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We present a novel Machine Learning (ML) based strategy to search for compact binary coalescences (CBCs)
in data from ground-based gravitational wave (GW) observatories. This is the first ML-based search that not
only recovers all the binary black hole mergers in the first GW transients catalog (GWTC-1), but also makes a
clean detection of GW151216, which was not significant enough to be included in the catalogue. Moreover, we
achieve this by only adding a new coincident ranking statistic (MLStat) to a standard analysis that was used for
GWTC-1. In CBC searches, reducing contamination by terrestrial and instrumental transients, which create a
loud noise background by triggering numerous false alarms, is crucial to improving the sensitivity for detecting
true events. The sheer volume of data and and large number of expected detections also prompts the use of
ML techniques. We perform transfer learning to train “InceptionV3”, a pre-trained deep neural network, along
with curriculum learning to distinguish GW signals from noisy events by analysing their continuous wavelet
transform (CWT) maps. MLStat incorporates information from this ML classifier into the standard coincident
search likelihood used by the conventional search. This leads to at least an order of magnitude improvement
in the inverse false-alarm-rate (IFAR) for the previously “low significance” events GW151012, GW170729 and
GW151216. The confidence in detection of GW151216 is further strengthened by performing its parameter es-
timation using SEOBNRV4HM_ROM. Considering the impressive ability of the statistic to distinguish signals
from glitches, the list of marginal events from MLStat could be quite reliable for astrophysical population stud-
ies and further follow-up. This work demonstrates the immense potential and readiness of MLStat for finding
new sources in current data and the possibility of its adaptation in similar searches.

INTRODUCTION

The Advanced LIGO [1, 2] and the Advanced Virgo [3]
observatories reported the detection of ten binary black-hole
mergers [4–9] and a binary neutron star merger [10] in their
data spanning the first two observational runs. LIGO and
Virgo operating with an improved sensitivity [11] in their third
observational run have detected tens of gravitational-wave
(GW) candidates [12] including a binary black hole (BBH)
merger with asymmetric masses and a possible heavy binary
neutron star merger [13–16] and tens of more triggers were
publicly announced as potential events. As the LIGO and
Virgo detectors advance their sensitivities and with KAGRA
joining the search [17, 18], the rate of GW detections is ex-
pected to increase multi-fold [19].

Currently, these detectors make use of both modelled and
unmodelled searches to detect potential GW signals in their
calibrated data [20–24]. Had the noise in the detectors been
Gaussian and stationary, only the time-coincidence of GW
signals in more than one detectors would be a decisive crite-
rion to find a candidate event. The quadrature sum of signal-
to-noise ratios (SNRs) in individual detectors would suffice
as the ranking statistic [25–28] and it would have been pos-
sible to model the background analytically in this simplis-
tic case [29, 30]. However, the data is heavily contaminated
by non-stationary and non-Gaussian transients of instrumen-
tal and terrestrial origin, also known as ‘glitches’. These
noise transients mimic astrophysical signals by bypassing the
search pipelines and result in a persistent problem of false

alarms [31, 32] which impact the search sensitivity of coa-
lescing compact binaries and GW bursts. As the detectors be-
come more sensitive, along with an improvement in detection
rate of GW signals the rate of occurrence of such glitches may
also increase, resulting in a considerable number of real GW
candidates being reported with reduced significance.

Various methods of compact binary coalescence (CBC)
search [20, 22, 33] were used to detect gravitational wave
sources in LIGO’s first observational run (O1) [34, 35].
These searches resulted in two confident BBH detections
viz., GW150914 and GW151226 at false-alarm rate (FAR)
< 6.0 × 10−7 yr−1 (> 5.3σ) each and a third detection viz.
GW151012 with a higher FAR of 0.37 yr−1 (1.7σ) [4, 36,
37]. Later, using an improved search method, the FAR of
GW151012 could be reduced to 0.17 yr−1 [9]. Similarly,
in the offline PYCBC analysis of the second observational
run (O2), GW170729 was detected with a FAR of 1.36 yr−1.
The statistic used in 2-OGC [38] reduced the FAR values of
GW151012 and GW170729 to 0.0045 and 0.15 respectively.
An investigation shows that the triggers with SNR≈ 9 mainly
consist of false alarms caused by glitches [37], which increase
the noise background and reduce the significance of marginal
events, thereby obstructing the science we can do with them.

