0.7 10.1+1.6

−1.2 9.7+1.8
−1.1 9.6+1.4

−1.2 9.4+1.3
−0.9

M/M� 45.7+3.5
−3.3 42.5+4.4

−3.7 43.9+4.6
−4.7 44.1+5.0

−3.7 44.9+4.3
−3.8

M/M� 15.3+0.1
−0.2 15.2+0.3

−0.2 15.3+0.2
−0.2 15.3+0.4

−0.2 15.3+0.3
−0.2

χeff 0.28+0.06
−0.08 0.22+0.08

−0.11 0.25+0.08
−0.11 0.25+0.1

−0.1 0.26+0.08
−0.09

χp 0.31+0.14
−0.15 0.31+0.24

−0.17 0.30+0.19
−0.15 0.23+0.20

−0.13 0.27+0.17
−0.15

χ1 0.46+0.12
−0.15 0.41+0.22

−0.24 0.43+0.16
−0.26 0.39+0.16

−0.17 0.43+0.14
−0.17

DL/Mpc 740+120
−130 740+150

−190 730+140
−170 734+161

−187 737+141
−159

z 0.15+0.02
−0.02 0.15+0.03

−0.04 0.15+0.03
−0.03 0.15+0.03

−0.04 0.15+0.03
−0.03

θ̂JN 0.71+0.23
−0.21 0.71+0.39

−0.27 0.73+0.34
−0.24 0.75+0.36

−0.28 0.73+0.31
−0.24

ρH 9.5+0.1
−0.2 9.5+0.2

−0.3 9.5+0.1
−0.3 9.4+0.2

−0.3 9.4+0.2
−0.3

ρL 16.2+0.1
−0.2 16.1+0.2

−0.3 16.2+0.1
−0.3 16.1+0.2

−0.3 16.2+0.2
−0.3

ρV 3.7+0.2
−0.5 3.6+0.3

−1.0 3.6+0.3
−1.0 3.6+0.3

−0.8 3.7+0.3
−0.7

ρHLV 19.1+0.2
−0.2 19.0+0.2

−0.3 19.1+0.1
−0.3 18.9+0.2

−0.3 19.0+0.2
−0.4

corresponds to the l = |m| = 2 content. Several genera-
tions of these models have been built, and [1] uses the
fourth generation (“v4”).

• Phenomenological models, which are constructed as
piecewise closed-form expressions that are calibrated
to post-Newtonian or EOB inspiral descriptions and NR
waveforms, and which can be evaluated very rapidly. As
for the EOB models, several generations of such models
have been built, with the generation used in [1] all con-
structed from the baseline IMRPhenomD model for the
l = |m| = 2 modes of non-precessing binaries. Analyti-
cal approximate maps are used to model the HM content
and precession. We will refer to the phenomenological
models used in [1] as the third generation (counting IMR-
PhenomA [64] as the first generation, and IMRPhenomB
[51], IMRPhenomC [52] and IMRPhenomP [37] as the
second generation). The IMRPhenomX family consti-
tutes the next generation and current state of the art for
such models, and corresponds to an update of essentially
all aspects of the model. We will provide further details
on how it relates to the third generation below. While pre-
vious phenomenological waveform models have all been
constructed in the frequency domain, IMRPhenomX is
complemented by the new IMRPhenomT time-domain
models [11, 12]. Currently, only non-precessing versions
of IMRPhenomT have been implemented in LALSuite

[41] and can be used for the analysis presented here (see
however [11] for a Mathematica implementation lacking
sub-dominant harmonics).

• Finally, ROMs have also been successfully applied di-
rectly to interpolate between NR or hybrid waveforms in
the time domain. Hybrids are built from appropriately
“gluing” NR waveforms to an early inspiral described by
an EOB model. The latest models of this kind are the
non-precessing NRHybSur3dq8 [65], which has been
used in [1], and the precessing NRSur7dq4 [42], which
has not been used in that original discovery paper, since
it does not span a sufficiently wide frequency range to
cover the entire LIGO and Virgo bands for the mass range
of GW190412. See however [43] for results obtained
more recently with NRSur7dq4, and studies on varying
the lower cutoff frequency.

For a complete list of all the waveform models used in [1]
and the present paper see Table II. We now turn to describing
the new IMRPhenomX and IMRPhenomT families in more
detail.
The starting point of the IMRPhenomX family is IMRPhe-

nomXAS [7], which models the (`, |m|) = (2, 2) modes of
signals from non-precessing BBHs, and has been extended
to include the (`, |m|) = (2, 1), (3, 3), (3, 2), (4, 4) modes by
IMRPhenomXHM. All these modes have been calibrated to
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TABLE II. Waveform models used in this paper. We indicate which models include precession and which multipoles are included for each
model. For precessing models, the multipoles correspond to those in the co-precessing frame.

family full name precession multipoles (`, |m|) ref.

EOBNR

SEOBNRv4HM_ROM × (2, 2) [59]
SEOBNRv4_ROM × (2, 2), (2,1), (3, 3), (4, 4), (5,5) [29, 60]
SEOBNRv4P X (2, 2), (2, 1) [34, 61, 62]
SEOBNRv4PHM X (2, 2), (2, 1), (3, 3), (4, 4), (5,5) [34, 61, 62]

Phenom - Gen. 3

IMRPhenomD × (2, 2) [35, 36]
IMRPhenomHM × (2, 2), (2, 1), (3, 3), (3, 2), (4,4), (4, 3) [39]
IMRPhenomPv2 X (2, 2) [37, 38]
IMRPhenomPv3 X (2, 2) [40]
IMRPhenomPv3HM X (2, 2), (2, 1), (3, 3), (3, 2),(4, 4), (4, 3) [33]

NR surrogate NRHybSur3dq8 × ` ≤ 4, (5, 5) but not (4, 0), (4, 1) [63]

PhenomX

IMRPhenomXAS × (2, 2) [7]
IMRPhenomXHM × (2, 2), (2, 1), (3, 3), (3, 2), (4,4) [8, 9]
IMRPhenomXP X (2, 2) [10]
IMRPhenomXPHM X (2, 2), (2, 1), (3, 3), (3, 2),(4, 4) [10]

PhenomT IMRPhenomT × (2, 2) [11]
IMRPhenomTHM × (2, 2), (2, 1), (3, 3), (4,4), (5,5) [12]

around 500 numerical waveforms, as reported in [9], whereas
for the third generation of Phenom waveforms only the dom-
inant (`, |m|) = (2, 2) modes had been calibrated to 19 NR
waveforms in 2015 [35, 36]. IMRPhenomXPHM [10] is our
most complete state-of-the-art phenomenological waveform
model for quasi-circular precessing signals including the same
modes as IMRPhenomXHM, and IMRPhenomXP is the cor-
responding precessing version of the dominant-mode IMRPhe-
nomXAS.

