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Spectroscopic data, depending on an experimentally controllable variable, contains a wealth of information 
for researchers. However, complex spectra with overlapping peaks and multiple transitions complicate its 
straightforward interpretation and often the full contained information cannot be extracted. Here, the 
Spectram toolbox for MATLAB® and GNU Octave is described which was developed to analyse such data 
by a method based on singular value decomposition (SVD) and transition model coupled recombination. The 
method employs user-defined transition models, which depend on the control variable and are often known, 
or empirical descriptions of the transitions, which often can be guessed, to deconvolute such data. The 
outcome are the spectral components associated to the transitions and the model parameters. Both can be 
directly interpreted in terms of their physical meaning. Spectram can be applied to any desired spectroscopic 
technique and gives full freedom in the choice of the applied models, making it highly reusable.
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(1) Overview
Introduction
Spectroscopic methods are used in many fields of applied 
sciences to study dynamic processes. Such approaches 
yield multivariate spectroscopic data sets, i.e. intensity or 
absorbance data, depending on a photon energy equivalent 
such as frequency or wavelength on the one hand and a 
second control variable on the other hand. Here, control 
variables are experimental parameters that vary during 
the experiment in a controllable or measurable manner. 
These may be for instance temperature, time, incident 
angle or electrode potential.

The scientific questions underlying the experimental 
design can be as diverse as the possible techniques. In 
general, the control variable dependent development 
of a specific spectral response is probed. It depends 
on the concentration of a compound or may reflect its 
conformation, orientation or solvation. However, in 
complex samples a straightforward physical interpretation 
of such data is often hampered by its complexity which 
can be of different origins. In the rarest cases the measured 
spectral response consists of a single band depending 
uniquely on the control variable. More often, strongly 
overlapping spectral bands, with individual dependencies 

on the control variable, need to be disentangled. This can 
be caused by a complex sample structure for instance a 
mixture of similar components or a complex nature of the 
spectroscopic transition under study, such as transitions 
caused by chemical groups in different chemical 
environments or with different orientations.

As an example, a data set, as it might be observed in 
infrared (IR) spectroscopy, was generated (Figure 1a). 
Spectra are depicted for values of the control variable c 
gradually increasing in the range of 10, 15, …, 80. In this 
example, c may be understood as a temperature and 
the studied process may be a temperature dependent 
structural transition. The data set was simulated assuming 
two separate two state chemical reactions (A → A’ and 
B → B’) with single absorbance peaks for each chemical 
species. This leads to broad spectra with up to 4 peaks 
overlapping. Upon variation of c a complex variation of 
the spectrum is obtained. The difference spectra illustrate 
that consideration of intensities at single wavenumbers 
would result in different c dependencies leading to 
erroneous conclusions on the underlying processes 
(Figure 1a, inset). Thus, to reveal the underlying 
transitions of such a data set, one must use the full 
spectroscopic data in the analysis.
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One approach to the usage of the full data is fitting 
each spectrum with several single component peaks and 
determining their changes depending on c. Peak fitting 
software is readily available which provides convenient 
tools for such approaches, applicable for researchers of all 
experience levels. However, modeling such a system with 
independent peak fittings involves 4 highly overlapping 
components which leads to a high number of parameters 
per spectrum and non-unique solutions to the problem. 
The problem might get even more difficult, given that 
often the exact number of underlying peaks or their exact 
shape is not known with certainty.

However, often the underlying transition model, i.e. 
the c dependency of the spectral change for the studied 
process is better known than the actual spectra of the 
individual components. Examples for such transitions and 
their control variables are the concentration dependency 
of pH indicators given by the Henderson Hasselbach 
equation, the temperature dependency of equilibrium 
constants described by the van’t Hoff equation or the 
temporal decay of species following a specific rate law 
(Table 1). When the the physical model is unknown, an 

empirically descriptive model can sometimes be devised 
to describe the principal trends in the data, for instance a 
linear or sigmoidal model that sufficiently describes many 
real physical processes.

