
Rabe, M 2020 Spectram: A MATLAB® and GNU Octave Toolbox for Transition
Model Guided Deconvolution of Dynamic Spectroscopic Data. Journal of Open
Research Software, 8: 13. DOI: https://doi.org/10.5334/jors.323

Journal of
open research software

SOFTWARE METAPAPER

Spectram: A MATLAB® and GNU Octave Toolbox for
Transition Model Guided Deconvolution of Dynamic
Spectroscopic Data
Martin Rabe
Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, DE
m.rabe@mpie.de

Spectroscopic data, depending on an experimentally controllable variable, contains a wealth of information
for researchers. However, complex spectra with overlapping peaks and multiple transitions complicate its
straightforward interpretation and often the full contained information cannot be extracted. Here, the
Spectram toolbox for MATLAB® and GNU Octave is described which was developed to analyse such data
by a method based on singular value decomposition (SVD) and transition model coupled recombination. The
method employs user-defined transition models, which depend on the control variable and are often known,
or empirical descriptions of the transitions, which often can be guessed, to deconvolute such data. The
outcome are the spectral components associated to the transitions and the model parameters. Both can be
directly interpreted in terms of their physical meaning. Spectram can be applied to any desired spectroscopic
technique and gives full freedom in the choice of the applied models, making it highly reusable.

Keywords: singular value decomposition; matrix least squares; optical spectroscopy; IR-spectroscopy;
UV/Vis-spectroscopy; spectral deconvolution; multivariate data analysis
Funding statement: Funding by the European Union’s Horizon 2020 research and innovation program
under a Marie Skłodowska-Curie Grant (Agreement No. 705857) is acknowledged.

(1) Overview
Introduction
Spectroscopic methods are used in many fields of applied
sciences to study dynamic processes. Such approaches
yield multivariate spectroscopic data sets, i.e. intensity or
absorbance data, depending on a photon energy equivalent
such as frequency or wavelength on the one hand and a
second control variable on the other hand. Here, control
variables are experimental parameters that vary during
the experiment in a controllable or measurable manner.
These may be for instance temperature, time, incident
angle or electrode potential.

The scientific questions underlying the experimental
design can be as diverse as the possible techniques. In
general, the control variable dependent development
of a specific spectral response is probed. It depends
on the concentration of a compound or may reflect its
conformation, orientation or solvation. However, in
complex samples a straightforward physical interpretation
of such data is often hampered by its complexity which
can be of different origins. In the rarest cases the measured
spectral response consists of a single band depending
uniquely on the control variable. More often, strongly
overlapping spectral bands, with individual dependencies

on the control variable, need to be disentangled. This can
be caused by a complex sample structure for instance a
mixture of similar components or a complex nature of the
spectroscopic transition under study, such as transitions
caused by chemical groups in different chemical
environments or with different orientations.

As an example, a data set, as it might be observed in
infrared (IR) spectroscopy, was generated (Figure 1a).
Spectra are depicted for values of the control variable c
gradually increasing in the range of 10, 15, …, 80. In this
example, c may be understood as a temperature and
the studied process may be a temperature dependent
structural transition. The data set was simulated assuming
two separate two state chemical reactions (A → A’ and
B → B’) with single absorbance peaks for each chemical
species. This leads to broad spectra with up to 4 peaks
overlapping. Upon variation of c a complex variation of
the spectrum is obtained. The difference spectra illustrate
that consideration of intensities at single wavenumbers
would result in different c dependencies leading to
erroneous conclusions on the underlying processes
(Figure 1a, inset). Thus, to reveal the underlying
transitions of such a data set, one must use the full
spectroscopic data in the analysis.

https://doi.org/10.5334/jors.323
mailto:m.rabe@mpie.de

Rabe: SpectramArt. 13, page 2 of 5

One approach to the usage of the full data is fitting
each spectrum with several single component peaks and
determining their changes depending on c. Peak fitting
software is readily available which provides convenient
tools for such approaches, applicable for researchers of all
experience levels. However, modeling such a system with
independent peak fittings involves 4 highly overlapping
components which leads to a high number of parameters
per spectrum and non-unique solutions to the problem.
The problem might get even more difficult, given that
often the exact number of underlying peaks or their exact
shape is not known with certainty.

