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We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasi-
circular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our
model, we show that LISA could measure the spin parameter of near-extremal black holes (for a≳ 0.9999)
with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin
measurements would be one of the tightest measurements of an astrophysical parameter within a
gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified
using both frequentist and Bayesian techniques. We present analytical arguments that explain these high
spin precision measurements. The high precision arises from the spin dependence of the radial inspiral
evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction.
High precision measurements are only possible if we observe the exponential damping of the signal that is
characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such
black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to
a ¼ 1 − 10−9, far past the Thorne limit of a ¼ 0.998.
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I. INTRODUCTION

Extreme mass ratio inspirals (EMRIs) are one of the most
exciting possible sources of gravitational radiation for the
space-based detector LISA [1], but also one of the most
challenging to model and extract from the data stream. An
EMRI involves the slow inspiral of a stellar-origin compact
object (CO) of mass μ ∼ 10 M⊙ into a massive black hole
in the center of a galaxy. For a central black hole with mass
M ∼ 10ð5−7ÞM⊙, EMRIs emit gravitational waves (GWs) in
the mHz frequency band and so are prime sources for the
LISA detector. EMRIs begin when, as a result of scattering
processes in the stellar cluster surrounding the massive
black hole, the CO becomes gravitationally bound to the
primary. The subsequent inspiral of the CO toward the
horizon of the primary is driven by radiation reaction
through the emission of gravitational waves. EMRI wave-
forms are very complicated and EMRIs can be present in

the LISA frequency band for several years prior to plunge,
so modeling the full observable signal is a complex task [2].
EMRI orbits are expected to be both eccentric and inclined
even up to the last few cycles before plunging into the
primary black hole. For these reasons, EMRIs pose a
challenging problem for both waveform modelers [2–4]
and data analysts.
This same complexity also makes EMRIs one of the

richest sources of gravitational waves. Typically an EMRI
will be observable for 1=ðmass ratioÞ ∼ 105−7 cycles before
plunge and the emitted gravitational waves thus provide a
very precise map of the spacetime geometry of the primary
hole [5–8]. Through accurate detection and parameter
inference, one can conduct tests of general relativity to
very high precision [6,9].
It is well known that the information about the source is

carried through the time evolution of the phase in a
gravitational wave [10,11]. The slow evolution of EMRIs
means that a large number of cycles can be observed during
the inspiral, whichwill provide constraints on the parameters
of the source with remarkable precision [12,13]. Previous
work has indicated that LISAwill be able to place constraints
on the dimensionless Kerr spin parameter, a, of the primary
black hole in an EMRI, at the level of 1 part in 104 for
moderately spinning, a ∼ 0.9, primaries [3,4,14,15]. In this
paper, we explore howwell LISAwill be able to measure the
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spin parameter for very rapidly rotating black holes, i.e.,
systems inwhich the spin parameter is close to themaximum
value allowed by general relativity.
Super massive black holes with a large spin parameter

are abundant throughout our universe. Observations indi-
cate that massive BHs reside in the centers of most galaxies,
where these black holes are known to accrete matter and
hence are predicted to have very high spins [11,16–20]. The
dimensionless Kerr spin parameter of a Kerr black hole,
cannot exceed 1, since the resulting spacetime contains a
naked singularity no longer encased within a well-defined
horizon. Thorne [21] showed that a moderately spinning
black hole cannot be spun up by thin-disc accretion above a
spin of a ≈ 0.998. However, in principle primordial black
holes could be formed with spins exceeding that value [22].
“Near-extremal” black holes with spins close to the limit of
a ¼ 1 have interesting properties and we focus our atten-
tion on these here.
This past decade, researchers [23–32] have explored the

rich properties of near-extremal EMRIs. The gravitational
radiation emitted from these systems is unique, and would
prove a smoking gun for the existence of these near-
extremal systems (see [24]). In this paper, we show
qualitatively that the inspiralling dynamics of the compact
object into an near-extremal massive black hole is very
different from that into a moderately spinning black hole,
and these differences are reflected in the emitted gravita-
tional waves. As such, in order to detect and correctly
perform parameter estimation on these near-extremal
sources, it is essential to update our family of waveform
models to include them. We will argue throughout this
work that, if observed, near-extreme black holes offer
significantly greater precision measurements on the Kerr
spin parameter than moderately spinning systems. In
particular, LISA will have the capability to successfully
conclude whether the central object in an EMRI system is
truly a near-extremal black hole. Thus, if near-extremal
black holes exist, LISA observations of EMRIs may be one
of the best ways to find them.
In this paper we will consider only EMRIs on circular

and equatorial orbits around near-extremal primary black
holes. This choice is made primarily for computational
convenience, but there are also astrophysical scenarios that
produce such systems. As discussed in [33], compact
objects can form within accretion disks around massive
black holes. When these objects fall into the central black
hole, the resultant EMRI will be circular and equatorial.
Super-Eddington accretion can provide a means to spin up
a black hole past the Thorne limit [34], and so it is not
unreasonable to expect that this EMRI formation channel
would be more important for near-extremal systems. The
standard EMRI formation channel, involving capture of a
compact object via scattering interactions, tends to form
EMRIs with moderate initial eccentricities. However,
this eccentricity decreases during the inspiral due to the

emission of gravitational radiation [35]. This decrease in
eccentricity continues until the orbit reaches a critical
radius at which is starts to increase again [36,37]. The
critical radius moves closer to the last stable orbit as the
spin parameter increases and for near-extremal systems is
located within the regime where transition from inspiral to
plunge occurs [38,39]. Additionally, the increase in eccen-
tricity is a subdominant effect throughout the transition
regime [40]. As the spin increases, we therefore expect that
for an object captured at a fixed radius, the amount of
eccentricity dissipated before the critical radius increases,
and the eccentricity gained after the critical radius
decreases. Therefore, even in the standard capture picture
it is reasonable to assume the eccentricity is small at the end
of the inspiral. We will show in this paper that very precise
measurements of spin for near-extremal systems are pos-
sible, but this precision comes from observation of features
[24] in the final phase of the inspiral, which is where the
near-circular assumption is most likely to be valid.
The main results of the paper are given in Figs. 9 and 10

in Sec. VI. Readers who wish to understand why near-
extremal systems offer greater precision spin measurements
than moderate spin systems should direct their attention to
Sec. III.
This paper is organized as follows. In Sec. II, we set

notation and discuss the trajectory of a compact object on a
circular and equatorial orbit around a near-extremal Kerr
BH. In Sec. III, we show that the spin dependence of
kinematical quantities appearing in the radial evolution
rather than radiation-reactive effects dominate the spin
precision measurements for near-extremal EMRI systems.
Our Teukolsky based waveform generation schemes are
outlined in Sec. IV. We discuss prospects for detection in
Sec. V, arguing that LISA is more sensitive to heavier mass
systems M ∼ 107 M⊙ than lighter systems M ∼ 106 M⊙.
Our Fisher Matrix results are presented in Sec. VI. Here we
show that we can constrain the spin parameter Δa ∼ 10−10,
even when correlations among other parameters are taken
into account. Finally, in Sec. VII, we perform a Bayesian
analysis to verify our Fisher matrix results, before finishing
with conclusions and outlooks in Sec. VIII.

II. BACKGROUND

We consider the inspiral of a secondary test particle of
mass μ on a circular, equatorial orbit around a primary
super massive Kerr black hole with mass M and Kerr spin
parameter a ≲ 1 where the mass ratio is assumed small
η ¼ μ=M ≪ 1. The secondary is on a prograde orbit
aligned with the rotation of the primary black hole with
a > 0 and dimensionful angular momentum L > 0. Unless
stated otherwise, throughout this paper any quantity with an
overtilde is dimensionless, e.g., r̃ ¼ r=M and t̃ ¼ t=M etc.
The one exception is the dimensionless spin parameter,
which we denote by a without a tilde. Quantities with an
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overdot will denote coordinate time derivatives, e.g.,
_r ¼ dr=dt. We use geometrized units such that G ¼ c ¼ 1.
In Boyer-Lindquist [41] coordinates, the metric of a Kerr

black hole for θ ¼ π=2 is given by

g ¼ −
�
1 −

2

r̃

�
dt̃2 þ r̃2

Δ̃
dr̃2 þ

�
r̃2 þ a2 þ 2a2

r̃

�
dϕ2

−
4a
r̃
dt̃dϕ; ð1Þ

where Δ̃ ¼ r̃2 − 2r̃þ a2 and a is the dimensionless spin
parameter introduced earlier. This is related to the mass,M,
and angular momentum, J, of the Kerr black hole via a ¼
J=M and lies in the range a ∈ ½0; 1�. The event horizon is
located on the surface defined by Δ̃ ¼ 0, when

r̃þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
: ð2Þ

Introducing an extremality parameter ϵ ≪ 1

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
; ð3Þ

the event horizon is at

r̃þ ¼ 1þ ϵ: ð4Þ

The trajectory of the secondary confined to the equatorial
plane of a central Kerr hole is governed by the Kerr
geodesic equations [42]�

r̃2
dr̃
dτ̃

�
2

¼ ½Ẽðr̃2 þ a2Þ − aL̃�2 − Δ½ðL̃ − aẼÞ2 − r̃2�

r̃2
dϕ
dτ̃

¼ −ðaẼ − L̃Þ þ a
r̃
ðẼ½r̃2 þ a2� − aL̃Þ

r̃2
dt̃
dτ̃

¼ −aðaẼ − L̃Þ þ r̃2 þ a2

Δ
ðẼ½r̃2 þ a2� − aL̃Þ;

in which τ̃ denotes the proper-time coordinate for the
inspiraling object. The dimensionless conserved quantities
Ẽ ¼ E=μ and L̃ ¼ L=ðMμÞ are related to the energy, E, and
angular momentum, L, measured at infinity. For the
circular and equatorial orbits considered here, the energy
Ẽ and angular frequency Ω̃ can be expressed analytically

Ẽ ¼ 1 − 2=r̃þ ã=r̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2a=r̃3=2

p ð5Þ

Ω̃ ¼ 1

r̃3=2 þ a
; ð6Þ

in which the dimensionless angular frequency Ω̃ is defined
through Ω ¼ Ω̃=M ¼ dϕ=dt.

Circular orbits exist only outside the innermost stable
circular orbit (ISCO). For radii smaller than the ISCO, the
secondary will start to plunge toward the horizon of the
primary. The ISCO for equatorial orbits is at [43]

r̃isco ¼ 3þ Z2 − ½ð3 − Z1Þð3þ Z1 þ 2Z2Þ�1=2 ð7aÞ

Z1 ¼ 1þ ð1 − a2Þ1=3½ð1þ aÞ1=3 þ ð1 − aÞ1=3� ð7bÞ

Z2 ¼ ð3a2 þ Z2
1Þ1=2: ð7cÞ

For near extremal orbits, using (3) and (7), and expand-
ing for ϵ ≪ 1, we obtain

r̃isco ¼ 1þ 21=3ϵ2=3 þOðϵ4=3Þ; ð8Þ

and deduce

jr̃isco − r̃þj ¼ Oðϵ2=3Þ; for ϵ ≪ 1: ð9Þ

The radial coordinate separation between the ISCO and
horizon is determined by the spin parameter. In the limit,
ϵ → 0, then r̃isco → r̃þ → 1 in Boyer-Lindquist coordinates.

A. Radiation reaction

To compute circular and equatorial adiabatic inspirals, a
detailed knowledge of the radial self-force is required (see,
for example, [44] for a detailed review). In this paper, we
will work at leading order, including the radiative (dis-
sipative) part of the radial self-force at first order, but
neglecting first order conservative effects and all second
order in mass-ratio effects. The first order dissipative force
can be computed by solving the Teukolsky equation [45].
The rate of emission of energy is given by

h− _̃Ei ¼ h _̃EGWi ¼ h _̃E∞i þ h _̃EHi

¼ 2
X∞
l¼2

Xl

m¼1

ðh _̃E∞
lmi þ h _̃EH

lmiÞ: ð10Þ

where h _̃EGWi ¼ h−ðutÞ−1Fti, h·i denotes coordinate time
averaging over several periods of the orbit. The quantity ut

is the t component of the four velocity and Ft the t
component of the gravitational self-force at first order in the
mass ratio η. This expression is valid only if η ≪ 1, that is,
when orbits evolve adiabatically such that the timescale on
which the orbital parameters evolve is much longer than the
orbital period.
The fluxes h _̃E∞i and h _̃EHi denote the (dimensionless and

orbit averaged) dissipative fluxes of gravitational radiation
emitted toward infinity and toward the horizon respectively.
From here on, we shall drop the angular brackets h _Ei → _E,
to avoid cumbersome notation. The quantities jmj ≤ l are
angular multiples which appear in the decomposition of
the emitted radiation into a sum of spheroidal harmonics.
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The components of the fluxes _̃E are obtained by numerical
solution of the Teukolsky equation sourced by a point
particle (the secondary). There exists an open source code
in the black hole perturbation toolkit (BHPT) [46] to do
this for circular and equatorial orbits—specifically the
Teukolsky package.
The enhancement of symmetry in the near horizon

geometry of extreme Kerr [47] provides an additional tool
to compute the fluxes _̃E analytically from first principles.
See [23–32] for a description of this work. For circular
equatorial orbits near the horizon of a near-extremal black
hole, there is a remarkably simple approximation for the
total flux [25], which takes the form

_̃E
NHEK
GW ¼ ηðC̃Hþ C̃∞Þðr̃− r̃þÞ=r̃þ;

r̃− r̃þ
r̃þ

≪ 1: ð11Þ

The quantities C̃H and C̃∞ are constants representing the
emission toward the horizon and infinity respectively.
These constants are given analytically in Eqs. (76) and
(77) of [25] and codes in the BHPT can be used to evaluate
them. Numerically evaluating them and summing the
contribution of the first jmj ≤ l ¼ 30 modes gives C̃H ≈
0.987 and C̃∞ ≈ −0.133. Equation (11) is useful when
working within the near-horizon geometry of the rapidly
rotating hole, but it breaks down far from the horizon and
extra terms would be required to compute reliable fluxes.
All the numerical work presented in this paper, which is

found in Sec. Vonwards, will use the exact fluxes obtained
from BHPT. However, to understand our numerical
results, we develop a set of new analytic tools in
Secs. III A and III C. These will partially make use of
the leading contribution to (11)

_̃E
NHEK
GW ≈ ηðC̃H þ C̃∞Þx; x ¼ r̃ − 1 ≪ 1: ð12Þ

This differs from (11) by OðϵÞ contributions since r̃ − 1
measures the BL radial distance to the extremal horizon and
not the radial distance to the near-extremal horizon r̃þ. The
approximation (12) can be derived from first principles by

solving the Teukolsky equation in the NHEK region.1 Our
numerical analysis based on the BHPT, suggests the spin
dependence of certain observables, to be discussed in
Sec. III B, is better captured by (12). Table I compares
the flux at r̃isco computed using BHPT to that obtained from
the near-extremal approximations of Eq. (11) and Eq. (12).
This table corroborates that (12) is a good approximation to
the total energy flux, particularly in the limit as a → 1,
where it outperforms the full expression, (11).