Following the paradigm [37, 66, 67] adopted by previous phe-
nomenological models, the precessing versions are obtained
by extending the non-precessing waveforms by an approxi-
mate map, which identifies the non-precessing spherical har-
monic modes with the precessing modes in a non-inertial co-
precessing frame. We refer to this procedure as “twisting up”.
For a detailed discussion of the procedure and the conventions
employed to describe precessing waveforms in the frequency
domain see [10]. The twisting construction relies on a prescrip-
tion for the three frequency-dependent Euler angles which ro-
tate the modes in the non-inertial frame into the intertial frame,
which is used for gravitational wave data analysis. These angles
encode the amplitude and phase modulations determined by the
precession dynamics and are by default computed following the
double spin multiple-scale-analysis (MSA) prescription [68],
although the model has the option to instead evolve them at
next-to-next-to-leading order (NNLO) in the post-Newtonian
approximation as a function of an effective single spin. The
MSA prescription is similar to that used in IMRPhenomPv3,
and the NNLO prescription to what is used in IMRPhenomPv2.
The mode content of IMRPhenomXPHM in the co-precessing
frame can be freely specified, with the full set comprising the
modes (`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4). Note also that
the modelling of the co-precessing (3, |2|) mode incorporates

mode-mixing effects. Another notable feature of IMRPhe-
nomXPHM is its use of the multibanding interpolation method
introduced by [69], implemented in an improved way as de-
scribed in [9]. The algorithm is applied to the evaluation of
both the aligned-spin waveforms and the precession angles,
with default thresholds that can be further relaxed by the user to
allow for even quicker exploratory runs. In Sec. III D, we will
discuss the benefits of multibanding for parameter estimation
studies.
The “twisting-up” procedures adopted by IMRPhe-

nomPv3HM and IMRPhenomXPHM are almost equivalent, as
both models adopt by default the MSA prescription. However,
IMRPhenomXPHM by default falls back to NNLO angles
when MSA failures are encountered. This feature is advan-
tageous in parameter estimation studies as, with no fallback
in place, samplers may get stuck in regions of parameter
space where the MSA equations become numerically unstable.
IMRPhenomXPHM offers several options to set the precession
prescription, with the default version (also called version 223)
being the one just described. Another relevant version for this
work will be version 102, which instead enforces the use of
NNLO angles. IMRPhenomX also allows to choose among
four final-spin formulas, with the default version using a
precession-averaged equation inspired by the MSA formalism
(“FS version 3”), see [10] for details. Alternative versions
attach the in-plane spins to the larger mass, either relying on
the usual effective precession spin χp (version 0, which is
adopted by all third generation Phenom models), or by taking
the norm of the in-plane spin vectors at the reference frequency
(version 2). We will discuss the impact of these settings on
parameter estimation in appendix C.
A further important element distinguishing IMRPhenomX-

PHM from its predecessor IMRPhenomPv3HM is the calibra-
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tion of the underlying aligned-spin higher modes (HM) to NR
waveforms. It has been already shown in [9] that this results
in an increased faithfulness both with respect to NR and to
NRSur7dq4. We will study the impact of this HM calibration
on parameter estimation in appendix D.

Thanks to the modular way that IMRPhenomXHM and IM-
RPhenomXPHM are constructed from the baseline dominant-
mode model IMRPhenomXAS, their LALSuite implementa-
tions when called with the dominant (2, 2) modes only will
reproduce the IMRPhenomXAS and IMRPhenomXP models
respectively. This approach has the added advantage of pro-
viding multibanding speedup, and we used it for most of the
dominant-mode PE runs included in this paper. For clarity
those runs are usually referred to as “IMRPhenomX(P)HM
(2,2)” (or shortened versions of this) in the following.

Recently, IMRPhenomX models have been complemented
by the new IMRPhenomT time-domain models [11, 12].
IMRPhenomT and IMRPhenomTHM model the (`, |m|) =

(2, 2), (2, 1), (3, 3), (4, 4), (5, 5) modes of non-precessing sig-
nals, while IMRPhenomTP describes the ` = 2 sector of pre-
cessing signals applying the “twisting-up” procedures to the
dominant mode (`, |m|) = (2, 2) described by IMRPhenomT.
Like the corresponding non-precessing models of the IMRPhe-
nomX family, IMRPhenomT and IMRPhenomTHM have been
calibrated to around 500 numerical waveforms. Model con-
struction follows a similar design as in other phenomenological
models, describing the inspiral region of the signal through
a post-Newtonian quasi-circular approximant, TaylorT3 [70],
extended to higher pseudo-PN orders calibrated with numerical
waveforms, providing phenomenological descriptions of the
merger signal and including a calibrated ringdown description
based on the quasinormal mode expansion of the signal [71].

D. Methodology for our parameter estimation analysis

For this reanalysis, we use v2 of the strain data [72] for
GW190412 released through the Gravitational Wave Open
Science Center (GWOSC) [73, 74], with a default sampling
rate of 16384Hz, for consistency with the official LVC study.
This version has non-linear subtraction [75] of 60Hz power
lines applied to it. We also use the power spectral densities
(PSDs) [76, 77] and calibration uncertainties [78] included in
v11 of the posterior sample release [79] for the event. We anal-
yse 8 s of strain data from each of the Hanford, Livingston and
Virgo detectors around the trigger time of the event, as reported
in GraceDB [80].

We have carried out most of our Bayesian parameter estima-
tion runs using the python-based package pBilby [45, 81, 82]
with static nested sampling [83] as implemented in the dynesty
Python code [84]. We use the default parameters of the dynesty
implementation in Bilby, apart from the following more impor-
tant parameters: We vary the number of nested sampling live
points (nlive) and the minimum length of the chain, in terms
of multiples (nact) of its auto-correlation length. We also set a
minimal (walks) and maximal (maxmcmc) number of Markov-

Chain Monte Carlo (MCMC) steps. All parallel Bilby runs are
carried out with four statistically independent sampling runs,
usually referred to as “seeds”.
The lower and upper cutoff frequencies for the likelihood

integration were taken to be 20Hz and 2048Hz respectively.
We adopted the same “tight” priors as employed for the LVC
pBilby runs, with narrow bounds based on initial exploratory
runs. Explicit prior settings are listed in appendix E. We have
also examined the impact of alternative spin priors, as explained
in appendix E. Besides custom post-processing scripts, the
PESummary [85] package was also used for comparisons of
multiple runs.

In order to claim confidence in our results, we need to check
how posteriors change when refining our sampler settings. To
this end we have varied the number of live points nlive and the
number nact of autocorrelation times to use before accepting
a point. Our main series of runs, summarized in Table III,
uses marginalisation over the distance parameter and then a
reconstruction of the distance posterior as discussed in [47, 86]
to accelerate the convergence of nested sampling1. In Sec. B
we compare the distance-marginalised results with a series of
simulations that do not use distance marginalisation (listed in
Table VIII).

Some additional comparison runs as listed in TableVII were
performed with the C library LALInference (LI) [48], using
both MCMC and nested sampling, since the parallel Bilby
code is still relatively new. The LALInference runs do not
use distance (or other types of) marginalisation and they are
compared with our default series of runs in appendix A.

To quantify the differences between results which use differ-
ent sampler settings, we also compute their Jensen-Shannon
(JS) divergence [87] and analyze the results in Sec. III D. This
quantity measures the distance between two probability distribu-
tions as a value in [0,1], where 0 means that both distributions
are exactly alike and 1 means maximal divergence. The JS
divergence between two distributions p(x) and q(x) is defined
as

DJS(p|q) =
1
2

[
DKL

(
p
∣∣∣∣∣12(p + q)

)
+ DKL

(1
2

(p + q)
∣∣∣∣∣q)], (2.5)

where the Kullback-Leibler divergence DKL [88] is defined as

DKL(p|q) =

∫
p(x) log2

(
p(x)
q(x)

)
dx. (2.6)

III. PE RESULTS FOR GW190412

A. Analysis with IMRPhenomXPHM

We first compare posterior distributions for the two precess-
ing models used in the LVC paper [1], SEOBNRv4PHM and

1 We do not use time-marginalization, due to potential issues in the sky-
localization posteriors. We also do not use phase-marginalization since it is
not fully compatible with precessing and higher-modes waveforms.
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Approximant Run n Modes (l,|m|) PV FS PMB MB Prior nlive nact CPU h L. eval. Cost/L. eval. [ms]

IMRPhenomXHM

1 (2,2) - - - D Aligned spin 2048 10 1186 1.10 × 108 38.96
2 (2,2) - - - D Aligned spin 2048 50 5819 5.48 × 108 38.26
3 (2,2) - - - 10−1 Aligned spin 2048 10 1171 1.09 × 108 38.83
4 (2,2) - - - 10−2 Aligned spin 2048 10 1166 1.09 × 108 38.43
5 D - - - D Aligned spin 2048 10 1666 1.29 × 108 46.39
6 D - - - D Aligned spin 2048 50 7918 6.38 × 108 44.71
7 D - - - 10−1 Aligned spin 2048 10 1501 1.29 × 108 41.78
8 D - - - 10−2 Aligned spin 2048 10 1494 1.28 × 108 42.15