In recent years, machine learning has been extensively ap-
plied to GW data analysis [39–46]. In this work we demon-
strate how application of a machine learning algorithm, de-
signed to discern real events from spurious glitches, can be
used to improve the standard matched filtering based analy-
sis used by LIGO [9]. We use transfer learning with Incep-

ar
X

iv
:2

01
0.

08
58

4v
2 

 [
gr

-q
c]

  2
2 

O
ct

 2
02

0

https://orcid.org/0000-0003-0554-0084
https://orcid.org/0000-0002-8666-9156
https://orcid.org/0000-0002-1534-9761
https://orcid.org/0000-0002-0800-4626
https://orcid.org/0000-0001-9524-2739


2

tionV3 [47] – an image-based deep learning classifier pre-
trained on over a million images of day-to-day objects – and
retrain it to classify CBCs and glitches in the LIGO data.
The classifier gives a probability of a trigger belonging to
the ‘CBC’ class among a number of transient classes, which
we use to modify the ranking statistic and construct the new
statistic (MLStat). Here we extend the PYCBC search analy-
sis used in GWTC-1 [9, 48], however, a similar methodology
can also be implemented with other pipelines like CWB [22],
GSTLAL [21] and MBTA [23] to seek sensitivity improve-
ments. We show significant improvement in the inverse-false-
alarm rates (IFARs) of the low-significance events GW151012
and GW170729 with MLStat. We also detect the new candi-
date event GW151216 from O1 [49, 50] and report the param-
eter estimation results just as a verification.

INCORPORATING MACHINE LEARNING

Success for any ML classifier depends on its ability to
learn the relevant features from the dataset and then develop
a strategy to optimally separate the different classes by judi-
ciously weighting the different learned parameters. Obtain-
ing an optimal decision boundary in classifiers requires the
overlap in the feature-space to be as minimal as possible.
Within astronomy community, features are traditionally cho-
sen by a domain expert as in the case of several stellar [51–53],
GRB [54], galaxy [55–57], quasar [58–60] and GW classifi-
cation schemes [61]. The advent of GPUs and the availability
of larger training sets have resulted in techniques based on
deep learning to gain more prominence in recent years. Con-
volutional neural networks (CNNs), in particular, have shown
remarkable success in tasks pertaining to image classifica-
tion and are consistently outperforming feature-based classi-
cal ML techniques when applied to standard bench-marking
datasets [62, 63].

Large architectures of CNNs, like Google’s Inception
model and Microsoft’s Resnet model, have been trained us-
ing cutting-edge GPU technology on large datasets containing
images of objects in day-to-day life [47, 64]. Transfer learn-
ing makes use of the rich feature extraction capability of such
pre-trained models and allows repurposing them for a differ-
ent classification task. The final few layers of a pre-trained
network are replaced with trainable new layers while the rest
of the network architecture is retained as before. The training
of such a network on a new image dataset essentially maps
the extracted features to new classes, thus making the training
faster while still maintaining the accuracy. Another advantage
of transfer learning is that the amount of training data required
to reach the prescribed accuracy is hugely reduced.

Inception networks [65] put forward a strategy for mak-
ing effective deeper networks through tactics different from
merely increasing either the layers or neurons per layer. For
example, the InceptionV3 network [47] differs from the tra-
ditional monolithic CNN architecture through the usage of
factorizing convolutions, parallel structures, and extensive di-

mensionality reduction techniques. These schemes make the
architecture well suited for applications with stringent mem-
ory and computational constraints but still provide state-of-
the-art performance without over-fitting the data.