B. Inspiral and waveform

The radial evolution of the secondary can be found by
taking a coordinate time derivative of the circular energy
relation (5)

dr̃
dt̃

¼ −
PGW

∂ r̃Ẽ
ð13Þ

where we defined PGW ≔ _̃EGW. As the ISCO is
approached, the denominator ∂ r̃Ẽ tends to zero, marking
a break down of the quasicircular approximation. The ODE
(13) is easily numerically integrated given an expression for
the flux PGW.
The outgoing gravitational wave energy flux measured at

infinity has a harmonic decomposition [11]

_̃E
∞
m ¼ AmηΩ̃2þ2m=3 _E∞

m ; ð14Þ

where

Am ¼ 2ðmþ 1Þðmþ 2Þð2mÞ!m2m−1

ðm − 1Þ½2mm!ð2mþ 1Þ!!�2 ; ð15Þ

and ð2mþ 1Þ!! ¼ ð2mþ 1Þð2m − 1Þ…3 · 1. Here _E∞
m is

the relativistic correction to the Newtonian expression for
the flux in harmonic m.

TABLE I. NHEK fluxes at the ISCO computed using the approximations Eq. (11) (denoted _̃E
þ
NHEK) and Eq. (12)

(denoted _̃ENHEK), and computed exactly using BHPT (denoted _̃EExact and based on the first thirty m and l modes).

a _̃EExact=η
_̃E
þ
NHEK=η

_̃ENHEK=η j _̃Eþ
NHEK − _̃EExactj=η j _̃ENHEK − _̃EExactj=η

1 − 10−5 0.0264197 0.0261523 0.0300885 0.0002674 0.0036688
1 − 10−6 0.0129344 0.0125200 0.0137455 0.0004143 0.0008111
1 − 10−7 0.0061516 0.0059484 0.006333 0.0002031 0.0001814
1 − 10−8 0.0028875 0.0028082 0.0029294 0.0000793 0.0000419
1 − 10−9 0.0013472 0.0013193 0.0013575 0.0000280 0.0000103
1 − 10−10 0.0006273 0.0006176 0.0006296 0.0000097 0.0000023
1 − 10−11 0.0002915 0.0002883 0.0002922 0.0000031 0.0000007
1 − 10−12 0.0001354 0.0001344 0.0001356 0.0000009 0.0000002

1This follows by measuring the radial distance to the extremal
horizon by λ, defined through r̃ ¼ r̃þþr̃−

2
þ λr̃, and then taking the

decoupling limit λ → 0.
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In this work, we shall consider two different waveform
models. For the analytic discussion in Sec. III, we will use
the waveform model in [11], whereas for the numerical
analysis in later sections, we will use the full Teukolsky
based waveform.
Let us first review the main features of the model

discussed in [11] for the waveform observed by the detector
in the source frame. This model is written

hðt̃; θÞ ≈
X∞
m¼2

ho;m sinð2πf̃mt̃þ ϕ0Þ: ð16Þ

Some remarks are in order. First, we ignore the m ¼ 1
contribution since, as argued in [11], this is subleading to
the m ≥ 2 contributions. Second, the amplitude ho;m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh2þm þ h2×mi

p
corresponds to the root mean square

(RMS) amplitude of gravitational waves emitted toward
infinity in harmonic m. These are averaged h·i over the
viewing angle2 and over the period of the waves. Third, the
oscillatory phase depends on the initial phase ϕ0 and
the frequency f̃m of each waveform harmonic is given by

f̃m ¼ m
2π

Ω̃: ð17Þ

The relation between the RMS amplitude and the outgoing
radiation flux in harmonic m is

ho;m ¼ 2

ffiffiffiffiffiffiffiffiffi
η _̃E

∞
m

q
mΩ̃ D̃

ð18Þ

where D̃ ¼ D=M is the distance to the source from earth.
Using Eq. (14), we can rewrite ho;m as

ho;m¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðmþ1Þðmþ2Þð2mÞ!m2m−1

ðm−1Þ½2mm!ð2mþ1Þ!!�2
_E∞
m

s ffiffiffi
η

p
D̃

Ω̃m=3 ð19Þ

for m ≥ 2. We note that the effect of the averaging is that
this waveform model does not represent the waveform
measured by any physical observer. However, it captures
the main physical features of the waveform which encode
information about the source parameters.
Given the nature of our orbits, our parameter space will

only be six dimensional θ ¼ fr̃0; a; μ;M;ϕ0; D̃g, where r̃0
stands for the initial size of the circular orbit. We stress this
waveform model does not include the LISA response
functions, which affect the amplitude evolution of the
signal and induce modulations, due to Doppler shifting,
through the motion of the LISA spacecraft [48,49]. Since
these response functions do not depend on the intrinsic
parameters of the system that we are most interested in, we

omit these here and, consequently, they will also be omitted
in our analytic discussion based on this waveform model.
Let us now review the full Teukolsky based waveform

model that we will use in our numerical study. This is
given by

hþ − ih× ¼ μ

D̃

X
ml

1

m2Ω̃2
Gml expð−i½ϕ0 þmΩ̃ t̃�Þ ð20Þ

where

Gml ¼ −2S
amΩ̃
ml ðθÞ expðiϕÞZ∞

mlðr̃; aÞ ð21Þ

depends on the radial Teukolsky amplitude at infinity,
Z∞
mlðr̃; aÞ, and the viewing angle ðθ;ϕÞ. The latter depend-

ence is through the spin-weight minus 2 spheroidal
harmonics −2S

amΩ̃
ml ðθ;ϕÞ ¼ −2S

amΩ̃
ml ðθÞ expðiϕÞ. This work

will consider two viewing angles: face on ðθ;ϕÞ ¼ ð0; 0Þ
and edge on ðθ;ϕÞ ¼ ðπ=2; 0Þ. Using the identities

−2S
að−mÞΩ̃
ð−mÞl ðπ=2; 0Þ ¼ ð−1Þl−2S̄amΩ̃

ml ðπ=2; 0Þ ð22Þ

Z∞
ð−mÞl ¼ ð−1ÞlZ̄∞

ml ð23Þ

where barred quantities are complex conjugates, we can
write Eq. (20) as

hþ ¼ 2μ

D

�X∞
m¼1

1

m2Ω̃2
expð−i½ϕ0 þmΩ̃ t̃�Þ

X∞
l¼m

Gml

�
; ð24Þ

for the edge-on case, and as

hþ − ih× ≈
μ

4Ω̃2D
G22 expð−i½ϕ0 þ 2Ω̃ t̃�Þ; ð25Þ

for the face-on case. Note we have neglected higher order l
modes with m ¼ 2 fixed in the last equation since the
Teukolsky amplitudes Z∞

l2 for l > 2 are negligible in com-
parison to the dominant quadrupolar l ¼ m ¼ 2 mode.
Figure 1 in [25] further justifies our claim that higher order
m modes when l ¼ 2 can be ignored for face-on sources.
Furthermore, the only spheroidal harmonics that are non-
vanishing at θ ¼ 0 are thosewithm ¼ −s, orm ¼ 2 [50,51].
To perform our numerics, the spheroidal harmonics

are calculated using the SpinWeightedSpheroidal
Harmonics Mathematica package in the BHPT, whereas
the Teukolsky amplitudes Z∞

ml are calculated using the
Teukolsky package from the same toolkit. For reasons
discussed later, we generate both amplitudes and spheroidal
harmonics for a fixed spin parameter a ¼ 1 − 10−9. For the
remainder of this study, we will only consider the plus
polarized signal hðt; θÞ≡ hþðt; θÞ for the face-on and edge-
on observations.

2The (normalized) spheroidal harmonics −2S
amΩ̃
ml are integrated

out over the 2-sphere.
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We finish this waveform discussion with a comment
regarding the relation between the two models considered
in this work. The (dimensionful) Teukolsky amplitudes are
related to the energy flux for each ðl; mÞ mode by

_E∞
lm ¼ jZ∞

lmj2
4πm2Ω2

: ð26Þ

Hence jZ̃∞
mlj ∼MΩ̃

ffiffiffiffiffiffiffiffiffiffi
η _̃Elm

q
. Averaging over the sky and

ignoring the phase of the radial amplitude Z∞
ml, the

Teukolsky waveform (20) reduces to (16). Our numerical
results indicate that the spin precision measurements are
driven by the radial trajectory given by (13), which is
common to both (16) and (20), while not being largely
influenced by the spin dependence on the waveform
amplitude. Given this fact and since it is analytically much
easier to analyze the waveform model (16), this is the one
being discussed in the analytics Sec. III to explain the
increase in the spin precision measurement for near-
extremal primaries.

C. Gravitational wave data analysis

The data stream of a gravitational wave detector,
dðtÞ ¼ hðt; θÞ þ nðtÞ, is typically assumed to consist of
probabilistic noise nðtÞ and (one or more) deterministic
signals, hðt; θÞ, with parameters θ. Assuming that the noise
is a weakly stationary Gaussian random process with zero
mean, the likelihood is [52]

pðdjθÞ ∝ exp

�
−
1

2
ðd − hjd − hÞ

�
ð27Þ

with inner product

ðbjcÞ ¼ 4Re
Z

∞

0

b̂ðfÞĉ�ðfÞ
SnðfÞ

df: ð28Þ

Here b̂ðfÞ is the continuous time fourier transform (CTFT)
of the signal bðtÞ and SnðfÞ the power spectral density
(PSD) of the noise. Here we use the analytical PSD given
by Eq. (1) in [53]. We do not include the galactic fore-
ground noise in the PSD to ensure all noise realizations
generated through SnðfÞ are stationary. This is not a serious
restriction as for the sources we consider here, the majority
of the GW emission is at higher frequencies where the
galactic foreground lies below the level of instrumental
noise in the detector.
The optimal signal to noise ratio (SNR) of a source is

given by

ρ2 ¼ ðhjhÞ: ð29Þ

This is the SNR that would be realized in a matched
filtering search and is a measure of the brightness, or ease

of detectability, of a gravitational wave signal. Measures of
the similarity of two template waveforms h1 ≔ hðt; θ1Þ and
h2 ≔ hðt; θ2Þ are the overlap Oðh1; h2Þ ∈ ½−1; 1� and
mismatch Mðh1; h2Þ functions

Oðh1; h2Þ ¼
ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ

p ð30Þ

Mðh1; h2Þ ¼ 1 −Oðh1; h2Þ: ð31Þ

If Oðh1; h2Þ ¼ 1 then the shape of the two waveforms
matches perfectly. Waveforms with Oðh1; h2Þ ¼ 0 are
orthogonal, being as much in phase as out of phase over
the observation.
Consider θ ¼ θ0 þ Δθ for Δθ a small deviation around

the true parameters θ0. Assuming that the waveform
hðt; θÞ has a valid first order expansion3 in Δθ, we
substitute into (27) and expand up to second order in Δθ

pðdjθÞ∝exp

�
−
1

2

X
i;j

ΓijðΔθi−ΔθibfÞðΔθj−ΔθjbfÞ
�
; ð32Þ

where Δθibf ¼ ðΓ−1Þijð∂jhjnÞ and Γij is the Fisher matrix
given by

Γij ¼
�∂h
∂θi

���� ∂h∂θj
�
: ð33Þ

The Fisher matrix Γ ∼ ρ2 and therefore Δθ scales like
ðΓ−1Þijð∂jhjnÞ ∼ ρ−1. The linear signal approximation is
therefore valid for high SNR, ρ ≫ 1.
The Fisher matrix Γ, evaluated at the true parameters θ0,

provides an estimate of the width of the likelihood function
(27). Hence, it can be used as a guide to how precisely you
can measure parameters. The inverse of the Fisher matrix is
an approximation to the variance-covariance matrix Σ on
parameter precisions Δθi

CovðΔθi;ΔθjÞ ≈ ðΓ−1Þij: ð34Þ

The square route of the diagonal elements of the inverse
fisher matrix provide estimates on the precision of param-
eter measurements, accounting for correlations between
the parameters.

