
The Fourier Transform of the Continuous Gravitational Wave Signal

S.R. Valluri,1, a Vladimir Dergachev,2, 3, b X. Zhang,4, c and F.A. Chishtie5, d

1Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
2Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstrasse 38, 30167 Hannover, Germany

3Leibniz Universität Hannover, D-30167 Hannover, Germany
4Department of Statistical and Actuarial Sciences,

The University of Western Ontario, London, ON N6A 3K7, Canada
5Department of Applied Mathematics, The University of Western Ontario, London, ON N6A 3K7, Canada

The direct detection of continuous gravitational waves from pulsars is a much anticipated discov-
ery in the emerging field of multi-messenger gravitational wave (GW) astronomy. Because putative
pulsar signals are exceedingly weak large amounts of data need to be integrated to achieve desired
sensitivity. Contemporary searches use ingenious ad-hoc methods to reduce computational com-
plexity. In this paper we provide analytical expressions for the Fourier transform of realistic pulsar
signals. This provides description of the manifold of pulsar signals in the Fourier domain, used by
many search methods. We analyze the shape of the Fourier transform and provide explicit formulas
for location and size of peaks resulting from stationary frequencies.

I. INTRODUCTION

Continuous gravitational waves are an eagerly antici-
pated but elusive phenomena. Despite a series of searches
since early 2000 (in particular [1–7]) there have been
no loud detections. Some recent papers have seen sig-
nals with moderately high SNR, but it is not known yet
whether they are due to the instrumental noise or astro-
physical signals.

Continuous gravitational waves are expected from
rapidly rotating neutron stars, as well as from more ex-
otic sources [8–13].

In this paper we study the Fourier transform of the
continuous wave signal using analytical techniques. Our
results are useful for developing loosely coherent algo-
rithms [14–16] which adapt to the shape of the signal
manifold.

We provide explicit formulas describing location and
strength of the peaks in the Fourier transform. Such
peaks increase signal susceptibility to detector artifacts.
An analysis of a signal can be performed by correlat-
ing peak locations with likely frequencies of instrumental
lines. The algorithm for peak computation is detailed in
figure 4.

II. SIGNAL MODEL

A pure monochromatic signal has linear phase evo-
lution. While this would be computationally simple to
search for, the search would be challenging due to confu-
sion of putative signals with numerous instrumental lines
[5].
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Realistic gravitational wave signals have multiple
sources of modulation, due to Doppler shifts from detec-
tor motion relative to the source, possible source motion
due to nearby astrophysical bodies, or intrinsic evolution
of the source, such as slow decrease in frequency due to
energy loss.

All such signals are nearly monochromatic and can be
described by the equation

h(t) = <(a(t)eiφ(t)) (1)

The amplitude modulation a(t) varies slowly compared
to rapid oscillations of the exponential terms. To simplify
exposition we assume that a(t) is unity everywhere the
signal is defined. This allows us to focus on the oscillatory
nature of our signal, while still allowing a measure of
amplitude modulation by introducing gaps in input data.

Such gaps occur naturally due to lock losses in interfer-
ometer operations. They can also arise effectively in data
that would normally be deweighted due to high noise, or
due to unfavorable interferometer angle to incoming lin-
early polarized signal.

The phase modulation φ(t) is a powerful tool in sep-
arating astrophysical signals from detector artifacts, but
its complicated form and dependence on many parame-
ters, such as source and detector locations and frequency
drift parameters presents a computational challenge.

It is instructive to consider a simplified situation of
a fixed frequency source and a detector following two
superimposed circular motions - one around Earth’s axis
and one of Earth around the Sun.

First, we compute relative detector position to Earth
center:

~rEarth =

 cos(ωrott+ α0) cos(δ0)
sin(ωrott+ α0) cos(δ0)
sin(δ0)

REarth (2)

where α0 and δ0 are the detector longitude and latitude
locations correspondingly.
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The full motion of the detector is then described as

~rdet = ~rEarth + ~v cos(ωorbt) + ~u sin(ωorbt) (3)

where ~u and ~v are two perpendicular vectors in the eclip-
tic plane parametrizing Earth’s orbital motion.

This can be generalized as

~rdet = ~roff +

K∑
k=1

~vk cos(ωkt) + ~uk sin(ωkt) (4)

Here ~roff is a constant offset, which for circular approxi-

mation is REarth sin(δ0)~̂z. Since the offset is constant, it
only affects absolute signal phase. For simplicity we will
assume ~roff = 0 in subsequent calculations.

