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Separable electromagnetic perturbations of rotating black holes
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We identify a set of Hertz potentials for solutions to the vector wave equation on black hole
spacetimes. The Hertz potentials yield Lorenz gauge electromagnetic vector potentials that represent
physical solutions to the Maxwell equations, satisfy the Teukolsky equation, and are related to the
Maxwell scalars by straightforward and separable inversion relations. Our construction, based on the
GHP formalism, avoids the need for a mode ansatz and leads to potentials that represent both static
and non-static solutions. As an explicit example, we specialise the procedure to mode-decomposed
perturbations of Kerr spacetime and in the process make connections with previous results.

I. INTRODUCTION

In a seminal work, Teukolsky [1] showed that the equa-
tions governing perturbations of rotating black holes can
be recast into a form where they are given by decoupled
equations. These equations further had the remarkable
property of being separable, reducing the problem to the
solution of a set of uncoupled ordinary differential equa-
tions. In the electromagnetic case, Teukolsky’s results
yield solutions for the spin-weight ±1 components of the
Faraday tensor, but do not give a method for obtaining a
corresponding vector potential. Subsequent results (and
their corresponding equivalents for gravitational pertur-
bations) [2–6] derived a method for reconstructing a vec-
tor potential from a Hertz potential, which in turn can
be obtained from the spin-weight ±1 components of the
Faraday tensor. These were initially restricted to the ra-
diation gauge, but have recently been extended to the
Lorenz gauge case [7–13].

In this work, we reformulate the Lorenz gauge Hertz
potential of Dolan [12] using the Geroch-Held-Penrose
(GHP) formalism, which allows us to derive his results
without requiring a mode decomposition. Furthermore,
our method has allowed us to identify additional Lorenz
gauge Hertz potentials which are more generally applica-
ble. For example, Dolan’s result involved division by the
frequency ω, which fails in the static ω = 0 case, whereas
our potentials do not have this limitation.

The layout of this paper is as follows: in Sec. II
we review some relevant background material, includ-
ing details on the Maxwell equations in curved space-
time, the GHP formalism, the Teukolsky equations and
Teukolsky-Starobinsky identities, and radiation gauge re-
construction of the vector potential; in Sec. III we de-
scribe methods for reconstructing the vector potential in
Lorenz gauge; in Sec. IV we give coordinate expressions
for our results decomposed into spin-weighted spheroidal
harmonic modes. Finally, we provide some concluding
remarks in V.

Throughout this work we follow the conventions of
Misner, Thorne and Wheeler [14]: a “mostly positive”
metric signature, (−,+,+,+), is used for the space-
time metric; the connection coefficients are defined by
Γλ
µν = 1

2g
λσ(gσµ,ν + gσν,µ − gµν,σ); the Riemann ten-

sor is Rτ
λµν = Γτ

λν,µ − Γτ
λµ,ν + Γτ

σµΓ
σ
λν − Γτ

σνΓ
σ
λµ, the

Ricci tensor and scalar are Rµν = Rτ
µτν and R = Rµ

µ,
and the Einstein equations are Gµν = Rµν − 1

2gµνR =
8πTµν . Standard geometrised units are used, with c =
G = 1. We use Greek letters for spacetime indices, de-
note symmetrisation of indices using round brackets [e.g.
T(αβ) = 1

2 (Tαβ + Tβα)] and anti-symmetrisation using

square brackets [e.g. T[αβ] = 1
2 (Tαβ − Tβα)], and ex-

clude indices from symmetrisation by surrounding them
by vertical bars [e.g. T(α|β|γ) =

1
2 (Tαβγ + Tγβα)].

II. ELECTROMAGNETIC PERTURBATIONS

OF TYPE-D SPACETIMES

A. Maxwell equations

The Faraday tensor may be written in terms of the
anti-symmetrised derivative of a vector potential

Fαβ = 2∇[αAβ]. (1)

In terms of the vector potential, the Maxwell equations,
∇αF

αβ = Jβ are given by

(EA)β ≡ 2∇α∇[αAβ] = Jβ . (2)

B. Geroch-Held-Penrose formalism

In this work, we make use of the formalism of Ge-
roch, Held and Penrose (GHP) [15], which provides a
compact means of working with tensor equations when a
tetrad based on a pair of null directions is available. Here
we provide a concise review of the key features needed
for this work, see Refs. [16–18] for detailed reviews, and
Ref. [19] for a review using conventions and notation con-
sistent with ours.
The GHP formalism prioritises the concepts of spin-

and boost-weights; within the GHP formalism, every-
thing has a well-defined type {p, q}, which is related
to its spin-weight s = (p − q)/2 and its boost-weight
b = (p + q)/2. Only objects of the same type can be
added together, providing a useful consistency check on
any equations. Multiplication of two quantities yields a
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resulting object with type given by the sum of the types
of its constituents.
The formalism relies on the introduction of a null

tetrad (l, n,m, m̄) with normalisation

lαnα = −1, mαm̄α = 1, (3)

and with all other inner products vanishing. In terms of
the tetrad vectors, the metric may be written as

gαβ = −2l(αnβ) + 2m(αm̄β). (4)

There are three discrete transformations that reflect the
inherent symmetry in the GHP formalism, corresponding
to simultaneous interchange of the tetrad vectors:

1. ′: lα ↔ nα and mα ↔ m̄α, {p, q} → {−p,−q};

2. ¯ : mα ↔ m̄α, {p, q} → {q, p};

3. ∗: lα → mα, nα → −m̄α, mα → −lα, m̄α → n̄α.