The transients of astrophysical or terrestrial origin seen in
LIGO data have a peculiar evolution in the time-frequency
domain. This provides a 2D representation that can be anal-
ysed by the image-based classifiers mentioned above. Dur-
ing the early inspiral phase of a CBC waveform, Einstein’s
quadrupole formula for gravitational wave luminosity can be
solved with a non-relativistic approximation to obtain the evo-
lution of frequency with time as f ∝ (tc− t)−3/8, where tc is
the time of coalescence [66]. This explains the peculiar chirp-
like shape of CBC signals in time-frequency maps which can
be exploited to differentiate them from glitches. We get much
more accurate description of the full time-frequency evolution
of CBCs using the Inspiral-Merger-Ringdown (IMR) wave-
forms. As compared to the χ2 weighing [67] which compares
the template and data only in frequency bins, by analysing the
trigger morphology in time-frequency maps, we are, in a way,
comparing the power distribution of the transient in both time
and frequency bins.

Previously, Omega scans have been used to map the LIGO
data to the time-frequency domain where the chirp-like evolu-
tion of CBCs can be distinguished from other noise transients
more effectively [61, 68]. We use the continuous wavelet
transform (CWT) with an analytic Morlet (amor) wavelet to
construct time-frequency scalograms of the whitened strain
data to be analysed. Wavelets, in general, provide a much
better time and frequency resolution compared to short-time
Fourier transform (STFT) [69]. Discriminator based on rel-
ative wavelet energy has previously been demonstrated to be
effective in separating various transient classes and was suc-
cessfully applied to Advanced LIGO’s first observational run
data [61]. We create CWT scalograms by whitening and band-
passing the data around a GPS trigger between 16Hz and
512Hz. We consider a data slice of 1 second duration with
the trigger time kept at centre, convert it into a scalogram and
save it as a grayscale image with pixels denoting absolute val-
ues of CWT coefficients. As InceptionV3 is trained on natu-
ral images, the features extracted from different channels are
most likely to differ from each other based on the biases in
the images of natural objects. The choice of using grayscale
colormap ensures the complete glitch morphology is saved in
each of the three channels rather than getting divided based
on the colormap. The network’s convolution filters then ob-
serve the full evolution of a transient in each channel, and the
channel-based biases are marginalised.

The CWT image data for training was generated by using
a manually curated subset of GravitySpy data [68, 70]. As
transfer learning involves training a significantly fewer num-
ber of neurons, typically, a very small amount of training
data (a few hundred images per class) suffices. This size also
makes manual curation practically possible. Due to band pass-
ing, classes like 1080Lines, 1400Ripples and Violin-Mode
were rendered redundant and were thus excluded. Also, the
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FIG. 1. Confusion matrix (in percent) for the combined validation
data from all the levels of curriculum learning. A total of 17 tran-
sient classes have been used, viz., Air Compressor (AC), Blip (BL),
Extremely Loud (EL), Gaussian Noise (GN), Helix (HX), Injected
Chirp (CBC), Light Modulation (LM), Low Frequency Burst (LFB),
Low Frequency Lines (LFL), Power Line (PL1), Power Line2 (PL2),
Repeating Blips (RBL), Scattered Light (SL), Scratchy (SC), Tomte
(TM), Wandering Line (WL) and Whistle (WH). The performance of
CBC class is of particular importance as it directly affects MLStat.

Power-Line class was divided into Power-Line and Power-
Line2 to separate shorter and longer transients. Data for CBC
class was generated by considering real LIGO strain data and
by injecting CBC signals with SNR values in the range (4, 20)
with IMRPhenomD waveform approximant. The component
masses were sampled between (5M�, 95M�) with a con-
straint on total mass, M ≤ 100M�. Besides, a separate class
named Gaussian-Noise was created, which consisted of plain
whitened strain data picked from the same time durations of
LIGO data that did not contain glitches. Certain glitch classes
were omitted from the data due to lack of feature distinction
in CWT maps. The final list of transient classes can be found
in Fig. 1.

