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REGULAR ARTICLE

Do we predict upcoming speech content in naturalistic environments?
Evelien Heyselaar a,b, David Peetersa,c,d and Peter Hagoorta,c

aMax Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; bBehavioural Science Institute, Radboud University, Nijmegen, The
Netherlands; cDonders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; dDepartment of
Communication and Cognition, TiCC, Tilburg University, Tilburg, The Netherlands

ABSTRACT
The ability to predict upcoming actions is a hallmark of cognition. It remains unclear, however,
whether the predictive behaviour observed in controlled lab environments generalises to rich,
everyday settings. In four virtual reality experiments, we tested whether a well-established marker
of linguistic prediction (anticipatory eye movements) replicated when increasing the naturalness
of the paradigm by means of immersing participants in naturalistic scenes (Experiment 1),
increasing the number of distractor objects (Experiment 2), modifying the proportion of
predictable noun-referents (Experiment 3), and manipulating the location of referents relative to
the joint attentional space (Experiment 4). Robust anticipatory eye movements were observed for
Experiments 1–3. The anticipatory effect disappeared, however, in Experiment 4. Our findings
suggest that predictive processing occurs in everyday communication if the referents are situated
in the joint attentional space. Methodologically, our study confirms that ecological validity and
experimental control may go hand-in-hand in the study of human predictive behaviour.
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Introduction

In the last fewdecades, there has been an increased inter-
est in the role of prediction in language comprehension.
The idea that people predict (i.e. context-based pre-acti-
vation of upcoming linguistic input) was deemed contro-
versial at first (e.g. Fodor, 1983). However, present-day
theories of language comprehension have embraced lin-
guistic prediction as the main reason why language pro-
cessing tends to be so effortless, accurate, and efficient
(see Clark, 2013; Friston, 2010 for an overview). Current
theories of prediction involve the creation of an internally
generated model of anticipated upcoming information,
similar to the efference copy proposed to drive prediction
in the motor movement field (see Wolpert & Flanagan,
2001). The actually encountered linguistic information is
then compared against this forwardmodel of anticipated
linguistic information (Pickering & Garrod, 2007) and any
prediction error is used as a learning mechanism that
influences future predictions (Dell & Chang, 2014). Such
theories are typically inspired by data collected via EEG
and the visual world paradigm, the latter of which we
will focus on in this study.

The visual world paradigm (VWP) builds on the obser-
vation that when participants are presented with spoken

language whilst viewing a visual scene, their eye move-
ments are very closely synchronised to a range of
different linguistic events in the speech stream
(Cooper, 1974; Huettig et al., 2011b). Altmann and
Kamide (Altmann & Kamide, 1999) exploited this behav-
iour to illustrate that listeners anticipate upcoming lin-
guistic information during online language
comprehension. In their seminal study, participants
were presented with a visual scene depicting, for
example, a boy, a cake, and some toys. While participants
heard sentences such as “the boy will move the cake” or
“the boywill eat the cake”, the authors observed that par-
ticipants would fixate on the cake significantly earlier
after hearing the verb form “eat” (but before “cake” was
uttered) compared to after hearing the verb form
“move”. Hence in an anticipatory way they would move
their eyes towards the object corresponding to an
assumedly predicted upcoming word. The VWP has
since proven to be an excellent method to provide
direct evidence of what type of information is anticipated
(Coco & Keller, 2015; Hintz et al., 2017; Kamide et al., 2003;
Knoeferle & Crocker, 2006, inter alia). Other commonly
used methods, such as EEG, have also provided evidence
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in favour of linguistic prediction, although it is debatable
whether several observed effects truly reflect prediction
rather than integration of encountered input with the
preceding context (Kochari & Flecken, 2018; Kuperberg
& Jaeger, 2017; Kutas et al., 2011; Nieuwland et al.,
2018; Pickering & Gambi, 2018; van den Brink et al.,
2000). The elegance of the VWP is its ability to measure
the direct interaction of language and the visual world,
not surprisingly making it a commonly used paradigm.

Although the look-and-listen variant of the VWP is
commonly considered as a relatively naturalistic way to
measure the interaction between language and visual
attention, it is not without its limitations. Participants
are typically seated in front of a computer screen and pre-
sented with 2D objects, which, in the majority of such
experiments, are four simple line drawings presented in
a 2 × 2 grid on a white background. It is an open question
whether the findings obtained in such settings generalise
to everyday situations. For instance, the simple cartoon-
like images often have no thematic connection to a
broader visual context, and therefore the visual system
can almost only be guided by linguistic input, potentially
making the observed results more relevant to theories of
visual search than predictive behaviour (Henderson & Fer-
reira, 2004). Additionally, a relatively simple visual display
may allow experimental participants to preview all the
objects and possible targets, subvocalize them, and
thus pre-generate the linguistic labels that may appear
in the subsequently encountered speech (Andersson
et al., 2011), again eliciting behaviour that may resemble
predictive processing, but may not be driven by it.

There has also been research using more complex,
photographic scenes (Coco et al., 2016; Staub et al.,
2012), which has replicated the anticipatory eye-move-
ment behaviour, suggesting that the behaviour
observed using cartoon-like images was indeed driven
by linguistic predictive processing. These studies used
stimuli ranging from photographs of an agent and four
objects (Staub et al., 2012) to more complex, cluttered
scenes (Coco et al., 2016; Coco & Keller, 2015). The eco-
logical advantage of using such richer scenes is that they
include a broader thematic context, which can be con-
sidered more reflective of natural everyday situations.
In naturalistic scenes, a theme is often clearly evident
(i.e. “this is a kitchen”), allowing listeners to anticipate
which types of objects will be mentioned and where
they can be found. Moreover, such a setup also allows
for presenting objects in a realistic spatial perspective,
unlike traditional look-and-listen VWP studies in which
all objects (cf. a tea cup vs. a dog) typically had a
similar size on a computer screen.

In a naturalistic conversation, interlocutors further-
more converge on topics that may actually restrict the

referential domain. This was illustrated by Brown-
Schmidt and Tanenhaus (2008) who used a semi-perma-
nent grid of 57 randomly placed objects, while naïve par-
ticipants conducted a conversation about these objects.
Via eye-tracking, it was shown how proximity, relevance,
and recency of referents were helpful factors in restrict-
ing the relevant referential domain (Brown-Schmidt &
Tanenhaus, 2008). Using more than a single sentence
per scene may thus also help to create a more ecologi-
cally-valid paradigm to measure anticipatory eye-move-
ment behaviour, but typical look-and-listen VWP
experiments have commonly been restricted to the
use of a single critical sentence per scene.

A final potential limitation of previous studies using
the look-and-listen VWP, in terms of their ecological val-
idity, is that experimental sentences were typically
played from a disembodied voice, i.e. in the absence of
a visible speaker. Despite recent pleas for the use of
(visually as well as socially) richer scenes in experimental
research (e.g. Hari et al., 2015; Knoeferle, 2015; Pan &
Hamilton, 2018; Willems, 2015), look-and-listen antici-
patory eye-movement studies typically lack a visible
speaker who produces a communicatively motivated
spoken message for the participant addressee.

To address these methodological concerns, we con-
ducted the current experiments in virtual reality (VR).
Using VR allowed us to immerse participants in rich,
visual scenes in which the presented objects were the-
matically embedded. Spoken sentence stimuli were
communicatively motivated as spoken by a virtual
agent who maintained eye contact with the participant.
Unlike experimental setups using 2D videos, immersive
VR places the participant “in the stimulus”, as in everyday
situations (cf. Parsons, 2015; Peeters, 2019).

In four experiments, we tested whether anticipatory
eye movements are observed when increasing the nat-
uralness of the paradigm by means of: (i) immersing par-
ticipants in naturalistic everyday scenes, (ii) increasing
the number of distractor objects present, (iii) modifying
the proportion of predictable noun-referents in the
experiment, and (iv) manipulating the location of refer-
ents inside or outside the joint attentional space
shared by speaker (virtual agent) and addressee (partici-
pant). We will further discuss the theoretical rationale
behind each of these experiments below.

Experiment 1: immersion in virtual reality

We conducted this study in Virtual Reality (VR) to ensure
that participants would feel immersed in the experimen-
tal environment, while retaining the required levels of
experimental control for reliable data collection
(Peeters, 2019). Previous studies have built VR versions
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of common psycholinguistic tasks and have shown com-
parable behaviour with the traditional version (Heyselaar
et al., 2015; Peeters & Dijkstra, 2018; Tromp et al., 2018).
Recently, Eichert et al. (2018) moreover showed robust
anticipatory eye-movement behaviour in a VR version
of the classic Altmann and Kamide (1999) look-and-
listen VWP task, suggesting that using 3D objects
versus 2D pictures in itself does not change participants’
anticipatory eye-movement behaviour. The current
experiment will go several steps further in making use
of the unique affordances of VR and increase the natur-
alness of the VWP in ways that are hard or impossible to
imagine in traditional versions.