The 8 spin coefficients of well defined GHP type are de-
fined as the directional derivatives of the tetrad vectors,

κ = −lµmν∇µlν , σ = −mµmν∇µlν ,

ρ = −m̄µmν∇µlν , τ = −nµmν∇µlν , (5)

along with their primed variants, κ′, σ′, ρ′ and τ ′. These
have GHP type given by

κ : {3, 1}, σ : {3,−1}, ρ : {1, 1}, τ : {1,−1}. (6)

The remaining spin coefficients are used to define the
GHP derivative operators (that depend on the GHP type
of the object on which they are acting),

Þ ≡ (lα∇α − pǫ− qǭ), Þ
′ ≡ (nα∇α + pǫ′ + qǭ′),

ð ≡ (mα∇α − pβ + qβ̄′), ð
′ ≡ (m̄α∇α + pβ′ − qβ̄),

(7)

where the spin coefficients are given by

β =
1

2
(mµm̄ν∇µmν −mµnν∇µlν), (8a)

ǫ =
1

2
(lµm̄ν∇µmν − lµnν∇µlν), (8b)

along with their primed variants, β′ and ǫ′. The action
of a GHP derivative causes the type to change by an
amount {p, q} → {p + r, q + s} where {r, s} for each of
the operators is given by

Þ : {1, 1}, Þ
′
: {−1,−1}, ð : {1,−1}, ð

′
: {−1, 1}. (9)

The adjoints of the GHP operators are given by

Þ
† ≡ −(Þ− ρ− ρ̄), Þ

′† ≡ −(Þ
′ − ρ′ − ρ̄′),

ð
† ≡ −(ð − τ − τ̄ ′), ð

′† ≡ −(ð
′ − τ ′ − τ̄ ), (10)

and may also be written concisely as

D† = −(ψ2ψ̄2)
1/3D(ψ2ψ̄2)

−1/3, D ∈ {Þ,Þ′
,ð,ð

′}. (11)

The Weyl scalars are defined to be the tetrad components
of the Weyl tensor,

ψ0 = Clmlm, ψ1 = Clnlm, ψ2 = Clmm̄n,

ψ3 = Clnm̄n, ψ4 = Cnm̄nm̄. (12)

These have types inherited from the tetrad vectors that
appear in their definition,

ψ0 : {4, 0}, ψ1 : {2, 0}, ψ2 : {0, 0},
ψ3 : {−2, 0}, ψ4 : {−4, 0}. (13)

Many of the results that follow will be specialised to
type-D spacetimes with lµ and nµ aligned to the two prin-
cipal null directions, in which case the Goldberg-Sachs
theorem implies that 4 of the of the spin coefficients van-
ish,

κ = κ′ = σ = σ′ = 0, (14)

and also that most of the Weyl scalars vanish

ψ0 = ψ1 = ψ3 = ψ4 = 0. (15)

The GHP equations give relations between the Weyl
scalars and the directional derivatives of the spin coef-
ficients. Similarly the commutator of any pair of direc-
tional derivatives can be written in terms of a linear com-
bination of spin coefficients multiplying single directional
derivatives. Specialising to type-D spacetimes, the GHP
equations are

Þρ = ρ2, Þτ = ρ(τ − τ̄ ′),

ðρ = τ(ρ− ρ̄), ðτ = τ2,

Þ
′
ρ = ρρ̄′ − τ τ̄ −ψ2 + ð

′
τ, (16)

the Bianchi identities are

Þψ2 = 3ρψ2, ðψ2 = 3τψ2, (17)

and the commutators of the GHP operators are

[Þ,Þ
′
] = (τ̄ − τ ′)ð + (τ − τ̄ ′)ð

′

− p(ψ2 − ττ ′)− q(ψ̄2 − τ̄ τ̄ ′), (18a)

[Þ,ð] = ρ̄ð − τ̄ ′Þ+ qρ̄τ̄ ′, (18b)

[ð,ð
′
] = (ρ̄′ − ρ′)Þ+ (ρ− ρ̄)Þ

′

+ p(ψ2 + ρρ′)− q(ρ̄ρ̄′ + ψ̄2), (18c)

along with the conjugate, prime, and prime conjugate of
these.
If we further restrict to spacetimes that admit a Killing

tensor, Kαβ = K(αβ), that satisfies ∇(αKβγ) = 0, the
associated symmetries lead to three additional identities
relating the spin coefficients,

ρ

ρ̄
=
ρ′

ρ̄′
= − τ

τ̄ ′
= −τ

′

τ̄
=
C̄1/3

C1/3

ψ
1/3
2

ψ̄
1/3
2

, (19)
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for some complex constant C.1 These identities can be
used along with the GHP equations to obtain a comple-
mentary set of identities,

Þτ ′ = 2ρτ ′ = ð
′
ρ, (20a)

Þ
′
ρ = ρρ′ + τ ′(τ − τ̄ ′)− 1

2
ψ2 −

ρ

2ρ̄
ψ̄2, (20b)

ð
′
τ = ττ ′ + ρ(ρ′ − ρ̄′) +

1

2
ψ2 −

ρ

2ρ̄
ψ̄2, (20c)

along with the conjugate, prime, and prime conjugate of
these equations. Introducing the Killing spinor coefficient

ζ = −C1/3ψ
−1/3
2 , (21)

a consequence of these additional relations is that there
is an operator

£ξ = −ζ
(

−ρ′Þ+ρÞ
′
+ τ ′ð− τð′

)− p

2
ζψ2−

q

2
ζ̄ψ̄2, (22)

associated with the Killing vector

ξα = −ζ(−ρ′lα + ρnα + τ ′mα − τm̄α). (23)

There is a second operator (specialised to the case where
C is real, i.e. spacetimes with zero NUT charge)

£η = − ζ
4

[

(ζ − ζ̄)2(ρ′Þ− ρÞ
′
)− (ζ + ζ̄)2(τ ′ð − τð

′
)
]

+ p ηh1 + q ηh̄1, (24)

where

ηh1 = 1
8ζ(ζ

2 + ζ̄2)ψ2 − 1
4ζζ̄

2ψ̄2

+ 1
2ρρ

′ζ2(ζ̄ − ζ) + 1
2ττ

′ζ2(ζ̄ + ζ). (25)

This is associated with the second Killing vector

ηα = − ζ
4

[

(ζ − ζ̄)2(ρ′lα − ρnα)− (ζ + ζ̄)2(τ ′mα − τm̄α)
]

.
(26)

Both £ξ and £η commute with all of the GHP operators
and annihilate all of the spin coefficients and ψ2.