IMRPhenomTHM

9 (2,2) - - - - Aligned spin 1024 10 874 5.06 × 107 62.22
10 (2,2) - - - - Aligned spin 2048 10 1649 1.02 × 108 58.00
11 D - - - - Aligned spin 1024 10 1226 6.19 × 107 71.27
12 D - - - - Aligned spin 2048 10 2332 1.22 × 108 68.69

IMRPhenomXPHM

13 (2,2) D D D D Precessing 2048 10 1375 1.11 × 108 44.30
14 (2,2) D D D D Precessing 2048 50 6681 5.54 × 108 43.42
15 (2,2) D D 10−1 10−1 Precessing 2048 10 1319 1.11 × 108 42.40
16 (2,2) D D 10−1 10−2 Precessing 2048 10 1320 1.13 × 108 41.89
17 (2,2) D D 10−2 10−1 Precessing 2048 10 1297 1.11 × 108 42.00
18 (2,2) D D 10−2 10−2 Precessing 2048 10 1296 1.31 × 108 41.54
19 D D D D D Precessing 512 10 679 3.02 × 107 80.84
20 D D D D D Precessing 512 50 3002 1.36 × 108 79.47
21 D D D D D Precessing 1024 10 1318 6.11 × 107 77.62
22 D D D D D Precessing 1024 50 6129 3.01 × 108 73.20
232323 D D D D D Precessing 2048 10 2670 1.32 × 108 72.95
24 (2,2),(2,1) D D D D Precessing 2048 10 1580 1.19 × 108 47.77
25 (2,2),(2,1),(3,2),(3,3) D D D D Precessing 2048 10 2325 1.04 × 108 80.44
262626 D D D D D Precessing 2048 50 13530 6.61 × 108 73.64
27 D D D D D Precessing 4096 10 5718 2.79 × 108 73.79
28 D D D 10−1 10−1 Precessing 2048 10 1900 1.31 × 108 52.01
29 D D D 10−1 10−2 Precessing 2048 10 1984 1.33 × 108 53.70
30 D D D 10−2 10−1 Precessing 2048 10 1989 1.32 × 108 54.19
31 D D D 10−2 10−2 Precessing 2048 10 2001 1.32 × 108 54.63
32 D 223 0 D D Precessing 2048 10 2679 1.31 × 108 73.80
33 D 223 1 D D Precessing 2048 10 2711 1.03 × 108 94.83
34 D 223 2 D D Precessing 2048 10 2647 1.31 × 108 72.52
35 D 102 0 D D Precessing 2048 10 2217 1.29 × 108 61.49
36 D 102 1 D D Precessing 2048 10 2160 1.28 × 108 60.79
37 D 102 2 D D Precessing 2048 10 2230 1.30 × 108 61.68

TABLE III. This table lists all the runs we have performed with parallel Bilby and distance marginalisation on open data for GW190412. For each
run, we indicate the LALSuite waveform approximant called along with various waveform settings: the mode content, precessing prescription
(PV), final spin version (FS), and multibanding thresholds applied to the evaluation of the Euler angles (PMB) and of the aligned-spin modes
(MB); as well as the prior used and the chosen sampler settings (nlive and nact). We also provide the computational cost of each run, the number of
likelihood evaluations and the mean cost of each evaluation. Two runs are highlighted in boldface: run 26 is our preferred IMRPhenomXPHM
run for astrophysical results, while the cheaper but essentially equally accurate run 23 serves as a comparison baseline for alternative model
choices and sampler settings.

IMRPhenomPv3HM, with our IMRPhenomXPHM model in
Fig. 1. The posterior results for SEOBNRv4PHM and IMRPhe-
nomPv3HM are taken from the official LVC release samples,
while those shown for IMRPhenomXPHM correspond to our
preferred run (run 26, shown in bold, in Table III), which uses
nlive = 2048 and nact = 50.

The parameters recovered with the three models considered
here are broadly consistent, as can be seen by inspecting the
joint posterior distributions for some of the key source proper-
ties (Fig. 1) as well as the corresponding maximum-likelihood
waveforms (Fig. 2).

While all these models agree fairly well on the estimated
distance and inclination of the source, differences are clearly
visible in the mass and spin parameters. The component masses
estimated with IMRPhenomXPHM lie in between those esti-
mated with SEOBNRv4PHM and IMRPhenomPv3HM. We
notice that IMRPhenomPv3HM tends to return broader poste-
riors than the other models, which appear to be somewhat more
consistent with each other. We also see that SEOBNRv4PHM
is favouring more asymmetric masses and higher χeff and χp,
while IMRPhenomXPHM prefers lower values of χp, consis-
tently with our analysis of Bayes factors, which will be pre-
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FIG. 1. Posterior distributions for the masses, effective spin parameters, distance and inclination of GW190412, as estimated with SEOB-
NRv4PHM (blue), IMRPhenomPv3HM (orange) and IMRPhenomXPHM (green) (using run 26 from Table III). For each pair of parameters,
the square central panel shows the 2D joint posteriors with contours marking 90% credible regions; while the top and right side-panels show
one-dimensional distributions for the individual parameters, with dashed lines indicating 90% credible intervals.

sented in the next section.
Given the better agreement between the SEOBNRv4PHM

and IMRPhenomXPHM models, we compute their combined
posterior as our best estimate of the source parameters, and list
the estimated source parameters and error estimates in Table
I. These improvements of the LVC estimates which combine
SEOBNRv4PHM and IMRPhenomPv3HM posteriors consti-
tute our main astrophysical result.

B. Comparison with models of reduced content

To investigate support in the GW190412 data for the presence
of subdominant modes and precession, we compare a reference
run using the full IMRPhenomXPHM model (23 in Table III)
against additional runs with equal sampler settings but using
the models IMRPhenomT, IMRPhenomXAS, IMRPhenomXP

which drop either one or both of these additional aspects. As
discussed above, in fact we called IMRPhenomXHM and IM-
RPhenomXPHM with (2, 2)-modes only instead of the named
XAS / XP LALSuite approximants.

Our main tool to compare how well each model fits the data
are Bayes factors, i.e. ratios of the marginal likelihoods of the
models to be compared. If we indicate by ZA the marginal
likelihood of model A and byZB that of model B, the Bayes
factor will take the form

BB/A =
ZB

ZA
, (3.1)

with log10 BB/A > 1 indicating that model B is strongly pre-
ferred over model A. In Table IV we list log10 BB/A for two sets
of hypotheses, namely whether the signal is best described 1)
by an aligned-spin or precessing model and 2) by a quadrupole-
only or higher-mode model. Error bars are computed using
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FIG. 2. Waveforms (h+ polarization as a function of time) corre-
sponding to the maximum-likelihood samples for IMRPhenomXPHM
(blue), IMRPhenomPv3HM (orange) and SEOBNRv4PHM (green).
The models show good agreement during the inspiral, while larger dif-
ferences can be appreciated around merger. The maximum-likelihood
sample for IMRPhenomXPHM is taken from run 26.

error propagation, from the uncertainties associated to the evi-
dence integral for each run.
We find strong evidence (log10 B > 3) for the presence of

higher modes, consistent with the results from [1]. On the
other hand, there is no actual evidence from the data to infer the
presence of precession effects over aligned-only spins, neither
when limiting to dominant multipoles or when including the
subdominant harmonics. This second result is also consistent
with [1] where no numerical log10 B were reported for this
comparison, since they were within numerical and systematic
uncertainties – matching our results which are very close to
zero.

