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During the sleep-wake cycle, the brain undergoes profound dynamical changes, which are 

manifested subjectively as transitions between conscious experience and unconsciousness. 

Yet, neurophysiological signatures that can objectively distinguish different consciousness 

states based are scarce. Here, we show that differences in the level of brain-wide signals 

can reliably distinguish different stages of sleep and anesthesia from the awake state in 

human and monkey resting state data. Moreover, a whole-brain computational model can 

faithfully reproduce changes in global synchronization and other metrics such as the 

structure-function relationship, integration and segregation across vigilance states. We 

demonstrate that the awake brain is close to a Hopf bifurcation, which naturally coincides 

with the emergence of globally correlated fMRI signals. Furthermore, simulating lesions 

of individual brain areas highlight the importance of connectivity hubs in the posterior 

brain and subcortical structures in maintaining the model in the awake state, as predicted 

by graph-theoretical analyses of structural data.  

 

 

 

 

 

 

 

 

 

 

                  



Introduction 

Daily life is divided into periods of consciousness with subjective and reportable experience 

which are repeatedly replaced by periods of consciousness loss (Koch, 2018). These different 

states of consciousness and their transition are generated and tightly regulated by sophisticated 

physiological mechanisms residing in the cortex and subcortical structures (e.g. the thalamus, 

brainstem nuclei and basal forebrain), orchestrating the sleep-wake cycle (Scammell et al., 

2017). Pharmacological interventions during anesthesia (Alkire et al., 2008) can interfere with 

physiology and poise the brain to unconscious dynamics. At the same time, the precise 

organization of the anatomical connectivity plays a pivotal role in the generation of conscious 

experience as evidenced in the loss of consciousness after severe brain damage in patients with 

coma or unresponsive wakefulness syndrome (Gosseries et al., 2014). Understanding how such 

interplay of the anatomical structure and the physiology of neuronal networks generates 

different levels of consciousness remains a major challenge in neuroscience research. 

To open a window on brain functioning during different levels of consciousness, researchers 

have traditionally resorted to gain insights from neuronal oscillations that can be captured by 

recording macroscopic electromagnetic activity either macroscopically (EEG, MEG) (Stevner et 

al., 2019), mesoscopically (Nir et al., 2011) or by single cell recordings (Steriade et al., 1993). 

These studies delineate sleep into REM and nonREM sleep which itself is separated into three 

different stages (N1, N2, N3) each with a distinct electrophysiological profile (Hobson and 

Pace-Schott, 2002).  

More recently, electrophysiological insights have been complemented by fMRI studies which 

focus on the study of functional relationships between brain areas as measured by correlations 

between the fMRI signals as a function of time (Mashour and Hudetz, 2018). Such functional 

connectivity (FC) can be contrasted with the underlying structural connectome (SC) to examine 

how the variety of pathways constrained by the anatomical connectivity is expressed during 

different consciousness levels. Overall, the strength of the functional connectivity is largely 

                  



reduced during unconscious states, even though specific resting state networks remain intact 

(Boveroux et al., 2010; Spoormaker et al., 2010). Moreover, during loss of consciousness 

structural constraints are more rigidly expressed in the functional connectivity as opposed to the 

awake state (Barttfeld et al., 2015; Tagliazucchi et al., 2016b). In addition, fMRI signals tend to 

display an organized, wave-like flow across the entire brain with high integration in the awake 

state, while propagation remains confined to resting state networks with high modularity scores 

during sleep (Boly et al., 2012; Mitra et al., 2015b; Tagliazucchi et al., 2013). Moreover, it was 

shown that these correlation metrics are dynamic and show fluctuations across time (Betzel et 

al., 2016; Fukushima et al., 2018a, 2017; Shine et al., 2016), which are informative about the 

level of consciousness (Barttfeld et al., 2015; Demertzi et al., n.d.; Haimovici et al., 2017; Uhrig 

et al., 2018).  

Here, we study how large-scale synchronization of the resting state fMRI signal changes across 

conscious and unconscious states (sleep stages N1, N2, N3 and anesthesia), and whether it can 

serve as an objective marker for the state of consciousness. Coherence across large parts of the 

brain has been observed previously in fMRI recordings of humans (Deco et al., 2017b) and 

monkeys (Liu et al., 2018a; Turchi et al., 2018), and are accompanied by activity changes in 

neuromodulatory nuclei. We investigate how various degrees of shared large-scale fluctuations 

relate to metrics such as FC and its relationship with the underlying SC, integration and 

modularity. The empirical findings are then contrasted with simulations from a whole-brain 

model and we further examine whether it can reproduce the pattern of global fluctuations seen 

across different consciousness conditions. Finally, the impact of lesions on global dynamics is 

studied via in-silico modeling. 

Results 

In this study, we analyzed brain activity of different vigilance states in two different fMRI 

datasets, which contain both conscious and unconscious experimental conditions. One dataset 

was recorded in humans (N = 18) and comprises resting state activity together with different 

                  



stages of sleep (N1-N3) with a parcellation of 90 brain areas (Supplementary Table 1). The 

other dataset stems from monkey recordings (N=3) during wakeful resting and two different 

levels of propofol anesthesia (moderate and deep) with a spatial resolution of 432 regions 

(Supplementary Table 2). We searched for a physiological metric that can differentiate 

conscious from unconscious states and can be explained mechanistically by a whole-brain 

computational model. Our hypothesis revolved around differences in brain-wide 

synchronization patterns indicating fluctuations of fMRI activity shared across many brain areas 

(Scholvinck et al., 2010). To visualize synchronization, we first transformed the fMRI signals 

into a point process by representing all positive fMRI peaks as discrete events (Tagliazucchi et 

al., 2012) (Fig. 1A). This approach takes the entire signal across all brain areas into account, 

irrespective of inter-areal variations of oscillation power in difference frequency band. The 

raster plots revealed pronounced differences between the awake and unconscious states (Fig 

1B). Awake brain dynamics was characterized by frequent large-scale population events that 

spanned large parts of the brain in both human and monkey resting state data (e.g. Fig. 1B top 

left, red rectangle). Interspersed were periods with local synchronization and absence of brain 

wide activity. In contrast, during unconscious states large-scale synchronization was entirely 

absent with dominant local synchronization between a few areas (e.g. Fig 1B bottom left, blue 

rectangle) in both human and monkey datasets. 

To quantify these varying patterns of global and local synchronization, we applied the Fano 

factor (FF), a measure widely applied in the analysis of population spiking activity (Brunel and 

Hakim, 1999; Hahn et al., 2017; Kumar et al., 2008) which captures higher order correlation 

and global synchrony between discrete events (Fig. 1C, see Methods for a detailed definition). 