C. Teukolsky equations

The components of the Faraday tensor may be written
in GHP form as

φ0 ≡ Flm = (Þ− ρ̄)Am − (ð − τ̄ ′)Al ≡ T0A, (27a)

φ1 ≡ 1
2

(

Fln − Fmm̄

)

=
1

2

[

(Þ+ ρ− ρ̄)An − (Þ
′
+ ρ′ − ρ̄′)Al

+ (ð
′
+ τ ′ − τ̄ )Am − (ð + τ − τ̄ ′)Am̄

]

≡ T1A,
(27b)

φ2 ≡ Fm̄n = −(Þ
′ − ρ̄′)Am̄ + (ð

′ − τ̄ )An ≡ T2A, (27c)

1 In the case of Kerr spacetime C = M , the mass of the spacetime.

These have types inherited from the tetrad vectors that
appear in their definition,

φ0 : {2, 0}, φ1 : {0, 0}, φ2 : {−2, 0}. (28)

The scalars φ0 and φ2 satisfy the Teukolsky equations,

Oφ0 = (S0J), O′φ2 = (S2J), (29)

where2

O ≡
(

Þ− 2 s ρ− ρ̄
)(

Þ
′ − ρ′

)

−
(

ð − 2 s τ − τ̄ ′
)(

ð
′ − τ ′

)

+ 1
2

[(

6s− 2
)

− 4s2
]

ψ2. (30)

and

(S0J) = (ð − 2τ − τ̄ ′)Jl − (Þ− 2ρ− ρ̄)Jm, (31a)

(S2J) = (ð
′ − 2τ ′ − τ̄ )Jn − (Þ

′ − 2ρ′ − ρ̄′)Jm̄. (31b)

It is worth noting that O′φ2 = ζ−2Oζ2φ2 and O′φ0 =
ζ2Oζ−2φ0, and also that the Teukolsky and vector wave
operators can be written in the simple forms O =

−T1−sζ
2T †

1−s and E = −(T †
0 T0 + T †

1 T1 + T †
2 T2), respec-

tively.
In vacuum Kerr-NUT spacetimes, the Teukolsky equa-

tions may be written in manifestly separable form by
rewriting them in terms of the commuting symmetry op-
erators [17]

R ≡ ζζ̄(Þ − ρ− ρ̄)(Þ
′ − 2bρ′) +

2b− 1

2
(ζ + ζ̄)£ξ, (32)

and

S≡ ζζ̄(ð − τ − τ̄ ′)(ð
′ − 2sτ ′) +

2s− 1

2
(ζ − ζ̄)£ξ. (33)

Then, Teukolsky operator is given by

ζζ̄O = R−S. (34)

The new operators satisfy the commutation relations
[

R,S
]

= 0. When written as a coordinate expression in
Boyer-Lindquist coordinates in Kerr spacetime the oper-
ators R and S reduce to the radial Teukolsky and spin-
weighted spheroidal operators (with a common eigen-
value), while £ξ reduces to ∂t.

D. Teukolsky-Starobinsky identities

In the homogeneous case, (S0J) = 0 = (S2J), the
Teukolsky-Starobinsky identities that relate φ0 to φ2 are
given in GHP form by

Þ
2
ζ2φ2 = ð

′2
ζ2φ0, (35a)

Þ
′2
ζ2φ0 = ð

2
ζ2φ2, (35b)

[Þ
′
ð
′
+ τ̄Þ

′
]ζ2φ0 = [Þð + τ̄ ′Þ]ζ2φ2. (35c)

2 Some authors (e.g. [4]) define O to be the operator with s = +1.
Then, the operator for the negative s fields is its adjoint.
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From these, we can also derive fourth-order Teukolsky-
Starobinsky identities,

Þ
2
ζ̄2Þ

′2
ζ2φ0 = ð

′2
ζ̄2ð

2
ζ2φ0, (36a)

Þ
′2
ζ̄2Þ

2
ζ2φ2 = ð

2
ζ̄2ð

′2
ζ2φ2. (36b)

This latter form can be rewritten in terms of the symme-
try operators,

Þ
2
ζ̄2Þ

′2
ζ2φ0 =

[

R
2 +£η£ξ

]

φ0, (37a)

ð
′2
ζ̄2ð

2
ζ2φ0 =

[

S
2 +£η£ξ

]

φ0, (37b)

Þ
′2
ζ̄2Þ

2
ζ2φ2 =

[

R
′2 +£η£ξ

]

φ2, (37c)

ð
2
ζ̄2ð

′2
ζ2φ2 =

[

S
′2 +£η£ξ

]

φ2. (37d)

E. Reconstruction of a vector potential in

radiation gauge

In the ingoing radiation gauge (IRG), the vector po-
tential may be reconstructed by applying a first-order
differential operator to a type {−2, 0} scalar (i.e. the
same type as φ2), Φ

IRG, called the Hertz potential. In
terms of the Hertz potential, the IRG vector potential is
given explicitly by