As discussed above, a central component of every-
day communication is that it typically takes place in
a broader, thematically consistent, visual context.
Therefore, the backbone of the current experimental
set-up is the immersion of participants in realistic
everyday scenes such as a living room, an office, a
neighbourhood, etc. As a first step towards mimicking
real-world face-to-face interaction, participants will be
taken on a tour by a virtual agent, who will deliver
the critical sentences as she tells the participant
about aspects of her life in various relevant visual
environments. Contrary to classic VWP experiments,
we will present four (rather than one) critical sentences
per scene, increasing the odds that participants remain
unaware of the goal of the study. In previous exper-
iments, participants would typically receive one critical
sentence per scene, and then immediately be pre-
sented with a novel scene. Even in studies with mul-
tiple utterances per scene (i.e. Andersson et al. (2011)
who had three utterances per scene), only one utter-
ance was the critical sentence that referred to an
object present in the scene. In Experiment 1, all four
utterances refer to an object present in the scene. To
minimise any benefits of guessing, we have increased
the number of objects from the traditional four to
the current six.

In sum, Experiment 1 allowed us to test whether
anticipatory eye movements are observed in situations
that can be considered more reflective of everyday
communication compared to traditional paradigms.
The three main changes compared to earlier studies
are (i) placing the participant in the role of addressee
in the presence of a visible speaker who produces
communicatively motivated messages, (ii) at the same
time placing the participant in rich visual environments
that are thematically organised, and (iii) having mul-
tiple critical utterances per scene. The subsequent
experiments in this study will manipulate further
aspects of this set-up, such as the number of distractor
objects or the predictability of the sentences, to build

towards a more accurate reflection of real-world
situations.

Experiment 2: more potential referents

Previous studies have shown converging evidence that
increased visual complexity affects anticipatory eye-
movement behaviour. For example, Sorensen and
Bailey (2007) observed a significant decrease in the
strength of the typically observed anticipatory effect
when presenting participants with more than 4 items,
and anticipatory eye movements were non-existent in
a context with 16 items. Additionally, studies using
complex, photographic scenes have also shown
reduced language-driven eye-movement activity
(Andersson et al., 2011; Coco et al., 2016; Coco &
Keller, 2015).

There are concerns that a simple display may allow
participants to preview and pre-generate linguistic
labels before hearing the linguistic input, and hence
perform anticipatory eye-movements that are not sup-
ported by prediction mechanisms (Andersson et al.,
2011). However, studies have shown that increasing
the preview time of the objects does not affect the
strength of the anticipatory effect (Sorensen & Bailey,
2007). This suggests that the limitations observed in
anticipatory eye movement behaviour may have been
due to the number of items the participant could
choose from. However, if the preview time is less than
200 ms, visual attention shifts are co-determined by
the time-course of retrieval of phonological, shape,
and semantic knowledge, an aspect we are not focusing
on in this study (Huettig & McQueen, 2007).

Indeed, there is already evidence suggesting that
anticipatory eye movements are not dependent on a
concurrent visual scene, but rather on the mental
record of that scene (Altmann, 2004). In experiments
using the so-called “blank screen paradigm”, participants
hear the critical sentence only after the VWP scene is
removed. Yet participants still show anticipatory eye-
movements to the location of the referent, although
all they see is a blank screen (Altmann, 2004). A likely
candidate to maintain this visual record is the working
memory system.

There is a growing consensus for the role of working
memory in prediction (see for review Huettig et al.,
2011a). In the VWP, anticipatory looks to the referent
object can occur as early as 200 ms after the verb is
heard, a timeframe that suggests that participants
already had the potential objects activated to some
extent. Huettig and colleagues propose that objects in
the display are first encoded to a visuospatial type of
working memory (cf. Alvarez & Cavanagh, 2004;
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Baddeley, 1998; Pylyshyn, 1989), which triggers percep-
tual hypotheses in long-term memory. These hypoth-
eses then trigger a cascade of activations of associated
semantic and phonological codes, all within a few hun-
dreds of milliseconds (cf. Huettig & McQueen, 2007).
This results in a nexus of associated knowledge, which
is bound to an object’s location within working
memory. Hence object selection and planning a
saccade to the location of that object is faster due to
the already activated representations within working
memory, and participants do not need to see the
object to be able to make a saccade to its location, as
observed in the blank screen paradigm.

Although a recent study showed a correlation
between a working memory construct and predictive
looks towards 4 objects (Huettig & Janse, 2016), we are
not aware of a study showing a more direct link
between working memory and predictive looks.
Working memory has a limited capacity; therefore, if
working memory indeed plays a role in prediction, one
would assume that by increasing the number of poten-
tial object referents in a visual scene, the anticipatory
eye movement behaviour will decrease as participants
can no longer accurately maintain the objects’ represen-
tations online. This prediction is in line with the work of
Sorensen and Bailey (2007), who indeed have shown a
decrease in anticipatory eye-movement behaviour as
the number of objects in the scene increases. Addition-
ally, this behaviour should be modulated by the partici-
pant’s individual working memory capacity. Therefore, in
addition to the main aim of replicating anticipatory eye-
movements in a VWP with increasing items, a correlation
between the participants working memory capacity and
their performance will be explored, to determine
whether any decrease in anticipatory eye-movement
behaviour is indeed due to the increased number of
items the participants need to encode.

If the VWP is indeed an ecologically valid method-
ology to study the interaction of language and the
visual world, then one would predict that anticipatory
eye movements also occur in visually rich environments
resembling the real world. However, as working memory
capacity is limited, even though participants could use
strategies such as “chunking” to reduce the load on
working memory in thematic scenes, we still expect a
decrease in anticipatory eye-movement behaviour
when more items are present (Experiment 2) compared
to Experiment 1.

Experiment 3: less predictable input

Increased realism is not limited to visual complexity. As
displacement is an important and common feature of

present day human communication (Hockett, 1960),
not every sentence in a conversation necessarily refers
to an object in the interlocutor’s immediate environ-
ment. Therefore, in Experiment 3, we will include filler
sentences that refer to objects not present in the
scene. The distribution is such that per scene, only
50% of the sentences refer to any of the objects
present, and only 25% of the total sentences will
utilise verbs that allow the noun to be predicted on
the basis of the visual context. This manipulation there-
fore also tests whether participants would adapt their
predictive behaviour when they realise that the majority
of the referential nouns cannot be predicted and there-
fore it would be relatively inefficient to try.

Although there are many different proposed mechan-
isms underlying prediction (cf. Altmann & Mirković,
2009; Chang et al., 2006; Dell & Chang, 2014; Kahneman,
2011; Kuperberg, 2007; Pickering & Garrod, 2007, 2013),
the majority propose that prediction makes use of pre-
vious experience. Events tend to recur and show regu-
larities and therefore are likely to be an important
organising principle of past experience. As described in
Dell and Chang (2014, p. 4):

the central component of the model tries to predict the
next heard word from the word that preceded it and a
representation of prior linguistic context. It then com-
pares the predicted next word with the actual next
word. The resulting prediction error is used to change
the model’s internal representations, thus enabling the
model to acquire the knowledge that helps it make
these predictions.

Errors in prediction in general are a valuable source of
information about whether an organism’s represen-
tation of the environment is effective, and are the
main mechanism underlying reinforcement learning.
With respect to linguistic prediction, recent preliminary
evidence indeed suggests that predictive behaviour
can be influenced by immediate past experience (i.e.
even within a single experimental session). For instance,
Experiment 2 in Brothers et al. (2017) showed an elimin-
ation of word predictability during a self-paced reading
task when predictable cues were no longer valid. This
suggests that linguistic prediction may not be an auto-
matic process, but can be strategically manipulated as
a function of distributional variation in recent linguistic
input (for further discussion, see Pickering & Gambi,
2018).

In terms of our experimental goal, if a single VWP
session is influential enough to discourage participants
from producing anticipatory eye-movements, this
would suggest that anticipatory eye-movements may
not be very prevalent in ecologically valid interactions
in which speakers also not always necessarily refer to
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entities in their direct environment in each utterance
they produce.

Experiment 4: less obvious attentional focus

Unlike typical studies using the look-and-listen VWP, the
present experiments include an immediate source for
the sentences participants perceive. For each scene a
virtual agent will be present and will speak the sen-
tences to the participant. In our experiments, the partici-
pant faces the virtual speaker, to a certain extent
mimicking naturally occurring communication in which
interlocutors often form a conversational dyad. We
know that, in everyday communication, interlocutors
transform physical space into meaningful space
(Kendon, 1977; Scheflen & Ashcraft, 1976). They typically
use their bodies to separate their joint attentional space
of engagement from the larger outside world (Kendon,
1990a, 1992). Certain objects speakers refer to may be
present within this joint attentional space, whereas
others may be located outside of it in the participant’s
visual periphery (Peeters et al., 2015), and interlocutors
typically keep track of whether they are attending to
something in common (Tomasello, 1995).

In Experiment 4, we exploit the unique affordances of
immersive virtual reality and place object-referents
outside the joint attentional space shared between par-
ticipant and speaker. It is an open question whether the
canonical pattern of anticipatory eye movements repli-
cates when referents are placed slightly outside central
vision in a rich and interactive everyday environment.
Would the typical pattern of anticipatory eye move-
ments have been observed if the critical stimuli were
presented distributed over an entire 3D visual scene,
rather than in central focus of attention in front of a par-
ticipant on a computer monitor? After all, in naturally
occurring communication we also talk not only about
entities that are located directly inside the conversa-
tional dyad between speaker and addressee. Experiment
4 will test whether participants will still consider objects
placed outside the joint attentional space as a potential
target for the sentences uttered by the virtual agent.