To explore in more detail the differences between the param-
eters inferred using these models, we compare some of the esti-
mated source parameters for aligned-spin vs precessing models
in Fig. 3 and for dominant-mode-only vs. higher-mode models
in Fig. 4. One can see here that the inclusion of precession
alone does not significantly affect the posterior distributions,
while much tighter constraints follow from including higher
multipoles, in line with previous studies [89–91]. In Fig. 5 we
also show comparisons of our own aligned-spin results against
those from SEOBNRv4_ROM, NRHybSur3dq8 and IMRPhe-
nomHM, finding excellent agreement with the first two, while
IMRPhenomHM is an outlier due to its higher modes not being
directly calibrated to NR.

C. Contributions from subdominant harmonics

In order to quantify the strength of higher multipoles in
GW190412, we consider the posterior samples obtained by
analysing the event with IMRPhenomXHM2 (using run number

2 Note that, in the twisting-up approximation, one can cleanly separate different
mode-contributions in the inertial frame only in the aligned-spin limit, and

5 in Table III) and compute the SNR distribution corresponding
to each mode. The optimal SNR for one mode is defined as

ρlm
opt =

√
(hlm|hlm), (3.2)

where ( | ) refers to the usual noise-weighted inner product

(a|b) := Re
∫ fmax

0

ã( f )b̃∗( f )
S n( f )

d f (3.3)

and hlm denotes the contribution of a given mode to the strain
measured by the detector:

hlm = F+hlm
+ + F×hlm

× , (3.4)
hlm

+ − ihlm
× = hlm −2Ylm + hl−m −2Yl−m. (3.5)

Fig. 6 summarizes our results. In the top panel, we compare
the SNR distributions for the subdominant multipoles available
in IMRPhenomXHM, and find that the strongest contribution
comes from the (3, 3) mode, in line with [1] 3. In the lower
panel, we compare the full optimal SNR distribution to that
of the quadrupole mode only. As expected, the (2, 2) is by far
the strongest mode, however, the contribution of subdominant
harmonics is clearly non-negligible. This is also illustrated in
Fig. 7, where we show the estimated luminosity distance and
inclinations obtained when activating only the ` = 2 and ` ≤ 3
modes and compare them with the results of a standard run, for
which `max = 4. One can clearly see that increasing the mode
content of the model results in tighter constraints on the source
location. We note also the addition of the (4, 4) mode alone,
which is the second-strongest subdominant mode, has a visible
effect on the posteriors.

D. Convergence, computational efficiency and cost

One of the main advantages of IMRPhenomXPHM is its
computational efficiency, which makes it a potential workhorse
for large scale parameter estimation studies, and an ideal tool
for convergence tests and systematic studies of sampler settings.
This is particularly important considering that future sensitivity
improvements of the LIGO-Virgo detector network will result
in an increased detection rate [92]. The modularity of IMR-
PhenomXPHM, and in particular the possibility to relax the
multibanding thresholds, naturally lends itself to a hierarchical
PE workflow, where computationally cheap runs can be set up
to find optimal choices of priors, while more expensive runs
are reserved for final data releases.
Our strategy here has been to select a default configuration

with 2048 nested sampling live points (nlive) and (nact = 10),

that is why we carry out this analysis with IMRPhenomXHM.
3 We have verified that the single-mode SNR contributions calculated here are
consistent with those obtained in [1], where the SNR of each subdominant
mode is first orthogonalised with respect to that of the (2, 2) mode.
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FIG. 3. Comparison of posterior distributions for the component masses, distance and inclination of GW190412, using SEOBNRv4PHM (dark
blue), SEOBNRv4_ROM (light blue), IMRPhenomPv3HM (orange), IMRPhenomXPHM (dark green), IMRPhenomXHM (light green) and
IMRPhenomTHM (red).

Hypotheses Model properties EOB Phenom PhenomX PhenomT

HM vs ` = 2 = |m|
aligned 3.5 3.4 3.5 ± 0.1 3.4 ± 0.1

precessing 4.1 3.6 3.3 ± 0.1 -

prec. vs aligned dominant multipoles - - 0.0 ± 0.1 -
higher multipoles - - 0.3 ± 0.1 -

TABLE IV. Comparison of Bayes factors log10 B between EOBNR, Phenom, PhenomX and PhenomT families for two hypothesis tests: (i)
whether the signal contains higher or only dominant multipoles, (ii) whether spin precession is present or not. The multipoles test is performed for
both aligned and precessing waveforms, and the test for precession both when including only dominant multipoles or also the higher multipoles.
No log10 B numbers are quoted for “prec. vs aligned“ from EOBNR and Phenom because in [1] these were only noted to be not significant in
comparison with statistical and systematic error bars.

FIG. 4. Comparison of some estimated source parameters, using aligned (pink and purple) and precessing (light and dark green) waveform
models from the IMRPhenomX family. Light green and pink correspond to runs where only the quadrupole mode has been activated (note that,
for the precessing model, this corresponds to the mode-content in the co-precessing frame). The inclusion of higher multipoles helps to break
the degeneracy between distance and inclination, as seen in the plot on the right.



11

FIG. 5. Posterior distributions for the masses, spin parameters, distance and inclination of GW190412, as estimated with aligned-spin waveform
models (SEOBNRv4_ROM: blue, NRHybSur3dq8: pink, IMRPhenomHM: orange, IMRPhenomXHM: green, IMRPhenomTHM: red).
Models with multipoles individually calibrated to NR (SEOBNRv4_ROM, IMRPhenomXHM and IMRPhenomTHM) are in excellent agreement
with the numerical relativity surrogate NRHybSur3dq8, while IMRPhenomHM returns visibly shifted posteriors.



12

0 1 2 3 4 5 6

Optimal SNR

0

1

2

3

4

5

6
Pr

ob
ab

ilit
y 

D
en

si
ty

(2, 1)
(3, 3)
(3, 2)
(4, 4)

12 14 16 18 20 22

Optimal SNR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y 
D

en
si

ty

(2, 2)
All modes

FIG. 6. Top panel: Optimal SNR distributions for higher multipoles,
when recovering the signal with IMRPhenomXHM. The waveform
used to compute the SNR contains just one single mode. Bottom
panel: SNR distribution for the dominant (2, 2) mode only waveform
and the whole multimode waveform.

corresponding to run 23 in Table III.4 As we report below, from
all our tests this configuration gives robust results when com-
pared both with more expensive settings (increasing nlive and
nact), and with computationally cheaper settings. This justifies
to use our default setting for comparisons of different choices
of precession treatment in appendices C and D, and for compar-
isons with runs that reduce the physics content in the model to
non-precessing spins or the dominant quadrupole in Sec. III B.
We will also show here that configurations with drastically re-
duced computational cost still reproduce the posteriors of more
accurate runs rather well, and are sufficient for fast exploratory
runs, e.g. to determine prior settings, or to obtain rapid accurate
distance measurements that take advantage of precession and
higher harmonics.
Table III summarizes all the runs performed with parallel

Bilby and distance marginalisation switched on, with differ-

4 Run 26 with nact = 50 has been used for our main astrophysical results
instead, but run 23 with nact = 10 is the baseline for efficiently comparing
to alternative settings and models.