To perform transfer learning, we load the 316 layers deep
directed acyclic graph (DAG) network of InceptionV3 and
freeze the weights of the first 250 layers. We also add a 40%
Dropout layer and an additional Fully Connected layer of size
1024 with Leaky-ReLu activation function before the final re-
placed Fully Connected layer which now maps to the the 17
transient classes with Softmax activation function. We adopt a
curriculum learning strategy specifically in CBC class to train
the network step-by-step, going from higher SNR values to
lower ones. We observed that this method remarkably in-
creased the network accuracy as compared to a single training
session with full data. The network was trained using stochas-
tic gradient descent with momentum (SGD-M) [71]. After
three training levels, the trained network achieves a training
accuracy of 99.2% and a validation accuracy of 94.2%. Fig. 1
shows the confusion matrix for the validation data across all
three levels.

For each evaluated image, the network outputs a posterior
probability across the 17 transient classes. However, only the

probability corresponding to CBC class (PCBC) will be used
in our analysis. To further validate the performance of PCBC

with independent test data, we generated 5000 new samples
of CBC and Gaussian-Noise from real LIGO data. With a
PCBC threshold of 0.9, it was found that more than 91.2% of
the injections with SNR > 7 were identified by the classifier.
Though this fraction starts deteriorating below SNR 7, signifi-
cance of the events detected with high PCBC values in this re-
gion will improve by a large margin. Against Gaussian-Noise
the PCBC distribution was found to peak near zero and more
than 95% samples were detected with PCBC < 0.2. Also,
from the analysed O1 and O2 data, it was seen that major-
ity of the triggers were classified with very low PCBC values.
The small fraction of triggers with high PCBC values are very
unlikely to be coincident in both the detectors as demanded
by the MLStat construction explained in the next section.

CONSTRUCTION OF MLSTAT

PYCBC workflow performs matched filtering on the data
with a bank of templates. Triggers are then collected by
thresholding and clustering the SNR time series. The SNR
is re-weighed with two types of noise suppressing vetoes and
a semi-coherent ranking statistic (we call it base statistic here-
after) ensuring approximately trigger rate estimation across
the search parameter space to determine the significance of
events [48, 67, 72]. We analyse the triggers with our classi-
fier and build the ML tool as an augmentation of the standard
pipeline used by LIGO.

As mentioned in the previous section, for each trigger,
our classifier gives the probability (PCBC) of it belonging
to the CBC class. Thus, the parameter space used for the
construction of the new statistic, MLStat, extends to Θ′ =
(Θ,PCBC

H ,PCBC
L ), where Θ is the parameter space consid-

ered by the base statistic ρ̃. Here, H/L in the subscripts denote
Hanford/Livingston observatories respectively. The original
likelihood ratio for detection of gravitational wave signal is
given by,

Λ(Hλ|s) =
p(s|Hλ)

p(s|H0)

where, s(t) is the time series strain data, Hλ is the hypothe-
sis stating that the signal h(t, λ) is present in s(t) and H0 is
the null hypothesis. We update the above likelihood ratio to
include PCBC as follows,

Λ′(Hλ|s) =
p(s|Hλ) ∗ PCBC

H ∗ PCBC
L

p(s|H0)
. (1)

This results in a new coincident ranking statistic (MLStat)
%̃ml, a simple extension to the base coincident statistic ρ̃c,