The FF equals ~1, when there is no correlation across brain areas, resembling a random Poisson 

process (Fig 1C, right). Synchronization across brain regions increases the FF to values >1, with 

brain wide synchronization events being associated with FF >>1 (Fig 1C, left).    

We subsequently computed FFs for sliding windows of different sizes and their distribution for 

each vigilance state. The distributions decayed exponentially for small window sizes (Fig. 1D), 

                  



while larger window sizes revealed that the distribution more generally followed a gamma 

distribution in human and monkey datasets (Fig. 1E, KS-test; human: window size = 5TR, D = 

0.02±0.006, p < 0.001; window size = 25TR, D = 0.03±0.01, p < 0.001; monkey: window size = 

5TR, D = 0.06±0.006, p < 0.001; window size = 25TR, D = 0.23±0.07, p < 0.001). The shape 

parameter (β) of these gamma distributions was subsequently used to quantify the level of 

synchronization.  

 

                  



Figure 1: Defining and analyzing global synchronization between BOLD signals. (A) fMRI time series with positive 

peaks (red asterisks). (B) Examples raster plots of peak time stamps (dots) for a human and monkey dataset, and for 

two different consciousness levels. Red rectangle: global synchronization event. Blue rectangle: local synchronization 

event. (C) Raster plots with (left) and without (right) global events for a duration of 5 TR and the corresponding Fano 

Factor values. (D) Fano factor distributions (dashed lines) of human and monkey recordings and all consciousness 

levels for a small window size of 5 TR. A fitted gamma distribution (solid lines) is shown for each Fano factor 

distribution. (E) Same as in D with a larger window size of 25 TR. (F) Mean (±SD) beta values for Fano distributions 

of all consciousness levels as a function of window size for human and monkey recordings. 

Notably, the distributions clearly differed between levels of consciousness in the human and 

monkey data with the exception of awake and N1 states in humans, which showed a similar 

synchronization profile (window size = 5TR, one-way rm-ANOVA: F3, 51 = 1.9*10
3
, p < 

0.001, ε = 1 in the human and F2,28 = 1.48 * 10
3
, p < 0.0001, ε = 0.6 in the monkey; posthoc 

test: p < 0.001 for all pairs except for awake vs. N1 with p = 0.99). In the awake state, the 

distributions were more shallow (Fig. 1D) and right skewed (Fig. 1E) with higher beta values 

due to a higher prevalence of large-scale synchronization between brain areas. Unconscious 

states were associated with steeper and more narrow distributions due to missing large-scale 

synchronization (Figs.1D, E), and reduced beta values. Importantly, the beta parameter also 

distinguished between different levels of unconsciousness as they progressively decreased, 

when subjects drifted into deeper levels of sleep or anesthesia. The same results held, when 

negative fMRI peaks were used for the calculation of FF distributions (Supplementary Fig. 2). 

To test the robustness of this novel marker, we calculated beta for different window sizes and 

indeed found that the separation of consciousness states remained unchanged up to a window 

size = 50 TR (Fig. 1F). Additionally, these findings suggest that the varying levels of large-scale 

synchronization, as indexed by the FF distribution, could serve as a robust marker for different 

vigilance states and the depth of unconsciousness.  

Computational model 

What might be the origin of these declining levels of large-scale synchronization as brain 

dynamics traverses from awake to gradually deeper levels of unconsciousness? To tackle this 

                  



question, we devised a whole-brain computational model that aimed at reproducing these 

changes in global dynamics. This model simulated local fMRI signals for each brain area of two 

different parcellations (human: N = 90 areas (Tzourio-Mazoyer et al., 2002), monkey (Paxinos 

et al., 2009): N=432 areas) using the normalized Hopf bifurcation model (see Methods). The 

brain areas were connected on the basis of diffusion-tensor imaging data of humans and 

monkeys (Adluru et al., 2012; Zakszewski et al., 2014). The core parameter of the model is the 

bifurcation parameter (alpha), which captures the excitability of each node, i.e its 

responsiveness to incoming input from other brain areas (Supplementary Fig. 3A). We 

uniformly varied alpha across all brain areas mimicking changes in global excitability mediated 

by diffusely projecting neuromodulator systems (e.g. acetylcholine, noradrenaline), whose 

activity is known to change across the sleep-wake cycle (Scammell et al., 2017). Depending on 

the values of alpha, the model displayed three qualitatively different activity states. When alpha 

was kept small, the dynamics of the model was governed by synchronization between a few 

brain areas, but remained free of large-scale synchronization (Fig. 2A, left). This dynamical 

regime was strikingly similar to the empirical pattern of unconscious states in the monkey and 

human data (Fig. 1A, bottom). At intermediate values, the dynamics were characterized by 

periods of asynchronous activity as seen with smaller alpha (Fig. 2A, center), but sporadically 

interrupted by events of global synchrony. This activity mode was reminiscent of the dynamics 

seen in the awake humans and monkeys (Fig. 1B, top). Further increase of alpha was 

accompanied by a dynamical state with highly synchronized and oscillatory activity across the 

entire model brain (Fig. 2A, right). More generally, the behavior of the model characterizes a 

bifurcation from local synchrony only (alpha < bifurcation) to global synchronization (alpha > 

bifurcation) with elements of both types of synchronization close to the bifurcation point (alpha 

~ bifurcation). 

                  



 

Figure 2. Whole brain model of different consciousness levels. (A) Example raster plots of positive peaks obtained 

from model simulations of human data with a window size of 5 TR. The results are depicted for three different 

instance of the bifurcation parameter (a), placing the model below, close or above the bifurcation point. (B) Fano 

factor distributions for the three different bifurcation parameters shown in (A). Note the pronounced peak in the 

distribution caused by the global oscillation, when the model is set above the bifurcation point. (C) Fitting of the 

model to match the Fano factor observed from the empirical human data, expressed as the difference of empirical and 

model beta values, for different bifurcation parameters and consciousness levels. (D) Same as in (C) for monkey data. 

(E) Value of the adapted bifurcation parameter (a) as a function of consciousness state in humans. The empirical beta-

values of the FF distributions are indicated for each state. (F) Same as in (E) for the monkey data. 

Next, we computed the Fano factor distributions for the simulated fMRI signals. These 

distributions were also governed by gamma distributions which approached an exponential 

function with small time windows, similar to the empirical counterpart, for alpha < or ~ 

bifurcation (Fig. 2B). The highly synchronized regime, however, deviated from this behavior 

                  



and showed a clear peak in the FF-distribution caused by the global oscillation. After 

normalization, such that the bifurcation appeared at alpha = 0 (see Methods, Supplementary Fig. 

3B), we fitted gamma functions for alpha values < 0 and showed that the obtained beta values 

increased monotonically as alpha approached the bifurcation point (Supplementary Fig. 3C). 