FIG. 7. Joint posterior distributions for luminosity distance and in-
clination of GW190412, as estimated with SEOBNRv4PHM (blue),
IMRPhenomXPHM with its full mode-content (green) and IMRPhe-
nomXPHM with only the ` = 2 (purple) or ` ≤ 3 modes activated.

ent models of the IMRPhenomX family as well as IMRPhe-
nomTHM. Additional parallel Bilby runs without distance
marginalisation are listed in Table VIII. Most of our runs
were performed on IntelXeon Platinum CPUs with 2.1GHz
clock-rate (BSC MareNostrum), except for some runs in Ta-
ble VIII, which have been performed on Intel Xeon E5-2670
CPUs with 2.6GHz clock-rate (Picasso machine). All the
runs of Table III used the master branch of LALsuite, with
git hash f253e1307b9c19b0fa974fe627651db483f38170, com-
piled with gcc version 5.4.0 (BSC MareNostrum) and 4.9.4
(Picasso). The cost of a full higher-mode precessing run with
nlive = 2048, nact = 10 can be as low as ≈ 1300 cpu hrs per
seed, using aggressive multibanding thresholds and distance
marginalization, which translates into a total sampling time
of roughly 13 hrs when using 96 CPU-cores. The cost can be
further decreased by lowering the number of live points: the
fastest run in our analysis, using nlive = 512, nact = 10 had
a computational cost of less than 700 CPU h per seed. We
should stress the fact that the computational costs reported here
correspond to the analysis of 8 s of data and will be therefore
even lower for BBH events with high total masses, for which
segment lengths of 4 s are appropriate.

Fig. 8 compares some estimated source parameters obtained
with IMRPhenomXPHM, for different combinations of multi-
banding thresholds and sampler settings. Even for the most
aggressive settings, with moderately high multibanding thresh-
olds and nlive = 512, one cannot appreciate large differences
with respect to our default run.

To quantify the robustness of results under changes of sam-
pler settings, we have computed the JS divergences (see defini-
tion in Sec. II D) between IMRPhenomXPHM runs employing
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different numbers of nlive and/or nact. Our results are sum-
marised in TableVI. For comparison Table V lists JS diver-
gences between runs with different models.
Among the divergences of runs with different sampler set-

tings but the same IMRPhenomXPHM model, statistically sig-
nificant discrepancies (defined as JS ≥ 0.002, according to
the same criterion adopted in [47]), occur more frequently for
the cheapest configurations (nlive = 512), as expected. We
also observe that nlive = 2048, nact = 10 gives already entirely
satisfactory results when compared with more expensive set-
tings and could be therefore considered a safe configuration for
productions runs on this event.

XAS -
XHM JS φc = 0.2929 -
XP JS t1 = 0.6689 JS t1 = 0.6863 -

XPHM JS t1 = 0.6691 JS t1 = 0.68791 JS ψ = 0.2659 -
XAS XHM XP XPHM

TABLE V. Maximum Jensen-Shannon (JS) divergence values between
the posterior distributions of GW190412 estimated with IMRPhe-
nomXAS, IMRPhenomXHM, IMRPhenomXP and IMRPhenomX-
PHM.

IV. FURTHERWAVEFORM SYSTEMATICS STUDIES

A. Matches for low total-mass binaries

Waveform systematics can be further investigated by comput-
ing noise weighted frequency-domain overlaps between model
and signal waveforms:

〈hM, hS〉 = 4<
∫ fmax

fmin

h̃M( f ) h̃∗S( f )
S n( f )

, (4.1)

where S n( f ) is the one-sided PSD of the detector noise. In
what follows, we will take IMRPhenomXPHM as the model
and assume that the signal is given either by a NR or SEOB-
NRv4PHMwaveform. Wewill quantify the agreement between
model and signal by means of the match function:

M(hM, hS) = max
tc,φ0,ψ0

〈hM, hS〉
√
〈hM, hM〉

√
〈hS, hS〉

, (4.2)

where we optimize the overlap between normalized waveforms
over polarization angle ψ0, coalescence time tc and reference
phase φ0. In general, the definition of the spin configuration at
the reference frequency will not be the same for the model and
the signal. To account for this, we also optimize the match over
rotations of the initial in-plane spins. We use the Advanced-
LIGO [5] design sensitivity Zero-Detuned-High-Power PSD
[93] with fmin =20 Hz and fmax =2048 Hz.
Match calculations are far cheaper than a fully fledged

Bayesian analysis and can be leveraged for extensive explo-
rations in parameter space. We extended our previous results

[10] and specifically targeted low total-mass binaries similar to
GW190412.

We computed the match between SEOBNRv4PHM and IM-
RPhenomXPHM waveforms for 20000 random configurations
with mass ratios uniformly distributed in the interval q ∈ [1, 5],
spins isotropically distributed on the unit sphere and total mass
varying between 30M� and 50M� in bins of 5M� width. Our
results are illustrated in Fig. 9. The top panel shows the nor-
malized probability distribution of log(1 −M). Overall, the
two models agree very well, with ≈ 90% of the configurations
achieving M ≥ 95%; however, it can be seen that matches
tend to degrade for higher mass ratios. The lower panel shows
instead the matchM as a function of the mass ratio q and the
effective precession spin χp. We notice that the two models
can show fairly large disagreement when it comes to strongly
precessing, high mass ratio systems.

We have also checked the agreement between the model and
NR for low total mass binaries. The NR simulations considered
here are all public SXS precessing waveforms available in the
lvcnr catalog [94]. For simplicity, we focused on systems with
q ∈ [2, 5], as all the precessing higher mode models consid-
ered here tend to exclude mass ratios outside of this range for
GW190412. In this case we quantify the agreement between
model and signal (NR) through the SNR-weighted matchMw
[95]

Mw =

∑iM
3
i
〈
hi,NR, hi,NR

〉3/2∑
i
〈
hi,NR, hi,NR

〉3/2

1/3

, (4.3)

where the subscript i goes over different polarization and refer-
ence phases of the signal. Fig. 10 shows our results: coloured
lines correspond to simulations for which the maximum mis-
match 1 − Mw is above 3% in the mass range considered.
The three outliers with mismatches above this threshold are
SXS:0057, SXS:0059 and SXS:0062, which all correspond to
q = 5 binaries. These result confirm the conclusions drawn
in [10]. Overall, SEOBNRv4PHM and IMRPhenomXPHM
show good agreement over most of the parameter space and
are expected to deliver comparable estimates for typical BBH
events. However, exceptional events with very asymmetric
masses and/or strong precession might require a more in-depth
analysis, which we leave for future work. Further insight on
waveform systematics can be found in previous works on the
IMRPhenomX family models [7–10] where extensive compar-
isons through matches with previous waveform models and NR
simulations are carried out.

B. Injection study

In order to assess the accuracy of our measurements, in
particular of the precessing spin, we injected into a Hanford-
Livingston-Virgo detector network three synthetic signals and
recovered their parameters with IMRPhenomXPHM. Two of
these signals are based on NR simulations with moderately
high χp, while the third one makes use of a SEOBNRv4PHM
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N512 NA10 -
N512 NA50 JS t1 = 0.0010 -
N1024 NA10 JS t2 = 0.0032 JS t2 = 0.0023 -
N1024 NA50 JS t1 = 0.0008 JS ra = 0.0007 JS ra = 0.0019 -
N2048 NA10 JS ra = 0.0020 JS ra = 0.0020 JS t2 = 0.0010 JS ra = 0.0017 -
N2048 NA50 JS φJL = 0.0015 JS φJL = 0.0016 JS t2 = 0.0014 JS a2 = 0.0017 JS φJL = 0.0013 -
N4096 NA10 JS ra = 0.0023 JS ra = 0.0027 JS θJN = 0.0030 JS θJN = 0.0018 JS θJN = 0.0033 JS θJN = 0.0020 -

N512 NA10 N512 NA50 N1024 NA10 N1024 NA50 N2048 NA10 N2048 NA50 N4096 NA10

TABLE VI. Maximum Jensen-Shannon (JS) divergence values between the posterior distributions of GW190412 estimated with IMRPhenomX-
PHM using different sampler settings. In this table, N is short for nlive and NA is short for nact. We report here only values larger than 0.001.