%̃2
ml = ρ̃2

c + 2 ∗ log(PCBC
combined) , (2)
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FIG. 2. Significance improvement for GW151012 (left) and GW170729 (right): Cumulative histograms of foreground events in base statistic
(yellow) and MLStat (blue) and the expected background plotted against the inverse false-alarm rate. Shaded regions show the sigma intervals
for Poisson uncertainty. The loudness of first ∼ 20 foreground events with MLStat in O2 is not a systematic bias and is rather an effect of the
low number statistics which has been observed with other statistics before (See Fig. 2 and Fig. 3 in [9]). With MLStat, IFAR value of the most
significant foreground event GW151012 (GW170729) improves from 5.84 (0.73) to 258 (79.3). We also observed that the event sequence
according to IFAR values was considerably shuffled in MLStat. The second most significant event viz., 151016, in O1 chunk has IFAR 0.25.

where PCBC
combined = PCBC

H ∗ PCBC
L . This implies that for de-

tection by this statistic, a signal should look CBC-like in both
the detectors within the light travel time window.1

The real CBC signals should have PCBC values close to 1,
thus making the second term in Eq. 2 very small. The ML-
Stat values will be very close to the base statistic for such
events. On the other hand, noise triggers in the background
which do not have a CBC-like composition in CWT maps will
be pushed to lower values. Thus, discriminating real events
from the noise contamination results in a decreased back-
ground, which effectively improves the significance of true
CBC events.

ANALYSIS OF O1 AND O2 DATA

We re-purpose the offline analysis data of PYCBC search
described in GWTC-1 [9, 74]. We analysed two chunks of
data from O1 and O2 that contained the low significance
events GW151012 and GW170729 respectively. The analy-
sis consisted of ∼ 5.9 days of coincident data during October
8-20, 2015 for O1 and ∼ 5.3 days of coincident data starting
from July 27 to Aug 5, 2017 for O2.

CWT maps of duration 1 second were created keeping the
PYCBC triggers in the centre. These images were then anal-
ysed with the ML classifier to get the respective PCBC val-
ues. We observed that the classifier is immune to changes in

1 Note that we do not use PCBC for fitting the single detector event rate
as done in the base GWTC-1 statistic which may give us further improve-
ments, especially in the regions of the parameter space which can suffer
due to high false-alarm rates and thus show reduced sensitivity.

CWT maps corresponding to small translations in time, thus
allowing us to round off the trigger GPS times to one deci-
mal place. Analyses of multiple triggers lying within a time
window of 0.1 second is thus avoided. The PCBC values were
recorded for all the triggers from both the detectors. The co-
incident MLStat is then calculated using Eq. 2 with PYCBC
GWTC-1 statistic as the base statistic. The improvement in
significance of GW151012 and GW170729 with MLStat is
shown in Fig. 2. The IFAR of GW151012 (GW170729) in-
creases from 5.84 (0.73) in base statistic to 258 (79.3) in ML-
Stat, thus making them very confident detections.

Extension of the analysis

Though doing a full analysis of any of the observational
runs is beyond the scope of the current work, we wish to get
an estimate of what we should expect from the extended anal-
ysis. We make an assumption that the improvement in the
background estimation is similar across all the chunks in the
observational run. We then note the improvement in the sig-
nificance of the full set of foreground triggers against the anal-
ysed chunk of that run and estimate their improved IFAR val-
ues with respect to the background of the original chunks they
belonged to. Calculating these MLStat IFAR values of full O1
and O2 foregrounds, we confirm the detection of one event in
O1, viz. GW151216, that has been discussed in the litera-
ture before [38, 49, 50, 75–77], whose IFAR improved from
0.00173 years in GWTC-1 to 1.983 years with MLStat. CWT
maps of the events that become significant with our analysis
are shown in Fig. 3.

We list the combined foreground of O1 and O2 with
FARml < 1 per month in Table I. GW170818 was not de-
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TABLE I. List of candidate events from the extended analysis of O1 and O2 sorted by FARml [73]. All the catalogue events [9] are successfully
found by our analysis. Exceptions are GW170817 (excluded from the analysis) and GW170818 (not found by PYCBC). Five marginal events
with FARml < 1/month are reported, which may be worth following-up and may prove to be useful for estimating astrophysical distributions.
Mass and spin values (detector frame) are those of the best matching search template giving highest coincident MLStat and need not match the
full Bayesian parameter estimation results. We report one to two orders of magnitude improvements in IFAR for GW151012 and GW170729,
obtained by analysing the respective data chunks which makes them definite confident detections. The FARml quoted for rest of the events are
inferred by assuming similar significance improvements across respective observational runs. FARbase values are also given for comparison.
The newly detected event GW151216 is shown in bold.