Thus, different levels of synchronization in the model mapped directly onto the FF distribution. 

This allowed us to find the alpha values of the model, where the beta values of empirical and 

simulated FF distribution were identical, i.e. their difference was close to zero. We found that 

the awake state was close to the bifurcation point between locally and globally dominated 

synchronization in both human and monkey data.  As subjects lost consciousness, the alpha 

values dropped progressively with deeper levels of sleep or anesthesia, indicating a gradual shift 

in the dynamics towards smaller synchronization events (Figs. 2C-F). These results suggest that 

changes in global excitability are the main determinant of different levels of large-scale 

synchronization in the simulated and empirical data. 

Model predictions 

The present findings demonstrate that the model can mirror the time-varying properties of 

global versus local synchronization across different levels of consciousness. We therefore 

tested, whether the simulations can also correctly predict the change of other metrics across 

vigilance states. First, we calculated the grand-average functional connectivity (FC) of fMRI 

signals for each state of the empirical and model data. In accordance with previous findings 

(Barttfeld et al., 2015), average FC between brain areas was highest in the awake state and 

significantly decreased with onset and progression into deeper levels of unconsciousness in both 

human and monkey data (Fig. 3A, left, one-way rm-ANOVA: F3,51 = 0.99*10
3
, p < 0.0001, ε = 

0.42 in the human and F2,28 = 1.81 * 10
3
, p < 0.0001, ε = 0.78 in the monkey; ; posthoc test: p 

< 0.001 for all pairs). Importantly, the model also showed higher average FC during the awake 

state and lowest FC during the most profound levels of unconsciousness (Fig. 3A, right). Next, 

we examined the relationship between structural (SC) and functional connectivity, which has 

been shown to undergo changes across consciousness states (Barttfeld et al., 2015; Tagliazucchi 

                  



et al., 2016b). Similarly, we detected an increase of the SC-FC relation with loss of 

consciousness as compared to the awake state. This indicates that in the unconscious states the 

direct anatomical connections, whereas in the awake state further network effects emerge 

beyond pair-wise interactions  (Fig. 3B, left, one-way rm-ANOVA: F3,51 = 1.13 * 10
3
, p < 

0.0001, ε = 0.45 in the human and F2,18 = 2.56 * 10
3
, p < 0.0001, ε = 0.92 in the monkey; ; 

posthoc test: p < 0.001 for all pairs). Again, the model correctly reproduced the behavior of the 

SC-FC relationship for different levels of consciousness (Fig. 3B, right). Other descriptors that 

are used to characterize consciousness include the level of integration and segregation, which 

are in general inversely related (Deco et al., 2015). Integrated activity is characterized by 

synchronization across multiple brain areas while modularity refers to the prevalence of locally 

confined processing. In the human and monkey data, integration significantly increased, as brain 

activity approaches wakefulness (Fig. 3C, left, one-way rm-ANOVA: F3,51 = 0.91 * 10
3
, p < 

0.0001, ε = 0.43 in the human and F2,28 = 4.36 * 10
3
, p < 0.0001, ε = 0.84  in the monkey; ; 

posthoc test: p < 0.001 for all pairs) due to rising levels of brain-wide synchronization.  In 

contrast, local activation dominated during unconscious states with more segregation, as 

quantified by the modularity value obtained for the optimal partition when breaking the FC 

matrix into clusters (Fig. 3D, left, one-way rm-ANOVA: F3,51 = 1.04 * 10
3
, p < 0.0001, ε = 

0.65 in the human and F2,28 = 4.92 * 10
3
, p < 0.0001, ε = 0.59 in the monkey; ; posthoc test: p 

< 0.001 for all pairs). The model correctly predicted the changes of integration and modularity 

across vigilance states (Figs. 3C, D, right). 

 

 

                  



 

Figure 3. Comparison between empirical data and model predictions for various measures and across different 

consciousness levels. (A) Mean (±SD) direct FC for empirical and modeled human (left) and monkey data (right) of 

different consciousness conditions. (B) Same as in (A) for SC-FC similiarity. (C). Same as in (A) for the level of 

integration. (D) Same as in (A) for the level of functional segregation as measured by modularity. 

 

                  



Analysis of different synchronization states 

Previous studies have highlighted that different consciousness levels can be characterized by the 

relative prevalence of different functional connectivity states (Barttfeld et al., 2015; Demertzi et 

al., n.d.) with varying levels of fMRI signal correlations and SC-FC relationship. Here, we 

hypothesize that these states reflect different levels of large-scale synchronization with a 

frequency of occurrence that is determined by the level of consciousness. To test this hypothesis 

we split the data into short bins (size = 5 TR) and concatenated bins with similar Fano factor 

values, representing similar global synchronization levels, into a new dataset. The FF range was 

chosen to be 1+n < FF < 5+n, with n being incremented by one for each new dataset. Thus, we 

obtained datasets with increasing large-scale synchronization, each of which was considered a 

different state. This procedure was repeated for both empirical and model data for each 

vigilance state. 

We first examined how the average amplitude of the fMRI signal, measured as the mean z-score 

of positive peak amplitude, changed across different synchronization states for each vigilance 

state. The analysis of the human data showed that the BOLD amplitude steadily rises as global 

synchronization increases, indicating that large scale synchronization is associated with stronger 

local signals (Fig. 4A, left). Importantly, these results were accurately predicted by the model. A 

similar behavior was found in the empirical and modeled monkey data for the awake state, 

while the fMRI signal amplitude slightly dropped with stronger synchronization in the two 

anesthetized states of the empirical data (Fig. 4A, right).  

Next, we studied how the mean FC evolves across the different synchronization states. As the 

global synchronization increased in the empirical human data, the mean FC also grew stronger 

for all vigilance conditions (Fig. 4B, left). However, the mean FC for most large-scale 

synchronization states was higher in the awake state as compared to the unconscious conditions. 

Likewise, highly synchronized states also showed the highest FC and were only found in the 

awake condition. The model was able to replicate the empirical findings. In the empirical and 

                  



modeled monkey data, similar results were obtained with more pronounced FC differences 

between awake and unconscious conditions (Fig. 4B, right). 

We then studied to what extent the SC is expressed in the FC as a function of different global 

synchronization states. We found that with increasing levels of large-scale synchrony, the 

similarity between empirical FC and SC in humans decreases and reaches minimum values 

during highly synchronized states prevalent only during the awake condition (Fig. 4C, left). A 

similar decrease can be seen in the model, even though very small SC-FC correlation values are 

also found in unconscious states. The same results hold in the monkey data, with the exception 

that high SC-FC similarity is found predominately in weakly synchronized states during 

anesthesia (Fig. 4C, right).  