FIG. 8. Comparison of some estimated source parameters obtained with SEOBNRv4PHM (blue) and IMRPhenomXPHM, with different
combinations of multibanding thresholds and sampler settings (red for the default version, orange with aggressive multibanding thresholds for
both the aligned-spin waveforms and precession angles, green with aggressive multibanding and nlive = 512).

waveform, corresponding to the maximum-likelihood sample
of the LVC release. We injected the signals in zero noise,
but we fed into the likelihood estimation the PSDs used to
analyse GW190412. For the NR signals, the total mass and
luminosity distance were chosen so as to achieve a network

SNR comparable to that of GW190412. In all cases, we set the
reference frequency to be the same as the minimum frequency,
i.e. fref = flow in our setup.
The first injection made use of the public NR waveform

SXS:BBH:0049, corresponding to a q = 3 binary with χp ≈ 0.5.
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FIG. 9. Matches between IMRPhenomXPHM and SEOBNRv4PHM
waveforms. The top panel shows the distribution of mismatches for
different ranges in mass-ratio q. The lower panel shows the match as
a function of the mass ratio q and effective precession spin χp. Light
green (dark blue) areas indicate good (poor) agreement between the
two models. The worst matches correspond to strongly precessing,
high mass-ratio binaries.

We simulated a binary with right ascension ra= 3.81 rad, decli-
nation dec= 0.63 rad, and geocentric time equal to the trigger
time reported in GraceDB [80]. We used a minimum frequency
of 25.7 Hz, due to the limited length of the NR waveform. In
Fig. 11 we present posteriors for detector-frame masses, χeff , χp,
luminosity distance, θJN, as well as the individual adimensional
spin magnitudes a1 and a2. Overall, we observe a very good
agreement between the recovered parameters and the injected
values, which always lie within the 90% credible intervals of
the posterior distributions. In particular, the spin magnitude of
the primary is very well constrained, similarly to what happens
for GW190412.

In Fig. 12 we present the results of our second NR injection,
that took as input the public SXS waveform SXS:BBH0058,
corresponding to a q = 5 binary with χp ≈ 0.5. The simulated
event was assumed to have the same celestial coordinates and
geocentric time as the previous mock signal. The total mass of
the system was taken to be 50.5M� in the detector frame, and
we used a minimum frequency of 20.5 Hz. We can see that,
even in this case, all the recovered parameters are consistent
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FIG. 10. SNR-weighted mismatches between IMRPhenomXPHM and
precessing SXS waveforms with q ∈ [2, 5]. The dotted and dashed
lines in each panel denote thresholds of 3% and 5%, respectively.
Cases for which the maximum mismatch exceeds the 3% threshold
are shown with coloured lines and listed in the legends.

with the ones of the injected signal.
Finally, we injected in zero-noise the maximum-likelihood

waveform for the SEOBNRv4PHM sample. The injected sig-
nal had a total mass of 46.66M� in detector frame, celestial
coordinates ra ≈ 3.81 rad and dec ≈ 0.64 rad, and geocentric
time of approximately 1239082262.18 s. Fig. 13 summarizes
our main results. IMRPhenomXPHM recovers well all the
parameters of the injected signal. We therefore conclude that
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FIG. 11. Posterior distributions for some of the intrinsic and extrinsic parameters of a synthetic signal obtained starting from the public SXS
waveform SXS:BBH0049. Purple and orange stars mark the values of the injected and maximum-likelihood parameters, respectively. Dashed
lines indicate the 90% credible intervals of the individual posterior distributions.

IMRPhenomXPHM appears to deliver robust estimates of the
source properties for events similar to GW190412.

V. CONCLUSIONS

We have re-analysed the event GW190412 with the newest
generation of phenomenological waveform models: the
frequency-domain model IMRPhenomXPHM, which includes
precession and higher modes, and the time-domain model IM-
RPhenomTHM, which includes higher modes, but not yet pre-
cession. Both models have been constructed with similar tech-
niques and accuracy goals, and we refer to them (and several
versions with reduced physics content) jointly as “generation
X”.

The principal code we have used for performing Bayesian
inference is parallel Bilby [46], which allows us to work in
traditional high performance computing environments and to

obtain results on a time scale of hours. In Sec. III D we have
described some tests varying sampling parameters to convince
us that our parallel Bilby runs have converged to reliable results.
In appendix B we further test that our main runs, which use
distance marginalisation, agree with runs that do not use it, and
we study the difference in the number of likelihood evaluations
and computational cost. Since parallel Bilby is a relatively new
code, we also report our cross-checks with the more established
LALInference code [48] in appendix A, and find excellent
agreement.

For the non-precessing sector, we find excellent agreement
between all waveform models where sub-dominant harmon-
ics have been calibrated to numerical waveforms, i.e. SEOB-
NRv4HM, NRHybSur3dq8, IMRPhenomXHM and IMRPhe-
nomTHM (see e.g. Fig. 5). However we find significant dif-
ferences for IMRPhenomHM, where higher modes have been
constructed by an approximate map in terms of the dominant
quadrupole mode, which was calibrated to a much smaller set of
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FIG. 12. Posterior distributions for some of the intrinsic and extrinsic parameters of a synthetic signal obtained starting from the public SXS
waveform SXS:BBH0058. Purple and orange stars mark the values of the injected and maximum-likelihood parameters, respectively. Dashed
lines indicate the 90% credible intervals of the individual posterior distributions.

NR waveforms than IMRPhenomXAS. It is to be expected that
in the future, EOB and phenomenological models will also be
calibrated to numerical relativity waveforms for the precessing
sector, and will thus reach similar levels of agreement.

When adding precession we find that the agreement between
phenomenological waveforms and the EOB model improves
for some quantities, notably the masses and source location.
Not surprisingly, for the effective precession spin this is not the
case, although the posterior width for IMRPhenomXPHM is
closer to SEOBNRv4PHM than IMRPhenomPv3HM. Both
SEOBNRv4PHM and the frequency-domain phenomenologi-
cal waveforms use a version of the “twisting-up” approximate
map between non-precessing and precessing waveforms [37],
however the current frequency domain phenomenological wave-
forms employ the stationary phase approximation (SPA) in ad-
dition to the approximations inherent in the twisting-up (for
a recent discussion of these approximations see [96]). An
improved accuracy for precession is thus expected from the

extension of the LALSuite implementation of IMRPhenomT
to include precession following [11]. Strategies for extending
the twisting-up procedure for frequency-domain waveforms
beyond the SPA approximation have been discussed in [97]. In
appendix C we compare the two different descriptions of the
Euler angles used in the twisting-up procedure implemented in
IMRPhenomXPHM (single-spin and double-spin), and only
find small differences, mainly in the effective precession spin
parameter χp. Not surprisingly we find that the double-spin
description is closer to the results that have been reported for
SEOBNRv4PHM in [15]. In the same section we also compare
different prescriptions for the spin of the merger remnant in
precessing mergers, and we find no significant differences for
GW190412. In appendix Dwe compare directly against an alter-
native “twisting-up” of the older IMRPhenomHM aligned-spin
model implemented within the IMRPhenomXPHM framework,
finding consistent results with the original IMRPhenomPv3HM
(which is based on IMRPhenomHM), thus cleanly demonstrat-
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FIG. 13. Posterior distributions for some of the intrinsic and extrinsic parameters of a synthetic signal obtained from the SEOBNRv4PHM
maximum-likelihood parameters for GW190412. Purple and orange stars mark the values of the injected and maximum-likelihood parameters,
respectively. Dashed lines indicate the 90% credible intervals of the individual posterior distributions.

ing that our improved results mostly derive from the updated
underlying aligned-spin model IMRPhenomXHM with its cal-
ibration of subdominant modes to NR. We have also shown
that the use of the multibanding algorithm leads to a dramatic
reduction of the computational cost of parameter estimation
runs, nearly halving the cost of non-multibanded runs.