UTC MLStat FARbase FARml mt
1 mt

2 st2z st1z PCBC
H PCBC

L

[yr−1] [yr−1] [M�] [M�]

2017-08-14T10:30:43a 12.7 < 1.3× 10−5 < 1.3× 10−5 33.14 25.38 0.68 -0.95 0.999 0.999

2017-01-04T10:11:58a 10.8 < 1.4× 10−5 < 1.4× 10−5 40.87 13.91 -0.70 0.80 0.996 0.999

2015-09-14T09:50:45a 15.5 < 1.5× 10−5 < 1.5× 10−5 44.21 32.16 0.78 -0.86 0.999 0.999

2015-12-26T03:38:53a 11.7 < 1.7× 10−5 < 1.7× 10−5 14.83 8.50 -0.09 0.81 0.873 0.611

2017-08-23T13:13:58a 10.2 < 3.3× 10−5 < 3.3× 10−5 47.94 16.22 -0.92 0.64 0.998 0.999

2017-08-09T08:28:21a 10.5 < 1.45× 10−4 < 1.45× 10−4 47.62 16.21 -0.57 0.90 0.627 0.999

2017-06-08T02:01:16a 12.7 < 3.1× 10−4 < 3.1× 10−4 16.82 6.10 0.11 0.88 0.996 0.999

2015-10-12T09:54:43a, d 9.0 0.17 3.87× 10−3 25.75 17.60 -0.36 0.73 0.838 0.994

2017-07-29T18:56:29a, d 8.7 1.36 1.26× 10−2 67.52 32.53 0.27 -0.09 0.988 0.998

2015-12-16T09:24:16b 8.2 57.74 0.5043 41.78 34.35 0.85 0.98 0.793 0.996

2015-10-16T13:57:41c, d 8.0 – 3.96 364.00 5.35 0.98 -0.24 0.995 0.745

2017-07-23T12:45:56 7.8 273.19 5.76 33.26 11.22 -0.42 -0.62 0.236 0.882

2015-11-02T06:46:59 7.9 1049.95 7.96 224.16 2.77 0.99 0.43 0.747 0.999

2015-11-28T20:20:29 7.8 1078.63 8.64 51.93 1.57 0.42 0.02 0.759 0.863

2017-04-12T01:49:51 7.8 1355.84 11.26 46.04 1.19 0.23 0.03 0.973 0.670

a GWTC-1 events; b Not present in GWTC-1; c Not present in the PYCBC analysis used in GWTC-1;
d Definite FARml (obtained from analysed chunks)

FIG. 3. CWT maps of events that gain significance with MLStat.
Whitened strain data of duration one second, band-passed between
16Hz and 512Hz, is used to generate the Gray-scale images that are
fed to the classifier.

tected by PYCBC and thus does not show up in our analysis.
Also, GW170817 has been excluded from the analysis as it
falls out of the parameter space used for training the classi-
fier and the CBC-tracks for such long duration signals may

not be visible in the CWT map. We intend to build a more
comprehensive ML tool covering larger parameter space in
the followup work.