AIRG
α = ℜ

[

mα(Þ+ ρ)ΦIRG − lα(ð + τ)ΦIRG
]

≡ ℜ[(S†
0Φ

IRG)α]. (38)

This IRG vector potential manifestly satisfies the gauge
condition Aαl

α = 0. Computing the Maxwell scalars
from the IRG vector potential, we find

φ0 = Þ
2
ΦIRG, (39a)

φ2 = ð
′2
ΦIRG −OΦIRG. (39b)

Acting on the Maxwell scalars with the Teukolsky oper-
ator and commuting operators, we find

Oφ0 =
(

Þ− ρ− ρ̄
)2(

OΦIRG
)

, (40a)

O′φ2 =
(

ð
′ − τ ′ − τ̄

)2(

OΦIRG
)

−O′OΦIRG. (40b)

Thus, the Maxwell scalars satisfy the homogeneous

Teukolsky equation if OΦIRG = 0 = OΦIRG, i.e. ΦIRG is
a homogeneous solution of the equation satisfied by ζ2φ2
(equivalently, the adjoint of the equation satisfied by φ0).
Similarly, in the outgoing radiation gauge (ORG) the

vector potential is given by the prime of the IRG vector
potential,

AORG
µ = ℜ

[

m̄µ(Þ
′ − µ)ΦORG − nµ(ð

′ −̟)ΦORG
]

≡ ℜ[(S†
2Φ

ORG)α], (41)

where the ORG Hertz potential, ΦORG, is of type {2, 0}
(i.e. the same as φ0). This ORG vector potential mani-
festly satisfies the gauge condition Aαn

α = 0. Comput-
ing the Maxwell scalars from the ORG vector potential,

we find

φ0 = −ð
2
ΦORG +O′ΦORG, (42a)

φ2 = −Þ
′2
ΦORG. (42b)

Acting on these with the Teukolsky operator and com-
muting operators, we find

Oφ0 = −
(

ð − τ − τ̄ ′
)2(

O′ΦORG
)

+OO′ΦORG, (43a)

O′φ2 = −
(

Þ
′ − ρ′ − ρ̄′

)2(

O′ΦORG
)

. (43b)

Thus, the Maxwell scalars also satisfy the appropriate

Teukolsky equation if O′ΨORG = 0 = O′ΨORG, i.e.
ζ−2ΨORG is a homogenous solution of the equation satis-
fied by φ0 (equivalently, the adjoint of the equation sat-
isfied by ζ2φ2).
The fact that these potentials are solutions of the

homogeneous Maxwell equations were succinctly sum-
marised by Wald [4] using the method of adjoints: since
the operators satisfy the identity SE = OT , by taking
the adjoint and using the fact that E is self-adjoint we
find that ES† = T †O† so we have a valid solution pro-
vided our Hertz potential satisfies the (adjoint) Teukol-
sky equation.

III. LORENZ GAUGE HERTZ POTENTIALS

In Lorenz gauge the vector potential satisfies the vector
wave equation

(LA)α ≡ �Aα −Rα
βA

β = Jα, (44)

along with the Lorenz gauge condition

∇αAα = 0. (45)

In a vacuum type-D spacetime, these may be written in
GHP form as

(LA)l = 2
[

(ð − τ̄ ′)(ð
′ − τ ′)− (Þ− ρ̄)(Þ

′ − ρ′) + ρ̄ρ̄′
]

Al

+ 2ρρ̄An + 2
[

ρ̄ð
′ − τ̄Þ

]

Am + 2
[

ρð − τÞ
]

Am̄,

(46a)

(LA)m = 2
[

(ð − τ̄ ′)(ð
′ − τ ′)− (Þ− ρ̄)(Þ

′ − ρ′)− τ̄ τ̄ ′
]

Am

− 2τ τ̄ ′Am̄ + 2
[

ρ̄′ð − τ̄ ′Þ
′]
Al + 2

[

ρð − τÞ
]

An,

(46b)

(LA)n = (LA)′l, (46c)

(LA)m̄ = (LA)m (46d)

and

∇αAα = (ð
′ − τ ′ − τ̄)Am + (ð − τ − τ̄ ′Am̄

− (Þ
′ − ρ′ − ρ̄′)Al − (Þ− ρ− ρ̄)An = 0. (47)
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A. Hertz potential derived from a two-form

Start with a real tensor with the same symmetries as
the Faraday tensor (i.e. a two-form): Hαβ = H[αβ]. This
can be decomposed onto a null tetrad,

Hαβ = 2
[

(ΦL1
1 + Φ̄L1

1 )n[αlβ] + (ΦL1
1 − Φ̄L1

1 )m[αm̄β]

+ΦL1
0 m̄[αnβ] + Φ̄L1

0 m[αnβ] +ΦL1
2 l[αmβ] + Φ̄L1

2 l[αm̄β]

]

,

(48)

where the GHP type of the complex scalars is the same
as that of the Maxwell scalars:

ΦL1
0 : {2, 0}, ΦL1

1 : {0, 0}, ΦL1
2 : {−2, 0},

Φ̄L1
0 : {0, 2}, Φ̄L1

1 : {0, 0}, Φ̄L1
2 : {0,−2}. (49)

We will allow this tensor to only have maximum spin-
weight components, i.e. ΦL1

1 = 0 = Φ̄L1
1 and use it to

construct a complex anti-self-dual tensor

Hαβ =
1

2
(Hαβ − i

2
∗Hαβ), (50)

where ∗Hαβ = ǫαβ
γδHγδ is the Hodge dual of Hαβ and

the anti-self-dual property means that ∗Hαβ = −iHαβ.
The anti-self-dual tensor depends only on ΦL1