Overall aim

In sum, the VWP is an important methodology used to
investigate linguistic prediction. Although it aims to
measure ecologically-relevant behaviour, it comes with
several limitations that may have encouraged behaviour
that the average person may not produce in the real
world. Therefore, in this study we will create a more rea-
listic VWP by placing participants in 3D worlds with the-
matic objects and an actual, virtual speaker. By

increasing the number of objects and manipulating
how often participants hear a sentence with a predict-
able noun-referent, we not only measure anticipatory
eye-movements in real-world contexts, but we are also
able to empirically test whether elements such as
working memory and past experience do indeed play
an important role in linguistic prediction in everyday
settings.

Experiment 1: improving the visual world
paradigm

This study and experiments 1, 2, and 3 were pre-regis-
tered via the Open Science Framework and can be
found under the title: “Language-driven anticipatory
eye-movements in naturalistic settings”. All the data,
stimuli, and analysis scripts are available on the Open
Science Framework under the same title.1 Experiment
4 and Overall Results were not pre-registered and there-
fore fully exploratory. The chosen sample size per exper-
iment was a priori determined to be identical to Eichert
et al. (2018).

Materials and methods

Participants
Twenty native speakers of Dutch (13 female, Mage: 22.8
years, SDage: 3.50 years) were recruited from the Max
Planck Institute for Psycholinguistics database. The
data of 24 participants was recorded, but one participant
was discarded due to insufficient accuracy of the eye-
tracking data and three stated during the debrief stage
that they did not understand the virtual agent properly
(clarity rating < 3 out of 5). The participants gave written
informed consent prior to the experiment and were
monetarily compensated for their participation.

Materials
Virtual agent. The virtual agent was adapted from a
stock avatar produced by WorldViz (Santa Barbara, CA;
“casual03_f_highpoly”). The virtual agent’s appearance
suggested that she was a Caucasian female in her mid-
twenties, which matched the age and ethnicity of the
native Dutch speaker who recorded her speech. All the
virtual agent’s speech was pre-recorded.

Scenes. Eight scenes were designed to represent places
in the virtual agent’s life (her office, her neighbourhood,
her living room, etc.; see Appendix I for a full list of
scenes). The scenes were designed to appear as realistic
as possible (Figure 1) but initially without any objects.
Scenes that came with furniture (such as the table in
Figure 1) were designed such that these items would
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not be predictable given the sentences. Objects were
then placed in realistic locations in each scene. For
example, the car in the neighbourhood scene was
placed in the driveway, the tree was placed on the
grassy lawn, and the basketballs were placed on the side-
walk. The aim was to place the objects in such a way that
they were not overly salient, however, objects always
appeared in the middle screen between the virtual
agent and the participant so that the participant did
not have to search for them. The virtual agent appeared
in each scene in the middle screen such that participants
would feel addressed when she spoke to them.

Objects and sentences. Thirty-two sentence pairs were
created, of which one sentence was restrictive (the verb
imposed constraints on its arguments such that only
one of the visually presented objects was a plausible
completion of the sentence) and one was unrestrictive
(no such constraints were imposed; the sentence could
be completed with at least three of the objects
present in the scene). The sentence pairs therefore
only differed in their verb. For example, a sentence
pair would consist of na werktijd drinkt soms iemand
een kopje koffie (“after work, sometimes someone
drinks a cup of coffee”) versus na werktijd haalt soms
iemand een kopje koffie (“after work, sometimes
someone gets a cup of coffee”; see Appendix I for a
full list of sentences and their English translations). The
verbs were chosen such that their word length and fre-
quency were not significantly different between con-
ditions (length: Mann–Whitney U = 416, p = .189;
frequency: Mann–Whitney U = 475, p = .619).

All the objects present in the experiment were
selected from a standardised database of 3D objects
(Peeters, 2018) to ensure that all objects were easily
identifiable. The experiment contained eight scenes.
Each scene included four sentences; six objects were
present in each scene. This ensured that even with the
fourth sentence, there were still three objects that had
not yet been mentioned, ensuring that participants
could not accurately guess the target object for the
final sentence.

Thirty-eight participants (who were not invited for the
main experiment) completed an online Cloze-like task to
ensure that the target object was the most likely com-
pletion for the restrictive sentences (M: 92.67%, SD:
18.98%) compared to the unrestrictive sentences (M:
19.51%, SD: 21.21%). Participants were given the incom-
plete sentence and asked to choose the most likely com-
pletion from a list of the objects in the scene.

Sentences were recorded in a sound-proof booth,
sampling at 44.1 kHz (stereo, 16 bin sampling resol-
ution). All files were equalised for maximal amplitude.
Sentences were annotated using Praat (Boersma &
Weenink, 2009) by placing digital markers at onsets
and offsets of critical words: Verb onset, verb offset,
noun onset, noun offset, and end of sentence. The
mean duration of the sentences was 2,474 ms. During
recording of the sentences, we ensured an average of
571 ms (SD: 116 ms) between the end of the verb and
the start of the noun (time of interest [TOI]), as previous
research has shown that at least 500 ms is necessary to
successfully allow prediction effects (Salthouse et al.,
1999). Typically, verb and noun were separated by at

Figure 1. Example scene. The figure illustrates the living room scene, one of eight scenes used in this study. Participants, wearing 3D-
glasses, stood in the middle of the room during the task and were allowed to move their heads to view the entire scene. The location
of the two screens to the left and right gives the participants a feeling of being immersed in the scene. The virtual agent was always
present on the middle screen, to ensure participants were able to locate her easily and would feel addressed when she spoke to them.
The 6 objects present (mirror, piano, letter, shoes, door, and table in this specific scene) were placed in naturalistic locations and scaled
to realistic proportions relative to the room. Participants heard four sentences while viewing this scene, two of which were restrictive
(e.g. Tonight, I should remember to mail the letter) and two of which were unrestrictive (e.g. Tonight, I should remember to move the
letter). In this case, a pre-test indicated that participants found the letter the only mail-able object in the scene, yet they found the
letter, mirror, piano, shoes, and table moveable.
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least two words (e.g. an article and an adverb). We
observed no significant difference in the length of the
TOI between the two conditions (t(62) =−0.51, p = .612).

Apparatus

CAVE system
The experiment was run in a CAVE Virtual Reality set-up
(see Figure 1), the layout of which has been described
before in detail (Eichert et al., 2018, see their Figure 4).
The CAVE system consisted of three screens (255 cm x
330 cm, VISCON GmbH, Neukirchen-Vluyn, Germany)
that were arranged at right angles. Two projectors
(F50, Barco N.V., Kortrijk, Belgium) illuminated each
screen indirectly through a mirror behind the screen.
The two projectors showed two vertically displaced
images which were overlapping in the middle of the
screen. Thus, the complete display on each screen was
only visible as combined overlay of the two projections.
For optical tracking, infrared motion capture cameras
(Bonita 10, Vicon Motion Systems Ltd, UK) and Tracker
3 software (Vicon Motion Systems Ltd, UK) were used.
The experiment was programmed and run using 3D
application software (Vizard, Floating Client 5.4, World-
Viz LLC, Santa Barbara, CA), which makes use of the pro-
gramming language Python. Sound was presented
through two speakers (Logitech, US) that were located
at the bottom edges of the middle screen.

Eye-tracking
Eye-tracking was performed using special glasses (SMI
Eye-Tracking Glasses 2 Wireless, SensoMotoric Instru-
ments GmbH, Teltow, Germany) that combine the
recording of eye gaze with the 3D presentation of VR.
The recording interface used was a tablet that was con-
nected to the glasses by cable. The recorder communi-
cated with the externally controlled tracking system
via a wireless local area network, which enabled live
data streaming.

The glasses were equipped with a camera for binocu-
lar 60 Hz recordings and automatic parallax compen-
sation. The shutter-device and the recording interface
were placed in a shoulder bag worn by the participants.
This enabled the participants to move freely through the
CAVE if they so chose. In reality, the participants stayed
standing in the centre of the room, roughly 180 cm away
from the central screen. Gaze tracking accuracy was esti-
mated by the manufacturer to be 0.5° over all distances.
We found the latency of the eye-tracking signal to be
60 ms ± 10 ms. This latency was corrected for in the stat-
istical analyses (see below).

By combining eye-tracking and optical head-tracking,
we were able to identify the exact location of

participants’ eye gaze in three spatial dimensions, allow-
ing them to move their heads during the experiment.
Optical head-tracking was accomplished by placing
light reflectors on both sides of the glasses. Three spheri-
cal reflectors were connected on a plastic rack and two
of such racks with a mirrored version of the given geo-
metry were manually attached to both sides of the
glasses using magnetic force. The reflectors functioned
as passive markers which were detected by the infrared
tracking system in the CAVE. The tracking system was
trained to the specific geometric structure of the three
markers and detected the position of the glasses with
an accuracy of 0.5 mm.