Our simplified example with two modulations arising
from circular motions corresponds to K = 2. The ex-
pression 4 is general enough that one can fit any realistic
signal by including additional harmonics, for example,
due to planetary perturbations.

The direction to the source is given by

n̂source =

 cos(α) cos(δ)
sin(α) cos(δ)
sin(δ)

 (5)

Here α is the right ascension in radians [0, 2π) and δ is
the declination in radians [−π/2, π/2].

The detector velocity vector is

~vdet =
d

dt
~rdet =

K∑
k=1

~ukωk cos(ωkt)− ~vkωk sin(ωkt) (6)

The Doppler shift is computed from the formula:

D =
n̂source · ~vdet

c

=
∑
k

n̂source · ~uk
c

ωk cos(ωkt)−
n̂source · ~vk

c
ωk sin(ωkt)

(7)

We introduce relative modulation depth arel
k and mod-

ulation phase φk:

arel
k =

ωk
c

√
(n̂source · ~uk)2 + (n̂source · ~vk)2 (8)

φk = arctan

(
n̂source · ~uk
n̂source · ~vk

)
(9)

Then the Doppler shift becomes:

D =

K∑
k=1

arel
k cos(ωkt+ φk) (10)

Let us widen the model for our source signal to in-
clude polynomial frequency evolution, which is observed
in radio pulsars:

f(t) =

N∑
n=0

fn
tn

n!
(11)

The signal received at the detector is then

f(t) =

(
N∑
n=0

fn
tn

n!

)(
1 +

K∑
k=1

arel
k cos(ωkt+ φk)

)
(12)

This ignores relativistic corrections.
Let us assume that the products fna

rel
k are negligible

for all n ≥ 1. Then the signal model simplifies to:

f(t) =

N∑
n=0

fn
tn

n!
+ f0

K∑
k=1

arel
k cos(ωkt+ φk) (13)

We now introduce phase modulation depth ak as

ak =
2πf0a

rel
k

ωk
=

2πf0

c

√
(n̂source · ~uk)2 + (n̂source · ~vk)2

(14)
Then the phase model of our signal is

φ(t) = φ0 + 2π
N∑
n=1

fn−1
tn

n!
+

K∑
k=1

ak sin(ωkt+ φk) (15)

Here φ0 controls the initial phase of the signal.
To make sense of modulation amplitudes and phases,

we focus on our initial case of two circular modulations.
The vectors u1 and v1 describing Earth’s rotation are

~v1 = REarth

 cosα0 cos δ0
sinα0 cos δ0
0

 (16)

~u1 = REarth

 − sinα0 cos δ0
cosα0 cos δ0
0

 (17)

where α0 and δ0 are detector longitude and latitude cor-
respondingly.

Then the parameters corresponding to Earth’s rotation
are

φ1 = arctan
(
n̂source·~uk
n̂source·~vk

)
=

= arctan
(

sin(α−α0) cos(δ0)
cos(α−α0) cos(δ0)

)
= α− α0

(18)

a1 =
2πf0REarth

c
|cos(δ) cos(δ0)| (19)

We see that modulation phase φ1 is just the difference
between source right ascension and detector longitude.

The vectors u2 and v2 describing Earth orbital motion
are

~v2 = Rorb

 1
0
0

 (20)

~u2 = Rorb

 0
cos ε
sin ε

 (21)
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where ε = 23.4◦ is the obliquity of the ecliptic

The parameters corresponding to Earth orbital motion
around the Sun are somewhat more complicated:

φ2 = arctan

(
sin(α) cos(δ) cos(ε) + sin(δ) sin(ε)

cos(α) cos(δ)

)
(22)

a2 =
2πf0Rorb

c
·

·
√

cos2(α) cos2(δ) + (sin(α) cos(δ) cos(ε) + sin(δ) sin(ε))2

(23)

This complexity is due to the choice of equatorial co-
ordinate system. Had we chosen ecliptic coordinates in-
stead the orbital motion parameters would be simple,
while the Earth rotation parameters have similar expres-
sions to the above. As we will see later the shorter period
motion introduces more complexity in the Fourier trans-
form, so it makes sense to use the equatorial coordinate
system in applications.