0 and ΦL1
2

and its conjugate depends only on Φ̄L1
0 and Φ̄L1

2 ,

Hαβ = 2
[

ΦL1
0 m̄[αnβ] +ΦL1

2 l[αmβ]

]

, (51a)

H̄αβ = 2
[

Φ̄L1
0 m[αnβ] + Φ̄L1

2 l[αm̄β]

]

. (51b)

Now construct a complex vector3 by taking the diver-
gence of ζHab

AL1
α = ∇β(ζHβα). (52)

This vector has tetrad components

AL1
l = −ζ(ð′ − 2τ ′)ΦL1

0 , (53a)

AL1
n = ζ(ð − 2τ)ΦL1

2 , (53b)

AL1
m = −ζ(Þ′ − 2ρ′)ΦL1

0 , (53c)

AL1
m̄ = ζ(Þ − 2ρ)ΦL1

2 . (53d)

It is straightforward to check that this vector satisfies
the Lorenz gauge condition as a consequence of the GHP
equations and the GHP commutators without assuming
anything further about the scalars.
If we now compute the Maxwell scalars from this vector

potential, we find

φL1
0 = (−ζO +£ξ)Φ

L1
0 , (54a)

φL1
2 = (−ζO′ −£ξ)Φ

L1
2 . (54b)

3 It is, of course, possible to obtain a real vector from this complex
potential and its complex conjugate.

Acting on both sides with the appropriate Teukolsky op-
erator and commuting the operators on the right hand
side (recalling that £ξ commutes with everything), then
we find

OφL1
0 = (−Oζ +£ξ)OΦL1

0 , (55a)

O′φL1
2 = (−O′ζ − £ξ)O′ΦL1

2 , (55b)

so φ0 will satisfy the homogeneous Teukolsky equation
provided OΦL1

0 is in the kernel of (−Oζ +£ξ), and simi-
larly for φ2. If we make the particular choiceOΦL1

0 = 0 =
O′ΦL1

2 then the the relationship between our potentials
and the Maxwell scalars simplifies to

φL1
0 = £ξΦ

L1
0 , (56a)

φL1
2 = −£ξΦ

L1
2 . (56b)

Since £ξ is a commuting operator, this implies that the
scalars must also satisfy a set of Teukolsky-Starobinsky-
like identities (up to terms annihilated by £ξ),

−Þ
2
ζ2Φ2 = ð

′2
ζ2Φ0, (57a)

Þ
′2
ζ2Φ0 = −ð

2
ζ2Φ2, (57b)

[Þ
′
ð
′
+ τ̄Þ

′
]ζ2Φ0 = −[Þð + τ̄ ′Þ]ζ2Φ2. (57c)

This also implies that our complex Hertz potential does
not contribute to the complex conjugate of the Maxwell
scalars, since

φL1
0 = ζ−1(Þ

2
ζ2ΦL1

2 + ð
′2
ζ2ΦL1

0 ) = 0, (58a)

φL1
2 = ζ−1(Þ

′2
ζ2ΦL1

0 + ð
2
ζ2ΦL1

2 ) = 0. (58b)

Instead, it is the conjugate potential that produces the
expected conjugate Maxwell scalars.
Finally, it is straightforward to verify that this vec-

tor potential satisfies the homogeneous Lorenz gauge
field equations by direct substitution in combination with
the homogeneous Teukolsky equation, the Teukolsky-
Starobinsky identities and the GHP equations and com-
mutators. An explicit derivation of this final result is
given in Appendix A.
When decomposed into modes in Kerr spacetime, the

potential AL1
α is the same as the one identified by Dolan

[12], and thus so far we have merely reproduced his
derivation in GHP form without relying on a mode de-
composition.

B. A second Lorenz-gauge Hertz potential

We can arrive at the vector potential AL1
α by a dif-

ferent means. If we look for a vector potential that is
constructed from at most a first-order GHP operator act-
ing on spin-weight ±1 scalars (i.e. scalars of type {2, 0},
{0, 2}, {−2, 0} and {0,−2}) then the most general pos-
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sibility is the complex potential

Al = (cl1ð
′
+ cl2τ

′ + cl3 τ̄ )Φ
L1
0 , (59a)

An = (cn1
ð + cn2

τ + cn3
τ̄ ′)ΦL1

2 , (59b)

Am = (cm1
Þ

′
+ cm2

ρ′ + cm3
ρ̄′)ΦL1

0 , (59c)

Am̄ = (cm̄1
Þ+ cm̄2

ρ+ cm̄3
ρ̄)ΦL1

2 , (59d)

and its complex conjugate. The coefficients here must
be of GHP type {0, 0} (in particular, the may be con-
structed from numeric constants and functions of ζ and
ζ̄). If we restrict to the case that the coefficients are
linear functions of ζ and ζ̄ with arbitrary numeric con-
stants, we find that the only possibility that satisfies the
gauge condition and field equations is AL1

a .4

This approach also allows us to identify a second Hertz
potential by considering alternative forms for the coeffi-
cients. In particular, if we consider coefficients that are
polynomials in ζ and ζ̄ we find a second complex poten-
tial,

AL2
l =

[

1
2ζ(ζ − ζ̄)ð

′
+ ζζ̄τ ′

]

ΦL2
0 , (60a)

AL2
n =

[

1
2ζ(ζ − ζ̄)ð + ζζ̄τ

]

ΦL2
2 , (60b)

AL2
m =

[

1
2ζ(ζ + ζ̄)Þ

′ − ζζ̄ρ′
]

ΦL2
0 , (60c)

AL2
m̄ =

[

1
2ζ(ζ + ζ̄)Þ− ζζ̄ρ

]