Regions of interest
In order to determine target fixations, we defined indi-
vidual 3D regions of interest (ROIs) around each object
in the virtual environment. The x (width) and y (height)
dimensions of the ROI were adopted from the frontal
plane of the object’s individual bounding box, facing
the participant. We adjusted the size of this plane to
ensure a minimal size of the ROI. The minimal width
was set to 0.8 and the minimal height to 0.5. For the pre-
sented layout of objects, the adjusted x and y dimen-
sions were sufficient to characterise the ROIs. Despite
the 3D view, the plane covered the whole object
sufficiently to capture all fixations. The z dimension
(depth) of the ROI was therefore set to a relatively
small value of 0.1. An increased z value of the ROIs
would not have been more informative about the gaze
behaviour, but would have led to overlapping ROIs in
some cases. The eye-tracking software automatically
detected when the eye gaze was directed to one of
the ROIs and coded the information online in the data
stream. Some previous studies have used contours of
the objects to define ROIs, but rectangles have been
shown to produce qualitatively similar results
(Altmann, 2011; Eichert et al., 2018). In addition to the
six objects in each scene, an ROI was also coded for
the virtual agent.

Design and procedure

Participants were instructed to stand in the middle of the
CAVE system, roughly 180 cm away from the middle
screen. They put on the VR glasses, which were softly fas-
tened using a strap on their head to ensure stability. Prior
to the start of the experiment, two calibration steps were
performed. For the first calibration step, calibration was
done using the SMI software “One-step Calibration” pro-
gramme. The second calibration step is as described by
Eichert et al. (2018): Participants were asked to look at
three displayed spheres successively. The experimenter
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selected the corresponding sphere. The computer soft-
ware computed a single dimensionless error measure
of the eye-tracker combining the deviance in all three
coordinates. The computer-based calibration was
repeated until a minimal error value (<4) and thus
maximal accuracy was reached. Deviance was checked
during the break and re-calibrated using the three-
sphere procedure if the error value was greater than
4. This was only necessary for one participant.

Prior to the start of the experiment, participants were
informed that they would be given a tour of a virtual
agent’s life and that the goal of the experiment was to
form an opinion of the virtual agent. After the virtual
reality portion, they were told they would be given a
questionnaire asking for their opinion of the virtual
agent. This ensured that the participants paid attention
to the virtual agent and drew potential attention away
from the objects. During the debrief stage, none of the
participants had guessed at the purpose of the exper-
iment, although one participant thought that they had
to memorise which objects were present in each scene.

Participants were presented with two experimental
blocks of four scenes each. The first block contained the
office, forest, café, and canteen scene; the second block
contained the living room, bathroom, attic, and neigh-
bourhood scene (seeAppendix I). All sceneswere random-
ised within each block for each participant, although the
living room scene was always the first scene presented
in the second block for all participants (see below). Each
scene had a preview time of 1s before the virtual agent
gave a short introduction (M = 2.02s), after which there
was a 2.5s wait time before the first sentence was
played. This gave participants an average of 4.5s preview
time of each scene. For the living room scene, the virtual
agent’s introductory text was “welcome to my house”
and hence it was always the first scene of that block. The
task took around 7 min to complete.

We created two lists of 32 restrictive sentences and 32
unrestrictive sentences taken from each sentence pair.
No list contained both the restrictive and unrestrictive
versions of the same sentence pair. Participants were
assigned to a list based on their participant number
(odd participants were assigned to list 1; even partici-
pants were assigned to list 2). Sentences were presented
randomly within each scene for each participant. As the
last sentence presented in each scene meant that the
participants had had a maximal viewing time of the
scene and its objects compared to the first sentence pre-
sented, by randomising the sentences, this balanced out
any beneficial effects across the experiment.

Participants were given a self-timed break after the
fourth scene. During this time participant’s calibration
was checked and re-calibrated if necessary. Calibration

was also checked at the end of the experiment. After
the experiment, participants were given a debrief ques-
tionnaire in which they were asked to rate the clarity of
the virtual agent’s speech as well as indicate which
objects they heard the virtual agent refer to. This list con-
tained all the objects present in the experiment, of
which only 66.67% were actually named by the virtual
agent. Accuracy on this questionnaire was taken as an
indication of how well the participants paid attention
to what the virtual agent was saying.

Statistical analyses

Data was acquired at a sampling frequency of 60 Hz. We
corrected for the 60 ms latency shift caused by the eye-
tracking system by time-locking the data to 60 ms (∼4
frames) after each sentence onset. A fixation was
defined as a look to the same ROI that lasted at least
100 ms. This correction on the experimental data led
to an exclusion of 6.93% of all frames logged as object
fixations, and 2.36% of all frames logged as virtual
agent fixations. Fixation data was then aggregated into
time bins of 50 ms (i.e. three data frames).

We followed the steps outlined in Porretta et al.
(2017) for analysing visual world paradigm data with
general additive mixed models (GAMM). This differs
from the approach we preregistered, as we reported
that we would use generalised linear mixed effects
models (GLMER). Unlike ANOVAs or GLMER, GAMM
does not assume linearity (although it can find a linear
form if supported by the data). Instead, GAMM strikes
a balance between model fit and the smoothness of
the curve using either error-based or likelihood-based
methods in order to avoid over- or under-fitting. Thus,
the data guide the functional form (Hastie & Tibshirani,
1990). The p-value provided therefore indicates
whether or not the curve is significantly different from
zero (a flat line). Additionally, GAMM also allows the
inclusion of random effects to capture the dependencies
between repeated measures. As discussed in Porretta
et al. (2017), VWP experiments produce time-series
data in which the sequential measurements tend to be
correlated. This “autocorrelation” violates the assump-
tions of many statistical tests (Baayen et al., 2016), and
is a problem also not addressed in growth curve analysis,
where it results in an increased risk of overconfidence
(for a further comparison of growth curve analysis and
GAMMs, we refer the reader to Porretta et al. (2017),
p. 271). Additionally, as VWP time series data are rarely
linear, this poses challenges for statistical methods that
assume a linear relationship (such as GLMER). Statistical
“work-arounds” often involve data simplification, result-
ing in the potential loss of information, or an incorrect
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reflection of the true underlying trends. As the paper by
Porretta and colleagues outlines how GAMM analysis
can be applied specifically to VWP data, we opted to
diverge from our pre-registration. The data were never
analysed using GLMER.

The analysis was conducted using the mgcv package
(version 1.8-22; Wood, 2017) and itsadug package
(version 2.3; van Rij et al., 2017) in R (version 3.4.2; R
Core Development Team, 2011). As the dependent vari-
able we entered the empirical logits of the proportion of
target fixations per time bin. Instead of random effects
or random slopes, we used random smooths as they
adjust the trend of a numeric predictor in a non-linear
way. We built the model as per the procedure outlined
in Porretta et al. (2017).

The model included random smooth interactions for
Time by Subject, factor smooth interactions for Time by
Sentence, as well as a smooth for Time by Condition
(restrictive versus unrestrictive; sum contrast coded). We
included Condition as a parametric component, which is
necessary to estimate the time curve for each level of Con-
dition. We also included weighted linear regression over
empirical logits as weights in the model (Barr, 2008).
After fitting the model, we determined an appropriate
value for the AR1 parameter using the start_value_rho
to account for autocorrelation in the residuals (i.e.
error). We used the function plot_diff to approximate
the time intervals of significant differences between con-
ditions based on the model predictions.

Results

Participants were able to accurately identify which
objects the virtual agent had named and which she

had not named 90.25% of the time (SD: 8.19%) after
the experiment. Therefore, we are confident that all par-
ticipants listened to the virtual agent throughout the
experiment.

Inspection of the grand mean
To determine whether participants fixated on the target
object at all during each trial, regardless of condition, we
plotted the proportion of target fixations collapsed over
all participants, trials, and conditions (Figure 2A). For this
figure, each trial is time-locked to verb onset to give an
accurate indication of eye movement behaviour in the
moments after the verb is comprehended. Visual assess-
ment of the grand mean shows a robust increase in the
proportion of fixation to the target object after the noun
was mentioned.

Effect of condition
For the main statistical analysis, we defined a critical
time window where we expected the experimental
manipulation to have an effect on the proportion of
target fixations. We chose the onset of the critical
window as 200 ms after verb onset, assuming that it
takes approximately 200 ms to plan and initiate a sacca-
dic movement (Matin et al., 1993). As offset of the critical
time window we chose the average onset of the noun
(900 ms after verb onset), in line with previous studies
(Altmann & Kamide, 1999; Eichert et al., 2018).

We performed a generalised additive mixed model
(GAMM) analysis as outlined in Porretta et al. (2017).
The model included factor smooth interactions for Time
by Subject, factor smooth interactions for Time by Sen-
tence, as well as a smooth for Time by Condition (restric-
tive versus unrestrictive). We included Condition as a

Figure 2. Mean proportions of fixations. A. To the target object and virtual agent. B. To the target and distractor objects shown per
condition. Vertical lines indicate critical time points. 0 ms indicates verb onset, the label “start of critical window” is the start of the
critical window (200 ms after verb onset). The main statistical analysis was performed on the interval between the start of the critical
window and noun onset. Error clouds indicate standard error.
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parametric component. After fitting themodel, we deter-
mined an appropriate value for the AR1 parameter, in this
case ρ =−0.10, to account for autocorrelation in the
residuals (i.e. error). Table 1 provides a model summary.