III. ANALYTIC ESTIMATES OF SPIN PRECISION

Before discussing numerical results on the measurement
precisions for the parameters θ of near-extremal EMRIs, we
would like to develop some analytic tools that will allow us
to understand the precisions we find numerically. In

3In the literature, this is called the linear signal approximation.
It is a good approximation for sufficiently small Δθ, such that
Δθ∂2

θh ≪ ∂θΔh.
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particular the fact that spin measurements for near-extremal
primaries are noticeably tighter than those obtained for
more moderately rotating primaries. Throughout this sec-
tion, we will use the waveform model (16) for analytical
convenience. We will focus on the spin-spin component of
the Fisher matrix

Γaa ¼ 4

Z
df

j∂ĥðf; rðaÞ; t; θÞ=∂aj2
SnðfÞ

ð35Þ

in the following analytic discussion. Our numerical and
statistical analysis will be more general and employ the
Teukolsky based model (20). In future work, we will extend
this analytic considerations to multiple parameter study.
If all other parameters were known perfectly, the

estimated precision on the spin parameter would be

Δa ≈ 1=
ffiffiffiffiffiffiffi
Γaa

p
: ð36Þ

Thus, to compare precisions between near-extremal
(denoted ext) and moderately rotating (denoted mod)
primaries one is led to study the ratio

Γext
aa

Γmod
aa

: ð37Þ

Consider the (semianalytic) gravitational wave ampli-
tude (16)

hðtÞ ¼
X
m

hmðtÞ ≈
X
m

2
ffiffiffiffiffiffiffi
_E∞
m

p
mΩ̃ D̃

sinðmΩ̃ t̃Þ; ð38Þ

where we have chosen the initial phase ϕ0 ¼ 0 for
simplicity. The Fisher matrix depends on the PSD of the
detector. In the numerical calculations presented later we
will use the full frequency dependent PSD, but to derive our
analytic results we will approximate SnðfÞ ≈ Snðf∘Þ, a
constant. The rationale for this is that EMRIs evolve quite
slowly and so the total change in the PSD over the range of
frequencies present in the signal is small. Between 1 mHz
and 100 mHz, the (square root of the) LISA PSD changes
by just one order of magnitude, which is much smaller than
the three orders of magnitude improvement in spin meas-
urement precision that we find numerically. Additionally,
the difference in the ISCO frequencies across all combi-
nations of mass and spin considered in our numerical
analysis is less than a factor of 2.5. PSD variations can not
therefore explain the numerical results, and so we can
ignore these in deriving the analytic results which do
explain the numerics. Under this approximation

Γaa ≈
4

Snðf∘Þ
Z

dtð∂ahðtÞÞ2: ð39Þ

We additionally assume that the choice of f∘ does not
depend on the spin, and therefore the ratio (37) is

independent of Snðf∘Þ. Again, this approximation could
introduce at most an order of magnitude uncertainty, and
most likely much less than that. Once the Fisher matrix is
written in the form (39), we can use the semianalytic
waveform model (38) to evaluate it. In the Appendix A, we
argue the dominant contribution can be approximated by

Γaa ≈
8M

D̃2SnðfoÞ
X
m

Γaa;m

Γaa;m ≈
Z

t̃cut

t̃0

dt̃ _̃E
∞
m ðΩ̃ t̃Þ2

�
1þ 3

2

ffiffiffĩ
r

p ∂ar̃

�
2

: ð40Þ

Here t̃0 is the coordinate time at which the observation
starts and t̃cut is the coordinate time at the end of the
observation. For the results in this paper, we analyze
∼1 year long signals and fix t̃cut independently of spin,
such that all inspirals terminate before r̃isco is reached.
As seen in (40), a proper understanding of the precision

in the spin measurement requires quantifying the spin
dependence of the inspiral trajectory of the secondary,
i.e., ∂ar̃.

A. Spin dependence on the radial evolution

Our primary goal here is to understand the spin depend-
ence on the radial trajectory of the secondary (∂ar̃) for any
spin parameter a of the primary.
The trajectory of the secondary is the integral of the

inspiral equation

∂ r̃Ẽðr̃; aÞ
dr̃
dt̃

¼ −PGWðr̃; aÞ: ð41Þ

This follows from energy conservation, where Ẽðr̃; aÞ is the
energy of a circular orbit (5) and PGW ≔ _̃EGWðr̃; aÞ is the
energy rate carried away by gravitational waves (10). While
Ẽðr̃; aÞ is kinematic, that is, derived through geodesic
properties, PGW is dynamic, that is, it is a radiation reactive
term determined by solving Teukolsky’s equation for a
point particle source. The former is under analytic control,
whereas the latter typically requires numerical treatment.
The quantity ∂ar̃ captures the change in the secondary’s

trajectory when the spin parameter a of the primary varies,
keeping the remaining primary and secondary parameters
fixed, including t̃. More explicitly, the integral r̃ðr̃0; aÞ of
(41) depends on the initial condition r̃ðt̃0Þ ¼ r̃0 and it
depends on the spin parameter a both through ð∂ r̃ẼÞ and
ðPGWÞ information, but not through t̃, which is simply
labeling the points in the trajectory. We will comment on
the possible spin dependence on the initial condition
r̃0 below.
One possibility to compute ∂ar̃ is to integrate (41) and to

take the spin derivative explicitly afterwards. A second,
equivalent, way is to observe r̃ is a monotonic function of t̃
at fixed spin and initial radius r̃0. Hence, it can be used as
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the integration coordinate to study ∂ar̃ðr̃Þ. To do this, notice
that the total spin derivative of the kinematic and dynamic
functions in (41), at fixed r̃0 and t̃, is

∂
∂a ∂ r̃Ẽðr̃ðaÞ; aÞ

���
r̃0;t̃

¼ ð∂2
r̃ ẼÞ∂ar̃þ ∂2

ar̃Ẽ;

∂PGW

∂a
����
r̃0;t̃

¼ ð∂ r̃PGWÞ∂ar̃þ ∂aPGW: ð42Þ

To ease our notation, all spin partial derivatives in the rhs,
and in the forthcoming discussion, should be understood as
computed at fixed r̃0 and t̃. Defining u ¼ ∂ar̃ (to ease
notation) and computing the total spin derivative of
Eq. (41), we obtain�

u∂2
r̃ Ẽþ ∂2earẼþ ∂ r̃Ẽ

du
dr̃

�
dr̃
dt̃

¼ −
dPGW

da
: ð43Þ

Plugging in the radial velocity using (41) one obtains

du
dr̃

þ
�∂2

r̃ Ẽ

∂ r̃Ẽ
−
∂ r̃PGW

PGW

�
u ¼ −

∂2
ar̃Ẽ

∂ r̃Ẽ
þ ∂aPGW

PGW
: ð44Þ

This is a first order linear ODE, valid for any spin and for
any location of the secondary, whose solution describes the
desired spin dependence in the radial trajectory ∂ar̃ðr̃Þ.
Its general solution is a sum of the homogeneous

solution uh and a particular solution up. It will depend
on an initial condition uðr̃0Þ. The initial condition of the
radial trajectory is

r̃ðr̃0; a; t ¼ 0Þ ¼ r̃0 ⇒
∂r̃
∂a

����
r0;t¼0

¼ 0; ð45Þ

from which we deduce uðt ¼ 0Þ ¼ 0.4

The homogeneous version of Eq. (44) is equivalent to

duh
uh

þ d log

�∂ r̃Ẽ
PGW

�
¼ 0 ⇒ uh ¼ k0

PGW

∂ r̃Ẽ
ð46Þ

where k0 is an arbitrary integration constant. We follow a
standard approach and look for a particular solution of the
form up ¼ kðr̃; aÞuh. Plugging this into (44) gives

kðr̃; aÞ ¼
Z ∂ r̃Ẽ

PGW

�
−
∂2
ar̃Ẽ

∂ r̃Ẽ
þ ∂aPGW

PGW

�
dr̃ ð47Þ

¼ −
Z ∂ r̃Ẽ

PGW
∂a log

�∂ r̃Ẽ
PGW

�
dr̃: ð48Þ

Combining our results, we obtain

∂ar̃ ¼
PGW

∂ r̃Ẽ

�
k0 −

Z ∂ r̃Ẽ
PGW

∂a log

�∂ r̃Ẽ
PGW

�
dr̃

�
: ð49Þ

This is valid for any spin, for any location of the secondary
and for any flux PGW. This analytic result will allow us to
determine what the dominant source of the spin dependence
is in different regions of the trajectory.
In Fig. 1 we show the near perfect agreement between

the solution to (49) and our numerical calculation of ∂ar̃
using finite difference method

∂ar̃ ≈
r̃ðaþ δ; t̃; _Eðaþ δÞÞ − r̃ða − δ; t̃; _Eða − δÞÞ

2δ
: ð50Þ

the method used to calculate year-long trajectories used for
our Fisher matrix results in later sections, for both mod-
erately and rapidly rotating primaries.
Following [11], we express the energy flux as a relativ-

istic correction factor, _E, times the leading order Newtonian
flux

PGW ¼ 32

5
ηΩ̃10=3 _E: ð51Þ

Plugging this into Eq. (49) gives

∂ar̃¼
1

Q

�
k0−

Z
Q∂a logQdr̃

�
; Q¼ ∂ r̃Ẽ

Ω̃10=3 _E
: ð52Þ

Decomposing the source term

Q∂a logQ ¼ ∂ r̃Ẽ

Ω̃10=3 _E

�∂2
ar̃Ẽ

∂ r̃Ẽ
−
∂a

_E
_E

þ 10

3
Ω̃
�
; ð53Þ

we see that the first and third terms are kinematic, i.e.,
driven by geodesic physics, whereas the second is dynami-
cal, i.e., driven by the energy flux. Comparison between
these terms at different stages of the inspiral, as a function
of the spin, can help us to determine what the driving source
of spin dependence is in each case. In the next subsection,
we investigate the contribution of both the geodesic and
radiation reactive terms to ∂ar̃.

B. Comparison of radial evolution for moderate and
near-extremal black holes

Despite the universality of (49) or (52), the dependence
on the energy flux makes it not feasible to analytically
integrate ∂ar̃ along the entire secondary trajectory.
However, we can integrate (49) in specific regions of the
secondary trajectory.

4The initial condition uðr̃0Þ can play an important role when
gluing a numerical calculation for ∂ar̃ with an analytic one in
some specific piece of the trajectory where the information
determining the solution to (44) is under analytic control. We
will be more explicit about this when we discuss ∂ar̃ in the region
close to ISCO.
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It is possible to prove that d∂ar̃=dr̃ < 0 and hence that
∂ar̃ grows monotonically over the inspiral. It is therefore
natural to study the behavior of ∂ar̃ close to ISCO, where
its contribution to the Fisher matrix (40) will be maximal.
We first compare the kinematic and dynamical contribu-
tions to (53). Using results from the BHPT, we have
numerically calculated the spin derivative of _E for two
primaries with spin parameters a ¼ 0.9 and a ¼ 1 − 10−6.
These are compared with the kinematic sources in (53) in
Fig. 2. These figures show that���� ∂2

ar̃Ẽ

∂ r̃Ẽ
þ 10

3
Ω̃
���� ≫���� ∂a

_E
_E

����; ð54Þ

for both spin parameters. This suggests it is the kinematic
sources in (53) that drive the spin dependence of the
secondary trajectory, particularly close to ISCO. Although
we have only verified it for two choices of spin parameter,
we will assume this approximation holds for any spin
parameter a ≥ 0.9.
We first consider moderately spinning black holes close

to ISCO. Dropping the dynamical contribution to (53), we
can compare the two remaining terms. The angular velocity
piece is bounded and order one, but ∂ r̃Ẽ tends to zero at
ISCO. This means that ∂2

ar̃Ẽ=∂ r̃Ẽ dominates close to ISCO,
allowing us to use the approximation

∂ r̃Ẽ

Ω̃10=3 _E

�∂2
ar̃Ẽ

∂ r̃Ẽ
−
∂a

_E
_E

þ 10

3
Ω̃
�
≈

∂2
ar̃Ẽ

Ω̃10=3 _E
: ð55Þ

Since, for moderate spins, the variation of Ω̃ and _E with
radius close to ISCO is negligible compared to the variation
in ∂2

ar̃Ẽ, we will approximate them by their values at r̃isco.

This allows us to integrate (49) to give the spin dependence
of the radial trajectory for moderately spinning black
holes

FIG. 2. The top plot compares the kinematic and radiation
reaction quantities given in (53) for a spin of a ¼ 0.999999. The
bottom plot is the same but for a spin parameter of a ¼ 0.9.
Notice that in these two cases the kinematical quantities dominate
over the relativistic correction terms.