The integration measure also increased with rising levels of global synchronization across all 

consciousness conditions in humans and monkeys, a result that was accurately reproduced by 

the model (Fig. 4D). In contrast, modularity decreased with large-scale synchrony in human 

empirical and simulated data (Fig. 4E, left). Interestingly, modularity in the monkey initially 

decreased with larger FF values and subsequently increased again in the anesthetized states, 

showing a U-shaped behavior in both empirical and modeled data.  In contrast, the awake state 

was characterized by a monotonic decrease of modularity with higher FF values as seen in 

humans.  

Overall, this analysis suggests that different global synchronization states with varying levels of 

FC, expression of SC, integration and modularity exist across different vigilance conditions. 

The level of consciousness can then be distinguished based on the composition of 

synchronization states, which as the model shows is a function of global excitability levels 

across the entire brain.  

 

 

                  



 

Figure 4. Various metrics change with the level of global synchronization (FF states) across different consciousness 

conditions. (A) Average peak amplitude (z-score) within a time window of 5 TR as a function of FF state in empirical 

and modeled human (left) and monkey data (right). (B) Mean direct FC as a function of global synchronization states 

for human and monkey data. (C) SC-FC similarity for different global synchronization states in humans and 

monkeys. (D-E) Same as in (C) for integration and modularity, respectively.  

 

 

 

                  



Single trial analysis 

The previous results were obtained by computing synchronization metrics from data merged 

across all trials and subjects of a consciousness state. To test whether the composition of 

synchronization states can also delineate consciousness states at the single-trial level, we 

computed FF distributions and the other FC-based metric for each trial separately. In humans, 

we recorded one trial per consciousness state with a duration that ranged between ~90 and 1000 

TR (see Supplementary Fig.4 for details). We found significant beta value differences between 

the awake state and unconscious states (N2 and/or N3) (one-way rm-ANOVA: F3,51 = 5.7, p < 

0.002, ε = 0.93) which was repeated for the other measures except modularity, while the 

separation between unconscious states was not consistent across sleep stages (Fig 5A, 

Supplementary Fig. 5). Moreover, when comparing consciousness states within single subjects, 

there was a monotonic decrease of beta values from the awake state to N3 sleep only in a few 

cases, while most subjects did not show a consistent change of beta across consciousness states 

(Supplementary Fig. 6). Notably, the beta values and other measures were highly overlapping 

across states, prohibiting an unambiguous identification of consciousness states. As we have 

shown above, each consciousness state can be defined by a distribution of synchronization 

events, in which reduced global synchrony occurs across all states, while larger events are 

mainly prevalent during the awake state and N1 sleep. Thus, disambiguation of states requires 

sufficient sampling to provide accurate statistics, which may not be the case in our single trial 

analysis due to their short duration.  

To test whether these findings can be replicated by the model, we simulated several short trials 

(250 TR) and averaged across trials (Fig. 5B). Similar to the empirical counterpart, the beta 

values monotonically decreased with the depth of sleep with statistical differences across states 

as seen in the empirical data, while they remained highly overlapping. In contrast, when we 

performed simulations with long trials (10000 TR), the overlap disappeared and each trial could 

be unequivocally assigned to a particular consciousness state (Fig. 5C).  

                  



In monkeys, where the trial duration was fixed at 500 TR, the awake state was significantly 

different from the two unconscious states for all measures (Fig. 5D, Supplementary Fig. 5, one-

way rm-ANOVA: F2,60 = 8.6, p < 0.0001, ε = 0.45 in the human and F2,18 = 2.56 * 10
3
, p < 

0.0001, ε = 0.6 in the monkey). Yet, the values were overlapping between the states, which we 

reproduced in simulations with short trials (500 TR, Fig., 5E). Similar to humans, the overlap 

vanished with longer trials (Fig. 5F). 

Overall, these results suggest that short trials are less suited for an unambiguous separation of 

different consciousness states due to insufficient sampling of the synchronization event across 

time.   

 

 

Figure 5. Beta values of the FF distribution for single trials (A) Boxplot (median, 25th and 75th percentile) for beta of 

single trials across consciousness states in humans. Horizontal bars represent statistical significance (p-value < 0.05). 

(B) Same (A) for human model simulations with short trials (250 TR). (C)  Boxplot for human model simulations 

with long trials (10000 TR). (D-F) Empirical and model beta values  for short and long trials as in the human data. 

                  



 

Model lesions and global synchronization 

The correspondence between measures of the empirical and model data suggests that the model 

may be a viable tool to investigate the impact of specific brain areas on consciousness. We thus 

employed a lesion approach in which the excitability (i.e. the bifurcation parameter) of 

individual nodes in the model was strongly reduced mimicking damage after stroke or 

mechanical trauma (Adhikari et al., 2017). To quantify the consequences of node damage on 

model dynamics and its associated level of consciousness in the empirical data, we introduce a 

lesion index (λ) which indicates the loss of global synchronization in the simulations with 

respect to the synchronization level seen in the awake state of the empirical recording (see 

Methods for details). A value of 1 reflects model synchronization equivalent to the awake data, 

while we consider λ < 0.85 as equal to loss of consciousness.   

 

Figure 6. Global synchronization changes after model lesions of specific brain areas. (A) The lesion index (λ) 

indicates the degree of global synchronization with respect to the awake state (normalized to 1) after the lesion of 

individual model nodes (abscissa). Dashed red line: threshold for global synchronization levels comparable to 

conscious (above line) and unconscious states (below line). (B) Brain areas (red circles) that cause a drop below the 

                  



red line in (A) after lesion. Circle diameter is scaled to the value of the lesion index of a given area.See 

Supplementary Tables1-2 for full labels. 

 

When each area was lesioned separately, the impact on large-scale synchronization was modest 

for most regions and yielded a lesion index that remained above the threshold for dynamics 

associated with consciousness in both human and monkey data (Fig. 6A). However, the lesion 

of a few areas strongly reduced brain-wide synchronization with λ reaching values ~0.4 in some 

cases. In humans these areas were all found in the posterior brain, with the precuneus and 

posterior cingulate cortex having the most pronounced effect (Fig. 6B, left panel). This is in 

striking congruence with previous experimental findings pinpointing at a posterior hotspot for 

consciousness (Koch et al., 2016). Notably, in simulations of monkey data the strongest 

influence on global synchronization was also found in the posterior cingulate cortex (area 23) 

and the precuneus (area PGM) together with subcortical nuclei, in particular higher order 

thalamic nuclei (Fig. 6B, right panel), which in empirical studies play an important role in 

modulating consciousness (Schiff, 2008)  