III. FOURIER TRANSFORM OF
QUASI-MONOCHROMATIC SIGNAL

In the general case the signal spectrum is

h̃0(f ) =

∫ T/2

−T/2
exp (iφ(t)) e−i2πf tdt =

=

∫ T/2

−T/2
exp

{
iφ0 + 2πi

N∑
n=2

fn−1
tn

n!
+

+ i

K∑
k=1

ak sin(ωkt+ φk)

}
· e−i2π(f−f0)tdt

(24)

Thus the spectrum depends on initial signal phase φ0,
initial frequency f0, higher order frequency expansion pa-
rameters fk (for k ≥ 1), phase modulation depth ak and
modulation phase φk.

For searches less than 30 days the effect of third order
and higher frequency derivatives can be neglected for as-
trophysical sources. Keeping terms up to a second order
in frequency, the equation simplifies to

h̃0(f ) =

∫ T/2

−T/2
exp

{
iφ0 + i2π

(
f1
t2

2
+ f2

t3

6

)
+

+i
∑K
k=1 ak sin(ωkt+ φk)

}
· e−i2π(f−f0)tdt

(25)

The treatment of sinusoidal phase modulation can use
either the Jacobi-Anger expansion in terms of Bessel
functions or approximation of the sine function by poly-
nomials. The latter is particularly effective when ωlT is
small.

For example:

ak sin(ωkt+ φk) = ak

(
ωkt−

ω3
kt

3

6
+O(ω5

kt
5)

)
cos(φk)+

+ak

(
1− ω2

kt
2

2 +O(ω4
kt

4)
)

sin(φk))

(26)

Modulation Source Earth rotation Orbital motion Unit
term frequency

ωl - 6.3 0.017 (1/day)
al 200 Hz 23 630000 -
al 1000 Hz 115 3200000 -
al 2000 Hz 230 6300000 -
alωl 200 Hz 0.0017 0.123 Hz
alωl 1000 Hz 0.0084 0.63 Hz
alωl 2000 Hz 0.017 1.23 Hz
alω

2
l 200 Hz 1.2× 10−7 2.4× 10−8 Hz2

alω
2
l 1000 Hz 6.1× 10−7 1.2× 10−7 Hz2

alω
2
l 2000 Hz 1.2× 10−6 2.4× 10−7 Hz2

TABLE I: Modulation parameters

Modulation parameters for various sources. The amplitude
modulation values are worst case, as seen in LIGO

Livingston interferometer. Phase and frequency modulation
are dominated by orbital motion, while the frequency
derivatives are larger for terms from Earth rotation.

Table I shows modulation parameters for sources emit-
ting at various example frequencies.

For example, in the case of T = 3 days we find that the
Earth’s orbital motion is a good candidate for polynomial
expansion and would need terms up to a cubic order.

Indeed, the error in equation 26 can be bounded by
the 4-th order term:

al
ω4
l T

4

4!24
≤ 0.11 (27)

Here we assumed the expansion is centered on the middle
of the interval so the maximum time is T/2.

Let LE be the set of indices describing expanded har-
monics. Consider the following integral by neglecting
constant phase term:

h̃0(f ) =

∫ T/2

−T/2
exp

(
2πig1

t2

2
+ 2πig2

t3

6
+

+i
∑
k/∈LE

ak sin(ωkt+ φk)

 · e−i2π(f−g0)tdt

(28)

where coefficients gn have been introduced that describe
both initial polynomial frequency modulation parame-
ters and the contribution from polynomial expansion of
sinusoidal modulations:

gn = fn +
∑
k∈LE

akω
n+1
k

2π(n+ 1)!
cos
(
φk +

πn

2

)
(29)

This model of polynomial plus harmonics is very effective
in describing a realistic pulsar signal. As we will show
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later, the phase behaviour can be approximated with a
single harmonic plus a third order polynomial over any
data stretch of 3 days or less.