ΦL2
2 , (60d)

that satisfies the Lorenz gauge condition and homoge-
neous Lorenz gauge equations provided the scalars satisfy
the homogeneous Teukolsky equation and the Teukolsky-
Starobinsky type identities given in Eq. (57). This second
vector potential can also be written in tensor notation as

AL2
α = hβγ∇β(ζHαγ), (61)

where

hαβ = (ζ + ζ̄)n[αlβ] − (ζ − ζ̄)m̄[αmβ] (62)

is the conformal Killing-Yano tensor.
Computing the Maxwell scalars, we find

φL2
0 =

1

2

(

ζ2O +R+S
)

ΦL2
0 , (63a)

φL2
2 = −1

2

(

ζ2O′ +R
′ +S

′
)

ΦL2
2 . (63b)

Acting on both sides with the appropriate Teukolsky op-
erator and commuting the operators on the right hand
side, then we find

OφL2
0 =

1

2

[

Oζ2 + (ζζ̄)−1(R+S)(ζζ̄)
]

OΦL1
0 , (64a)

O′φL2
2 = −1

2

[

O′ζ2 + (ζζ̄)−1(R′ +S
′)(ζζ̄)

]

O′ΦL1
2 ,

(64b)

4 Note that the gauge condition is satisfied unconditionally, but
the field equations are only satisfied if the scalars satisfy the
Teukolsky equation and Teukolsky-Starobinsky-like identities.

so φ0 will satisfy the homogeneous Teukolsky equation
provided OΦL2

0 is in the kernel of 1
2

[

Oζ2 + (ζζ̄)−1(R+

S)ζζ̄
]

, and similarly for φ2. If we make the particular

choice OΦL2
0 = 0 = O′ΦL2

2 then the the relationship
between our potentials and the Maxwell scalars simplifies
to

φL2
0 =

1

2
(R+S)ΦL2

0 , (65a)

φL2
2 = −1

2
(R′ +S

′)ΦL2
2 . (65b)

We recognise these as the radial and angular Teukolsky
operators, meaning that when decomposed into modes
in Kerr spacetime the potentials are simply the Maxwell
scalars multiplied by the separation constant (eigen-
value).

It is straightforward to verify that this vector poten-
tial satisfies the Lorenz gauge condition and the homoge-
neous Lorenz gauge field equations by direct substitution
in combination with the homogeneous Teukolsky equa-
tion, the Teukolsky-Starobinsky identities and the GHP
equations and commutators.

C. Higher order Lorenz gauge potentials

Starting from the two potentials, AL1
α and AL2

α , we
can use the symmetry operators £ξ, £η, R and S to
construct further, higher order potentials. For example,
the potential

AL3
l = −ζ(ð′ − 2τ ′)£ηΦ

L3
0

+
[

1
2ζ(ζ − ζ̄)ð

′
+ ζζ̄τ ′

]

RΦL3
0 , (66a)

AL3
n = ζ(ð − 2τ)£ηΦ

L3
2

+
[

1
2ζ(ζ − ζ̄)ð + ζζ̄τ

]

R
′ΦL3

2 , (66b)

AL3
m = −ζ(Þ′ − 2ρ′)£ηΦ

L3
0

+
[

1
2ζ(ζ + ζ̄)Þ

′
+ ζζ̄ρ′

]

RΦL3
0 , (66c)

AL3
m̄ = ζ(Þ − 2ρ)£ηΦ

L3
2

+
[

1
2ζ(ζ + ζ̄)Þ+ ζζ̄ρ

]

R
′ΦL3

2 , (66d)

is also a homogeneous solution of the Lorenz gauge equa-
tions and satisfies the Lorenz gauge condition. Note that
this is constructed from a third-order operator acting on
spin-weight±1 scalars, so we are free to add terms involv-
ing a first order operator acting on the Teukolsky equa-
tion while still satisfying the Lorenz gauge equations.
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Computing the corresponding Maxwell scalars we find5

φL3
0 =

1

2
ζ
[

(ζ − ζ̄)OR− ζO£η

]

ΦL3
0 + Þ

2
ζ̄2Þ

′2
ζ2ΦL3

0 ,

(68a)

φL3
2 = −1

2
ζ
[

(ζ − ζ̄)O′
R

′ − ζO′
£η

]

ΦL3
2 − Þ

′2
ζ̄2Þ

2
ζ2ΦL3

2 .

(68b)

In the homogeneous case we recognise these as the fourth-
order Teukolsky-Starobinsky operators, meaning that in
modes the potentials are simply the Maxwell scalars di-
vided by the Teukolsky-Starobinsky constant.

IV. MODE DECOMPOSED EQUATIONS IN

KERR SPACETIME

The metric of Kerr spacetime in Boyer-Lindquist co-
ordinates (t, r, θ, ϕ) is given by

ds2 = −
[

1− 2Mr

Σ

]

dt2 − 4aMr sin2 θ

Σ
dt dϕ+

Σ

∆
dr2

+Σdθ2 +

[

∆+
2Mr(r2 + a2)

Σ

]

sin2 θdϕ2, (69)

where Σ = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2.