To gain a better understanding of how these nodes contribute to global dynamics and putatively 

to the maintenance of consciousness, we conducted a graph theoretical analysis of the human 

and monkey structural connectomes. We first tested the structural matrices for the presence of a 

rich club, i.e. network hubs that are highly interconnected with other brain areas and also 

strongly linked between themselves. Based on the k-density metric (see Methods, 

Supplementary Fig.7), we found several rich club nodes in the human, including the precuneus 

and posterior cingulate cortex, and monkey connectome, which were mainly located in 

subcortical nuclei and area PMG (precuneus) (Figs. 7A-B, asterisks). Even though a majority of 

these areas had a strong impact on the level of large-scale synchronization, a large number of 

brain regions with a low lesion index did not belong to the rich club network (Figs. 6B and 7A-

B). We thus searched for a metric that would better reflect the role of each node in maintaining 

brain-wide synchronization and the awake state. The node communicability, a measure that 

                  



captures the propagation of activity across the network after the stimulation of a given node, 

proved to be a good predictor of synchronization levels (Figs.7A-B). In general, areas with a 

low lesion index typically also had low communicability values in human and monkey datasets. 

Surprisingly however, in humans we found two separate linear relationships between 

communicability and lesion index, one with a steep slope where the impact of lesion was high 

and another with a shallower slope. We hypothesized that this finding is rooted in the difference 

of node communicability between different hemispheres, since taking out a node in one 

hemisphere influences large-scale synchronization both ipsilaterally and contralaterally only if 

strong interhemispheric connections exist. Thus, a node may have strong communicability in 

the presence of only ipsilateral connections, but a lower impact on large-scale synchronization, 

as its activity does not spread to the other hemisphere. We thus calculated communicability 

separately for each hemisphere and quantified the asymmetry between both communicability 

values. A value of ~1 indicates high asymmetry with a node exclusively impacting activity in 

one hemisphere, while asymmetry ~ 0 indicates a strong propagation within both hemispheres. 

We indeed found that high communicability areas can show different degrees of asymmetry 

across the two hemispheres (Supplementary Fig. 8). Despite their similar communicability, 

areas with reduced asymmetry such as the precuneus and posterior cingulate cortex influence 

brain-wide synchronization strongly, while other nodes with very high asymmetry such as the 

putamen influence synchronization primarily in one hemisphere with an attenuated impact on 

brain-wide synchrony (Fig. 7C).  

                  



 

Figure 7. Graph-theoretical properties determine impact of nodes on global synchronization. (A) The lesion index (λ) 

for each brain area in the human dataset is shown as a function of node communicability computed from the SC 

matrix. Asterisks indicate brain areas with rich club properties. Straight lines reflect regression lines calculated for 

two different sets of areas. (B) Same as in A for the monkey dataset. (C) Asymmetry of node communicability 

computed for each hemisphere separately for the areas of the human connectome with high communicability labeled 

in (A). Blue bars denote areas falling in the steep slope set, red bars for areas in the shallow slope set. 

Discussion 

Here, we have shown that the pattern of large-scale synchronization across the brain is a new 

signature of consciousness and can readily distinguish different consciousness conditions 

separating awake from unconscious states in human and monkey fMRI data. It separates awake 

from unconscious conditions and separates various degrees of non-REM sleep and propofol 

anesthesia. Changes in brain-wide synchrony are accompanied by alterations of other measures 

of consciousness such as FC, the SC-FC relationship, integration and modularity. Strikingly, the 

statistics of these metrics were accurately reproduced by a whole-brain model and explained by 

different global excitability levels that naturally generate different configurations of large-scale 

synchrony. Additionally, graph theoretical analyses together with model lesion simulations 

show that the anatomical properties of specific brain areas in the posterior brain play a crucial 

role in maintaining the level of large-scale synchronization typical of the awake state. 

                  



The existence of brain-wide synchronization in fMRI data naturally raises the question whether 

it reflects a physiological signal (Scholvinck et al., 2010) or should be considered as an artifact 

caused by e.g. head movements that are usually regressed out(Liu et al., 2017), as was also done 

here. However, recent studies have demonstrated that large-scale synchrony of fMRI signals not 

only respect precisely orchestrated electrophysiological changes (Liu et al., 2018a, 2015), but is 

also tightly linked to acetylcholine release of the basal forebrain, as its lesion abolishes large-

scale synchrony (Turchi et al., 2018). Changes in brain-wide synchrony were also found in 

schizophrenia (Hahamy et al., 2014; Yang et al., 2014).  Moreover, the fMRI signal shows wave 

like propagation (Majeed et al., 2011; Mitra et al., 2014, 2015a) across the entire brain during 

the awake state with large-scale synchronization (Mitra et al., 2015b), while waves remain 

confined to specific resting state networks during slow-wave sleep (Mitra et al., 2015b). Lastly, 

both empirical and model distributions decay exponentially and lack a peak at their tail, where 

highly widespread synchrony due to artifacts would be expected.  

Previous studies have highlighted that fMRI signal synchronization between brain fluctuate 

overtime, creating different functional connectivity states (Barttfeld et al., 2015; Keilholz et al., 

2017).  These FC states are tied to different levels of modularity (Betzel et al., 2016; Fukushima 

et al., 2018a), integration (Shine et al., 2016), varying SC-FC relationships (Barttfeld et al., 

2015; Fukushima et al., 2018b), behavior (Shine et al., 2016) and the level of consciousness 

(Barttfeld et al., 2015; Demertzi et al., 2019). Here, we show that also large-scale 

synchronization evolves at a fine-grained temporal scale and changes strength across a wide 

range in the awake state and a largely reduced range during unconscious conditions in both 

empirical and modeled human and monkey data. We show that global synchrony is related with 

other measures such as mean FC strength, SC-FC relationship, modularity and integration. 

These metrics move along a continuum with a range that changes with the consciousness level, 

rather than reflecting a few discrete states that are correlated with behavior (Shine et al., 2016; 

Wang et al., 2016). During the awake state, consciousness is maintained over a large range of 

synchronization states including those that are primarily seen during loss of consciousness with 

                  



a lack of global synchrony. Such absence of global synchrony, which we found to dominate 

during the N3 state, is also consistent with reports that during sleep both the BOLD signal and 

slow waves/spindles in electrophysiological recordings propagate only locally (Mitra et al., 

2015b; Nir et al., 2011; Vyazovskiy et al., 2011). The temporary absence of large-scale 

synchrony and integration may indicate a low arousal state with drowsiness which is not yet low 

enough to suppress consciousness, even though a clear correlation with microsleep was not 

found (Demertzi et al., 2019). On the other hand, highly integrated states have been associated 

with accurate task performance (Shine et al., 2016) and are predicted by both the integrated 

information and global neuronal workspace theories of consciousness (Dehaene and Changeux, 