An analysis approach that allows to employ physical or 
empirical transition models and uses all available spectral 
information has been developed by Shrager and Hendler 
[1, 2, 3]. It is used to deconvolute the data set by means 
of linear algebraic methods. In particular, the data is first 
decomposed by singular value decomposition (SVD) and 
subsequently recombined using a distinct transition model 
and a matrix least squares (MLS) minimization. Thus, the 
SVD-based MLS deconvolutes the spectral components as 
determined by the transition model, which is chosen by 
the investigator. This approach allows:

1.	 Determination of the number of independent 
transitions within the spectral data set

2.	 Determination of the transitions (f1…f3 in 
Figure 1b) and their model parameters (pi_j)

3.	 Determination of the base spectral components 
(d1…d3 in Figure 1b)

Figure 1: Input and output for SVD-based MLS by means of Spectram toolbox. (a) Spectral data set A(x, c) generated 
from two independent chemical transitions with the control variable c. In practice x can be any energy equivalent 
common in spectroscopy (wavenumber, frequency, wavelength). The inset shows the change in spectral intensities. 
Random error was added to the generated data. (b) Application of Spectram box results in two matrices F and D which 
describe the original data by A = DFT. F contains in its columns the transitions in c determined by the model functions 
(f1 and f2). The obtained parameters pi_j may be physical quantities, when physical models are chosen over pure 
empirical descriptions. D contains in its columns the individual difference spectra Di for each chemical compound.
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Table 1: Examples for applications of control variable c dependent transitions that may be studied by SVD-based MLS 
using Spectram. T: temperature, t: time.

Control variable Transition model function Quantifiable model parameters

pH Henderson Hasselbach equation acid dissociation constant pKa

T van’t Hoff equation standard enthalpy change ΔH°

t rate law, qualitative description by exponential decay rate constants k, half life t ½

any c qualitative description for instance by sigmoidal position of transition in c
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Next to the spectral input data set, ordered in the matrix 
A(x, c), the researcher has to input the model functions f1 
and f2 and a rank r. The spectral data A(x, c) is decomposed 
into two data sets F and D (Figure 1b). F contains the c 
dependent transitions and D contains the associated 
spectral components. In the example the last transition 
is kept constant with f3 = 1. In this way the spectral 
component d3 can be interpreted as a base spectrum and 
d1 and d2 as difference spectra. Thus, d1 and d2 indicate 
the change of the base spectrum d3 upon variation in c. 
The gained information in this example is substantial: two 
independent, in c well separated transitions are revealed. 
These are associated to significant spectral changes which 
allow for an interpretation in terms of the underlying 
molecular process.

In our own research we have found SVD-based MLS 
very useful for the interpretation of large data sets from 
temperature dependent transmission IR spectroscopy [4], 
electrochemical in-situ attenuated total reflection (ATR)-IR 
spectroscopy [5], or time dependent photo luminescence 
spectroscopy [6]. In the course of these projects the SVD 
deconvolution was implemented in several scripts using 
MATLAB®. In the latest version the SVD-based MLS 
approach described by Shrager [2] was fully implemented. 
Here, only a shortened description to the application and 
the outcome of the method shall be given. For a complete 
and comprehensive discussion, also on the mathematical 
background and its implementation, the reader is referred 
to the ‘beginners guide’ by Hendler and Shrager [3].

Another set of related and well established techniques are 
multivariate curve resolution (MCR) or self-modeling curve 
resolutions (SMCR) [7, 8]. MCR techniques apply a set of 
constraints to the transitions and the spectral components 
during an alternating least squares minimisation. For 
these techniques software packages exist, for instance for 
MATLAB® (http://www.mcrals.info/).

Despite the fact that there is a broad application range 
of the SVD-based MLS method we are not aware of a 
published generalized implementation in MATLAB® 
or GNU Octave, that allows an application to a broad 
variety of experimental techniques. Thus, we restructured 
the scripts from the research projects to build up the 
Spectram toolbox. This toolbox is designed to allow a 
straightforward application of SVD-based MLS to any 
spectroscopic technique, using any desired control 
variable, with unlimited individually definable transitions 
models. These features enable a high reusability and 

extendibility of Spectram. The toolbox and especially its 
simple example scripts are released to serve as a jump start 
for researchers that can benefit from this method but are 
(still) unfamiliar with coding platforms like MATLAB® or 
hesitate, due to the work needed for the implementation 
of this approach. Furthermore, the toolbox may perfectly 
serve as a base for a user friendly GUI based program for 
specific applications or spectroscopic techniques.