The model output for a GAMM consists of two sec-
tions. The Parametric Coefficients report the non-
smoothed (i.e. linear) estimates. The Smooth Terms
report the smoothed factors, as defined in the model.
If the Estimated Degrees of Freedom are equal to 1,
that means the correlation was linear. Anything greater
than 1 indicates a non-linear relationship.

The model revealed that the parametric coefficient
Condition was significant, suggesting that a linear
model would also have revealed a significant difference
between the restrictive and unrestrictive conditions. The
smooth curve for the restrictive condition as a function
of time (Smooth for Time – Restrictive) was significantly
different from zero (i.e. the curve changed significantly
over time), whereas this was not the case for the unrest-
rictive condition (Smooth for Time – Unrestrictive, p
= .293). This suggests that there is a significant increase
in target fixations over time (within the critical window)
for the restrictive, but not the unrestrictive, condition.

In addition to an inspection of the model summary,
the itsadug package also allows for a visual comparison
of the model’s estimates (via the plot_diff function) to
test for significance. It does this by the visual plotting
of the estimated difference between two conditions (in
this case, restrictive versus non-restrictive) from a
GAMM. In addition to a visual plot of the differences,
the function also gives as output the time window in
which the two factors are significantly different from
each other, allowing us to narrow down, within the criti-
cal window, to when the two conditions significantly
deviate. The difference between the restrictive and
unrestrictive condition was significant between 398
and 900 ms after the start of the critical window, esti-
mated based on the model. Fixation proportions time-
locked to verb onset are illustrated in Figure 2B.

We performed the same analysis on the mean distrac-
tor fixations. The model revealed the same effects,
except that now there was a significant effect for the
unrestrictive condition (p = .011) and not the restrictive
condition (p = .329). The difference between the restric-
tive and unrestrictive condition became significant
between 314 and 900 ms after the start of the critical
window.

These results are consistent with the hypothesis that
participants directed their gaze towards the target
object before noun onset in the restrictive condition,
but not in the unrestrictive condition. Complementary
to the target fixations, fixations to the distractor
objects revealed that participants fixated more on dis-
tractor objects during the unrestrictive condition com-
pared to the restrictive condition. There was no effect
of condition on the proportion of fixations on the
virtual agent (p > .203).

Experiment 2: more potential referents

Experiment 1 showed the standard anticipatory eye
movement effects seen in the literature (Altmann &
Kamide, 1999; Eichert et al., 2018), even in the more rea-
listic setting our virtual reality system provided. As a next
step, we enhanced the complexity of our scenes by
increasing the number of objects in each scene from 6
to 10. For each sentence, the participants will therefore
have to select from 10 potential objects within 500 ms.
We additionally measured the participant’s working
memory capacity using a sequential comparison task
with the aim of correlating it to their anticipatory eye-
movement behaviour.

Materials and methods

Participants
Twenty native speakers of Dutch (17 female, Mage: 21.5
years, SDage: 1.76 years) were recruited from the Max
Planck Institute for Psycholinguistics database. These
participants had not participated in the previous exper-
iment. The data of 27 participants was recorded, but six
participants were discarded due to insufficient accuracy
of the eye-tracking data and one stated during the
debrief stage that they did not understand the virtual
agent properly (clarity rating < 3 out of 5). The partici-
pants gave written informed consent prior to the exper-
iment and were monetarily compensated for their
participation.

Materials and design
The same materials and apparatus were used as
described for Experiment 1. We selected four extra

Table 1. Summary of the generalised additive mixed model for
changes in target fixations over time, per condition (restrictive
versus unrestrictive sentences) for Experiment 1.

Parametric coefficients:

Estimate SE t-value p-value

Intercept −1.64 0.05 −30.98 <.001 ***
Condition −0.10 0.02 −4.21 <.001 ***
Smooth terms

edf Ref.df F-value p-value
Smooth for Time – Unrestrictive 1 1 1.11 .293
Smooth for Time – Restrictive 1.18 1.28 14.05 <.001 ***
Random effect for Subjects 58.80 179 3.18 <.001 ***
Random effect for Sentences 170.66 575 2.22 <.001 ***

*** < .001.
Effective degrees of freedom (edf), reference degrees of freedom (Ref.df).
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objects per scene that fit the theme of the scene (for
example, a calculator in the office scene – see Appendix
I for a full list of added objects). The objects were not
predictable given the restrictive verbs used in that
scene, however, they were allowed to be candidates
for completion in the unrestrictive conditions (i.e. “my
colleagues hate it when someone throws away a – ”).
The objects were placed in realistic locations within
each existing scene.

Visual working memory task
We used a saccadic adaptation of the sequential com-
parison task (Heyselaar et al., 2011; Luck & Vogel, 1997)
to assess visual working memory capacity. We chose
this task as it arguably reflects the working memory
used to complete the anticipatory language task in a
reliable way: Participants view objects to be remem-
bered and make a saccadic eye movement to the
target object. The visual working memory task was per-
formed after the participants completed the recall ques-
tionnaire and was conducted in the CAVE system.
Although the items were not rendered as 3D, the CAVE
enabled us to use the eye-tracking system to record
their eye movements and fixations. The visual working
memory task took place on the middle screen only,
with the entire array visible without the participant
needing to move their head.

Our task is based on the one described by Heyselaar
et al. (2011). Stimulus arrays consisted of sets of two to
five coloured squares presented around a central
fixation spot (Figure 3). For each set size, the spatial
configuration of the squares remained identical across
trials. For set size two, squares were on the right and
left sides of the fixation spot. For set size three to five,
squares were arranged equidistantly from each other
with one square located directly above the fixation spot.

The colour of each square was chosen randomly from
a pre-determined library of six colours highly discrimin-
able from each other. We used the Adobe Color Wheel
(www.color.adobe.com) to choose six analogous
colours. A given colour could only appear once in each
array.

Figure 3 depicts the order of events in one trial. Each
trial began with the presentation of a white fixation spot
at the centre of the middle screen. Participants were
required to fixate this spot for a jittered period of 500–
800 ms. While they maintained fixation, a memory
array composed of a randomly determined set of two
to five squares was presented for 100 ms. Offset of the
memory array was followed by a 900 ms retention inter-
val, in which the display screen was blank with the
exception of the central fixation spot. At the end of
the retention interval, a test array was presented

consisting of the same number and spatial configuration
of the squares as in the memory array, but with the
colour of one square changed. Concurrent with this,
the fixation spot was dimmed and participants were
required to make a saccade to the location of the
changed square within 2 s. An inter-trial interval of a jit-
tered 1000–1500 ms followed before the next trial
started.

Participants completed 80 trials, 20 for each set size.
For each trial, there was always one square that was
changed. The first square fixated was taken as the par-
ticipant’s response. Therefore, participants could not
fixate all squares within the 2s and still be marked as
correct (unless the first square fixated was the changed
square). This task took around 10 min to complete.

Statistical analysis
The same statistical analysis was used as described in
Experiment 1. We removed 9.47% of all frames logged
as object fixations and 4.70% of all frames logged as
virtual agent fixations.

Results

Participants were able to accurately identify which
objects the virtual agent had named and which she
had not 90.53% of the time (SD: 6.96%) after the exper-
iment. Therefore, we were confident that all participants
listened to the virtual agent throughout the experiment.

Figure 3. Depiction of a correctly performed trial in the sequen-
tial comparison task. Dotted lines and arrow represent current
eye position and the saccade response. Participants were
required to maintain fixation on the central fixation spot until
the spot turned grey, signalling that they were allowed to
move their eyes. Adapted from Heyselaar et al. (2011).
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Figure 4A illustrates the grand mean for this exper-
iment. We again observed a robust increase in the pro-
portion of looks to the target object after it was
named. Figure 4B illustrates the proportion of looks
per condition over time. After fitting the model, we
determined an appropriate value for the AR1 parameter,
in this case ρ =−0.03, to account for autocorrelation in
the residuals (i.e. error). Table 2 reports the summary
output of the GAMM analysis.

We again observed an increase in the proportion of
looks to the target object as a function of time for the
restrictive (p = .015) but not the unrestrictive (p = .936)
condition. The difference between the two conditions
became significant between 688 and 900 ms after verb
onset, based on the model. No effect of condition
on the proportion of distractor fixations was observed
(p > .181).

We thus again observed anticipatory eye-movement
behaviour for the restrictive condition versus the unrest-
rictive condition, in spite of an increase in the number of
potential target objects. This suggests that, even in scenes

enriched with more objects, participants anticipated
which object the virtual agent would name on the basis
of restrictive information encountered at the verb.

An additional analysis was conducted that tested for
the role of individual differences in working memory
capacity in driving participants’ anticipatory eye move-
ments in Experiment 2. The observed median working
memory capacity in our participants was 2.67 items (M
= 2.66), in line with previous visual working memory
capacity studies using the sequential comparison task
(Luck & Vogel, 1997; Vogel et al., 2006; Vogel & Machi-
zawa, 2004, inter alia). We next conducted a GAMM
analysis to determine whether working memory
capacity could influence the anticipatory eye-movement
behaviour of the participant. The model included a
factor smooth for Subject, a factor smooth for Sentence,
as well as a smooth forWorking Memory Capacity by Con-
dition (restrictive versus unrestrictive). We included Con-
dition as a parametric component. Table 3 reports the
summary output of the GAMM analysis. A significant
effect of working memory on anticipatory eye

Figure 4. Mean proportions of fixations. A. To the target object and virtual agent. B. To the target and distractor objects shown per
condition. Vertical lines indicate critical time points. 0 ms indicates verb onset, the label “start of critical window” is the start of the
critical window (200 ms after verb onset). The main statistical analysis was performed on the interval between the start of the critical
window and noun onset. Error clouds indicate standard error.