2011; Tononi et al., 2016), as conscious processing would require large-scale integration and 

spread of neuronal activity (‘ignition’) (Deco et al., 2017b; van Vugt et al., 2018). In contrast, 

other studies suggest that such strong global synchrony is accompanied by a drop of arousal as 

defined by a drop in alpha activity and enhanced delta/theta oscillations in simultaneously 

recorded electrophysiological recordings (Chang et al., 2016; Wong et al., 2013), which is 

reversed by alertness-promoting caffeine (Wong et al., 2013), and putatively caused by reduced 

ACH concentrations after a large-scale synchronization event (Liu et al., 2018b). It is possible 

that such strong synchronization across the brain with high Fano factors reduces functional 

differentiation of neuronal activity, another hypothesized prerequisite for consciousness (Naci et 

al., 2018; Tononi et al., 2016). Even though systems close to a bifurcation, as seen in our study 

for the awake state, theoretically maximize their number of possible states (Shew et al., 2011; 

Shew and Plenz, 2013), the occasional undifferentiated and more homogeneous activation of 

large part of the brain would thus diminish alertness. A key component of enhanced 

differentiation during the awake state might be enhanced inhibition (Rudolph et al., 2007), 

which allows competition between different neuronal representations and fine-grained activity 

patterns. Indeed, active suppression of activity has been only found during the awake state, as 

evidence by a specific FC configuration, containing strong correlation and anticorrelations 

between specific brain areas (Barttfeld et al., 2015; Demertzi et al., 2019; Fox et al., 2005; 

Wong et al., 2013). A possible scenario is that such inhibition is reduced during strong global 

                  



synchrony, which triggers a large-scale propagation of excitation with lower levels of 

differentiation.  An important limitation of our marker is that the global synchronization index is 

not sensitive to anticorrelations. Likewise, the presented model does not incorporate mutual 

inhibition between brain areas and can thus not reproduce the anticorrelated FC states seen 

during the awake state, a problem which will be addressed in future studies. 

Another limitation of our marker of consciousness is that it is based on a distribution which 

requires sufficient sampling across time to give a robust separation of consciousness states. If 

sampling is too short the estimation of distribution parameters is inaccurate and consciousness 

states can have similar marker values, as shown by our single-trial analysis. Yet, our model 

results suggest that with sufficient recording time states can be distinguished with high fidelity. 

In addition, the existence of distributions of synchronization strength, which differ in its tail of 

large-scale synchronization across consciousness states but otherwise overlap in terms of small-

scale synchronization, imply that in both conscious and unconscious states there are epochs of 

neuronal activity in parcellated fMRI data, which are statistically not distinguishable. Thus, 

more research is needed to overcome this limitation of distribution-based markers and correctly 

detect consciousness at any given moment in time.   

What is the origin of the fluctuations in large-scale synchrony, integration and separation seen 

in empirical data (Deco et al., 2015; Fukushima and Sporns, 2018) ? There are two scenarios: 

First, the cortex inherits excitability fluctuations originating in neuromodulatory nuclei or 

second, fluctuations are created intrinsically in the cortex.   

Our whole-brain model creates fluctuations intrinsically and can faithfully the statistics of 

global synchronization and connectivity measures at a fine temporal scale given a fixed level of 

global excitability and across a variety of consciousness conditions. Such fluctuations within a 

continuum of largely synchronized and desynchronized states is an expected property of a 

dynamical system set close to a Hopf bifurcation point (Jobst et al., 2017), which resembles the 

awake state in humans and monkeys. This idea is similar to the concept of criticality and 

                  



neuronal avalanches (Beggs and Plenz, 2003; Hahn et al., 2017, 2010; Liang et al., 2020; Shew 

and Plenz, 2013), where a system poised to the critical point generates fluctuations at various 

spatial scales with occasional avalanches that spread across the entire system, akin to the fMRI 

waves seen in awake humans (Mitra et al., 2015a). Moving away from the bifurcation or to the 

subcritical regime by reducing global excitability levels reduces the size of fluctuations and 

avalanches are restricted to local propagation within well connected resting state networks 

(Tagliazucchi et al., 2016a). Our model indeed suggests that the transition from awake into 

deeper stages of sleep or anesthesia is linked to a gradual decrease in global excitability and 

large-scale functional connectivity.  

However, there is also experimental evidence that the variability of cortical connectivity is at 

least partly driven by changes in neuromodulation.  One study showed that cognitive task and 

integrated FC states were accompanied by dilations of pupil diameter indicative of enhanced 

activity of subcortical neuromodulator nuclei, in particular the noradrenergic locus coeruleus 

(Shine et al., 2016). Another study linked the occurrence of global synchronization during 

resting state to a decrease in cholinergic basal forebrain activity suggesting that a decreased 

ACH tone is causally related to widespread propagation of neuronal activity (Liu et al., 2018a). 

Furthermore, inactivation of the nucleus basalis disrupts the presence of large-scale 

synchronization, while keeping the structure of local resting state network synchronization 

intact (Turchi et al., 2018). This finding is reminiscent of our model result where reduced global 

excitability diminished global synchrony. Thus, it remains to be studied how fluctuations in 

neuromodulation are causally related to individual connectivity and synchronization states. It is 

unclear to what extent neuromodulatory changes are stochastic and independent of cortical 

activity or are at least partly under control of cortical dynamics.  

Our whole-brain modeling also allowed us to mimick lesions of individual areas due to e.g. 

stroke, and studied their effect on global synchrony as seen during the awake state. We found a 

few key areas that are crucial for maintaining the model in a condition akin to the awake state 

and their damage resulted in a transition into model dynamics in which brain-wide 

                  



synchronization events were absent similar to unconscious states. Surprisingly, these areas were 

located in the back of the brain, centered around the ‘posterior hotspot’ of consciousness 

described in the literature (Boly et al., 2017; Koch et al., 2016; Tagliazucchi, 2017; Vogt and 

Laureys, 2005). The most influential areas in the model were the precuneus and posterior 

cingulate cortex in both humans and monkeys, which have been previously found to be key 

areas in maintaining consciousness (Alkire et al., 2008; Cavanna, 2007). In the monkey 

thalamic nuclei had a large impact,as described previously in empirical studies (Schiff, 2008). In 

the human parcellation the thalamus was only represented by one node per hemisphere with less 

impact on consciousness, explained by its weaker node communicability of the anatomical 

connections as compared to highly influential areas (Fig. 7A). Using graph theoretical analysis 

we identified a few areas with large impact on large-scale synchrony are part of the structural 

rich-club, a highly interconnected network of hubs that are part of the default node network in 

the posterior brain (van den Heuvel and Sporns, 2011; Zamora-López et al., 2011, 2010). More 

generally, the effect of individual brain areas on global synchronization was attributed to the 

degree of node communicability, i.e. how strongly activity initiated in a given area propagates 

across the brain. We also found that strong interhemispheric connections play a crucial role in 

mediating synchrony across the entire brain. This effect was most pronounced in humans and 

much less in monkeys. We can only speculate about the causes for this difference between 

species. Aside from existing anatomical differences, it is also conceivable that the difference in 

parcellation or tractography, which is known to confound interhemispheric connections 

specifically, may play a role. Overall, these results demonstrate that excitability and information 

transfer through single nodes is not only determined by neuromodulation, but also by the 

activity flowing into and out of crucial nodes in the network. These nodes then play a 

paramount role in keeping overall global excitability at a level necessary for conscious 

processing.         