Implementation and architecture
The Spectram box provides functions to easily follow 
the workflow described by Hendler and Shrager [3]. The 
main steps can be executed by applying the supporting 
functions (Table 2). Steps II – V may be repeated until 
satisfying results are obtained. An example script showing 
the process and its implementation step by step is 
included in the release (typical_example.m). A detailed 
documentation is provided to explain the application of 
the functions in detail.

For the data preparation (step I) standard MATLAB® and 
GNU Octave commands can be used. Three data inputs 
must be defined: an array A containing in its columns the 
spectral (intensity or absorbance) data for each value of the 
control variable, the row vector c containing the values of 
the control variable, and a column vector x containing the 
values of the energy equivalent. For the input all(size(A) 
== [length(x), length(c)]) must apply.

The toolbox performs the SVD by the MATLAB® 
function svd(A, 0), which returns three arrays U, S, and V 
which in linear algebra terms are matrices for which

		  =A USV � (1)

applies.
The rank, determined in step II, defines the number of 

signal containing components in U, S, and V that are used 
in the following matrix least squares process. Also, the 
rank is a lower limit for the number of transitions n in the 
model. An efficient way to determine the rank is the visual 
inspection of the SVD results (for a detailed description see 
[3]). For this step, a small app (RankFinder.m) is provided 
for convenience. Other ways to define the rank may be 
applied, as for instance use of the MATLAB® function rank 
(A, …) or determination of the autocorrelation coefficients.

The key feature, leading to the high versatility of 
Spectram, is the ability to use any desired number of 
individual functions for transition models in step III. This 

Table 2: Process steps for the SVD-based MLS decomposition and the supporting functions and programs provided by 
the Spectram box.

Process Step Spectram box function or command

I Prepare data 

II SVD and rank determination RankFinder(…)

III Construct transition model simple_model(…), model_fun, vecpar(…)

IV MLS recombination recombfit(…)

V Assess results eval_model(…), matres(…), plotmatres(…)

VI Repeat from II (optional)

http://www.mcrals.info/
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is realized by employing the MATLAB® and GNU Octave 
anonymous function formalism for the definition of the 
transition model functions. In Spectram a model consists 
of an (n + 1)-by-1 cell array containing n transition model 
functions specified as anonymous functions of the form 
@(c, p1, p2, …, pj)myfun(c, p1, p2, …, pj). As shown in the 
example, the (n + 1)th cell may contain an anonymous 
function returning constants as for instance: @(c)
ones(size(c)). Models can be constructed either by using 
the helper function simple_model(…) or manually, by 
defining the cell array. Also, a function library is provided 
by the model_fun class, containing some (empirical) 
standard model functions like constants, sigmoidals or 
exponentials.

The number of adjustable parameters for each model 
depends on n and the number of parameters in each 
individual transition model function. For all parameters 
start values must be defined, while lower and upper bounds 
can be defined optionally before starting the MLS routine. 
To aid in the correct construction of the vectors containing 
the start parameters and bounds, the parameter names lists 
are used. These are assignments of the model parameter 
names to the position of its value in the parameter vectors. 
A parameter names list is returned as 2nd output from 
simple_model(…) or can be constructed directly from the 
model using the function vecpar(model). The parameter 
names lists are cell arrays of the form: {“p1_1”; “p2_1”; …; 
“pj_n”}. Here, the latest numeral represents the position of 
the associated transition function in the model cell array. 
Note that the vecpar(…) function internally constructs the 
parameter names list from a parameter map returned 
by the function mappar(…). The standard user will most 
probably not have to deal with parameter maps, still 
details about this concept are found in the documentation 
of the mappar(…) function.