Table 2. Summary of the generalised additive mixed model for
changes in target fixations over time, per condition (restrictive
versus unrestrictive sentences) for Experiment 2 (More
referents).

Parametric coefficients:

Estimate SE t-value p-value

Intercept −1.73 0.04 −39.93 <.001 ***
Condition −0.07 0.04 −1.66 .097
Smooth terms

edf Ref.df F-value p-value
Smooth for Time – Unrestrictive 0.24 0.38 0.01 .936
Smooth for Time – Restrictive 1 1 5.90 .015 *
Random effect for Subjects 20.81 25.33 4.81 <.001 ***
Random effect for Sentences 149.88 574 2.80 <.001 ***

*** < .001
Effective degrees of freedom (edf), reference degrees of freedom (Ref.df).

Table 3. Summary of the generalised additive mixed model for
changes in target fixations per working memory capacity, per
condition (restrictive versus unrestrictive sentences).

Parametric coefficients:

Estimate SE t-value p-value

Intercept −1.68 0.06 −29.83 <.001 ***
Condition −0.07 0.04 −1.60 .109
Smooth terms

edf Ref.df F-value p-value
Smooth for WM – Unrestrictive 1 1 0.03 .867
Smooth for WM – Restrictive 7.13 8.08 4.34 <.001 ***
Random effect for Subjects 13.55 15.00 25.26 .002 ***
Random effect for Sentences 58.68 62.00 22.27 <.001 ***

*** < .001.
Effective degrees of freedom (edf), reference degrees of freedom (Ref.df).
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movements for the restrictive condition (p < .001) was
observed.

For illustrative purposes, we have categorised partici-
pants as having low working memory (<2.67) or high
working memory (> 2.67). Figure 5 illustrates the
fixation patterns of these two groups, per condition.

Modelling visual working memory capacity as a con-
tinuous variable in the GAMM model, the results
suggest that participants with a higher working
memory capacity showed anticipatory eye-movement
behaviour earlier and more robustly compared to their
peers with a lower working memory capacity.

Experiment 3: manipulating referent
predictability

Experiments 1 and 2 have shown that participants
show anticipatory eye movement behaviour during
restrictive sentences even when faced with rich every-
day scenes including 10 potential referent objects. This
could be because every sentence spoken by the virtual
agent concerned an object in the scene, a pattern that
participants could have realised early in the exper-
iment. Therefore, in Experiment 3 we introduced
eight filler sentences per scene: Sentences that did
not concern objects present in the scene. These filler
sentences were similar to the restrictive/unrestrictive
sentences in that they did concern an object (e.g.
“People bring their own briefcase to work”) and there-
fore participants were not able to detect whether a
sentence spoken by the virtual agent was a filler or
not until the object was named. Verbs were again

controlled to ensure that they were not predictive of
objects already present in the scene. In sum, in this
experiment only 50% of all sentences spoken con-
cerned an object that the participants could fixate,
and in only 25% of all sentences spoken, a unique
target object could be anticipated given the verb.

Materials and methods

Participants
Twenty native speakers of Dutch (12 female, Mage: 22.7
years, SDage: 2.11 years) were recruited from the Max
Planck Institute for Psycholinguistics database. These
participants had not participated in the previous exper-
iments. Data from one additional participant was dis-
carded due to insufficient accuracy of the eye-tracking
data. The participants gave written informed consent
prior to the experiment and were monetarily compen-
sated for their participation.

Materials
The same materials were used as described for Exper-
iment 1. We created eight extra filler sentences per
scene (64 extra sentences in total). Frequency of the
verbs between the three conditions (restrictive, unrest-
rictive, and filler) was not significantly different (F
(2,127) = 1.861, p = .160) although length was (F(2,127)
= 8.12, p < .001). Post-hoc comparison showed that the
filler verbs were significantly longer (M = 7.59 characters,
SD = 2.32, Tukey’s HSD, p < .033) compared to the
restrictive (M = 5.91 characters, SD = 1.69) and unrestric-
tive (M = 6.47 characters, SD = 1.78) conditions.

Figure 5. Mean proportions of target fixations for participants with low (<2.67 items) and high working memory capacity (>2.67
items), per condition. The analysis treated working memory capacity as a continuous variable and illustrates a significant effect of
working memory on anticipatory eye movements for the restrictive condition (p < .001). Error clouds represent standard error.
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Sentences from all three conditions were presented
randomly in each scene. Due to the increase in sen-
tences, the task took 15 min to complete.

Statistical analysis
The same statistical analysis was used as that described
in Experiment 1. We removed 7.67% of all frames logged
as object fixations and 2.32% of all frames logged as
virtual agent fixations.

Results

Participants were able to accurately identify which
objects the virtual agent had named and which she
had not 82.68% of the time (SD: 8.67%) after the exper-
iment. Therefore, we are confident that all participants
listened to the virtual agent throughout the experiment.

Figure 6A illustrates the grand mean for this exper-
iment. We again observed a robust increase in the pro-
portion of looks to the target object after it is named.
Figure 6B illustrates the proportion of looks per

condition. Table 4 reports the summary output of the
GAMM analysis. For this analysis, the filler condition
was not included as, by definition, there was no target
object to fixate. After fitting the model, we determined
an appropriate value for the AR1 parameter, in this
case ρ =−0.04, to account for autocorrelation in the
residuals (i.e. error).

We again observed an increase in the proportion of
looks to the target object as a function of time for the
restrictive (p < .001) but not the unrestrictive (p = .458)
condition. The difference between the two conditions
became significant between 710 and 900 ms after the
start of the critical window. We observed no effect of
condition on the proportion of distractor fixations for
any of the three conditions (restrictive: p = .551; unrest-
rictive: p = .646; filler: p = .716).

Thus, we again observed significant anticipatory eye-
movement behaviour for the restrictive condition, even
though this behaviour was only efficient for 25% of
the sentences heard. Appendix II presents a post-hoc
analysis showing that the pattern of anticipatory eye
movements changed over time during the course of
the experiment, the most important finding being that
no anticipatory eye-movements were observed during
the last two scenes in the experiment. This suggests
that previous experience did cause participants to stop
producing anticipatory eye-movements, suggesting
that participants stopped predicting the referent
object within a single experimental session.

Experiment 4: objects outside the joint
attentional space

This series of experiments is the first, to our knowledge,
to include a dynamic visible source (i.e. an actual

Figure 6. Mean proportions of fixations. A. To the target object and virtual agent. B. To the target and distractor objects shown per
condition. Vertical lines indicate critical time points. 0 ms indicates verb onset, the label “start of critical window” is the start of the
critical window (200 ms after verb onset). The main statistical analysis was performed on the interval between start of the critical
window and noun onset. Error clouds indicate standard error.

Table 4. Summary of the generalised additive mixed model for
changes in target fixations over time, per condition (restrictive
versus unrestrictive sentences) for Experiment 3 (Less
predictable input).

Parametric coefficients:

Estimate SE t-value p-value

Intercept −1.77 0.04 −46.17 <.001 ***
Condition −0.05 0.03 −1.50 .133
Smooth terms

edf Ref.df F-value p-value
Smooth for Time – Unrestrictive 1.96 2.33 1.00 .458
Smooth for Time – Restrictive 1 1 19.84 <.001 ***
Random effect for Subjects 41.25 179 1.30 <.001 ***
Random effect for Sentences 157.12 574 2.40 <.001 ***

*** < .001.
Effective degrees of freedom (edf), reference degrees of freedom (Ref.df).
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speaker) for the sentences presented during look-and-
listen VWP studies. The motivation behind including a
virtual agent was part of the aim of Experiment 1:
Making the VWP more realistic and therefore more eco-
logically valid. However, the inclusion of the virtual
agent also presented an opportunity to investigate the
role of joint attentional space in prediction studies,
another component that, to our knowledge, has not
been investigated previously. Therefore, this experiment
was decided on post hoc and was not included in the
pre-registration.

In order to manipulate joint attentional space, the
same set-up as in Experiment 1 was used (6 objects, 4
sentences per scene), however the target objects were
placed outside the joint attentional space between the
virtual agent and the participant. As the virtual agent
was always present in the middle screen, directly in
front of the participant, outside joint attentional space
was defined as the left or right screen (see Figure 1).
Target objects were divided equally between these
screens. The location of the distractor objects was
unchanged compared to Experiment 1.

Materials and methods

Participants
Twenty native speakers of Dutch (17 female, Mage: 22.4
years, SDage: 2.44 years) were recruited from the Max
Planck Institute for Psycholinguistics database. These
participants had not participated in the previous exper-
iments. The data of 24 participants was recorded, but
three participants were discarded due to insufficient
accuracy of the eye-tracking data and one stated
during the debrief stage that they did not understand
the virtual agent properly (clarity rating < 3 out of 5).