We now focus on the application of the Jacobi-Anger
expansion. Applying it to all sinusoidal terms we get:

h̃0(f ) =

∫ T/2

−T/2
exp

(
2πig1

t2

2
+ 2πig2

t3

6
− i2π (f − g0) t

)
·

· exp

i ∑
l/∈LE

al sin(ωlt+ φl)

 dt =

=

∫ T/2

−T/2
exp

(
2πig1

t2

2
+ 2πig2

t3

6
− i2π (f − g0) t

)
·

·
∏
l/∈LE

∑
kl

iklJkl(al) exp(ikl(ωlt+ φl))dt

(30)
The product and sum symbols can be exchanged yield-

ing a sum over multi-indices ~k = (k1, . . . , kM ):

h̃0(f ) =

∫ T/2

−T/2
exp

(
2πig1

t2

2
+ 2πig2

t3

6
− i2π (f − g0) t

)
·

·
∑
~k

∏
l/∈LE

iklJkl(al) exp(ikl(ωlt+ φl))dt

(31)

The indices ~k span an infinite lattice for exact expression.
However, the values Jkl(al) decrease rapidly for kl � |al|,
allowing a finite sum to be used in practical calculations.

The number of remaining indices in a sum depends on
modulation depth al and can be fairly substantial even
for relatively small modulation values. This complexity
is intrinsic to the problem, as can be confirmed by exam-
ining numerically computed Fourier transform in figure
2 - the multitude of peaks would need separate harmonic
terms to produce them.

Mathematically, this can be understood as follows.
First we perform the expansion of longer period har-

monics as done in Equation 28 keeping only one remain-
ing harmonic. Then we split the integral into pieces of
length matching one period Tp (where Tpω1 = 2π). We
assume the full integration interval is the integer multiple
of period Tp:

h̃0(f ) =

M∑
m=0

∫ Tp/2+mTp

−Tp/2+mTp

·

· exp

(
2πig1

t2

2
+ 2πig2

t3

6
+ ia1 sin(ω1t+ φ1)

)
·

·e−2πi(f−g0)tdt
(32)

Shifting the internal integration variable by mTp we ob-
tain:

h̃0(f ) =

M∑
m=0

∫ Tp/2

−Tp/2
exp

(
2πig1

(t+mTp)
2

2
+

+2πig2
(t+mTp)3

6 + ia1 sin(ω1t+ φ1)

)
·

·e−2πi(f−g0)(t+mTp)dt

(33)

The argument of the sine function is unmodified because
we shift by integral number of periods.

The Taylor formula provides a convenient way to com-
pute a shift of any analytic function:

p(t+ T ) =

∞∑
k=0

T k

k!

dk

dtk
p(t) (34)

For polynomials the sum is finite because higher order
derivatives vanish. Our polynomial is only third order:

p(t) = 2π(g0 − f)t+ 2πg1
t2

2
+ 2πg2

t3

6
(35)

Leading to a simple expression for the shift:

p(t+mTp) = p(t)+

+mTp2π(g0 − f + g1t+ g2
t2

2 )+

+
m2T 2

p

2 2π(g1 + g2t)+

+
m3T 3

p

6 2πg2

(36)

Thus the shifted integral can be described as a convolu-
tion of a single-period Fourier transform with a Fourier
transform of exp(i(p(t+mTp)− p(t)). The latter can be
separated into three parts:

• a multiplication by the phase

exp

(
2πi

(
g1m

2T 2
p

2
+
g2m

3T 3
p

6

))
(37)

• a shift in frequency by g1mT +g2m
2T 2
p /2 which we

denote by operator S.

• and a convolution with Fourier transform of a
Gaussian exp(πiTpg2t

2) iterated m times. We de-
note a single iteration of the convolution by opera-
tor T.

Then the full integral can be expressed as

h̃0(f ) =
M∑
m=0

e
2πi

(
g1m

2T2
p

2 +
g2m

3T3
p

6

)
TmS h̃1

0(f ) (38)

where h̃1
0(f ) denotes a single period Fourier transform:

h̃1
0(f ) =

∫ Tp/2

−Tp/2
exp

(
2πig1

t2

2
+ 2πig2

t3

6
+

+ ia1 sin(ω1t+ φ1)

)
e−i2π(f−g0)tdt

(39)

This expression explains features of the Figure 2. The
repeated pattern is due to iterations of the operator T.
However, both this operator and the frequency shift S in-
troduce frequency shifts that are not aligned to frequency
bins of the full Fourier transform. Thus the height of
peaks varies with each iteration.

The variation in phase together with convolution acts
to scramble the heights of smaller peaks resulting in a
signature of the underlying signal.
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IV. FOURIER TRANSFORM SHAPE

The equation 38 allows us to understand the Fourier
transform of continuous wave signals in a qualitative way.
For practical applications it is desirable to know the de-
tails such as location of the peaks and their heights.