We report the parameter estimation results for GW151216
using the fully Bayesian code BILBY [78, 79]. For the
analysis, we estimate the noise power spectral density with
BAYESWAVE [80] using 16 sec of data around GW151216.
The posteriors with SEOBNRV4HM_ROM model [81]
which includes higher order modes, are shown in the Fig. 4
for some of the parameters. There are other detailed analyses
for the event which take in to account other various wave-
form models and priors cab be found in [75–77]. We find
that GW151216 has component masses of 46.8+12.5

−17.7M� and
23.6+5.6

−9.6M� with the inverse mass ratio of∼ 2 with the lumi-
nosity distance of 2269+1193

−1033Mpc. Also 90% credible inter-
vals for effective inspiral spin parameter show non-zero spins
with χeff of 0.56+0.23

−0.5 . The expected posteriors from the pa-
rameter estimation also serves as a check that the event is in-
deed BBH merger. We also plan to analyse the other marginal
events in detail with data quality checks and parameter esti-
mation.
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FIG. 4. Bayesian parameter estimation posteriors for the event
GW151216 using SEOBNRV4HM_ROM waveform model. We
can clearly see the evidence for unequal masses with component
masses of 46.8+12.5

−17.7M� and 23.6+5.6
−9.6M� and non-zero spin with

χeff of 0.56+0.23
−0.5 and luminosity distance of 2269+1193

−1033Mpc. The
corresponding sky localisation map is also overlaid.

CONCLUSIONS

As the sensitivities of ground-based GW interferometers
improve, the rate of detection of astrophysical events is go-
ing to increase, posing a challenge to the analyses to cope up
with the large number of events. The major hurdle in this
task arises from the terrestrial and instrumental glitches, and
their occurrence may increase with sensitivity. This issue may
become even more severe with time as the density of events
observed in the distant universe with statistically lower SNRs
is expected to increase. Improving the fraction of true events
in the set of potential triggers can significantly reduce this bur-
den. Perhaps in the future ML will also help us in expanding
the dimension and volume of the parameter space for astro-
physical searches.

In this work, we demonstrated the capability of machine
learning to improve the significance of CBC signals and to
discard false triggers by integrating it with the existing analy-
sis framework of PYCBC. We used transfer learning with In-
ceptionV3, a pre-trained image based classifier, for effective
identification of binary black hole mergers against glitches in
LIGO data. We repurpose the PYCBC offline search data to
re-analyse the matched filter triggers for two chunks of data
from O1 and O2 that contained the events GW151012 and
GW170729. We use the retrained InceptionV3 network to
classify the continuous wavelet transform maps, a represen-
tation of time series data in time-frequency domain, of these

triggers and get the PCBC values which are used to construct
a new ranking statistic MLStat – a simple extension of the
conventional coincident statistic. This helped in breaking the
degeneracy between the real CBC signals and the noise tran-
sients that pass the conventional analysis and result in an in-
creased background. With MLStat, we achieve a considerable
reduction in background and an improved separation of fore-
ground. We report one to two orders of magnitude reduction
in false alarm rates for the low significance events GW151012
and GW170729 with MLStat as compared to the statistic used
by PYCBC in the first GW transient catalog (GWTC-1).

This is the first time a machine learning based search al-
gorithm was able to detect all the binary black hole mergers
in GWTC-1 with same or better significance. By assuming
similar improvements in the false alarm rates across the ob-
servational run, as seen in the respective analysed chunks,
we also confirm the detection of the event GW151216, which
was not included in GWTC-1 lists of confirmed and marginal
events due to lack of significance. While the existence and
nature of this event is debated [38, 50, 75–77], to boost
confidence in this detection and for demonstration of com-
pleteness of the process of a new detection using MLStat,
we perform parameter estimation for this event with an im-
proved waveform model with higher order modes SEOB-
NRV4HM_ROM [81]. Considering the ability of our method
to distinguish the false triggers from astrophysical events, the
list of sub-threshold events reported with MLStat may be
more reliable for astrophysics (e.g., population studies) but
further follow-up though a data quality check would still be
required.

That, by tuning a generic ML algorithm and introducing
a simple extension to the ranking statistic, we could achieve
these major milestones, shows the enormous potential in ML,
provided we can adapt it with fine understanding of the prob-
lem in hand. There is ample scope to improve our present
analysis and, in general, several avenues may be explored to
introduce machine learning based algorithms in GW analyses.
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