The participants gave written informed consent prior
to the experiment and were monetarily compensated
for their participation.

Materials
The same materials were used as described for Exper-
iment 1. Only the location of the four target objects
per scene was changed such that two were present on
each of the peripheral screens.

Statistical analysis
The same statistical analysis was used as that described
in Experiment 1. We removed 11.85% of all frames
logged as object fixations and 5.18% of all frames
logged as virtual agent fixations.

Results

Participants were able to accurately identify which
objects the virtual agent had named and which she
had not named 93.16% of the time (SD: 4.78%) after
the experiment. Therefore, we are confident that all par-
ticipants listened to the virtual agent throughout the
experiment.

Figure 7A illustrates the grand mean for this exper-
iment. We did not see the robust increase in the pro-
portion of looks to the target object that we observed
in the other experiments. In fact, the peak (0.13)
occurred 976 ms after sentence offset. This suggests
that some participants did search for the object, even
after it was named; however, the majority did not.
Only 37.42% of the target objects had been fixated by
the participants before they were named by the virtual
agent. However, even for these fixated objects (229
trials), we still observed no anticipatory behaviour (see

Figure 7. Mean proportions of fixations. A. To the target object and virtual agent. B. To the target and distractor objects shown per
condition. Vertical lines indicate critical time points. 0 ms indicated verb onset, the label “start of critical window” is the start of the
critical window (200 ms after verb onset). The main statistical analysis was performed on the interval between the start of the critical
window and noun onset. Error clouds indicate standard error.
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below). As the target objects were not present in the
joint attentional space between the participant and
the virtual agent (whereas they were in Experiment 1),
they may have been encoded differently (or even not
at all) and hence not considered as a potential target
in the upcoming sentence.

Figure 7B illustrates the proportion of looks per con-
dition. Table 5 reports the summary output of the GAMM
analysis.

As illustrated in Figure 7B, there were no anticipatory
looks to the target object during the critical window.

The results suggest that only objects located in the
joint attentional space between the virtual agent and
the participant are considered potential referents in
the sentence. This conclusion is supported not only
by the lack of anticipatory looks within the critical
window, but also by a lack of increased target
fixations after the sentence was spoken (there was
only a 13% increase, compared to the >20% in the
other three studies; see Overall Results). This suggests
that hearing a restrictive verb does not initiate a
visual search from the participant to look for an
object that could fit that verb if none exist within the
joint attentional space directly between speaker and
addressee.

Overall results

For an overall comparison across experiments, Figure 8
illustrates the looks to the target object in the restrictive
condition only, for each of the four experiments. We con-
ducted a GAMM analysis to determine whether the
observed anticipatory eye-movements in Experiments
2–4 were significantly different from those observed in
Experiment 1, during the critical window. For this analy-
sis, we created a difference smooth for Experiment 1
compared to each experiment individually (i.e. Exper-
iment 1–2, Experiment 1–3, and Experiment 1–4).

Therefore, the model not only analyses the difference
between the curves, but also whether the steepness of
the different curves is statistically the same (van Rij,
2015). As this involved separate models for each com-
parison, we have included the model outputs in the sup-
plementary materials.

The results confirmed what is illustrated in Figure 8:
The overall looks to the target object in the restrictive
condition, during the critical window, were signifi-
cantly higher for Experiment 1 compared to the
other experiments (although this difference is marginal
for Experiment 2 as p = .069). The models also allowed
us to investigate differences in the steepness of the
curves displayed in Figure 8. The models showed a sig-
nificant difference (p = 0.48) for Experiment 1 com-
pared to Experiment 2 (More Objects). In other
words, participants fixated on the target objects less
quickly (i.e. a less steep curve) for Experiment 2 com-
pared to Experiment 1. There was no significant differ-
ence in the steepness of the curve for Experiment 1
compared to Experiment 3 (More Fillers; p = .135). In
other words, even though there were more overall
looks to the target object in Exp. 1 compared to
Exp. 3, the speed at which the participants fixated
on these objects was not significantly different
between the two experiments. For Experiment 1 com-
pared to Experiment 4 (Outside Shared Space), there
was a significant difference in both the overall com-
parison of looks to target objects, as well as the
speed at which this was done, providing more statisti-
cal evidence for a lack of anticipatory eye-movements
in our fourth experiment.

Table 5. Summary of the generalised additive mixed model for
changes in target fixations over time, per condition (restrictive
versus unrestrictive sentences) for Experiment 4 (Less
attentional focus).

Parametric coefficients:

Estimate SE t-value p-value

Intercept −1.89 0.02 −89.79 <.001 ***
Condition 0.02 0.02 1.38 .169
Smooth terms

edf Ref.df F-value p-value
Smooth for Time – Unrestrictive 1 1 0.63 .429
Smooth for Time – Restrictive 1 1 1.88 .170
Random effect for Subjects 35.02 179 1.02 <.001 ***
Random effect for Sentences 96.19 574 1.55 <.001 ***

*** < .001.
Effective degrees of freedom (edf), reference degrees of freedom (Ref.df).

Figure 8. Mean proportions of fixations per experiment to the
target object during the restrictive condition. Vertical lines indi-
cate critical time points. 0 ms indicates verb onset, the label
“start of critical window” is the start of the critical window
(200 ms after verb onset). Experiment 1 induced significantly
more fixations to the target object for both plots (p < .007).
Error clouds represent standard error.
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Discussion

Prediction is commonly considered a central component
of cognition. When processing incoming language
input, the fact that we may predict upcoming words is
generally used to explain why conversation in general
and turn-taking in particular are often such efficient
communicative activities. In four virtual reality exper-
iments, we tested whether a well-established marker of
linguistic prediction (i.e. anticipatory eye movements
as observed in the visual world paradigm) replicated
when increasing the naturalness of the paradigm by
means of (i) immersing participants in naturalistic every-
day scenes, (ii) increasing the number of potential refer-
ents present, (iii) modifying the proportion of
predictable noun-referents in the experiment, and (iv)
manipulating the location of referents inside and
outside of the interlocutors joint attentional space.
After all, previous experimental studies have mainly
shown that listeners can predict, not necessarily that
they do predict in naturalistic everyday settings.

In the current study we used anticipatory eye-move-
ments as a measure of prediction (Altmann & Kamide,
1999). If participants predict the upcoming referent in
naturalistic situations, we would expect robust anticipat-
ory eye-movements towards the referent object after
participants heard the restrictive verb (i.e. when the
target object was identifiable based on the verb alone)
compared to the unrestrictive verb (i.e. when the
target object could not be identified based on verb
information alone). Thus, if participants fixated the refer-
ent object significantly more and earlier after the verb
was spoken but before the object was named in the
restrictive condition, we would interpret that as evi-
dence for predictive processing. This is exactly what
we found in three of our four experiments. We were
thus largely able to replicate the behaviour seen in tra-
ditional 2D (e.g. Altmann & Kamide, 1999) and 3D
(Eichert et al., 2018) look-and-listen versions of the
visual world paradigm.

Prediction in naturalistic environments

The main aim of the current study was to determine
whether we predict in naturalistic everyday scenes by
increasing the ecological validity of the visual world
paradigm (VWP). In Experiment 1, we diverged from
the traditional methodology by increasing the number
of objects per scene (6 instead of 4), increasing the
number of sentences per scene (4 instead of 1), and
having a life-sized virtual agent deliver these sentences
to the participants in a realistic 3D environment.
Despite these changes, we were able to replicate

anticipatory eye-movements in rich visual settings that
included an actual, virtual speaker.

We do note, however, that the overall observed pro-
portion of target fixations (∼30%) in our study was lower
compared to earlier studies (∼90% in Altmann & Kamide,
1999) that used a computer monitor as their medium of
stimulus display. They are, however, in line with an
earlier study testing for anticipatory eye movements in
virtual reality (∼40%; Eichert et al., 2018). There are
two complementary explanations for this difference in
proportion of looks to the target. First, the mode of
stimulus display (computer monitor versus CAVE) is
different across studies. This means that in our study,
visual objects were presented further away from the
fovea in a visual context that was, purely in terms of
display size, much larger than a simple computer
monitor. Second, our stimulus environments (e.g. a
forest, a living room) were visually significantly richer
than those used in traditional studies (e.g. Altmann &
Kamide, 1999). There is simply much more to be seen
in our naturalistic setup compared to, for instance, the
seminal study by Altmann and Kamide (1999). The fact
that an increase in visual richness of a scene influences
the overall proportion of looks to the target is
confirmed by earlier work in which an increase in the
set size of visible objects from 4 to 16 objects led to a
decrease in the proportion of target fixations from
70% to ∼40% (Sorensen & Bailey, 2007).

Nevertheless, as stated above, we were able to repli-
cate anticipatory eye-movements in our more natural
set-up, and thus for the remainder of the studies we con-
tinued to increase the number of objects (Experiment 2)
and sentences (Experiment 3) to test whether partici-
pants still anticipated upcoming language input in
these situations.