FIG. 1. The dashed curves (black dashed and yellow dashed) on each figure is the solution to (49) with k0 ¼ 0 corresponding to
∂ar̃ðr̃0Þ ¼ 0. In both plots, the solid colors (blue and violet) are ∂ar̃ calculated using a fifth order stencil method. In each plot, the
intrinsic parameters given in the titles.
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∂ar̃ ≈
1

∂ r̃Ẽ
ðkmodΩ̃

10=3
isco

_E0ða; r̃iscoÞ − ∂aẼÞ; ð56Þ

where kmod is an arbitrary constant. Since

∂ r̃Ẽ ¼ r̃2 − 3a2 þ 8a
ffiffiffĩ
r

p
− 6r̃

2r̃7=4ðr̃3=2 − 3
ffiffiffĩ
r

p þ 2aÞ3=2 ; ð57Þ

it follows from Eq. (A5) in [40] that ∂ r̃Ẽðr̃iscoÞ ¼ 0. For
moderately rotating primaries and near ISCO, we can
expand Ẽ ≈ Ẽðr̃iscoÞ þ 1

2
∂2
r̃ Ẽðr̃iscoÞðr̃ − r̃iscoÞ2 leading to

∂aẼ ≈ ∂aẼðr̃iscoÞ þ ∂2
r̃ Ẽðr̃iscoÞðr̃ − r̃iscoÞð−∂ar̃iscoÞ

∂ r̃Ẽ ≈ ∂2
r̃ Ẽðr̃iscoÞðr̃ − r̃iscoÞ ð58Þ

Using these expansions in Eq. (56) we deduce ∂ar̃¼ k̃mod=
ðr̃− r̃iscoÞþ∂ar̃isco, where k̃mod¼kmodΩ̃

10=3
isco

_E0ða;r̃iscoÞ=
∂2
r̃ Ẽðr̃iscoÞ. Assuming that r̃0 is sufficiently close to r̃isco

that this approximation holds throughout the range
½r̃isco; r̃0�, we can use the boundary condition (45) to
determine k̃mod ¼ ∂ar̃iscoðr̃isco − r̃0Þ and hence

∂ar̃ ≈ ð−∂ar̃iscoÞ
r̃0 − r̃
r̃ − r̃isco

: ð59Þ

We now repeat this analysis for near-extremal primaries.
Near ISCO, the energy flux can be approximated by the
NHEK flux ðx≡ r̃ − 1 ≪ 1Þ

PGW ≈ ηðC̃∞ þ C̃HÞx: ð60Þ

Using this approximation, there is no explicit spin depend-
ence and so the ∂aPGW term in Eq. (47) vanishes.
Expanding (57) for x ¼ r̃ − 1 ≪ 1 and ϵ ≪ 1, the denom-
inator involves

r̃3=2−3
ffiffiffĩ
r

p
þ2a¼ 3

4
x2−ϵ2−

1

4
x3þ 9

64
x4þOðx5;xϵ2;ϵ4Þ;

while the numerator has the expansion

r̃2−3a2þ8a
ffiffiffĩ
r

p
−6r̃¼ 1

2
x3− ϵ2−

5

32
x4þOðx5;xϵ2;ϵ4Þ:

We conclude

∂ r̃Ẽ ≈
2

3
ffiffiffi
3

p
�
1 −

11

8
x −

x3isco
x3

�
þOðx2; ϵ2=x2Þ: ð61Þ

Using this approximation in Eq. (47) we find

kðr̃; aÞ ≈ −
Z ∂2

ar̃Ẽ
PGW

dr̃ ð62Þ

≈
2x2isco

ηðC̃∞ þ C̃HÞ
ffiffiffi
3

p ∂xisco
∂a

Z
x−4dx ð63Þ

≈
8

9
ffiffiffi
3

p
ηðC̃∞ þ C̃HÞ

1

x3
ð64Þ

where we have used xisco ≈ 21=3ϵ2=3 and PGW defined in
(60). This is valid for x ≪ 1 and includes the corrections
due to x ∼ xisco. Assuming r̃0 is close to ISCO, so that the
initial condition (45) holds, we conclude that the spin
dependence in the near-ISCO region of a near-extremal
black hole is

∂ar̃ ≈
8

9
ffiffiffi
3

p
x2∂ r̃Ẽ

�
1 −

x3

x30

�
: ð65Þ

Figure 3 compares (59) and (65) to the full ∂ar̃ computed
numerically without using the near-ISCO approximations.
We see that the approximations are very accurate in the
region close to the ISCO where they are valid.
Before continuing, we will comment further on the

choice of flux (12) instead of (11). The latter has an
explicit dependence on r̃þ ¼ 1þ ϵ. Consequently, it carries
an additional spin dependence. In particular, ∂ar̃þ ¼ −a=ϵ.
Thus, for near-extremal primaries this spin dependence can
induce extra diverging sources for ∂ar̃ with a very specific
sign. We can easily compute their effects by integrating the
ODE with such an energy flux source. The result one finds
does not agree with the numerical evaluation of ∂ar̃
generated from the BHPT, which computes the exact flux.5

We conclude that (12) appears to capture the spin depend-
ence of our observable (the amplitude of the gravitational
wave) more accurately than (11). This is in fact the reason
we chose to work with (12).
Let us close this discussion with a brief comparison

between the analytic results for moderate and near-extremal
spins. We write r̃ − r̃isco ∼ δ > η2=5, the latter inequality
ensuring that we avoid entering the transition region
[40,54]. Expanding Eq. (61) we find for near-extremal
black holes

∂ r̃Ẽ ≈
2

3
ffiffiffi
3

p
�
3

δ

xisco
−
11

8
δ −

11

8
xisco þ � � �

�
:

The first term is dominant unless |δ≲ x2isco ∼ ϵ4=3. The
constraint δ > η2=5 ensures this is only violated if ϵ > η3=10.
This will be satisfied for all the cases that we consider in
this paper, but we emphasize this is not a physical
constraint. When this constraint is violated, additional
terms become important in the expansion which we have

5In particular, it is no longer the case that ∂ar̃ is monotonically
increasing all along the inspiral trajectory, whereas the BHPT
data is monotonically increasing, a feature our ODE with flux
(12) reproduces.
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ignored, and these ensure that ∂ r̃Ẽ → 0 at r̃isco. We
conclude the scaling of ∂ r̃Ẽ is δ=ϵ2=3 for near-extremal
black holes, compared to δ for moderate spins.
It follows using (59) and (65) that

∂ar̃ ∝

8<:
1
δ ; moderate spins

ϵ2=3

δðδþϵ2=3Þ2 ; near-extremal spins
: ð66Þ

The spin dependence on the radial trajectory for near-
extremal primaries is larger than for moderately rotat-
ing ones.

C. Precision of spin measurement

In the previous section we showed the effect that the spin
parameter has on the radial trajectory. This was achieved by
studying the general linear ODE for ∂ar̃, Eq. (49). By
arguing that the kinematic terms dominate the behavior of
∂ar̃, for both the near-extreme and moderately spinning
black holes, analytic solutions were found near the ISCO.
We were able to conclude that ∂ar̃ grows much more
rapidly close to the ISCO for near-extreme black holes than
for moderately spinning black holes. We also emphasize
that Eq. (54) shows that corrections to ∂ar̃ of the form ∂a

_E
are subdominant. We now explore the consequences of
these results for the precision of spin measurements,
computed using the Fisher matrix formalism.
Due to the large number of observable gravitational wave

cycles that are generated while the secondary is within the
strong field gravity region outside the primary Kerr black
hole, extreme mass-ratio inspirals will provide measure-
ments of the system parameters with unparalleled precision

[1]. In particular, it has been shown that our ability to
constrain the spin parameter a is expected to be Oð10−6Þ
[3,4,15,55]. It has also been shown that the measurements
are more precise for prograde inspirals into more rapidly
spinning black holes, when the secondary spends more
orbits closer to the event horizon of the primary (see
Fig. (11) in [55]). In subsequent sections we show through
numerical calculation that spin measurements are even
more precise for EMRIs into near-extremal black holes. We
now try to understand this result using Eq. (40).
Inspection of (40) suggests there are two main effects:

the dependence on t̃2 and the dependence on ð∂ar̃Þ2. First,
the fact that t̃ ∼Oðη−1Þ follows from integrating (41), and
therefore the contribution to the Fisher matrix due to t̃2 is
large and scales like η−2. Second, ∂ar̃ is monotonically
increasing as the secondary spirals inwards. Thus, its
maximal contribution comes from the region close to
ISCO, which supports results in [55]. Equation (66) shows
this contribution is largest in the last stages before entering
into the transition regime. As changes in Ω̃ close to ISCO
are negligible, the factor ðΩ̃ t̃Þ2 is, approximately, the
square of the number of cycles, a proxy widely used in
the literature in discussions of the precision of measure-
ments. Our estimate (40) confirms this intuition and shows
the spin precision will be further increased by large values
of the radial spin derivative, ∂ar̃.

D. Comparison of spin measurement precision for
moderate and near-extremal black holes

The Fisher matrix estimate (40) depends on the spin
derivative of the radial evolution, on the duration of the
inspiral and on the energy flux. Equation (66) shows that, at

FIG. 3. The yellow dashed and black dashed curves are solutions to (59) and (65). The purple and blue curves are the true solutions to
∂ar̃ obtained numerically without near-ISCO simplifications. We see both approximations capture the leading order behavior of the spin
derivative of the radial trajectory very well.
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a fixed distance to the corresponding ISCO, ∂ar̃ is larger for
a near-extremal primary than for a moderately rotating
primary. As a consequence of time dilation near the black
hole horizon, _E → 0 near the ISCO for near-extremal
primaries, but remains finite for moderately rotating ones.
This means that the energy flux for near-extremal inspirals
is much smaller than that for moderate spins, but the
duration of the inspiral is longer. However, we can write
(40) as an integral over the BL radial coordinate r̃. In that
case, the integrand is proportional to

_̃E
∞
m

_̃EGW

ðt̃ Ω̃Þ2ð∂ r̃ẼÞð∂ar̃Þ2

close to the relevant ISCO.While the energy fluxes aremuch
smaller for near-extremal inspirals, the ratio of energy fluxes
appearing above is an order one quantity for all spin
parameters. The expression above is therefore a product of
factors that have been argued to be either of comparable
magnitude or much smaller for moderately rotating primar-
ies. We therefore expect the precision of spin measurements
to be much higher for near-extremal EMRIs.
A quantitative comparison between the near-extremal

and the moderately spinning sources requires a precise
calculation of the ratio (37) computed along the entire
respective trajectories. In general, this is a hard analytic task
since both energy fluxes _̃EGW and _̃E

∞
m must be handled

through numerical means and long observations of inspirals
(starting in the weak field) require calculations performed
in the frequency domain where SnðfÞ shows nontrivial
(nonconstant) behavior. This would be no more straightfor-
ward than direct numerical computation of the Fisher
Matrix and so we do not pursue it here.
For any sources whose trajectory lies entirely lie in the

near-ISCO region, these analytic approximations allow us
to compute the ratio (37) reliably. This can be exploited to
obtain an analytic approximation to the Fisher Matrix for
such sources and this calculation will be pursued else-
where. Additionally, earlier arguments tell us that it is the
near-ISCO regime that dominates the spin precision and so
these expressions are sufficient to understand the increase
in spin precision seen for near-extremal inspirals.

1. Near-extremal source

From (65), it follows

∂ar̃ ≈
4

3x30

x
x3 − x3isco

ðx30 − x3Þ: ð67Þ

Since
ffiffiffĩ
r

p ∂ar̃ grows fast and the rate of change of r̃ and Ω̃ is
small, near-ISCO, we can approximate (40) by

Γaa ≈ 18
μ

ðηD̃Þ2Snðf∘Þ
r̃extΩ̃2

ext

X
m

Z
t̃cut

0

dðηt̃Þ

×
dẼ∞

m

ηdt̃
ðηt̃Þ2ð∂ar̃Þ2: ð68Þ

Here, t̃cut is the time at the end of the integration, where
x ¼ xcut. Our approximations break down when the tran-
sition regime breaks down, so we can assume
xcut ∼ η2=5 þ ϵ2=3, which is a small quantity. Using
dẼ∞

m=dt̃ ¼ ηC̃∞mx and assuming x0 ≥ x ≫ xisco, so that
the trajectory can be approximated by xðt̃Þ ≈ x0e−y with

y ¼ αηt̃≡ 3
ffiffi
3

p
2
ðC̃H þ C̃∞Þηt̃, the Fisher matrix reduces to

Γext
aa ≈

64μ

ðηD̃Þ2Snðf∘Þ
r̃extΩ̃2

ext

ð3x0αÞ3
·GðycutÞ

�X
m

C̃∞m

�
; ð69Þ

with eycut ¼ x0=xcut and

GðycutÞ ¼ −9y3cut þ ð9y2cut þ 2Þ sinh 3ycut − 6ycut cosh 3ycut

≈
x30
2x3cut

��
3 log

x0
xcut

− 1

�
2

þ 1

�
; ð70Þ

where in the last step we used x0 ≫ xcut.