Additional studies presented in this paper include investiga-
tions into possible remaining systematic differences between
waveforms, including waveform match comparisons and in-
jection studies in Sec. IV. The tested injections include SXS
waveforms with parameters consistent with GW190412 as well
as the SEOBNRv4PHM maximum-likelihood waveform, find-
ing no significant systematic issues with IMRPhenomXPHM
in this part of the parameter space. We also test the impact of
different spin priors in appendix E, finding that PE results for
GW190412 are generally consistent when changing from the
standard LVC prior to a volumetric one, and confirming the
results of [58] that the standard assumption of allowing for a

spinning heavier BH component is preferred over runs with a
prior that restricts spin to the less massive BH only.

One of the key properties of the IMRPhenomX waveform
family is its computational efficiency. We demonstrate that even
the most complete IMRPhenomXPHM model, when making
use of the pBilby sampler and a strong HPC cluster, allows for
extremely fast-turn-around exploratory runs (few hours) and
still very fast high-fidelity runs like the ones we report as the
main results (see e.g. Fig. 1, with the plotted IMRPhenomX-
PHM run taking 2670 CPU hours total and finishing after 28
hours wall-clock time). The time-domain IMRPhenomTHM
model is also quite competitive in run time despite being a
native time domain model, having only 50 more CPU cost per
likelihood evaluation than IMRPhenomXHM. More details
on computational cost for different model versions and sam-
pler settings are found in Table III (for the runs with distance
marginalization) and Table ,VIII (for the runs without distance
marginalization). As expected, the use of distance marginal-
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ization brings significant computational cost savings: this can
be readily appreciated by comparing otherwise equivalent runs
from the two tables (e.g. run 23 in Table III and run 20 in
Table VIII).

In summary, the studies presented here demonstrate the ro-
bustness and efficiency of the “generation X” phenomenologi-
cal waveform models in a real-world application, and point out
how systematic runs with varied settings can be used both to
study the physics of an individual detection in detail, and to
achieve accuracy requirements at bounded computational cost.
We hope these results will help to advance the routine use of
subdominant harmonics in the parameter estimation for com-
pact binary mergers, leading to both more accurate parameter
estimates, and the availability of accurate posterior estimates
on the time scale of a few hours.

Posterior samples from our preferred run for each waveform
model are released in [49].
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Appendix A: Comparison between pBilby and LALInference

In order to cross-validate our parallel Bilby results, we per-
form the runs listed in Table VII using the Bayesian parameter
estimation package LALInference (LI) [48]. The runs that make
use of nested sampling employ five different seeds, 2048 live
points, and a maximum chain length of 5000. Those that use
MCMC sampling, utilize eight parallel tempering temperatures
and 24 parallel chains.
In Fig. 14 we compare the standard runs of Table III using

nlive = 2048 and nact = 10 (dashed) with the default LI runs
(solid). All posteriors are well recovered, and we find generally
good agreement between pBilby and LI runs. We also observe
that the agreement is better in the presence of higher modes. A
possible explanation is that the breaking of degeneracies due to
higher modes reduces the posterior volume and thus benefits
better sampling.

Appendix B: Comparison of runs with and without distance
marginalisation

We report in TableVIII the complete list of pBilby runs per-
formed on GW190412 without using distance marginalisation
(prior to a bugfix in the distance marginalisation algorithm).
We find excellent agreement and show a comparison in Fig. 15
for some key quantities.

Appendix C: Comparison of IMRPhenomX precession and
final spin versions

We have performed several IMRPhenomXPHM runs with
non-default waveform options to study the robustness of our
results under changes of the precession prescription and final
spin version. We compare posterior distributions for the default
and non-default runs in Fig. 16. Mass parameters appear to be
insensitive to changing these settings, while we observe minor
differences in the spin parameters, with the MSA prescription
returning slightly broader posteriors.

Appendix D: Comparison with IMRPhenomPv3HM

As we observed in the previous subsection, there are vis-
ible differences in the posterior distributions obtained with
IMRPhenomPv3HM and IMRPhenomXPHM. We mean to
quantify here the effect of the underlying aligned-spin model

https://dcc.ligo.org/P2000402
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Approximant Run n Modes (l,|m|) PV FS PMB MB Prior Sampler nlive max. mcmc nparallel ntemps
IMRPhenomXAS 1 (2,2) - - - - Aligned spin Nested 2048 5000 5 -
IMRPhenomXHM 2 D - - - D Aligned spin Nested 2048 5000 5 -

IMRPhenomXP 3 (2,2) D D D D Precessing Nested 2048 5000 5 -
4 (2,2) 102 D D D Precessing Nested 2048 5000 5 -

IMRPhenomXPHM
5 D D D D D Precessing MCMC - - 24 8
6 D 102 D D D Precessing MCMC - - 24 8
7 D 102 D D D Precessing Nested 2048 5000 5 -

TABLE VII. List of all LALInference runs we performed on open data for GW190412 using the IMRPhenomX family. For each run, we indicate
the LALSuite waveform approximant called along with along with various waveform settings: the mode content, precessing prescription (PV),
final spin version (FS), and multibanding thresholds applied to the evaluation of the Euler angles (PMB) and of the aligned-spin modes (MB); as
well as the prior used. We also denote the sampler used (Nested or MCMC) and its corresponding settings such as number of live points (nlive),
maximum chain length (max. mcmc), parallel chains (nparallel) and the number of parallel tempering temperatures (ntemps).

FIG. 14. Posterior distributions of several source parameters comparing the LALInference (LI) runs as listed in Table VII (solid) and the standard
parallel Bilby runs from Table III using nlive = 2048 and nact = 10 (dashed).

on those results. This can be easily done with IMRPhenomX-
PHM, which has an in-built option allowing to twist-up the GW
modes returned by the older model IMRPhenomHM (we will
refer to this configuration as “IMRPhenomPHM”) instead of
IMRPhenomXHM. Using this option, one can cleanly separate
the effects of the HM calibration from all the details of the
precessing extension. Fig. 17 compares previous results with
the IMRPhenomPHM run described above.
It can be seen that the shifts observed in the posteriors can

be ascribed to the different underlying aligned-spin models, as,
despite the use of independent precessing extensions, IMRPhe-
nomPv3HM and IMRPhenomPHM return equivalent results.
Comparing both against the default IMRPhenomXPHM, we
observe in particular a marked difference in the recovery of
the geocentric time of the event, due to the improved time-
alignment provided by the IMRPhenomX models.

Appendix E: Investigating different spin priors

For the vast majority of our runs we adopted the same priors
employed in the LVC analysis [1]. Specifically, we choose uni-
form priors for detector-frame mass ratio 0.125 ≤ q ≤ 1 and
chirp mass 13 ≤ M ≤ 18, with masses constrained to lie in the
interval 5 ≤ m1,2 ≤ 60. We use a power law prior with exponent
2 for the luminosity distance, with a lower bound of 100 Mpc
and uniform priors for phase and polarization angle. We also
investigate the effect of different spin priors on the posterior es-

timates, in particular on the χp parameter whose interpretation
is subtle. Our default prior for precessing runs5, in keeping
with the LVC standard (defined as prior “P1" in appendix C.1
of [14] and also used in the analysis of GW190412 [1]), em-
ploys uniform distributions in the dimensionless component
spin magnitudes (ai ∈ [0.0, 0.99]) and isotropically distributed
spin tilts (uniform in cos(θi)). Another common prior choice is
a “volumetric spin” prior, where the magnitudes follow a power
law with exponent 2 (prior “P2” in appendix C.1 of [14]).
As shown in Fig. 18, the induced prior on χp from the

volumetric prior prefers higher values than for the standard
prior. We compare two IMRPhenomXPHM runs with these
two prior choices, both with 2048 live points, nact = 5 and
without distance marginalisation (runs 12 and 19 in Table VIII).
We find a slight shift of the inferred χp towards higher val-
ues: χp = 0.26+0.19

−0.12 from the run with a volumetric prior vs.
χp = 0.22+0.21

−0.13 from the run with the default prior. However the
resulting estimate is still lower than those reported in [1] (e.g.
χp = 0.31+0.14

−0.15 for SEOBNRv4PHM). Other relevant parame-
ters like χeff show no noticeable change under this prior.