More potential referents

In Experiment 2, we increased the visual complexity of
the scenes by increasing the number of objects from 6
to 10. Previous studies have tested the effect of an
increased number of objects in 2D, traditional versions
of the VWP (Andersson et al., 2011; Coco & Keller, 2015
versus Sorensen & Bailey, 2007). In these situations,
however, participants were presented with cartoons or
photorealistic 2D pictures and hence we questioned
whether this was an ecologically valid representation
of participant’s behaviour when presented with more
than the 4 items traditionally used in the look-and-
listen VWP.

We nevertheless saw significant anticipatory eye
movement behaviour, although it was significantly
lower in Experiment 2 compared to Experiment 1 (p
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= .006). This is a replication of the results seen in other
VWP experiments (Andersson et al., 2011; Coco et al.,
2016; Coco & Keller, 2015; Sorensen & Bailey, 2007)
suggesting that the traditional VWP effects found do
translate to more ecologically valid settings.

By increasing the number of objects to 10, we also
taxed the visual working memory system, which may
be the reason for the decrease in anticipatory eye-move-
ment activity. Indeed, when we included the partici-
pant’s working memory capacity estimate into the
statistical model, we observed a significant mediation
of working memory on anticipatory eye movement
behaviour for the restrictive condition. This is in line
with the claim that working memory is involved in med-
iating predictive language processes (see for review
Huettig et al., 2011a). As working memory has a
limited capacity, if it were involved in predictive proces-
sing, then we should see a decrease in predictive proces-
sing (in our case, anticipatory eye-movement behaviour)
when the number of potential referents in a scene
increases.

The proposal for a role of working memory in antici-
pating linguistic information is not new (Huettig et al.,
2011a; Knoeferle & Crocker, 2007), although only few
studies have attempted to provide empirical evidence
to support this proposal. Huettig and Janse (2016)
found a positive correlation between the ratio of
target-distractor object looks and a working memory
construct score, such that participants with a higher
working memory construct score showed a stronger pre-
diction tendency. A recent study provided more causal
evidence by demonstrating that participants showed
reduced anticipatory looks to the referent object if
they were required to simultaneously remember five
words (Ito et al., 2018). We build upon these earlier
findings by providing a direct link between a partici-
pant’s working memory capacity and their anticipatory
eye-movement behaviour.

Another way to interpret our data is that participants
with higher working memory capacity predict better, as
their anticipatory eye movements occurred earlier and
more frequently compared to their lower working
memory capacity peers. However, this conclusion is
hard to fully support given our data, and also calls into
question the role working memory plays in predictive
processes. Participants with higher working memory
capacity may be able to encode and link the objects
and their locations better, which does not necessarily
suggest that they are better at predicting. It could be
that all participants predicted equally well, but their
working memory capacity limits how many potential
objects they can retain to base their predictions on.
Hence, although our study suggests that working

memory may play an important role in predictive pro-
cesses, exactly what this role entails needs to be
explored further.

Overall, the results of Experiment 2 showed that par-
ticipants still show anticipatory eye-movement behav-
iour, arguably reflecting predictive language
processing, even with an increasing number of items.

Less predictable input

In Experiment 3, we manipulated referent predictability
by having only 25% of the sentences contain a verb
that could be used to predict the specific upcoming
referent. The remaining sentences were either unrestric-
tive (25%) or did not refer to an object present in the
scene (50%). Several theories propose that prediction
is supported by a statistical learning mechanism. The
idea is that we anticipate upcoming linguistic infor-
mation based on past experiences (Chang, 2002; Dell &
Chang, 2014). If this were the case, then one would
expect that participants stop exhibiting anticipatory
eye-movements as this would be inefficient given the
statistical probability of an object being either present
in the scene or predictable given the verb. Although
overall there was anticipatory eye-movement behaviour,
when we conducted a post hoc analysis of the first two
scenes in the experimental session compared to the
last two scenes, we did observe a significant decrease
in anticipatory eye-movement behaviour at the end of
the experiment. Hence, if predictive behaviour turns
out to be ineffective, for instance because only 25% of
the target items are predictable, participants may stop
predicting upcoming target referents over time. This
has interesting implications for the role of predictive
processing in everyday settings, as we are often con-
fronted with language input that does not relate to
objects that are immediately present. These results indi-
cate that prediction might not occur under all circum-
stances in everyday conversation and confirm earlier
suggestions that listeners may adapt their predictive
behaviour as a function of distributional properties of
recently received linguistic input (Pickering & Gambi,
2018; see also Havron et al., 2019; Yurovsky et al., 2017).

Less obvious attentional focus

The inclusion of a virtual speaker in our experiments
introduced the concept of joint attentional space in
research using the look-and-listen VWP. In all four exper-
iments reported here, participants faced the virtual
speaker, thereby to some extent mimicking everyday
interaction in which interlocutors often form a conversa-
tional dyad. In naturally occurring communication,
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interlocutors indeed typically use their bodies to separ-
ate their joint attentional space of engagement from
the larger outside world (Kendon, 1977, 1990b, 1992;
Scheflen & Ashcraft, 1976). Certain objects speakers
refer to may be present inside this joint attentional
space, whereas others may be located outside of it in
visual periphery (Peeters et al., 2015), and interlocutors
keep track of whether they are attending to something
in common (Staudte et al., 2014; Tomasello, 1995). The
results of Experiment 4 showed that the presence of
anticipatory eye movements depends on whether
target objects are located inside or outside the interlocu-
tors’ joint attentional space. Overall, no anticipatory eye
movements were observed. Moreover, participants did
not search for the objects after they were named,
suggesting that hearing an object named that was not
in the joint attentional space does not initiate a visual
search to find the object.

As the target objects were located on the side screens
of the CAVE environment in Experiment 4 (see Figure 1),
participants had to slightly turn their head to fixate these
objects. Some of them did so already when the visual
scene was presented but before any sentence was
uttered. Even when focusing solely on these partici-
pants, we found no anticipatory behaviour to the
objects when the sentence was spoken, suggesting
they did not consider the objects outside the joint atten-
tional space as potential targets. To address a post hoc
theory, we conducted an exploratory analysis to deter-
mine whether participants may have noticed, during
the course of the experiment, that the target objects
were only located in the peripheral left and right side
of their vision. If they did, this would mean that there
should be an increase in anticipatory behaviour over
the course of the experiment. We therefore compared
looks to target objects in the first two scenes (8 trials
in total per participant) to looks to target objects in
the last two scenes (8 trials in total per participant).
For both the first and the last two scenes, no anticipatory
behaviour (p = .741 versus p = .070) was observed,
although the GAMM results for the last two scenes do
suggest a trend in the predicted direction.

Conclusion

Prediction is undoubtedly a central component of
human cognition. Current theories of prediction
involve the creation of an internally generated model
of anticipated upcoming information. In the case of
language processing, the actually encountered linguistic
information is arguably compared against a forward
model of anticipated linguistic information (Pickering &
Gambi, 2018; Pickering & Garrod, 2007, 2013) and any

prediction error is used as a learning mechanism that
influences future predictions (Dell & Chang, 2014). The-
ories of prediction in the domain of language have
mainly been built on the basis of empirical data
obtained from participants sitting in front of computer
monitors looking at stimuli that are relatively poor 2D
abstractions of everyday objects. In the current study,
we investigated whether a robust marker of prediction –
anticipatory eye movements as observed in the visual
world paradigm – would be observed in a variety of
rich, everyday environments that included a life-size
speaker.

Do we predict upcoming linguistic content in rich,
naturalistic environments? The evidence provided here
is mixed. On the one hand, we observed robust antici-
patory eye movements in naturalistic scenes, even
when these scenes contained a relatively large number
of objects and a relatively small number of sentences
that allowed for a predicted noun-referent to be
confirmed by the speaker’s unfolding speech. On the
other hand, however, our study sheds light on new influ-
ences on predictive processing in the VWP. For example,
when the predictability of sentence endings was low,
participants over the course of the experiment
stopped anticipating which referent object was going
to be named by the virtual agent. This finding
confirms a recent suggestion that predictive behaviour
may be circumvented when distributional properties of
recent input deem it unhelpful (Brothers et al., 2017).
Moreover, the well-established effect of prediction also
disappeared when referent objects were placed
outside the joint attentional space shared by speaker
and participant. Together, these findings suggest limits
to the generalizability of earlier experimental findings
to naturalistic environments. As such, theories of the
mind that involve prediction as a key feature of human
cognition should take into consideration how the
spatial, linguistic, and social context may modulate the
waxing and waning of predictive behaviour.

In our study we focused on saccades to predeter-
mined regions of interest. However, we tapped into lin-
guistic predictions via their consequences for
anticipatory eye-movements. In principle, predictions
could be made even without consequences for eye-
movements. Hence, we are not suggesting that partici-
pants would not predict in situations where referents
are not available (e.g. while listening to the radio). Never-
theless, in many daily life situations linguistic utterances
refer to the here and now of the environment in which
the speaker and listener find themselves. In these
cases, there seems to be a tight link between the utter-
ances and the scenes that they refer to. Under those cir-
cumstances anticipatory eye-movements might be a
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way to rapidly negotiate between language and the
world. Methodologically, however, we hope that our
study paves the way for future studies of human predic-
tive behaviour in which ecological validity and exper-
imental control go hand in hand.

Note

1. https://osf.io/mghec/.
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