2. Moderately spinning source

Using the same kind of approximations as above, but
taking into account the different energy flux and different
trajectory

ðr̃ − r̃iscoÞ2 − ðr̃0 − r̃iscoÞ2 ≈
64

5
ηΩ̃10=3

isco

_E0ðaÞ
∂2
r̃ Ẽðr̃iscoÞ

t̃; ð71Þ

one can approximate the Fisher matrix for moderate
spins by

Γmod
aa ≈ 18

�
5∂2

r̃ Ẽðr̃iscoÞ
64_E0

�
3 μ

ðηD̃Þ2Snðf∘Þ
r̃iscoð∂ar̃iscoÞ2

Ω̃8
isco

× ðr̃0 − r̃iscoÞ6FðδÞ
�X

m

dẼ∞
m

ηdt̃

����
isco

�
; ð72Þ

where δ≡ r̃cut−r̃isco
r̃0−r̃isco

< 1 and

FðδÞ ¼ −2 log δ − 4ð1 − δÞ − ð1 − δ2Þ þ 8

3
ð1 − δ3Þ

−
1

2
ð1 − δ4Þ − 4

5
ð1 − δ5Þ þ 1

3
ð1 − δ6Þ: ð73Þ

3. Ratio of Fisher matrices

Within these approximations, the ratio (37) now
reduces to
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Γext
aa

Γmod
aa

≈
256

9

�
64

45
ffiffiffi
3

p ∂2
r̃ Ẽðr̃iscoÞ

�
3 r̃extΩ̃2

ext

r̃iscoΩ̃2
iscoð∂ar̃iscoÞ2

×
GðycutÞ

x30ðr̃0 − r̃iscoÞ6FðδÞ
T ;

T ¼
P

mC̃∞m

ðC̃H þ C̃∞Þ3
ðΩ̃10

isco
_E3
0ÞP

m
dẼ∞

m
ηdt̃ jisco

ð74Þ

The most relevant feature for our current discussion is
the quotient dependence

GðycutÞ
x30ðr̃0 − r̃iscoÞ6FðδÞ

≈
1

x3cutðr̃0 − r̃iscoÞ6FðδÞ
ð75Þ

The first two denominator factors increase the ratio, since
xcut ≪ 1 and r̃0 − r̃isco < 1. The last could in principle be
large, due to the logarithmic term. However δ and xcut have
similar scaling and therefore xcutFðδÞ ≪ 1. We deduce that
the spin component of the Fisher matrix is much larger for
near-extremal inspirals than for moderate spins. This is
confirmed by the numerical results that will be reported in
subsequent sections.
We finish by noting that the Fisher matrices increase in

magnitude as the trajectory is cut off closer to r̃isco. In the
case of moderate spin, we already noted the logarithmic
dependence of FðδÞ as δ → 0. This has previously been
observed in the literature, see for example Fig. (11) in [55].
For near-extremal EMRIs, if xcut ∼ xisco ∼ ϵ2=3, then for
fixed x0 and as ϵ → 0 the spin Fisher matrix scales as
Γaa ∼ ðlogðϵÞ=ϵÞ2. We deduce that observing the latter
stages of inspiral is important for precise parameter
measurement, for any primary spin.
In summary, we have derived an analytic approximation,

valid close to ISCO, for the spin component of the Fisher
matrix. This indicates that this component is much larger
for near-extremal spins and therefore we expect much more
precise measurements of the spin parameter in that case.
The approximation depends sensitively on certain quan-
tities, such as the cutoff radius, xcut, that are somewhat
arbitrary. However, for any choice the near-extremal
precision is a few orders of magnitude better. This provides
support for the numerical results that we will obtain in
Sec. VI, which show a similar trend.

IV. WAVEFORM GENERATION

In this section we provide more details on how we
construct the waveform model used to compute the Fisher
matrix in the next section. The waveform model was
previously given in Eq. (16) and Eq. (20). Here, we
describe how the various terms entering these equations
are evaluated.

A. Energy flux

Both waveform models (16) and (20) depend on the
radial trajectory r̃ðt̃; a; η; _EÞ. The amplitude evolution using
the Teukolsky formalism depends on the spheroidal har-
monics −2S

amΩ̃
ml ðθ;ϕÞ and Teukolsky amplitudes at infinity

Z∞
mlðr̃; aÞ. The energy flux at infinity _̃E

∞
mlðr̃; aÞ is related to

the Teukolsky amplitudes Z∞
ml through Eq. (26). Thus, to

accurately generate the waveforms (16) and (20) far from
the horizon where near-extremal simplifications can
not be made, the various radiation reactive terms Z∞

ml;
_̃Eð _EÞ; _̃E∞

m ð _E∞
m Þ have to be handled numerically. This

section outlines our numerical routines to do so.
We use the BHPT to calculate the first order dissipative

radial fluxes _̃EGW for a ¼ 1 − f10−igi¼9
i¼3 from which _E in

Eq. (51) can be computed. We used the TEUKOLSKY

Mathematica script in the toolkit and tuned the numerical
precision to ∼240 decimal digits to avoid numerical

instabilities when computing _̃EGW in the near-horizon
regime for rapidly rotating holes. For moderately spinning
holes a≲ 0.999, we used the tabulated data in Table II
of [11].
Each coefficient appearing in Eq. (19) is itself a sum over

l modes, _̃E
∞
m ¼ P∞

jlj¼m
_̃E
∞
ml. Both the sum over l and the

sum over m in Eq. (19) can be truncated without appreci-
able loss of accuracy. As discussed in [32], near-extremal
EMRIs require a significant number of harmonics to be
included to obtain an accurate representation of the
gravitational wave signal. To illustrate for a high spin of

a ¼ 1 − 10−9, we used the BHPT to compute _̃E
∞
ml for

harmonics jmj ≤ l ∈ f2;…; 15g. Figure 4 illustrates the
convergence as the number of harmonics is increased.
Based on these results, we go further by including

harmonics with l ≤ lmax ¼ 20 to calculate the total energy

flux _̃EGW

FIG. 4. Comparison of the total energy flux at infinity (black
curve) including different harmonic _̃E

∞
lm contributions. Note that

at r̃ ≈ 1.3, the l ¼ 2 harmonic energy flux _̃E
∞
2 contributes ∼32%

of the total energy flux, whereas including the first lmax ¼ 11
harmonics (violet curve) contributes more than ∼98%.
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_̃EGW ¼
Xlmax

jlj¼2

X
jmj≤l

ð _̃E∞
ml þ _̃E

H
mlÞ; ð76Þ

using the Teukolsky package in the BHPT. In the same

numerical routine, we compute _̃E
∞
m ¼ Plmax

jlj¼m
_̃E
∞
ml using

lmax ¼ 20 for m ≤ 20. These formulas are rearranged to
obtain _E and _E∞

m using (51) and (14).
Finally for our Teukolsky based waveforms used in

numerics Sec. VI, we use the BHPT to extract the
Teukolsky amplitudes Z∞

mlðr̃; aÞ and build an interpolant
over r for each harmonic m ¼ f1;…; lmax ¼ 20g

Gmðr̃; aÞ ¼
X∞
l¼m

−2S
amΩ̃
ml ðθÞ expðiϕÞZ∞

mlðr̃; aÞ ð77Þ

for each viewing angle ðθ;ϕÞ ¼ ðπ=2; 0Þ and
ðθ;ϕÞ ¼ ð0; 0Þ. To summarize, we use (77) in (20) to
compute Fisher matrices numerically in Sec. VI. To aid our
analytic study, we use the computed _E∞;m in the waveform
model (16) when evaluating the ratio (74).

B. Radial trajectory and waveform

The radial trajectory can be constructed by numerically
integrating the ODE (13) using an interpolant for _Eðr̃Þ and
suitable initial conditions. As before, we use the spin
independent initial condition r̃ðt̃0 ¼ 0Þ ¼ r̃0. Figure 5
shows some example radial trajectories for various spin
parameters, computed using flux data from the BHPT. In
the high spin regime, the exponential decay of the radial
coordinate is prominent as discussed in [24,54].
Throughout our simulations, the observation ends after a
fixed amount of time, chosen such that this is before the
transition to plunge for all parameter values used to
compute the Fisher matrix. This is important to avoid
introducing artifacts from the termination of the waveform,
given that the transition to plunge is not properly included
in this waveform model. It is clear from Fig. 5 that larger
the spin parameter, the longer the secondary spends in the
dampening regime. See Eq. (22) of [24] for further details.
The spin dependence of the radial evolution can be

calculated by integrating (13) and then taking numerical
derivatives. We consider two reference cases, both with
component masses μ ¼ 10 M⊙ and M ¼ 2 × 106 M⊙, but
with different spin parameters a ¼ 0.9 and a ¼ 1 − 10−6.
We compute one year long trajectories, with r̃ð0Þ ¼ 5.08 in
the first case and r̃ð0Þ ¼ 4.315 in the second. The spin
derivative of the radial evolution can be calculated by
perturbing the spin and using the symmetric difference
formula for δ ≪ 1

∂r̃
∂a ≈

r̃ðaþ δ; t̃; _Eðaþ δÞÞ − r̃ða − δ; t̃; _Eða − δÞÞ
2δ

: ð78Þ

Figure 6 plots the quantity j∂ar̃j2 appearing in the Fisher
matrix estimation (40). By inspection, it is clear that j∂ar̃j2
is largest when the spin parameter is close to unity and

FIG. 5. The top panel shows how dr̃=dt̃ varies with r̃. The
higher the spin parameter, the more time the secondary spends in
the throat before plunge. The lower panel shows the correspond-
ing inspiral trajectory. The dampening is clearly shown when the
primary is near maximal spin, as seen in [24].

FIG. 6. The blue curve is ∂ar̃ for a ¼ 0.999999. The orange
curve is ∂ar̃ for a ¼ 0.9. Notice that the spin dependence on r
grows rapidly in the near-ISCO region of the rapidly rotating
hole.
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when the radius is close to r̃isco, matching our analytical
conclusions using approximations (65) and (56).
Using the semianalytic model (16) we now evaluate the

estimate (74), for the same two systems, but different r0 to
ensure that the assumptions made in deriving Eq. (74)
still hold (r̃0 ¼ 2.85 for a ¼ 0.9 and r̃0 ¼ 1.2 for
a ¼ 1 − 10−6). We choose termination points r̃cut ¼ r̃isco þ
λ with λ ∼ fλext ¼ 10−4; λmod ¼ 10−2g, just outside the
transition region. Finally, the expression

P
C∞;m was

calculated using the high_spin_fluxes.nb Mathematica
notebook in the BHPT, including harmonics up to
m ¼ 10. We find the ratio to be

Γext
aa

Γmod
aa

∼ 500: ð79Þ

giving a rough estimate that the spin precision increases by
at least two orders of magnitude for these two sources.
This verifies claims made in Sec. III C. When correla-

tions with other parameters and the shape of the PSD are
ignored, we predict a precision on the spin parameter
roughly two orders of magnitude higher than for moder-
ately spinning black holes.
To generate gravitational waveforms for the numerical

study we use the Teukolsky waveform model (20). The
waveform depends on parameters θ ¼ fa; r̃0; μ;M;ϕ0; D̃g.
We will consider two classes of near-extremal source,
differentiated by the magnitude of their component masses
and mass ratio. The first “heavier” source has parameters

θheavy ¼ fr̃ðt0 ¼ 0Þ ¼ 1.225; a ¼ 1 − 10−6; μ ¼ 20 M⊙;

M ¼ 107 M⊙;ϕ0 ¼ π;

D ¼ fDedge ¼ 1.8; Dface ¼ 3g Gpcg ð80Þ

and the second “lighter” source has

θlight ¼ fr̃ðt0 ¼ 0Þ ¼ 4.3; a ¼ 1 − 10−6; μ ¼ 10 M⊙;

M ¼ 2 × 106 M⊙;ϕ0 ¼ π;

D ¼ fDedge ¼ 1; Dface ¼ 4g Gpcg; ð81Þ

where Dedge and Dface refer to the distance if each source is
viewed edge-on/face-on respectively. The distances are fine
tuned6 so that we achieve a signal to noise ratio of ρ ∼ 20.
This is discussed later in Sec. V. The lighter source is
sampled with sampling interval Δts ≈ 4 seconds and the
heavier one with Δts ≈ 25 seconds. We note here that
Δts ¼ MΔt̃ where Δt̃ is the dimensionless sampling
interval used to integrate (13). The sampling interval is
chosen from Shannon’s sampling theorem such that
Δts < 1=ð2fmaxÞ, where

fedgemax ¼ 20

2π

Ω̃isco

M
; ffacemax ¼

2

2π

Ω̃isco

M
ð82Þ

are the highest frequencies present in the waveform for the
edge-on and face-on cases respectively. To illustrate, near-
extremal waveforms with parameters θlight for both edge-on
and face-on viewing angles are plotted in Fig. 7.
The lighter source is interesting because it exhibits both

an “inspiral” regime and a exponentially decaying regime
that we will refer to as “dampening.” The heavier source is
interesting because the dampening regime lasts more than
one year and so the signal is in the dampening region for the
entire duration of the observation. In the next section, we
discuss detectability of these two types of sources by LISA.

FIG. 7. A near-extremal waveform with parameters θlight viewed face-on (left) and edge-on (right). The dampening region lasts ∼55
days. The edge-on case is asymmetric due to the large number of l ¼ 20modes and shows prominent relativistic beaming near the ISCO
as observed in figure 3(b) of [24].