While the Bayes factor for precession against the correspond-
ing IMRPhenomXHM run is indecisive for the default prior
(∆ log10 B = 0.06), for the volumetric prior precession is actu-
ally slightly disfavoured (∆ log10 B = −0.84). Since the volu-

5 For aligned-spin runs we use instead a ’z-prior’, corresponding to a projection
of the isotropic spin prior along the direction of the total angular momentum.
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FIG. 15. Comparison between some key posterior distributions obtained with and without distance marginalisation, using two sets of sampler
settings (nlive = 2048 and nact = 10 vs. nlive = 4096 and nact = 10).

FIG. 16. 1D and 2D posterior distributions for detector-frame masses and spin parameters of GW190412 obtained with three versions of
IMRPhenomXPHM that implement different precessing prescriptions (102 for NNLO angles and 223 for MSA) and final spin formulae (FS0,
FS2, FS3, see main text for more details). The two NNLO results are plotted in red (FS0) and purple (FS2), while the default MSA results is
plotted in green. Dashed (solid) lines in the 1D (2D) plots indicate 90% credible intervals (regions).

FIG. 17. Left panel: 1D and 2D posterior distributions for the mass ratio and precession spin of the signal recovered with IMRPhenomPv3HM
(orange), SEOBNRv4PHM (blue), IMRPhenomXPHM in its default version (green) and its “IMRPhenomPHM” version (purple, see main text
for details). Dashed (solid) lines indicate 90% credible intervals (regions). Right panel: posterior distributions for the geocentric time of the
event, as estimated with the same models shown in the top panel.
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Approximant Run n Modes (l,|m|) PV FS PMB MB Prior nlive nact CPU h L. eval. Cost/L. eval. [ms]
IMRPhenomXAS 1 (2,2) - - - - Aligned spin 2048 20 2650 2.23 × 108 42.77
IMRPhenomXHM 2 D - - - D Aligned spin 2048 20 4734 2.90 × 108 58.67

IMRPhenomXP 3 (2,2) 102 0 - - Precessing 2048 5 1042 6.57 × 107 57.13
4 (2,2) D D - - Precessing 2048 5 1273 6.32 × 107 72.45

IMRPhenomXPHM

5 D D D D D Precessing 512 5 1566 1.99 × 107 283.60
6 D D D D D Precessing 1024 5 1531 3.61 × 107 152.55
7 D D D D D Precessing 1024 20 3362 1.31 × 108 92.16
8 D D D D D Uniform m1-m2 1024 30 7082 2.05 × 108 124.17
9 D D D D D Uniform m1-m2 1024 50 8362 3.34 × 108 90.10
10 D D D D D Precessing 1024 60 3696 1.68 × 108 79.33
11 D D D D D Precessing 1500 50 5041 2.31 × 108 78.43
12 D D D D D Precessing 2048 5 1804 7.15 × 107 90.85
13 D D D 10−2 D Precessing 2048 5 1295 7.19 × 107 64.85
14 D D D 10−2 D Precessing * 2048 5 1690 7.18 × 107 84.73
15 D 102 2 D D Precessing 2048 5 1336 7.09 × 107 67.83
16 D 102 0 D D Precessing 2048 5 1354 7.10 × 107 68.61
17 D 223 2 D D Precessing 2048 5 1732 7.24 × 107 86.13
18 No (3, 2) D D D D Precessing 2048 5 1465 7.21 × 107 73.11
19 D D D D D Volumetric spin 2048 5 2216 7.77 × 107 102.68
20 D D D D D Precessing 2048 10 4275 1.54 × 108 99.44
21 D D D D D Precessing 2048 20 6795 2.66 × 108 91.79
22 D D D D D Uniform m1-m2 2048 30 9070 4.22 × 108 77.25
23 D D D D D Precessing 4096 5 3434 1.46 × 108 84.47
24 D D D D D Precessing 4096 10 6377 2.89 × 108 79.43
25 D 102 D D D Precessing 4096 10 5132 2.85 × 108 64.75
26 D D D D D Precessing 4096 20 11438 5.71 × 108 72.08
27 D D D D D Uniform m1-m2 4096 30 20187 9.49 × 108 76.57
28 D D D D D Precessing 8192 5 8921 2.95 × 108 108.94
29 D D D D D Precessing, χ1 = 0 2048 5 1863 6.95 × 107 96.47
30 D D D D D Aligned, χ1 = 0 2048 5 1726 6.31 × 107 98.40

TABLE VIII. List of the runs performed on GW190412 open data with parallel Bilby without distance marginalisation, using different models
of the IMRPhenomX family. For each run, we indicate the LALSuite waveform approximant called along with various waveform settings:
the mode content, precessing prescription (PV), final spin version (FS), and multibanding thresholds applied to the evaluation of the Euler
angles (PMB) and of the aligned-spin modes (MB); as well as the prior used and the chosen sampler settings (nlive and nact). We also provide the
computational cost of each run, the number of likelihood evaluations and the mean cost of each evaluation. We use 4kHz GWOSC data for all
runs in this table, except for the one marked with an asterisk, which employs 16kHz data.
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FIG. 18. Induced prior on the effective precessing spin parameter χp

for two different priors on the component spins: uniform inmagnitudes
(default prior for this paper) and volumetric (power law with exponent
2 in the spin magnitudes). These correspond to priors “P1" and “P2"
in appendix C.1 of [14]. Also shown are the posteriors on χp from
two IMRPhenomXPHM runs with the two different prior choices and
otherwise identical settings (runs 12 and 19 in Table VIII).

metric prior gives more weight to high χp, this result is consis-
tent with the overall picture of no support in the GW190412
data for strongly precessing spins 6.
In conclusion, the effect of different standard spin prior

choices on GW190412 inference is small, with the main con-
clusions robust against such a change.
We also briefly consider another spin prior as suggested

by [17]. They argue that if GW190412 formed from the isolated

binary evolution channel [56, 99], the more massive component
BH should have low (or even zero) spin but the secondary BH
could have high aligned spin. This suggestion and the effect of
spin priors on GW190412 has already been considered in detail
by [58]. Here we report on two additional IMRPhenomXPHM
runs with the same settings as above (2048 live points, nact = 5
and without distance marginalisation) but with priors that (i) fix
a1 = 0, leaving a2 and the tilt angles unchanged; (ii) fix a1 = 0
and the secondary spin to be positive aligned (a2 uniform in
[0.0,0.99], tilt θ2 = 0). These are runs 29 and 30 in Table VIII.

As suggested by [17] based on reweighting the original LVC
posteriors, and first confirmed by [58] from full PE runs, our
results also show that it is possible to fit the GW190412 data
with zero primary spin, and that the posteriors then prefer a
high value for the secondary spin magnitude: a2 > 0.52 or a2 >
0.54 at 90% for the two runs respectively, with both posteriors
railing against the upper prior limit. However, this alternative
configuration is actually a somewhat worse fit to the data than
the standard interpretation of nonzero primary spin7: while
the run with the same settings and default prior (run no. 12 in
TableVIII) reaches network matched filter SNRs of 18.80+0.19

−0.3 ,
for the two modified prior runs these are only 18.52+0.23

−0.34 and
18.53+0.19

−0.3 . Correspondingly, we find clear preference against
the first and mild preference against the second alternative,
with log10 B of 1.7± 0.2 and 1.0± 0.2 in favour of the standard
interpretation. Hence, our result is consistent with the findings
of [58] for other waveforms: also with IMRPhenomXPHM
there appears to be no preference for the scenario of [17] from
the GW190412 data, since the reduced prior volume cannot
make up for the worse fit to the data of waveforms without
primary spin.
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