A. Null tetrads in Kerr spacetime

A null tetrad proposed by Kinnersley [20] is a common
choice when dealing with perturbations of Kerr space-
time. Indeed, it formed a crucial part of Teukolsky’s
separability result for perturbations of the Weyl tensor
[1]. However, the Kinnersley tetrad has two unfortunate
features that make it less than ideal for elucidating the
symmetric structure of perturbations of Kerr spacetime:
(i) it violates the {t, ϕ} → {−t,−ϕ} symmetry; and (ii)
it destroys a symmetry in {r, θ}. An alternative tetrad
proposed by Carter [21] does not suffer from either of
these deficiencies. In terms of Boyer-Lindquist coordi-

5 To derive these, it is useful to use the identities

ζ̄−nÞ
n
ζ̄2nÞ

n
ζ̄n = Þ

2n
ζ̄2n,

ζ̄−nÞ
′n
ζ̄2nÞ

′n
ζ̄n = Þ

′2n
ζ̄2n.

nates, Carter’s tetrad has components6

lα =
1√
2∆Σ

[

r2 + a2,∆, 0, a
]

, (70a)

nα =
1√
2∆Σ

[

r2 + a2,−∆, 0, a
]

, (70b)

mα =
1√
2Σ

[

ia sin θ, 0, 1,
i

sin θ

]

, (70c)

m̄α =
1√
2Σ

[

− ia sin θ, 0, 1,− i

sin θ

]

. (70d)

Under {t, ϕ} → {−t,−ϕ} the Carter tetrad transforms
as l ↔ −n, m↔ m̄ (note the minus sign means that this
does not correspond to the GHP prime operation).

For the Carter tetrad the non-zero spin coefficients
have particularly symmetric form

ρ = −ρ′ = −1

ζ

√

∆

2Σ
, (71a)

τ = τ ′ = − ia sin θ
ζ
√
2Σ

, (71b)

β = −β′ = − i

ζ

a+ ir cos θ

2 sin θ
√
2Σ

, (71c)

where ζ = r − ia cos θ. The commuting GHP operators
have the same form in both the Carter and Kinnersley
tetrads, and are given by

£ξ = ∂t, (72a)

£η = a2∂t + a∂ϕ. (72b)

B. Mode decomposed Teukolsky equation

When working with Carter’s tetrad, the
Teukolsky equation separates in the form7

Ψ = ∆s/2ζ2R(r)S(θ)ei(mϕ−ωt) with R(r) and S(θ)
satisfying the standard Teukolsky radial and spin-

6 Carter’s original tetrad had interchanged lµ ↔ nµ and mµ ↔
m̄µ. We deviate from that here and keep with the convention of
having l point outwards. Using this convention, Carter’s canoni-
cal tetrad corresponds to a simple rescaling of Kinnersley’s tetrad
(denoted with a K subscript): l =

√

∆/2Σ lK, n =
√

2Σ/∆nK,

m = ζ̄/
√
ΣmK, m̄ = ζ/

√
Σm̄K.

7 The factor of ∆s/2 is only to make R(r) consistent with Teukol-
sky’s function, it is not required to obtain a separable equation.
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weighted spheroidal harmonic equations,

d

dχ

[

(1− χ2)
dS

dχ

]

+

[

a2ω2χ2 − (m+ sχ)2

1− χ2
− 2asωχ+ s+A

]

S = 0,

(73a)

∆−s d

dr

[

∆s+1 dR

dr

]

+

[

K2 − 2is(r −M)K

∆
+ 4isωr − sλℓmω

]

R = 0,

(73b)

with A ≡ sλℓmω+2amω−a2ω2 andK ≡ (r2+a2)ω−am.

C. Lorenz gauge Hertz potentials

The mode decomposed version of our Lorenz-gauge
Hertz potentials is given by

ΦL1
0 = −φ0

iω
, ΦL2

0 =
2φ0

|s|λℓmω
, ΦL3

0 =
φ0

(Cℓmω)2
,

ΦL1
2 =

φ2
iω
, ΦL2

2 = − 2φ2

|s|λℓmω
, ΦL3

2 = − φ2
(Cℓmω)2

.

(74)

where (Cℓmω)
2 = |s|λ

2
ℓmω +4ωa(m− aω) is the (squared)

Teukolsky-Starobinsky constant and |s|λℓmω = sλℓmω +

s2 + s is Chandrasekhar’s separation constant that is in-
dependent of the sign of s.

V. CONCLUSIONS

In this paper we have reviewed and extended recent
results for a Hertz potential for the Lorenz gaugeMaxwell
(vector wave) equation. Dolan [12] previously found a
mode version of the potential L1, but our derivation is
the first time it has been given without relying on a mode
decomposition. The other two potentials, L2 and L3
appear to be new, and have not previously been given in
the literature.
There are several important directions for future study.

Our work so far has been restricted to the homogenous
case (as was all previous work on Lorenz gauge Hertz po-
tentials). It would be desirable to extend this to allow for
sourced perturbations. It is quite likely that this would
be possible with our method by restoring terms involv-
ing the Teukolsky equation that we have eliminated in
the process of our derivation. It may also be necessary
to apply the “corrector tensor” method of Green, Hol-
lands and Zimmerman [22] in order to obtain the most
general sourced perturbations. We leave this for future
work.
A more challenging goal is to extend our work to the

gravitational case, where we are interested in solving the

Lorenz gauge equation for metric perturbations. Many
of the identities (including a Teukolsky equation and
Teukolsky-Starobinsky identities) we have used in the
electromagnetic case have analogues in the gravitational
case. One possible complication is that the Teukolsky-
Starobinsky identities for the perturbed Weyl scalars mix
not only the scalars ψ0 and ψ4, but also their complex
conjugates. We would therefore not expect the simplifi-
cation we found using an anti-self-dual bivector to apply
in the gravitational case. Nonetheless, there is reason for
optimism that the gravitational case is solvable given the
otherwise strong similarities to the electromagnetic case.
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Appendix A: Lorenz gauge field equations with

Lorenz gauge Hertz potential

Here we give an explicit derivation showing that our
first potential, AL1

α , satisfies the homogeneous Lorenz
gauge field equations (for brevity, we omit similar deriva-
tion for the other potentials). Substituting the expression
for our potential in terms of Hαβ , Eq. (52), into the vac-
uum vector wave equation, Eq. (44) with Rαβ = 0, and
commuting the wave operator with the covariant deriva-
tive, we find that Hab must satisfy