6Strictly speaking, distance here is not a physical parameter
since our waveform model does not include the LISA response to
the strains hþ and h×.
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V. DETECTABILITY

The LISA PSD reaches a minimum around 3 mHz, and is
fairly flat within the band from 1 to 100 mHz. For an edge-
on near-extremal inspiral with primary mass of ∼107 M⊙,
the dominant harmonic has a frequency of ∼3.2 mHz at
plunge, while the m ¼ 20 harmonic has frequency of
64 mHz. Such heavy sources are thus ideal systems for
observing the near-ISCO dynamics. For the lighter mass
considered, 2 × 106 M⊙, the near-ISCO dynamics are at
frequencies a factor of 5 higher, where the LISA PSD starts
to rise. While the near-ISCO radiation will still be observ-
able for these systems, its relative contribution to the signal
will be relatively reduced. We therefore expect to obtain
more precise spin measurements for the heavier of the two
reference systems.

The discrete analogue of the optimal matched filtering
SNR defined in Eq. (29)

ρ2 ≈
4Δts
N

XbN=2þ1c

i¼0

jh̃ðfiÞj2
SnðfiÞ

: ð83Þ

Here N is the length of the time series, Δts the sampling
interval (in seconds) and fi ¼ i=NΔts are the Fourier
frequencies. In Eq. (83), the discrete time Fourier transform
(DTFT) h̃ðfjÞ is related to the CTFT through ĥðfÞ ¼
Δts · h̃ðfÞ. To avoid problems with spectral leakage, prior
to computing the Fourier transform, we smoothly taper the
endpoints of our signals using the Tukey window

w½n� ¼

8>>>>>><>>>>>>:

1
2

�
1þ cos

�
π

�
2n

αðN−1Þ − 1

���
0 ≤ n ≤ αðN−1Þ

2

1
αðN−1Þ

2
≤ n ≤ ðN − 1Þð1 − α=2Þ

1
2

�
1þ cos

�
π

�
2n

αðN−1Þ −
2
α þ 1

���
ðN − 1Þð1 − α=2Þ ≤ n ≤ ðN − 1Þ:

ð84Þ

here n is defined through t̃n ¼ nΔt̃. The tunable parameter
α defines the width of the cosine lobes on either side of the
Tukey window. If α ¼ 0 then our window is a rectangular
window offering excellent frequency resolution but is
subject to high leakage (high resolution). If α ¼ 1 then
this defines a Hann window, which has poor frequency
resolution but has significantly reduced leakage (high
dynamic range). For the heavier source, we use α ¼
0.25 to reduce leakage effects significantly and frequency
resolution is not a problem since the frequencies of the
signal are contained within the LISA frequency band (for
all harmonics). For the lighter source, we use α ¼ 0.05 to
reduce edge effects while retaining the ability to resolve the
frequencies where the signal is dampened. We found that
calculated SNRs and parameter measurement precisions are
insensitive to the choice of α in the heavier system. The
lighter system is more sensitive: for larger α, more of the
dampening regime is lost, with a corresponding impact on
the measurement precisions. We believe that α ¼ 0.05 is
large enough to reduce leakage but small enough to resolve
as much of the dampening regime as possible.
After tapering, we zero pad our waveforms to an integer

power of two in length, in order to facilitate rapid evaluation
of the DTFTusing the fast Fourier transform. Computing the
SNR in this way gives ρ ∼ 20 for the light and heavy sources
respectively when viewed both edge-on and face-on under
the configuration of parameters θlight and θheavy.
In all cases we marginally exceed the threshold of ρ ≈ 20

which is typically assumed to be required for EMRI
detection in the literature [4,55].

As mentioned above, the lighter source exhibits two
regimes of interest—the initial gradually chirping phase,
where the waveform resembles those for moderately spin-
ning primaries, and then the exponentially damped phase
while the secondary is in the near-horizon regime. It is natural
to ask what proportion of the SNR, and later what proportion
of the spin measurement precision, is contributed by each
regime. For both edge-on and face-on systems, we separate
the two parts of the waveform using Tukey windows and
compute the SNR contributed by each part to find

ρ2face−on ∼
�
83% Outside Dampening region

17% Dampening region:
ð85Þ

ρ2edge−on ∼
�
96% Outside Dampening region

4% Dampening region:
ð86Þ

For the face-on source, there is just a single dominant
harmonic, and the frequency of this harmonic is such that
it lies in the most sensitive part of the LISA frequency range.
This helps to enhance the relative SNR contributed by the
dampening region. The edge-on source, by contrast, has
multiple contributing harmonics, which are spread over a
range of frequencies, and the proportional contribution of the
dampening region to the overall SNR is therefore diminished.
For a nonevolving signal the SNR accumulates likeffiffiffiffiffiffiffiffi
Tobs

p
, where Tobs is the total observation time. The pre-

dampening regime lasts 308 days, and so from duration
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alone we would expect a fraction
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
308=365

p
≈ 93% of

SNR to be accumulated there. The difference to what we
find above is explained by differences in amplitudes of the
individual harmonic(s). The heavier system is within the
dampening regime throughout the last year of inspiral and
so all of the SNR of ρ ∼ 20 is accumulated there. This may
seem counterintuitive given the exponential decay of the
signal during the dampening regime. However, the expo-
nential decay rate is relatively slow, a large number of
harmonics contribute to the SNR and the emission is all

within the most sensitive range of the LISA detector. This is
clear from looking at the time-frequency spectrogram of the
heavier signal shown in Fig. 8. What we learn from this
figure is that there are a significant number of harmonics
that have comparable power to the dominant m ¼ 2
harmonic. We see also that the angular velocity at each
harmonic, and thus fm, shows little rate of change for
M ∼ 107 and η ∼ 10−6. This is consistentwith [24,32],where
it was shown that a large number ofm harmonics is required
to produce an accurate representation of the gravitational
wave signal for a near-extremal EMRI, particularly for
near edge-on viewing angles. For moderately spinning
black holes a ∼ 0.9 there are not as many dominant har-
monics, so those waveforms are cheaper to evaluate.
We are now ready to move on to compute Fisher matrix

estimates of parameter measurement precisions. This will
be the focus of the next section.

VI. NUMERICS: FISHER MATRIX

We now compute (33) numerically without making the
simplifying assumptions used in Secs. III B and III C. We
will use one simplification, which is to ignore the spin
dependence in _E, Z∞

lmðr̃; aÞ and −2S
amΩ̃
lm ðθ;ϕÞ and fix these

at the values computed for a ¼ 1 − 10−9 using the BHPT.
We argued in Eq. (54) that the spin dependence of the flux
correction is a subdominant contribution in the near-ISCO
regime, and this is further justified in Appendix B (see
Fig. 16 in particular). While ∂a

_E does grow as the ISCO is
approached, it remains subdominant to the spin dependence
of the kinematic terms. This approximation is probably
conservative in the sense that we are removing information
about the spin from the waveform model and so the true
measurement precision ismost likely higher. Nonethelesswe
expect this to be a small effect, and have verified that relaxing
this assumption does not significantly change the result for
the heavier reference source (see Fig. 9). We note that we
make this assumption only for computational convenience.
Waveform models used for parameter estimation on actual

FIG. 8. Here we plot the spectrogram of hðθheavy; tÞ viewed
edge on. We see 20 tracks in the time-frequency plane corre-
sponding to the m ∈ f1;…; 20g harmonics. The color bar shows
that the m ¼ 2 harmonic (second lowest track in frequency) is
dominant, but that there are several other harmonics which
contribute significantly to the radiated power.

FIG. 9. Left plot: parameter measurement precision, as estimated using the Fisher matrix formalism, for the three reference sources,
with parameters θlight (green diamonds), θheavy (purple crosses) and θmod (blue asterisks). The black diamonds show the precisions
obtained when including the spin-dependence of the relativistic corrections, _E in the waveform model for the heavy source. Right plot:
parameter measurement precisions for the source with parameters θlight, computed using the full waveform (blue asterix), only the
inspiral phase (blue dot) and only the dampening phase (green diamond).
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LISA data should use the most complete results available
to ensure maximum sensitivity and minimal parameter
biases.
To compute the waveform derivatives required to evalu-

ate (33), we use the fifth order stencil method

∂f
∂x ≈

−f2 þ 8f1 − 8f−1 þ f−2
12δx

; ð87Þ

for δx ≪ 1 and fi ¼ fðxþ iδxÞ. To avoid numerical
instability of ∂ah for the near-extremal spin values of
a ≤ 1 − 10−9, we ensure that δx < 1 − a so the perturbed
waveform does not have spin exceeding a ¼ 1. We further
assume that ∂at̃end is zero so there is no spin dependence on
the total observation time.
In addition to the sources with parameters θheavy and

θlight, we now consider a third source with parameters

θmod ¼ fr̃ðt0 ¼ 0Þ ¼ 5.01; a ¼ 0.9; μ ¼ 10 M⊙;

M ¼ 2 × 106 M⊙;ϕ0 ¼ π; Dedge ¼ 1 Gpcg; ð88Þ

with SNR ∼ 20.
Fisher matrix estimates of parameter measurement pre-

cisions for all three sources viewed edge-on are shown in
Fig. 9. We do not present the results for a face-on
observation as they are near-equivalent to the measure-
ments presented in Fig. 9 for equivalent SNR.
We see from this figure that we should be able to

constrain the spin parameter of near-extremal EMRI
sources to a precision as high as Δa ∼ 10−10, even when
accounting for correlations among the waveform parame-
ters. This is true for both the lighter and the heavier sources
viewed edge-on and face-on, with a constraint a factor of a
few better for the heavier source. The right panel of the
figure compares the contribution to the measurement
precision for the lighter source from the two different
phases of the signal. We see that the high spin precision
comes almost entirely from the observation of the damp-
ening regime and this phase of the signal contributes much

more information than we would expect based on its
contribution to the total SNR.7

The spin measurement precision for the near-extremal
systems is three orders of magnitude better than for the
system with moderate spin, while all other parameter
measurements are comparable.
Comparing to the exact Fisher matrix result with spin

dependence included in all the various terms, we see that
the two precisions are almost identical: the exact result
offers precisions that are marginally better in comparison to
our approximate result (removing spin dependence from
the corrections). This figure thus justifies ignoring the spin
dependence of _E, since relaxing that assumption makes
almost no difference to the results. This numerically
confirms our belief that the spin dependence in the
corrections to the fluxes are subdominant in the analysis
leading to (40). In the same plot 9, we also compare results
of near-extremal black holes to moderately spinning holes.
A direct comparison shows an increase in the spin precision
by ∼3 orders of magnitude, which agrees with the intuition
given by the earlier analytic analysis, Eq. (79).
To our knowledge, these are the first circular and

equatorial parameter precision studies for EMRIs that have
employed Teukolsky-based adiabatic waveforms, rather
than approximate waveform models (or “kludges”), which
have been used for many studies [3,4,15]. Comparing our
results for the moderately spinning system to these previous
studies, we find that our results are very comparable, but a
factor of a few tighter. This could be because we are
including only a subset of parameters and ignoring the
details of the LISA response, or because we have a more
complete treatment of relativistic effects. A more in depth
study addressing both of these limitations would be needed
to understand the origin of the differences. However, the
agreement between our results and previous studies is
sufficiently close, and considerably less than the difference

FIG. 10. We keep θlightnfag fixed and vary a ¼ 1 − 10−i for i ∈ f4;…; 9g while computing estimates on the precision of the
measured parameters using the Fisher Matrix. Results are shown for sources viewed face-on (left) and edge-on (right).

7In (40), the growth of ∂ar̃ exceeds the growth of SnðfÞ ∼
const in the dampening regime. This sources the high precision
measurement.

BURKE, GAIR, SIMÓN, and EDWARDS PHYS. REV. D 102, 124054 (2020)

124054-18



we find between the moderate and near-extremal spin
cases, to give us confidence that our results are not being
unduly influenced by these simplifications.
In Fig. 10 we show how the parameter estimation

precision for the source with parameters θlight changes as
we vary the spin parameter, while keeping all other
parameters unchanged. We present results for both face-
on and edge-on viewing angles. This shows that while the
measurement precision for most of the parameters is largely
independent of spin in the near-extremal regime, the spin
precision steadily increases as a → 1. We note that even at a
spin of 1 − 10−9, the measurement precision satisfies the
constraint Δa < j1 − aj and therefore a LISA EMRI
observation would be able to resolve that the system
was not maximally extremal, i.e., that a < 1. We stop at
1 − 10−9 since the derivative using Eq. (87) begins to
misbehave.
Due to large condition numbers, inverting Fisher matri-

ces for EMRI sources is a highly nontrivial task. In
Appendix C, we provide multiple diagnostic tests of our
Fisher matrix algorithm and verify that, in the single
parameter case, the spin parameter precision is a suitable
representation of the 1σ width of the Gaussian likelihood as
shown in Fig. 18. These single parameter tests of the Fisher
matrix are useful tests to verify that a single parameter
algorithm yields sensible results. However, real instabilities
of the numerical procedure are prominent the moment the
inverse of the Fisher matrix is performed when correlations
are present. Hence, it is both necessary and sufficient to
verify our Fisher matrix calculations using an independent
procedure. The next section is dedicated to performing a
parameter estimation study on both near-extremal EMRIs
with parameters θlight and θheavy.