While this can be done by the numerical integration of
formula 38, the computation is comparable in difficulty
to taking the Fourier transform directly. What we would
like instead is a simple formula depending on parameters
of the signal gk, ω1 and φ1.

To obtain such formulas, consider the integral

h̃0(f ) =

∫ T/2

−T/2
exp

(
2πig1

t2

2
+ 2πig2

t3

6
+

+ i
∑
l/∈LE

al sin(ωlt+ φl)

 e−2πi(f−g0)tdt =

=

∫ T/2

−T/2
exp (iΛ(t)) dt

(40)

Because of the imaginary terms in the exponent it is
highly oscillatory. These oscillations will cancel out (on
average), except in points where derivative of Λ(t) van-
ishes:

Λ′(t) = 2πg1t+2πg2
t2

2
+
∑
l/∈LE

alωl cos(ωlt+φl)−2π (f − g0)

(41)
This can be rewritten as

F (t) = g0 +g1t+g2
t2

2
+
∑
l/∈LE

alωl
2π

cos(ωlt+φl) = f (42)

Because f is a free parameter, the support of the spec-
trum of our signal is close to the image of the interval
[−T/2, T/2] under a function F (t) (Figure 2).

The largest peaks in the spectrum should correspond
to the values of f for which larger time intervals have
stationary phase, and thus to the points fa = F (ta) such
that derivative of F vanishes:

F ′(ta) = g1 + g2ta −
∑
l/∈LE

alω
2
l

2π
sin(ωlta + φl) = 0 (43)

This equation has an approximate solution in the spe-
cial case of a single sinusoidal term and small parameters
g1 and g2.

In this case the equation reduces to

sin(ω1ta + φ1) =
2πg1

alω2
1

+
2πg2

alω2
1

ta (44)

Let t0a = −φ1+πn
ω1

be the zero of the sine function.
Applying one step of Newton-Raphson method to find

the solution of the above equation using t0a as the initial
value, we have

ta = t0a −
g1 + g2t

0
a

g2 − (−1)n
a1ω3

1

2π

(45)

Let us check how close we got to true zero of F ′(t). We
substitute ta into equation 43:

F ′(ta) = g1 + g2ta −
alω

2
1

2π
sin(ω1ta + φl) ≈

≈ a1ω
2
1O

((
−ω1

g1+g2t
0
a

g2−(−1)n
a1ω

3
1

2π

)3
)

(46)

We see the approximate solution ta has canceled all
linear terms.

To find out the frequencies of the peaks we can now
substitute ta into the Eq. 42. We find

f ≈ F (ta) ≈ g0 + g1ta + g2
t2a
2

+

+(−1)n a1ω1

2π

(
1− 1

2

(
ω1(g1+g2t

0
a)

g2−(−1)n
a1ω

3
1

2π

)2
)

(47)

The zeros of the second frequency derivative are sim-
pler to find:

F ′′(ta) = g2 −
∑
l/∈LE

alω
3
l

2π
cos(ωltb + φl) = 0 (48)

In the case of a single sinusoidal term we have:

a1ω
3
1

2π
cos(ω1tb + φ1) = g2 (49)

tb =
arccos

(
2πg2
a1ω3

1

)
− φ1 + πn

ω1
(50)

For the common case of |2πg2| �
∣∣a1ω

3
1

∣∣ the formula
simplifies to

tb = −φ1 + πn (51)

To test these formulas we generated barycentered time
series for LIGO Hanford and Livingston interferometers
[17] for multiple sky locations over one year period.

Figure 1 shows locations of local frequency maxima
and minima, as well as inflection points where the sec-
ond frequency derivative vanishes for a portion of this
data for a 3-day period starting at GPS time 1160657033
generated for LIGO Hanford interferometer.

Figure 2 shows power spectrum (absolute value
squared of the Fourier transform) of a pure 1000 Hz signal
with amplitude 1 as observed by LIGO Hanford interfer-
ometer. Unlike real data sets which have gaps due to
interferometer lock loss this time series is contiguous.
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FIG. 1: Example 3-day frequency evolution of 1000 Hz
monochromatic signal from source at right ascension 0◦

and declination 0◦. The blue lines mark locations of
local frequency minima and maxima. Green circles

mark location of inflection points. The frequencies were
computed for LIGO Hanford interferometer. The 3-day

segment started at GPS 1160657033.