However, often the underlying transition model, i.e.
the c dependency of the spectral change for the studied
process is better known than the actual spectra of the
individual components. Examples for such transitions and
their control variables are the concentration dependency
of pH indicators given by the Henderson Hasselbach
equation, the temperature dependency of equilibrium
constants described by the van’t Hoff equation or the
temporal decay of species following a specific rate law
(Table 1). When the the physical model is unknown, an

empirically descriptive model can sometimes be devised
to describe the principal trends in the data, for instance a
linear or sigmoidal model that sufficiently describes many
real physical processes.

An analysis approach that allows to employ physical or
empirical transition models and uses all available spectral
information has been developed by Shrager and Hendler
[1, 2, 3]. It is used to deconvolute the data set by means
of linear algebraic methods. In particular, the data is first
decomposed by singular value decomposition (SVD) and
subsequently recombined using a distinct transition model
and a matrix least squares (MLS) minimization. Thus, the
SVD-based MLS deconvolutes the spectral components as
determined by the transition model, which is chosen by
the investigator. This approach allows:

1.	 Determination of the number of independent
transitions within the spectral data set

2.	 Determination of the transitions (f1…f3 in
Figure 1b) and their model parameters (pi_j)

3.	 Determination of the base spectral components
(d1…d3 in Figure 1b)

Figure 1: Input and output for SVD-based MLS by means of Spectram toolbox. (a) Spectral data set A(x, c) generated
from two independent chemical transitions with the control variable c. In practice x can be any energy equivalent
common in spectroscopy (wavenumber, frequency, wavelength). The inset shows the change in spectral intensities.
Random error was added to the generated data. (b) Application of Spectram box results in two matrices F and D which
describe the original data by A = DFT. F contains in its columns the transitions in c determined by the model functions
(f1 and f2). The obtained parameters pi_j may be physical quantities, when physical models are chosen over pure
empirical descriptions. D contains in its columns the individual difference spectra Di for each chemical compound.

���� ���� ����

�

����

�

����

����

�

��
��
��

� �� �� �� ��

�

�

���

�
�

��
��
��

����

����

����
�����
�����
����

����
�����
�����
����

	 �

Table 1: Examples for applications of control variable c dependent transitions that may be studied by SVD-based MLS
using Spectram. T: temperature, t: time.

Control variable Transition model function Quantifiable model parameters

pH Henderson Hasselbach equation acid dissociation constant pKa

T van’t Hoff equation standard enthalpy change ΔH°

t rate law, qualitative description by exponential decay rate constants k, half life t ½

any c qualitative description for instance by sigmoidal position of transition in c

Rabe: Spectram Art. 13, page 3 of 5

Next to the spectral input data set, ordered in the matrix
A(x, c), the researcher has to input the model functions f1
and f2 and a rank r. The spectral data A(x, c) is decomposed
into two data sets F and D (Figure 1b). F contains the c
dependent transitions and D contains the associated
spectral components. In the example the last transition
is kept constant with f3 = 1. In this way the spectral
component d3 can be interpreted as a base spectrum and
d1 and d2 as difference spectra. Thus, d1 and d2 indicate
the change of the base spectrum d3 upon variation in c.
The gained information in this example is substantial: two
independent, in c well separated transitions are revealed.
These are associated to significant spectral changes which
allow for an interpretation in terms of the underlying
molecular process.

In our own research we have found SVD-based MLS
very useful for the interpretation of large data sets from
temperature dependent transmission IR spectroscopy [4],
electrochemical in-situ attenuated total reflection (ATR)-IR
spectroscopy [5], or time dependent photo luminescence
spectroscopy [6]. In the course of these projects the SVD
deconvolution was implemented in several scripts using
MATLAB®. In the latest version the SVD-based MLS
approach described by Shrager [2] was fully implemented.
Here, only a shortened description to the application and
the outcome of the method shall be given. For a complete
and comprehensive discussion, also on the mathematical
background and its implementation, the reader is referred
to the ‘beginners guide’ by Hendler and Shrager [3].

Another set of related and well established techniques are
multivariate curve resolution (MCR) or self-modeling curve
resolutions (SMCR) [7, 8]. MCR techniques apply a set of
constraints to the transitions and the spectral components
during an alternating least squares minimisation. For
these techniques software packages exist, for instance for
MATLAB® (http://www.mcrals.info/).