In conclusion, we described a novel marker for different consciousness states that is based on 

large-scale synchronization of the fMRI signal across the brain and solidly explained by 

                  



changes of global excitability in a whole brain model. This model also suggests that the 

maintenance of consciousness is also dependent on graph theoretical properties of individual 

brain areas making conscious experience vulnerable to lesion of specific nodes. 

Methods 

Human study 

Participants: For this study, approved by the local ethics committee, we collected data from 63 

young healthy subjects, who provided written informed consent and were reimbursed for their 

participation. Eight subjects remained awake during scanning and were not included in the 

study, leaving five subjects who reached at least N1 sleep (36 females, mean±SD age of 23.4 ± 

3.3 years). Simultaneous EEG-fMRI was recorded in the evening after a regular sleeping 

schedule. For this study, we only included 18 participants, who went through all three sleep 

stages (N1, N2 and N3). 

Acquisition of fMRI and EEG and artifact processing: We simultaneously recorded EEG via 

a cap (modified BrainCapMR, Easycap) and fMRI (1505 volumes of T2*-weighted echo planar 

images, TR/TE = 2080 ms/30 ms, matrix 64 x 64, voxel size 3 x 3 x 2 mm
3
, distance factor 

50%; FOV 192 mm
2
) with a 3T Siemens Trio scanner. Polysomnography was performed,  

recording chin and tibial EMG, ECG, EOG bipolarly (sampling rate 5 kHz, low pass filter 1 

kHz) and EEG with 30 channels using FCz as the reference (sampling rate 5 kHz, low pass filter 

250 Hz); We recorded pulse oxymetry and respiration with sensors from the Trio (sampling rate 

50 Hz) and MR scanner compatible devices (BrainAmpMR+, BrainAmpExG; Brain Products), 

which aided sleep scoring during fMRI recordings (Jahnke et al., 2012) (AASM, 2007). MRI 

and pulse artifacts were removed with the average artifact subtraction (AAS) method(Allen et 

al., 1998) as implemented in Vision Analyzer2 (Brain Products) and thereafter by objective 

(CBC parameters, Vision Analyzer) ICA-based rejection of residual artifact components, after 

which the EEG had a sampling rate of 250 Hz (Jahnke et al., 2012) . Likewise, motion artifacts 

                  



in the EEG were removed based on ICA using the Vision Analyzer2 software. An expert scored 

sleep stages manually according to the AASM criteria (AASM, 2007). 

fMRI preprocessing: Using Echo planar imaging (EPI) data were realigned, normalized (MNI 

space), spatially smoothed (Gaussian kernel, 8-mm
3
 full width at half maximum) with the 

Statistical Parametric Mapping software (SPM8, www. fil.ion.ucl.ac.uk/spm) and resampled to 

a 4 x 4 x 4 mm
3
 resolution for artifact removal. Then we regressed out cardiac, respiratory (both 

estimated using the RETROICOR method(Glover et al., 2000)) and motion-induced noise. For 

data analysis, the data were first bandpass filtered in the range of 0.01-0.1 Hz (Cordes et al., 

2001) using a second order Butterworth filter or between 0.07 and 0.09 Hz to compare empirical 

with model data (see below). All voxels were then projected onto the automated anatomic 

labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) (90 areas, 76 cortical regions, 14 

subcortical regions, excluding cerebellar regions, Supplementary Table 1) by averaging their 

time courses within each AAL cluster. Alternatively, we also computed the first principal 

component of the voxel time-series and compared it with the averaged time course. The results 

show that the two time series are highly similar (Supplementary Fig. 1A) with a correlation 

coefficient of 0.96 ± 0.04 (Supplementary Fig. 1B).   

Anatomical dataset acquisition in humans with DTI: The human SC-matrix was obtained at 

Aarhus University, Denmark using DTI (3T Siemens Skyra scanner) in 16 healthy right-handed 

participants (11 men and five women, mean age: 24.75 ± 2.54). Subjects with a history of 

psychiatric or neurologic disorders were not included in this study. The T1 acquisition of the 

structural MRI was performed with a voxel size of 1 mm
3
, a reconstructed matrix size of 256 x 

256, echo time (TE) of 3.8 ms and repetition time (TR) of 2300 ms. The DTI data were acquired 

using TR = 9000 ms, TE = 84 ms, flip angle = 90°, reconstructed matrix size of 106 x 106, 

voxel size of 1.98 x 1.98 mm with slice thickness of 2 mm and a bandwidth of 1745 Hz/Px. 

Moreover, the data collection was carried out with 62 optimal nonlinear diffusion gradient 

directions at b=1500 s/mm
2
 and roughly one nondiffusion weighted image (DWI; b = 0) per 10 

diffusion-weighted images was obtained. In addition, DTI images were taken with opposing 

                  



phase encoding directions (anterior to posterior or posterior to anterior). Similar to the fMRI 

data, we parcellated the structural scans into 90 areas using the AAL template.  We used the 

linear registration tool from the FSL toolbox (www.fmrib.ox. ac.uk/fsl, FMRIB(Jenkinson et al., 

2002)) to coregister the EPI image to the T1-weighted structural image. The T1-weighted image 

was coregistered to the T1 template of ICBM152 in MNI space(Collins et al., 1994). The 

resulting transformations were concatenated and inversed and further applied to warp the AAL 

template (Tzourio-Mazoyer et al., 2002) from MNI space to the EPI native space, where 

interpolation using nearest-neighbor method ensured that the discrete labeling values were 

preserved. SC maps for each participant using the DTI data were acquired and processed based 

on the two acquired datasets with different phase encoding. To construct the SC matrix, we 

estimated connections between nodes defined by the AAL atlas using probabilistic tractography 

and averaged across subjects.  