We observe that the spectrum support (marked by the
thick green line below the graph) is correctly computed
by formula 42.

The peak locations marked by short blue lines at the
top of the graph were computed with formula 47 and
correspond well with numerical results.

Having found peak locations we would like to have a
measure of their heights, as those clearly vary.

Near a point of stationary frequency the Fourier trans-
form has the form

hlocal(f) =

∫ t1

t0

e2πi(φ+F (ta)(t−ta)+g̃2(t−ta)3/6)e−2πiftdt

(52)
where we introduced g̃2:

g̃2 = g2 −
a1

2π

cos (ω1ta + φ1)

6
(53)

This equation is designed to describe the vicinity of
f = F (ta). The limits of the integration t0 and t1 bound
the region where the approximation holds, in particular
there is no need to integrate over points close to other
stationary frequency points.
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FIG. 2: Example 3-day Fourier transform of 1000 Hz

monochromatic signal from source at right ascension 0◦

and declination 0◦. The green line at the bottom of the
plot shows spectrum support region estimated using

equation 42. The blue line at the top shows peak
locations estimated using equation 47. The Fourier

transform was computed assuming 100% duty cycle for
LIGO Hanford interferometer. The 3-day segment

started at GPS 1160657033.

The height of the peak is

|hlocal(F (ta))| =
∣∣∣∣∫ t1

t0

e2πig̃2(t−ta)3/6dt

∣∣∣∣ (54)

We now need to find out which values of t0 and t1 to use.
Naively we might expect that one should use a small
interval where the frequency does not change far away
from stationary value F (ta).

However, this will grossly underestimate peak height.
The reason is that the value of truncated Airy function
(equation 54) keeps growing with increasing time inter-
val, as these pieces contribute due to spectral leakage.

A good heuristic is to choose t0 and t1 to be the inflec-
tion points, or data boundary if it occurs earlier.

The truncated Airy function has an expression in terms
of incomplete Gamma function:∫ t1

t0

eit
3

dt =
1

3 3
√
−i

(
Γ

(
1

3
,−it30

)
− Γ

(
1

3
,−it31

))
(55)

This equation has some ambiguity as to the branch of
cubic roots. This arises purely from using incomplete Γ
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function:

Γ(a, z) = Γ(a)

(
1− zae−z

∞∑
k=0

zk

Γ(a+ k + 1)

)
(56)

The constant terms in the formula above subtract when
substituted in Eq. 55.

This can also be seen by expanding eit
3

into a Taylor
series and integrating the result:∫ t1

t0

eit
3

dt =

∞∑
k=0

ikt3k+1
1

k!(3k + 1)
−
∞∑
k=0

ikt3k+1
0

k!(3k + 1)
(57)

However, for practical application it is convenient to
approximate with a heuristic piece-wise linear function
that captures the general shape of the integral.

To do this, we introduce the function

H(a) =

{
|a| when |a| < 0.4
0.4 when |a| ≥ 0.4

(58)

Then

|hlocal(F (ta))| =
∣∣∣∣∫ t1

t0

e2πig̃2(t−ta)3/6dt

∣∣∣∣ ≈
≈ 1

κ

∣∣∣H(t1κ)− (−1)sgn(t0)sgn(t1)H(t0κ)
∣∣∣ (59)

where κ = 3
√

6/g̃2.
This simple formula works surprisingly well. An illus-

tration is given in Figure 3. Here we marked both peak
locations and their strength. Also for this example we
introduced a gap of 30 hours.

V. SPECTRUM SHAPE ALGORITHM

The analysis detailed in the previous section can be
condensed into the algorithm for determining Fourier
transform spectral shape (Table 4).

At the start of the algorithm we compute a sequence
of times relative to Solar System barycenter. This could
be done exactly, or as an approximation. For example,
one can compute these times for a relatively coarse grid
on the sky and then use a suitable method, such as [18]
to interpolate between locations.

Once this time series has been obtained it can be fitted
to the formula

ti =

K∑
k=1

gks
k
i +A cos(ω1si + φ1) (60)

over an interval matching the coherence length of the
Fourier transform. Long stretches of data are best an-
alyzed using overlapped intervals. A straightforward
speedup is to interpolate the fits from those computed
on a coarse grid.