Despite the fact that there is a broad application range
of the SVD-based MLS method we are not aware of a
published generalized implementation in MATLAB®
or GNU Octave, that allows an application to a broad
variety of experimental techniques. Thus, we restructured
the scripts from the research projects to build up the
Spectram toolbox. This toolbox is designed to allow a
straightforward application of SVD-based MLS to any
spectroscopic technique, using any desired control
variable, with unlimited individually definable transitions
models. These features enable a high reusability and

extendibility of Spectram. The toolbox and especially its
simple example scripts are released to serve as a jump start
for researchers that can benefit from this method but are
(still) unfamiliar with coding platforms like MATLAB® or
hesitate, due to the work needed for the implementation
of this approach. Furthermore, the toolbox may perfectly
serve as a base for a user friendly GUI based program for
specific applications or spectroscopic techniques.

Implementation and architecture
The Spectram box provides functions to easily follow
the workflow described by Hendler and Shrager [3]. The
main steps can be executed by applying the supporting
functions (Table 2). Steps II – V may be repeated until
satisfying results are obtained. An example script showing
the process and its implementation step by step is
included in the release (typical_example.m). A detailed
documentation is provided to explain the application of
the functions in detail.

For the data preparation (step I) standard MATLAB® and
GNU Octave commands can be used. Three data inputs
must be defined: an array A containing in its columns the
spectral (intensity or absorbance) data for each value of the
control variable, the row vector c containing the values of
the control variable, and a column vector x containing the
values of the energy equivalent. For the input all(size(A)
== [length(x), length(c)]) must apply.

The toolbox performs the SVD by the MATLAB®
function svd(A, 0), which returns three arrays U, S, and V
which in linear algebra terms are matrices for which

		 =A USV � (1)

applies.
The rank, determined in step II, defines the number of

signal containing components in U, S, and V that are used
in the following matrix least squares process. Also, the
rank is a lower limit for the number of transitions n in the
model. An efficient way to determine the rank is the visual
inspection of the SVD results (for a detailed description see
[3]). For this step, a small app (RankFinder.m) is provided
for convenience. Other ways to define the rank may be
applied, as for instance use of the MATLAB® function rank
(A, …) or determination of the autocorrelation coefficients.

The key feature, leading to the high versatility of
Spectram, is the ability to use any desired number of
individual functions for transition models in step III. This

Table 2: Process steps for the SVD-based MLS decomposition and the supporting functions and programs provided by
the Spectram box.

Process Step Spectram box function or command

I Prepare data

II SVD and rank determination RankFinder(…)

III Construct transition model simple_model(…), model_fun, vecpar(…)

IV MLS recombination recombfit(…)

V Assess results eval_model(…), matres(…), plotmatres(…)

VI Repeat from II (optional)

http://www.mcrals.info/

Rabe: SpectramArt. 13, page 4 of 5

is realized by employing the MATLAB® and GNU Octave
anonymous function formalism for the definition of the
transition model functions. In Spectram a model consists
of an (n + 1)-by-1 cell array containing n transition model
functions specified as anonymous functions of the form
@(c, p1, p2, …, pj)myfun(c, p1, p2, …, pj). As shown in the
example, the (n + 1)th cell may contain an anonymous
function returning constants as for instance: @(c)
ones(size(c)). Models can be constructed either by using
the helper function simple_model(…) or manually, by
defining the cell array. Also, a function library is provided
by the model_fun class, containing some (empirical)
standard model functions like constants, sigmoidals or
exponentials.

The number of adjustable parameters for each model
depends on n and the number of parameters in each
individual transition model function. For all parameters
start values must be defined, while lower and upper bounds
can be defined optionally before starting the MLS routine.
To aid in the correct construction of the vectors containing
the start parameters and bounds, the parameter names lists
are used. These are assignments of the model parameter
names to the position of its value in the parameter vectors.
A parameter names list is returned as 2nd output from
simple_model(…) or can be constructed directly from the
model using the function vecpar(model). The parameter
names lists are cell arrays of the form: {“p1_1”; “p2_1”; …;
“pj_n”}. Here, the latest numeral represents the position of
the associated transition function in the model cell array.
Note that the vecpar(…) function internally constructs the
parameter names list from a parameter map returned
by the function mappar(…). The standard user will most
probably not have to deal with parameter maps, still
details about this concept are found in the documentation
of the mappar(…) function.