VII. NUMERICS: MARKOV CHAIN
MONTE CARLO

The Fisher matrix is a local approximation to the
likelihood, valid in the limit of sufficiently high signal-
to-noise ratio. We can verify that this local approximation is
correctly representing the parameter measurement uncer-
tainties by numerically evaluating the likelihood using
Markov Chain Monte Carlo. To reduce the computational
cost of these simulations we use a face-on viewing profile
and thus only consider the m ¼ 2 harmonic. We have
shown in Fig. 10 that parameter precision measurements
are not largely dependent on the choice of viewing angle for
the lighter source. We have further verified this claim for
the heavier source.

A. Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods were
developed for Bayesian inference to sample from the
posterior probability distribution, pðθjdÞ, which is given
by Bayes’ theorem as

logpðθjdÞ ∝ logpðdjθÞ þ logpðθÞ ð89Þ

where pðdjθÞ is the likelihood function, and pðθÞ is the
prior probability distribution on the parameters. In our
context the likelihood is given by Eq. (27) and we will
assume independent priors such that

logpðθjdÞ ∝ −
1

2
ðd − hðt; θÞjd − hðt; θÞÞ þ

X
θi∈θ

logpðθiÞ:

ð90Þ

We generate a dataset dðtÞ ¼ hðt; θtrÞ þ nðtÞ by specifying
the waveform parameters, θtr, of the injected signal and
generating noise in the frequency domain

ñðfiÞ ∼ Nð0; σ2ðfiÞÞ; σ2ðfiÞ ≈
NSnðfiÞ
4Δt

: ð91Þ

We use MCMC to sample from the posterior distribution
(90), employing a standard Metropolis algorithm with
proposal distribution qðθ⋆jθi−1Þ equal to a multivariate
normal distribution, centered at the current point and with a
fixed covariance. We take flat priors on all of the waveform
parameters, since the goal is to check the validity of the
Fisher matrix approximation to the likelihood. The algo-
rithm proceeds as follows
(1) We start the algorithm close to the true values θ0 ¼

θtr þ δ for jjδjj ≪ 1. For iteration i ¼ 1; 2;…; N
(2) Draw new candidate parameters θ⋆ ∼ q and generate

the corresponding signal template hðt; θ⋆Þ.
(3) Using (90), compute the log acceptance probability

logðαÞ¼min½0;logPðθ⋆jd;θi−1Þ− logPðθi−1jd;θ⋆Þ�:

We note that we are using a symmetric proposal
distribution and so the usual proposal ratio is not
required.

(4) Draw u ∼U½0; 1�.
(a) If log u < logα we accept the proposed point

and set θi ¼ θ⋆.
(b) Else we reject the proposed point and set

θi ¼ θi−1.
(5) Increment i → iþ 1 and go back to step 2 until N

iterations have been completed.
Since we know the true parameters we can start the
algorithm in the vicinity of the true parameters and do
not need to discard the initial samples as burn-in, allowing
us to generate useful samples more quickly.
In principle, the MCMC algorithm should converge for

any choice of proposal distribution, but proposals that more
closely match the shape of the posterior should lead to more
rapid convergence. As we expect that the proposal should
be approximated by the Fisher matrix, we set the covari-
ance matrix of the normal proposal distribution to be equal

CONSTRAINING THE SPIN PARAMETER OF NEAR-EXTREMAL … PHYS. REV. D 102, 124054 (2020)

124054-19



to the inverse Fisher matrix, evaluated at the known
injection parameters.

B. Results

We compute MCMC posteriors for the two signals
hðfθheavy; θlightg; tÞ for the waveform model (20) for the
face-on case only. As before, we construct waveforms
ignoring the spin dependence in _E, the Teukolsky ampli-
tudes Z∞

lm and the spheroidal harmonics −2S
aΩ̃
lm ðθ;ϕÞ. We

evaluate these for a fixed spin parameter of a ¼ 1 − 10−9.
We remind the reader the main drive for the tight

constraints on the spin parameter is due to the spin

dependence induced through the kinematic terms present
in (20), as discussed in Sec. VI, and not its dynamical
terms, justifying our approximation.
The priors on a;ϕ0, and D for both sources were

a ∼ 1 −U½10−4; 10−8�
ϕ0 ∼ U½0; 2π�
D ∼ U½1; 8� Gpc:

The priors on μ, M, and r̃0 were chosen differently for the
heavy and light source as

FIG. 11. The diagonal plots represent the marginalized posterior distributions on the parameters θheavy. The plots below the diagonal
are the joint two-dimensional posterior distributions. The red lines indicate the true values of the injected signal.
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μheavy ∼ U½18; 22�M⊙

μlight ∼ U½8; 12�M⊙

Mheavy ∼ U½0.9; 1.1� × 107 M⊙

Mlight ∼ U½1.9; 2.1� × 106 M⊙:

r̃heavy0 ∼ U½1.2; 1.3�
r̃light0 ∼ U½4.2; 4.4�:

The prior on a ensures that we do not move outside the
range in which our approximations are valid, a≳ 0.9999.
The tight priors on the individual component masses helped
to improve the computational efficiency of our algorithm.
However, there was no evidence of the MCMC chains
reaching the edges of the priors in our simulations, so we

are confident these restrictions are not influencing the
results.
Evaluating the likelihood for EMRI waveforms is an

expensive procedure. In order to obtain a sufficient number
of samples from the posterior, we used high performance
computing facilities and ran 20 unique chains for N ¼ 40,
000 iterations. All chains analyzed the same input dataset,
but with different initial random seeds. This ensures that the
dynamics of the chains are different but the noise realiza-
tions are the same for each MCMC procedure.
The marginal posterior distributions and two-dimen-

sional contour plots for the two sources are shown in
Figs. 11 and 12. These plots confirm the high precisions of
parameter measurements that were seen with the Fisher
matrix. The relative uncertainties Δθ=θ are similar for the
two sources, although we can measure the spin parameter

FIG. 12. As Fig. 11, but now for the source with parameters θlight.
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more precisely for the heavier source. For the most part the
posteriors are unimodal, apart from the spin posterior of the
lighter source. We have verified that the secondary modes
are real features of the likelihood, and correspond to the

waveform phase shifting by one cycle within the late
dampening regime. We also note that shifts in the peak
of the posterior away form the true value are larger for the
heavier source than for the lighter source. This appears to

FIG. 13. For the source with parameters θheavy,we compare the one-dimensional marginalized posterior distributions (orange
histograms) to a Gaussian distribution (blue solid line), centered at the posterior mean, and with standard deviation set to the prediction
of the Fisher matrix.

FIG. 14. As Fig. 13, but now for the lighter source with parameters θlight.
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be due to the particular noise realization. For other noise
realizations the noise-induced biases for the heavier source
are smaller. For noise-free datasets, we find posterior
distributions peaked at the true parameters, as expected.
The primary reason for doing the MCMC simulations

was to verify the Fisher matrix results found earlier. In
Figs. 13 and 14, we plot the marginalized posteriors on the
parameters fθlight; θheavyg alongside a Gaussian distribution
with variance given by the Fisher matrix and centered at the
mean value of the posterior distributions pðθjdÞ.
These results nicely confirm the accuracy of the Fisher

matrix results for these sources. In each case, the 1σ
precision predicted by the Fisher matrix is slightly smaller
than the width of the numerically computed posterior. This
is to be expected as the Fisher matrix also provides the
Cramer-Rao lower bound on parameter uncertainties.
However, the difference is very small. We are thus con-
fident that all of our Fisher matrix predictions are accurate,
including the exploration of parameter space shown in
Fig. 10. We conclude that even at the near-threshold SNR
of this source, ρ ∼ 20, the Fisher matrix can be used to
confidently estimate the precision of parameters for near-
extremal sources.

VIII. CONCLUSION

This work has shown that we expect tighter spin
constraints on the Kerr spin parameter for EMRIs when
the primary is rapidly rotating rather than moderately
rotating. We argued that the spin precision is sourced
through the rapid growth of the spin dependence on the
radial trajectory throughout the near-ISCO regime. It was
shown that radiation-reaction effects are subdominant to
geodesic motion, which is what ultimately drives the
excellent constraint on the spin parameter.
This work has tried to answer the question of how well

LISA can constrain the spin parameter of an EMRI source,
conditioned on the primary rapidly rotating. In the earlier
sections of this paper, we were able to derive a general
linear ODE whose solution describes the spin dependence
on the radial trajectory. Using this ODE, we were able to
argue that this spin dependence is much more significant
for near-extremal primaries rather than moderately spin-
ning primaries a ∼ 0.9. It was also shown that the spin
dependence on the radial evolution is dominated more by
geodesics, rather than the radiation reactive terms.
Using reasonable assumptions, analytic Fisher scalars

were derived for both rapidly rotating and moderately
spinning black holes. It was then shown, explicitly, that the
precision on spin parameters for near-extreme black holes
should exceed that of moderately spinning ones by a few
orders of magnitude. The exceptional precision is governed
by the growth of the spin dependence of the trajectory near
the ISCO.
Given that the kinematical terms dominate the precision,

we were able to build a near-extremal waveform model by

removing the spin dependence in corrections to the radial
fluxes. This meant we could build an interpolant, valid for
quasicircular and equatorial inspirals, into rapidly spinning
black holes with a ≳ 0.999. Using this approximation, we
were able to build a waveform model valid for near-
extremal spins that could be used for parameter precision
and estimation studies.
Our analysis showed that the LISA optimum masses for

parameter estimation and precision studies are heavier mass
systems M ≈ 107 M⊙. For heavier sources, the emitted
frequencies will lie within the minimum of the LISA PSD
during the dampening regime; when the signal provides
most accurate information about the source. Analyzing
different parts of the signal, we were able to conclude that
the end part of the signal will be “loud” in the data stream
for spins approaching near-extremality a → 1. For lighter
mass sources M ∼ 106 M⊙, the accumulated SNR of the
dampened part of the signal is weak. Fully numerical Fisher
matrix analysis revealed that we can constrain the spin
parameter of a near-extremal EMRI ∼ 3 orders of magni-
tude higher than moderately spinning black holes a ∼ 0.9.
For very near-extremal primaries a ∼ 1 − 10−9, one is able
to constrain the spin parameter with precision Δa ∼ 10−10.
This is, as far as we know, the tightest constraint on
astrophysical orbital parameter found in the literature.
In the final section, with the view of verifying our Fisher

matrix calculations, we performed a parameter estimation
study on these near-extremal sources. We showed that the
signal parameters are able to be extracted with precision
comparable to our Fisher matrix estimates.
To conclude, we can safely say that the spin parameter of

near-extremal EMRIs can be measured with excellent
precision. We are also confident that the increase in
precision is governed by the spin dependence on the radial
trajectory. If the dampened part of the signal is not observed
(where ∂ar̃ ≫ 1), then we cannot make such precise
statements on the spin of the primary black hole.
There are a few extensions to this work. The first would

be to include the results of the transition from inspiral to
plunge in [40] to our analysis here. We suspect that,
although the SNR accumulation would be weak, the extra
contribution from ∂ar̃ could only improve the precision
measurement. Another interesting direction to explore
would be the effect of systematic errors (through inaccurate
waveform modeling) in our EMRI PE studies. Through the
Cutler and Vallisneri formalism [56], one could investigate
whether parameter estimation/precision studies on near-
extremal waveforms could be dominated by systematic
errors rather than statistical ones induced purely by noise
realizations from the detector. Given that we have shown
precisions on the spin parameter on the orderΔa ∼ 10−10, it
would be of utmost importance to have immensely accurate
waveform models in order to keep the systematic error to a
minimum. This would be to ensure that parameter estimates
are not affected by (deterministic) biases due to waveform
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modelling errors rather than (probabilistic) biases due to
noise fluctuations of the LISA detector.
Another obvious extension would be to introduce more

parameters in the parameter space, such as eccentricity
and inclination. In this case, we are unsure whether the
kinematic terms would dominate over the flux corrections.
As such, we would require a more complex and general
waveform model. As seen in [24], eccentric trajectories of
secondaries in the vicinity of near-extremal black holes
exhibit inverse zoom-whirl behavior. That is, the “zoom”
part of the inspiral (near aperiastron) outputs larger ampli-
tude radiation than the “whirl” phase. Perhaps this extra
information, unique to near-extreme EMRIs, could provide
even tighter constraints on the spin parameter a. It would be
interesting to see whether the larger number of parameters
will aid or hinder parameter precision/estimation studies.
Finally, due to the precision on both Δa and ΔM, near-
extremal EMRIs would provide stringent tests of GR
theories. One of which being the no-hair theorem which
states that the Kerr black hole can be uniquely parametrized
in terms of two charges; mass and spin. We believe that it
should be possible to measure the multipolar moments
more accurately when the primary is near-extremal than if it
were only moderately spinning. A paper exploring potential
tests of general relativity using the near-extremal Kerr
spacetime would be useful for the literature.
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APPENDIX A: ANALYTIC ESTIMATION OF THE
FISHER MATRIX