∇ν
[

�ζHµν+2Rµ
α
ν
βζHαβ

]

+∇γRµαβγζHαβ = 0. (A1)

In type D spacetimes the final term vanishes and the
condition reduces to the requirement that Hµν satisfies
the divergence a the tensor wave equation. The tetrad
components of Aµν ≡ �ζHµν + 2Rµ

α
ν
βζHαβ are given

in GHP form by

Aln −Amm̄ = 4(̟Þ
′ − 4µð

′
)ζΦL1

0 − 4(τÞ − 4ρð)ζΦL1
2 ,

(A2a)

Alm =
[

2ð
′
ð − 2Þ

′
Þ− 2µ̄Þ+ 2ρÞ

′ − 2τð
′

− 2τ̄ð − 4µρ+ 6ψ2 + 4τ̟
]

ζΦL1
0 ,

(A2b)

with all other components given by symmetries, Aln +
Amm̄ = Aln −Amm̄, Alm̄ = Alm, Anm = A′

lm and
Anm̄ = A′

lm along with the identification ΦL1
0 = −(ΦL1

2 )′.
If we impose the Teukolsky equation then the second of
these equations simplifies to

Alm = −2£ξΦ
L1
0 , (A3)

http://arxiv.org/abs/cs/2018213
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and similarly the prime of this equation is

Anm̄ = −2£ξΦ
L1
2 . (A4)

We now wish to show that the Lorenz gauge field equa-
tion for the vector potential is satisfied. Using the ho-
mogeneous Teukolsky equation, the equation for ∇µAµν

reduces to a vector given by

A(ρ nµ − ρ′lµ + τm̄µ − τ ′mµ) + c.c., (A5)

whereA = 0 by virtue of the third Teukolsky-Starobinsky
identity, Eq. (57c). Note that this does not rely on any
cancellations between ΦL1

0 and ΦL1
2 and their complex

conjugates; the field equations are satisfied by AL1
a and

its complex conjugate independently.
The above conclusion for the Lorenz gauge field equa-

tion can also be obtained by an alternative approach.
Requiring that Eq. (A1) is satisfied means that, for a
suitable choice of “gauge vector of third kind”, X, we
should be able to solve

�ζHµν + 2Rµ
α
ν
βζHαβ + ǫαβ

γδXγ;δ = 0. (A6)

To solve for Xµ for our given Hµν we need only consider
the two components

ǫlm
γδXγ;δ = i

[

(Þ − ρ̄)Xm − (ð + ¯̟ )Xl

]

, (A7a)

ǫnm̄
γδXγ;δ = i

[

(Þ
′
+ µ̄)Xm̄ − (ð

′
+ τ̄ )Xn

]

, (A7b)

the second of which is the prime of the first. It is clear
by inspection that these would cancel Alm and Anm̄ by
virtue of the Teukolsky equation if

Xl = −2iζ−1
ð
′
ζ2ΦL1

0 (A8a)

Xn = 2iζ−1
ðζ2ΦL1

2 (A8b)

Xm = −2iζ−1
Þ

′
ζ2ΦL1

0 (A8c)

Xm̄ = 2iζ−1
Þζ2ΦL1

2 , (A8d)

where the second and fourth lines are the prime of the
first and third lines, respectively. The remaining equa-
tion for Aln +Amm̄ with this X reduces to

Aln +Amm̄ = 2A, (A9)

which we have already established vanishes as a conse-
quence of the third Teukolsky-Starobinsky identity.

Appendix B: Gauge transformation between

radiation and Lorenz gauges

As shown by Dolan, we can find a gauge transforma-
tion between radiation and Lorenz gauges by introducing
a scalar χ such that ∇αχ = ℜ(AL1

α ) − (AIRG
µ + AORG

µ ).
Substituting in the GHP expression for the vector poten-
tials, Eqs. (38), (41) and (53), we find four conditions
which must be satisfied,

Þχ =
[

(ð + ¯̟ )Φ̄L1
0 + (ð

′
+̟)ΦL1

0

]

−
[

(ð
′ −̟)ΨORG + (ð − ¯̟ )Ψ̄ORG

]

, (B1a)

Þ
′
χ =

[

− (ð
′ − τ̄)Φ̄L1

2 − (ð − τ)ΦL1
2

]

−
[

(ð + τ)ΨIRG + (ð
′
+ τ̄ )Ψ̄IRG

]

, (B1b)

ðχ =
[

− (Þ− ρ̄)Φ̄L1
2 + (Þ

′
+ µ)ΦL1

0

]

−
[

(Þ + ρ̄)Ψ̄IRG + (Þ
′ − µ)ΨORG

]

, (B1c)

ð
′
χ =

[

(Þ
′
+ µ̄)Φ̄L1

0 − (Þ − ρ)ΦL1
2

]

−
[

(Þ
′ − µ̄)Ψ̄ORG + (Þ + ρ)ΨIRG

]

. (B1d)

Let us now follow Dolan [12] and look for a transforma-
tion from IRG to Lorenz. Working with the first of the
above equations, this gives

Þχ = (ð
′
+̟)ΦL1

0 + c.c. (B2)

Dolan then uses the radial part of the separated
Teukolsky-Starobinsky identities to replace ΦL1

0 on the
right hand side here with the second radial derivative of
ΦL1

2 and then “peels off” a Þ from both sides to obtain
an expression for χ. We can do similarly, by acting on
Eq. (B2) with ð

′
, using the Teukolsky-Starobinsky iden-

tities to rewrite the right hand side in terms of ΦL1
2 , and

peeling off a Þ from both sides. This produces a result
consistent with Dolan’s.
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