Also, iteration over signal waveforms with the same sky
location but with different frequency drift is achieved by
direct modifications of coefficients gk.

999.952 999.954 999.956 999.958 999.960
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FIG. 3: Example 3-day Fourier transform of 1000 Hz

monochromatic signal from source at right ascension 0◦

and declination 0◦. The green line at the bottom of the
plot shows spectrum support region estimated using

equation 42. The blue line at the top shows peak
locations estimated using equation 47. The red lines

show peak strength estimated using equation 59. The
Fourier transform was computed assuming the data
stretch had a 30 hour gap in data for LIGO Hanford
interferometer. The 3-day segment started at GPS

1160657033. The gap started 10 hours later.

With the fit in hand, it is straightforward to find lo-
cations of stationary points ta and inflection points tb
(equations 45, 50, 51).

Now the frequencies of the peaks are given by formula
47 and peak height is computed using formula 59.

The computed spectrum shape can be used to under-
stand the dwell time of signal waveform and used to char-
acterize and mitigate the influence of detector artifacts -
either after analysis by removing outliers coincident with
detector lines, or during the analysis by decreasing weight
of segments with larger peak heights.

VI. PERFORMANCE

The formulas 47, 54, 59 are very efficient compared to
computing Fourier transform from scratch or to numeri-
cally integrating 38.

This efficiency is contingent on the validity of the un-
derlying model. To test how well this model fits the data
we made a study using numerically computed timings.
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1. The input to the algorithm is a series of timestamps
{si}Ni=1 in the local interferometer frame, as well as
the computed times {ti}Ni=1 in solar system barycen-
ter frame.

2. Compute the fit ti =
∑K

k=1 gks
k
i +A cos(ω1si + φ1).

K can be taken as 3 for time intervals shorter than
3 days. ω1 is the rotational frequency correspond-
ingly to Earth sidereal period.

3. Compute times of zero frequency derivative and
their corresponding stationary frequencies (see equa-
tions 45 and 47). These give peak locations.

4. Compute times of zero second frequency derivative
(inflection points, equations 50 and 51).

5. Estimate peak amplitudes with formula 59, where t0
and t1 are nearest inflection points or data bound-
aries.

6. The output of the algorithm consists of estimated
peak frequencies and amplitudes

FIG. 4: Algorithm used to compute the shape of
Fourier transform

A coarse sky grid of 182 points was used for this study.
The points on the grid were arranged in 18◦ increments in
declination and right ascension. Only one value of right
ascension was used for equatorial poles with declination
of ±90◦.

For each point in the sky grid we generated 17520 So-
lar System Barycenter timings using routines from LAL
library [19]. The timing started at GPS 1160657033 with
0.5 hour increments. Separate datasets were generated
for LIGO Hanford and Livingston interferometers.

Using this dataset we tested fit to single harmonic
model:

t′ =

K∑
k=0

gk
tk

k!
+A sin(ωst+ φ1) (61)

where t is the time in the detector frame of reference, t′

is the time at Solar system barycenter and ωs is the an-
gular frequency corresponding to Earth sidereal rotation
period. All other coefficients were fitted.

For each point in the sky the entire set of timestamps
was separated in 3-day stretches, with nearby stretches
overlapped by 1.5 days. Each stretch was fitted using
at most cubic terms K = 3. The absolute worst resid-
ual maximized over all stretches and all sky points was
13.2µs .

A similar procedure was performed for 6-day stretches,
this time increasing the number of polynomial terms to
K = 4 and using a 3-day overlap. The absolute worst
residual was 24.7µs.

As the typical signals studied in continuous gravita-
tional wave searches go up to 2 kHz the precision of the
fit is sufficient to apply results described in this paper.

VII. CONCLUSIONS

The question of identification of continuous wave out-
liers to detector disturbances is of utmost importance in
separating astrophysical signals from detector artifacts.

In this paper we analyze the shape of the Fourier trans-
form of continuous wave gravitational wave signal and
present simple formulas to compute peak heights and lo-
cations arising from features in frequency evolution of
gravitational wave signal.

While our focus was on understanding Fourier trans-
form of a gravitational wave signal, the formulas and the
analysis presented here can be applied to any signals of
this form.
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