The derivation of the Fisher matrix estimate (40) is
provided below.
Consider the gravitational wave amplitude

hðtÞ ¼
X
m

hmðtÞ ≈
X
m

2
ffiffiffiffiffiffiffi
_E∞
m

p
mΩ̃ D̃

sinðmΩ̃ t̃Þ; ðA1Þ

where we chose ϕ ¼ 0 for simplicity. The spin dependence
of each individual amplitude equals

∂ahmðtÞ ¼ jhmðtÞjfsinðmΩ̃ t̃ÞBm þ ðmt̃∂aΩ̃Þ cosðmΩ̃ t̃Þg
ðA2Þ

where jhmðtÞj stands for the amplitude without oscillatory
factor and we defined

Bm ≡ ∂a
_E∞
m

2 _E∞
m

−
∂aΩ̃
Ω̃

: ðA3Þ

Using Parseval’s identity, the integrand in the Fisher matrix
can be decomposed

j∂ahðtÞj2 ¼
X
m

ð∂ahmÞ2 þ 2
X
n<m

∂ahn∂ahm; ðA4Þ

into diagonal and off-diagonal contributions. Consider the
diagonal ones, first. Using sin2 x ¼ ð1 − cos 2xÞ=2 and
cos2 x ¼ ð1þ cos 2xÞ=2, any such contribution equals

ð∂ahmÞ2 ¼
jhmj2
2

fðmt̃∂aΩ̃Þ2 þ ðBmÞ2

þ cosð2mΩ̃ t̃Þ½ðmt̃∂aΩ̃Þ2 − ðBmÞ2�
þ 2 sinð2mΩ̃ t̃ÞBmðmt̃∂aΩ̃Þg: ðA5Þ

The crucial observation is t̃ ∼Oðη−1Þ. This follows from
integrating (41) and is an inherent consequence of adiabatic
inspirals evolving on the orbital timescale. Hence, we
expect the dominant term to be the one of order Oðt̃2Þ.
Furthermore, the second and third lines above have
oscillatory behavior, which when integrated in (39) will
give rise to subleading contributions. Despite the robust-
ness of these arguments, let us state the precise condition
under which the order Oðt̃2Þ term is dominant���� ∂a

_E∞
m

t̃ _E∞
m

���� ≪ ∂aΩ̃: ðA6Þ

Notice that both partial derivatives should be understood as
in the left-hand side of our Eqs. (42). Since _E∞

m typically
requires numerical evaluation, we have indeed numerically
checked this assumption holds for both, moderately and
near-extremal primary holes. Thus, the contribution from
the diagonal terms can be approximated by

X
m

ð∂ahmÞ2 ≈
jhmj2
2

ðmt̃∂aΩ̃Þ2: ðA7Þ

It is worth stressing that for sources lying entirely in the
close to ISCO region of a near extremal primary, this
condition is under more analytical control using the NHEK
flux (12). Whenever ∂a log C̃∞m ≪ t̃∂ar̃ holds (which we
checked numerically), the full condition reduces to xt̃ ≫ 1,
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which is satisfied for all secondary locations x before
entering the transition regime.
The discussion of the off-diagonal terms is very similar.

Any such term can be written as

∂ahm∂ahn¼
jhmjjhnj

2
fcosððm−nÞΩ̃ t̃Þ½BmBnþmnðt̃∂aΩ̃Þ2�

þcosððmþnÞΩ̃ t̃Þ½−BmBnþmnðt̃∂aΩ̃Þ2�
þsinððmþnÞΩ̃ t̃Þ½nt̃∂aΩ̃Bmþmt̃∂aΩ̃Bn�
þsinððm−nÞΩ̃ t̃Þ½nt̃∂aΩ̃Bm−mt̃∂aΩ̃Bn�g:

ðA8Þ

The key point is that all such terms involve oscillatory
functions, even the ones having Oðt̃2Þ dependence. Hence,
when compared to the contribution from the diagonal ones,
they are subleading. This justifies our claim in (40).

APPENDIX B: GENERAL RELATIVISTIC
CORRECTIONS

We begin by focusing on the total energy flux _̃E. The left
most panel of Fig. 15 shows _Eðr̃Þ at fixed a and the right
most panel _EðaÞ at fixed r̃. The left plot of Fig. 15, shows
that for moderately rotating holes with a≲ 0.99, the
corrections _E are not strongly dependent on the radial
coordinate r̃. However, approaching an extremal spin
parameter a indicates that _E rapidly goes to zero as the
ISCO is approached. This matches the description given by
both NHEK fluxes (12) and (11).
Using a Teukolsky solver from the BHPT, we generated

our own energy flux values for spin parameters a ≥ 0.999.
The corresponding corrections are shown in the right panel
of Fig. 15 for fixed coordinate radii. This shows that at a
fixed coordinate radius r̃, the corrections approach a
constant as a → 1. What we learn from this is that the

behavior of the relativistic corrections becomes somewhat
universal as a → 1. In other words, as the near extremal
parameter approaches unity, the corrections approach a
constant value. This means that the correction values at
some r̃ will not differ much as the spin parameter is
changed providing the spin parameter is close to one. That
is, spin dependence on _E is weak “far” from ISCO.
We emphasize that this does not mean that ∂a

_E ≈ 0
throughout the entire inspiral. Here we have shown three
radial coordinates which are considerably far away from
the ISCO in the near-extreme spin parameter case. The
closer in radial coordinate to the ISCO, the larger the spin
dependence in the relativistic corrections. This can be
observed in Fig. 16. For a weak gravitational field, the
spin dependence on the flux corrections for near-extreme

inspirals is small, approaching _̃E → 0 for a → 1 as the
ISCO is approached. Much smaller than when compared to
moderately spinning holes, where the total energy flux is
approximately constant. Only when very close to the ISCO
does the spin dependence on _E grow significantly for near-
extremal holes.
A comparison of our interpolant, _E for a ¼ 1 − 10−9

with high spinning fluxes computed from the BHPT are
given in Fig. 17. A useful approximant for the relativistic
corrections _EðrÞ is given by

_EðxÞ ¼ ax arctanðbxcÞ; x ¼ r̃ − 1 ðB1Þ

with constants ða; b; cÞ ¼ ð0.6897912; 1.084803;
−0.936685Þ. This approximates the high spin corrections
_Eðr; 1 − 10−9Þ for r̃≲ 6 with largest fractional error ∼1%
at the ISCO.

FIG. 15. The figure on the left shows the values of the GRCs _Eðr̃Þ evaluated at a fixed spin parameter. The purple dashed line (bottom
left of leftmost plot) uses the near-extremal approximation to the flux (11). The other colors are the tabulated values GRCs presented in
Table IV in Ref. [11]. The figure on the right shows the GRCs evaluated at a fixed radial coordinate r̃while varying the spin parameter a.
The GRCs for a > 0.999 were computed using the BHPT [46].
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APPENDIX C: VERIFICATION OF FISHER
MATRIX CALCULATIONS

1. Ill-conditioned Fisher matrix

It is well known throughout the literature [6,58–63] that
a Fisher matrix analysis, when not handled carefully, has
the potential to underestimate (or, worse, overestimate)

precision measurements. One first has to be sure that the
regime of SNR is high enough so that the linear signal
approximation applies when truncating the perturbed wave-
form at first order. Numerical derivatives also exhibit
convergence problems and are very problematic if your
waveforms are not smooth. One must also make sure to
taper each derivative so that “hard cutoffs” do not feature in
the waveform [64]. Finally, one has to invert the Fisher
matrix and, if the Fisher matrix is ill conditioned (as
normally the case for EMRIs), it could lead to catastrophic
errors in the elements of Γ−1. The condition number of a
matrix is defined through

CondðΓÞ ¼
����maxifλig
minjfλjg

����; ðC1Þ

where λi is an ith eigenvalue of the matrix Γ. In the case of
EMRIs, the computation of the fisher matrix is affected by
numerical instabilities. A small perturbation to the systems
(intrinsic) parameters lead to a large overall change in the
waves phase evolution. It is for this reason EMRI obser-
vations permit parameter constraints with such high pre-
cision. Since waveforms are sensitive to small perturbations
of the source parameters, the numerical derivatives
∂θhðθ; tÞ are large and so the elements of the Fisher matrix
can be enormous in magnitude. In other words, there is a
significant amount of “information” about the parameters θ
encoded in the waveforms, which are then reflected by the
large elements of the Fisher matrix. However, not all
derivatives are large and the differences between the size
of the elements for different parameters leads to signifi-
cantly varying eigenvalues. In our case, the measurements
of spin and distance are ∼8 orders of magnitude apart.
A consequence of this is that the condition number of the
Fisher matrix is CondðΓÞ ∼ 1021. In light of these known
instabilities, we spend the next few subsections providing
suitable tests to verify our Fisher matrix in the single
parameter case, assuming all other parameters are known
perfectly. In order to verify Fisher matrices over multiple
parameters, Bayesian techniques like MCMC are required
(see Sec. VII).
We used three different methods to verify the Fisher

matrix calculations without performing a Bayesian
analysis:
(1) Verification of the linear signal approximation

hðaþ ΔaÞ ≈ hðaÞ þ Δa
∂h
∂a :

(2) Overlaps defined through (30)—perturbing the spin
parameter by Δa given by the Fisher matrix should
return overlaps close to one.

(3) Likelihood—The log-likelihood is maximized at the
true parameters θ0. If a parameter is perturbed by the

FIG. 16. Here we compute ∂a
_E for the two spin parameters

a ¼ 0.999999 (orange) and a ¼ 0.9 (blue). The growth in ∂a
_E for

rapidly rotating holes is larger closer to ISCO than for moderately
spinning holes.

FIG. 17. On the left panel, we have used the BHPT to compute
the total energy flux for near-extremal spin parameters with our
interpolant (black dashed line) overlaid. The right panel is a zoom
in of the left plot giving visual aid as to why our interpolant can be
used to approximate a larger regime of spin parameters.

BURKE, GAIR, SIMÓN, and EDWARDS PHYS. REV. D 102, 124054 (2020)

124054-26



Fisher matrix estimate then it should be a measure of
the 1σ width of this log-likelihood.

As a proof of principle of these methods, we will compute
the precision on the spin parameter for a heavy source θheavy
[see (80)], viewed face-on with ρ ∼ 20. For a source with
this configuration of parameters, we found ΔaNHEK ∼ 2 ×
10−10 numerically.

a. Linear-signal approximation

In the derivation of the Fisher matrix, we used the linear-
signal approximation so a first test would be to test whether
it is valid in our analysis. To test whether the expansion is
valid in the regime of SNR we are considering, we compute
the overlap

O
�
hðaþ ΔaÞjhðaÞ þ Δa

∂h
∂a

�����
a¼atrue

≈ 1 − 10−5 ðC2Þ

Hence we conclude that our waveform model at ρ ∼ 20
does not violate the linear-signal approximation.

b. Overlaps

In the limit of high SNR, the inner product (28) can be
expanded in ρ. Observe for small Δa

ðhðaþ ΔaÞjhðaÞÞ ≈ ρ2 þ Δa
�∂h
∂a

����h�þ Δa2

2

�
h

���� ∂2h
∂a2

�
where ðhjhÞ ¼ ρ2 as in (29). Since the SNR is fixed, it’s
easy to show that ð∂ahjhÞ ¼ 0 and Γaa ¼ −ð∂2

ahjhÞ. It can
then be shown for ρ ≫ 1

Oðhðaþ ΔaÞ; hðaÞÞ ≈ 1 −
1

ρ2
þOðρ−4Þ: ðC3Þ

Substituting Δa ¼ ΔaNHEK into the left-hand side of (C3),
we numerically find an agreement of ∼0.01%.

c. Likelihood

In the high SNR limit, the precision predicted by the
Fisher matrix should approximate the 1σ width of the
likelihood function. Using Eq. (27), we can write the log-
likelihood as

logpðdjaÞ ∝ ðdjhÞ − 1

2
ðhjhÞ:

Since the noise realization in the data stream dðtÞ ¼
hðt; aÞ þ nðtÞ induces a bias to the maximum likelihood
estimate, and does not affect the likelihood width, we shall
ignore the noise in this case. As such, we will consider a
zero noise approximation and use d ¼ hðaÞ with signal
templates h ≔ hðaþ Δa; tÞ. Substituting this into the
likelihood above we find that

logpðdjaÞ ≈ 1

2
ðρ2 − 1Þ: ðC4Þ

Here we have assumed that Γ−1
aa ¼ Δa2. Calculating

logpðdjaÞ for d ¼ hðaþ ΔaÞ with Δa our Fisher matrix
estimate we found that logpðdjaÞ ≈ 199.46 which agrees
with the above formula, to a precision of 0.05%.
Since we are interested in only one parameter, it is

evaluate the likelihood function

pðdjaÞ ∝ exp½−ðd − hjd − hÞ=2� ðC5Þ

on a grid of spin parameter values. In doing so, we find
Fig. 18. The area between the yellow line and red line is
approximately 31.51%, which is a reasonable approxima-
tion to the true 1 − σ ≈ 34% width of likelihood.
To conclude these subsections, we are confident that our

Fisher matrix approximations in the single parameter study
give a good guide to the spin parameter uncertainty.

FIG. 18. The blue curve is the likelihood (C5) evaluated on a
grid of points. The red the true value a ¼ 1 − 10−6 and orange the
precision measurement predicted by the 1 parameter Fisher
matrix ΔaNHEK.
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