The central computing step IV, the recombination by
MLS is done by using the function recombfit(…). It requires
the data, the rank and the model as input. Internally, the
function employs the function lsqnonlin(…) and thus also
requires the same additional input parameters as well
as it returns the same (optional) outputs. This includes
parameters allowing an assessment of the fit quality such
as the residuals. The recombfit(…) function implements the
SVD-based MLS approach [2] and returns the parameters
from the minimization procedure. For evaluation of the
results (step V) the function values of the resulting model
can be calculated by using the eval_model(…) function. This
function returns an array F which contains in its columns
the values for the individual transition model functions.
In matrix notation

		 T=A DF � (2)

applies. To additionally evaluate D which contains
the spectral information connected to the transitions
in F the matres(…) function can be employed. Several
methods for evaluating the results and the fit quality
have been discussed elsewhere [3]. Some useful plots
for evaluation, especially the comparison of the input
A with the recombination A′ as well as the comparison
of V with the matrix V′ constructed from the fit results

may be directly created using plotmatres(…). In most cases
when approaching a new analytical problem, the first
attempt will not lead to satisfying results and several
attempts with different inputs will be needed. Usually,
the researcher may try different models, numbers of
transition model functions, ranks, starting parameters or
bounds. Using the toolbox in a script or even as a base
for a GUI substantially simplifies all these adaptions,
especially the variations of the model.

It should be noted that apart from the formal function
of the software (see also section: Quality control) the
method comprises intrinsic pitfalls that may lead to
meaningless or physical irrelevant results. Thus, a critical
result evaluation must be part of the routine. Factors of
major influence for the result quality are:

•	 Choice of appropriate number of transitions
•	 Choice of appropriate transition models
•	 Finding the minimum rank
•	 Using proper starting parameters and physically

meaningful bounds

Users that are unfamiliar with the method are advised to
use the provided example script to test the influence of
improper choices of these parameters to gain experience
with the observable results.

Furthermore, the data set under study may impose
limitations to the usefulness of the method. For instance,
noisy data with very closely spaced transitions or spectral
components may not give satisfying results. Also, peak
shifts cannot be deconvoluted completely by means of
SVD, although in our experience small shifts may still be
qualitatively separated when they are significantly well
isolated in the control variable space.

Quality control
The core functionality, i.e. the MLS recombination
implemented in recombfit(…), has been tested thoroughly
within MATLAB® in the application in several research
projects over the past years since 2014. A simple
test is the deconvolution of generated data sets. For
instance, the provided example data set was generated,
employing Gaussian peak shapes for two chemical
transitions, the Lambert-Beer law and transitions
model functions, arbitrarily chosen as arctan functions
giving sigmoidal shapes. Furthermore, random error
was added to the spectral data and the transition data.
Deconvolution of this data set by means of different
sigmoidal model functions, as shown in the example
script, yields solutions in F that are qualitatively similar
to the input functions and components in D similar to
the difference spectra of the input data. The code was
adapted partly to be compatible to GNU Octave and
tested by means of the provided example script. Minor
incompatibility problems with GNU Octave are still
possible.

(2) Availability
Operating system
The Spectram toolbox requires MATLAB® 9.0 or higher or
GNU Octave 4.4.1 or higher. Thus, it can run on operating

Rabe: Spectram Art. 13, page 5 of 5

systems for which these are available (including Microsoft
Windows 7/10, macOS and Linux distributions).

Programming language
MATLAB®, GNU Octave

Dependencies
MATLAB® (9.0): Optimization Toolbox (8.5)
GNU Octave (4.4.1): optim (1.6.0) package. Optim requires
the packages struct (1.0.15), statistics (1.4.0) and io
(2.4.12). The installation and the loading of these packages
is described in the readme.md and the example script.