The central computing step IV, the recombination by 
MLS is done by using the function recombfit(…). It requires 
the data, the rank and the model as input. Internally, the 
function employs the function lsqnonlin(…) and thus also 
requires the same additional input parameters as well 
as it returns the same (optional) outputs. This includes 
parameters allowing an assessment of the fit quality such 
as the residuals. The recombfit(…) function implements the 
SVD-based MLS approach [2] and returns the parameters 
from the minimization procedure. For evaluation of the 
results (step V) the function values of the resulting model 
can be calculated by using the eval_model(…) function. This 
function returns an array F which contains in its columns 
the values for the individual transition model functions. 
In matrix notation

		  T=A DF � (2)

applies. To additionally evaluate D which contains 
the spectral information connected to the transitions 
in F the matres(…) function can be employed. Several 
methods for evaluating the results and the fit quality 
have been discussed elsewhere [3]. Some useful plots 
for evaluation, especially the comparison of the input 
A with the recombination A′ as well as the comparison 
of V with the matrix V′ constructed from the fit results 

may be directly created using plotmatres(…). In most cases 
when approaching a new analytical problem, the first 
attempt will not lead to satisfying results and several 
attempts with different inputs will be needed. Usually, 
the researcher may try different models, numbers of 
transition model functions, ranks, starting parameters or 
bounds. Using the toolbox in a script or even as a base 
for a GUI substantially simplifies all these adaptions, 
especially the variations of the model.

It should be noted that apart from the formal function 
of the software (see also section: Quality control) the 
method comprises intrinsic pitfalls that may lead to 
meaningless or physical irrelevant results. Thus, a critical 
result evaluation must be part of the routine. Factors of 
major influence for the result quality are:

•	 Choice of appropriate number of transitions
•	 Choice of appropriate transition models
•	 Finding the minimum rank
•	 Using proper starting parameters and physically 

meaningful bounds

Users that are unfamiliar with the method are advised to 
use the provided example script to test the influence of 
improper choices of these parameters to gain experience 
with the observable results.

Furthermore, the data set under study may impose 
limitations to the usefulness of the method. For instance, 
noisy data with very closely spaced transitions or spectral 
components may not give satisfying results. Also, peak 
shifts cannot be deconvoluted completely by means of 
SVD, although in our experience small shifts may still be 
qualitatively separated when they are significantly well 
isolated in the control variable space.

Quality control
The core functionality, i.e. the MLS recombination 
implemented in recombfit(…), has been tested thoroughly 
within MATLAB® in the application in several research 
projects over the past years since 2014. A simple 
test is the deconvolution of generated data sets. For 
instance, the provided example data set was generated, 
employing Gaussian peak shapes for two chemical 
transitions, the Lambert-Beer law and transitions 
model functions, arbitrarily chosen as arctan functions 
giving sigmoidal shapes. Furthermore, random error 
was added to the spectral data and the transition data. 
Deconvolution of this data set by means of different 
sigmoidal model functions, as shown in the example 
script, yields solutions in F that are qualitatively similar 
to the input functions and components in D similar to 
the difference spectra of the input data. The code was 
adapted partly to be compatible to GNU Octave and 
tested by means of the provided example script. Minor 
incompatibility problems with GNU Octave are still  
possible.

(2) Availability
Operating system
The Spectram toolbox requires MATLAB® 9.0 or higher or 
GNU Octave 4.4.1 or higher. Thus, it can run on operating 
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systems for which these are available (including Microsoft 
Windows 7/10, macOS and Linux distributions).

Programming language
MATLAB®, GNU Octave

Dependencies
MATLAB® (9.0): Optimization Toolbox (8.5)
GNU Octave (4.4.1): optim (1.6.0) package. Optim requires 
the packages struct (1.0.15), statistics (1.4.0) and io 
(2.4.12). The installation and the loading of these packages 
is described in the readme.md and the example script.

List of contributors
Martin Rabe

Software location
Code repository

Name: GitHub
Identifier: https://github.com/mrtnrb/Spectram/
Licence: MIT
Date published: 06/02/20

Archive
Name: Zenodo
Persistent identifier: DOI: 10.5281/zenodo.3800533
Licence: MIT
Publisher: Martin Rabe
Date published: 06/05/20
Version published: v1.0.0

Language
English

(3) Reuse potential
The toolbox provides a set of functions that enable 
the stepwise application of the analysis. There are no 
limitations on the number of transition model functions 
or limitations on the applicable control variable. 
Furthermore, individual model functions can be applied. 
Thus, the reuse potential is high, so that applications with 
any dynamic spectroscopic method are possible.

General support, specific feature requests or bug reports 
can be submitted by opening an issue in the GitHub 
repository or by email to the author. Users can fork the 
repository to develop applications or GUIs for specific 
methods or spectroscopies.
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