List of contributors
Martin Rabe

Software location
Code repository

Name: GitHub
Identifier: https://github.com/mrtnrb/Spectram/
Licence: MIT
Date published: 06/02/20

Archive
Name: Zenodo
Persistent identifier: DOI: 10.5281/zenodo.3800533
Licence: MIT
Publisher: Martin Rabe
Date published: 06/05/20
Version published: v1.0.0

Language
English

(3) Reuse potential
The toolbox provides a set of functions that enable
the stepwise application of the analysis. There are no
limitations on the number of transition model functions
or limitations on the applicable control variable.
Furthermore, individual model functions can be applied.
Thus, the reuse potential is high, so that applications with
any dynamic spectroscopic method are possible.

General support, specific feature requests or bug reports
can be submitted by opening an issue in the GitHub
repository or by email to the author. Users can fork the
repository to develop applications or GUIs for specific
methods or spectroscopies.

Acknowledgements
Andreas Erbe is acknowledged for general support and
critical reading of the manuscript.

Competing Interests
The author has no competing interests to declare.

References
1.	 Shrager, R I and Hendler, R W 1982 Titration of

individual components in a mixture with resolution
of difference spectra, pKs, and redox transitions.
Anal. Chem., 54(7): 1147–1152. DOI: https://doi.
org/10.1021/ac00244a031

2.	 Shrager, R I 1986 Chemical transitions measured
by spectra and resolved using singular value
decomposition. Chemom. Intell. Lab. Syst., 1(1):
59–70. DOI: https://doi.org/10.1016/0169-
7439(86)80026-0

3.	 Hendler, R W and Shrager, R I 1994 Deconvolutions
based on singular value decomposition and the
pseudoinverse: a guide for beginners. J. Biochem.
Biophys. Methods, 28(1): 1–33. DOI: https://doi.
org/10.1016/0165-022X(94)90061-2

4.	 Rabe, M, Zope, H R and Kros, A 2015 Interplay
between lipid interaction and homo-coiling of
membrane-tethered coiled-coil peptides. Langmuir,
31(36): 9953–9964. DOI: https://doi.org/10.1021/
acs.langmuir.5b02094

5.	 Niu, F, Rabe, M, Nayak, S and Erbe, A 2018 Vibrational
spectroscopic study of pH dependent solvation
at a Ge(100)-water interface during an electrode
potential triggered surface termination transition.
J. Chem. Phys., 148(22): 222824. DOI: https://doi.
org/10.1063/1.5018796

6.	 Tecklenburg, S 2019 Defect Formation and Evolution in
Zinc Oxide: from Semiconductors to Corrosion. Doctoral
thesis, Department of Chemistry and Biochemistry,
Ruhr-Universität Bochum, Bochum, Germany.

7.	 Tauler, R, Izquierdo-Ridorsa, A and Casassas, E
1993 Simultaneous analysis of several spectroscopic
titrations with self-modelling curve resolution.
Chemom. Intell. Lab. Syst., 18(3): 293–300. DOI:
https://doi.org/10.1016/0169-7439(93)85006-3

8.	 Tauler, R, Smilde, A and Kowalski, B 1995 Selectivity,
local rank, three-way data analysis and ambiguity in
multivariate curve resolution. J. Chemom., 9(1): 31–58.
DOI: https://doi.org/10.1002/cem.1180090105

How to cite this article: Rabe, M 2020 Spectram: A MATLAB® and GNU Octave Toolbox for Transition Model Guided
Deconvolution of Dynamic Spectroscopic Data. Journal of Open Research Software, 8: 13. DOI: https://doi.org/10.5334/jors.323

Submitted: 07 February 2020 Accepted: 12 May 2020 Published: 09 June 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://github.com/mrtnrb/Spectram/
https://doi.org/10.5281/zenodo.3800533
https://doi.org/10.1021/ac00244a031
https://doi.org/10.1021/ac00244a031
https://doi.org/10.1016/0169-7439(86)80026-0
https://doi.org/10.1016/0169-7439(86)80026-0
https://doi.org/10.1016/0165-022X(94)90061-2
https://doi.org/10.1016/0165-022X(94)90061-2
https://doi.org/10.1021/acs.langmuir.5b02094
https://doi.org/10.1021/acs.langmuir.5b02094
https://doi.org/10.1063/1.5018796
https://doi.org/10.1063/1.5018796
https://doi.org/10.1016/0169-7439(93)85006-3
https://doi.org/10.1002/cem.1180090105
https://doi.org/10.5334/jors.323
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Dependencies
	List of contributors
	Software location
	Code repository
	Archive

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Table 1
	Table 2