Monkey study 

Animals: Three rhesus macaques (Macaca mulatta, 1 male, 2 females, weight 5-8 kg, age 6-12 

years), were tested for each arousal state (awake, moderate propofol sedation, deep propofol 

anesthesia). All procedures were conducted in accordance with the European convention for 

animal care (86-406) and the National Institutes of Health’s Guide for the Care and Use of 

Laboratory Animals. Macaque studies were approved by the institutional Ethical Committee 

(protocols #10-003). 

Propofol Anesthesia Protocol: Detailed methodology was described in our previous studies 

(Barttfeld et al, PNAS, 2015; Uhrig et al, Anesthesiology, 2018). The propofol anesthesia levels 

(moderate and deep anesthesia) were defined using a clinical score, the monkey sedation scale 

(spontaneous movements, response to juice presentation, shaking/prodding, toe pinch and 

corneal reflex) determined at the beginning and the end of each scanning session and continuous 

electroencephalography (EEG) monitoring (Barttfeld et al., 2015; Uhrig et al., 2018). Under 

deep propofol anesthesia (general anesthesia), monkeys did not respond to any stimuli. EEG 

                  



Propofol anesthesia levels were defined as follows (Barttfeld et al., 2015; Uhrig et al., 2018): 

level 1, awake state, posterior alpha waves and anterior beta waves; level 2, light propofol 

sedation, increasing of the amplitude of alpha waves and anterior diffusion of alpha waves; level 

3, moderate propofol sedation, diffuse and wide alpha waves, and anterior theta waves; level 4, 

deep propofol anesthesia (general anesthesia), diffuse delta waves, waves of low amplitude and 

anterior alpha waves (10 Hz); level 5, very deep sedation (deeper then level of general 

anesthesia), burst suppression. 

The awake monkeys were trained to be injected with an intravenous propofol bolus (5-7.5 

mg/kg i.v.; Fresenius Kabi, France) to induce anesthesia, followed by target-controlled infusion 

(Alaris PK Syringe pump, CareFusion, CA, USA) of propofol (moderate propofol sedation: 3.7-

4.0 microg/ml; deep propofol anesthesia 5.6-7,2 microg/ml) based on the ‘Paedfusor’ 

pharmacokinetic model(Absalom and Kenny, 2005). During moderate propofol sedation 

sessions, a muscle-blocking agent was co-administered (cisatracrium, 0.15 mg/kg bolus i.v. 

followed by continuous i.v. infusion at a rate of 0.18 mg/kg/h, GlaxoSmithKline, France) to 

prevent artifacts related to potential movements during the fMRI acquisition. Monkeys were 

intubated and ventilated. Heart rate, non-invasive blood pressure, oxygen saturation, respiratory 

rate, end-tidal CO2, cutaneous temperature was monitored (Maglife, Schiller, France) and 

recorded online (Schiller, France) (Barttfeld et al., 2015; Uhrig et al., 2018) Temperature, 

hemodynamic and ventilation parameters were kept constant during each experiment (Barttfeld 

et al., 2015; Uhrig et al., 2018).  

Awake state Protocol for the Monkeys: For the awake state acquisitions, monkeys were 

implanted with an MR-compatible headpost and trained to sit in the sphinx position in a primate 

chair (Uhrig et al., 2014; Wang et al., 2015). Monkeys sat in the dark inside the MRI without 

any task (Barttfeld et al., 2015; Uhrig et al., 2018). 

Monkey fMRI acquisition: Monkeys were scanned with a customized single transmit-receiver 

surface coil on a 3-T horizontal scanner (Siemens Tim Trio, Erlangen, Germany). Before each 

scanning session, monocrystalline iron oxide nanoparticles (MION, Feraheme; AMAG 

                  



Pharmaceuticals; 10 mg/kg, i.v.) were injected into the monkey’s saphenous vein(Barttfeld et 

al., 2015; Uhrig et al., 2018). Each functional scan contained 500 gradient-echoplanar whole-

brain images (TR = 2400 ms; TE = 20 ms; and 1.5-mm
3
 voxel size;). 27 awake runs, 25 

moderate propofol sedation runs and 31 deep propofol anesthesia runs were acquired. 

Monkey fMRI preprocessing: Monkey fMRI images were reoriented, realigned and rigidly 

co-registered to the anatomical template of the monkey Montreal Neurological Institute space 

(MNI) (Frey et al., 2011; Uhrig et al., 2014). We also regressed out movement parameters 

resulting from rigid body correction for head motion. We removed the global signal from the 

images to minimize the potential respiratory and cardiac effects associated with the propofol 

administration. Voxel time series were parcellated according to the Paxinos atlas(Paxinos et al., 

2009) (see Supplementary Table 2), encompassing 432 cortical and subcortical areas. The 

signals were then band-pass filtered between 0.01 and 0.1 Hz or in the range of 0.07-0.09 Hz to 

compare empirical with model data (see below).  

Anatomical dataset acquisition in monkeys with diffusion tensor imaging (DTI): DTI data 

collected in 271 young rhesus macaques in the age-range of 0.7370 to 4.2027 years (Adluru et 

al., 2012) were used for the creation of a macaque SC matrix. Data collection in macaques was 

performed using protocols approved by the University of Wisconsin Institutional Animal Care 

and Use Committee (IACUC). Before undergoing MRI acquisition, the monkeys were 

anesthetized using ketamine (15 mg/kg). MRI scanning was performed using a GE SIGNA 3T 

scanner. MR scanning was performed using a two-dimensional, echo-planar, diffusion-

weighted, spin-echo sequence with the following parameters: repetition time = 10s; echo time = 

77.2 ms; field of view=14 cm; matrix=128×128; 2.5 mm thick contiguous slices; echo-planar 

echo spacing=800 μs. Diffusion imaging (b=1000s/mm
2
) was performed in 12 non-collinear 

directions with one non-diffusion weighted image and the acquisition was repeated six times 

and averaged. The volumes were eddy-current corrected using FSL and then brain extraction 

was performed in a semi-automated manner(Adluru et al., 2012). Following spatial 

normalization of the single-monkey DT images to monkey MNI space(Frey et al., 2011) using 

                  



DTI-TK, an advanced DTI spatial normalization tool (http://www.nitrc.org/projects/dtitk), a 

DTI template was computed as their Log-Euclidean mean. A brain parcellation with 432 distinct 

areas in MNI space, defined according to the Paxinos atlas (Paxinos et al., 2009) was used for 

probabilistic tractography(Behrens et al., 2003). Accordingly, an SC matrix, representing the 

strength of connectivity between pairs of network nodes (i.e., atlas regions) was estimated. 

Analysis of global synchronization 

For the analysis of global synchronization, we first extracted discrete events from all empirical 

and modeled data by assigning a time stamp to each positive peak of the z-scored data similar to 

previous studies (Deco et al., 2017b; Tagliazucchi et al., 2012). As a control we also repeated 

subsequent analysis on events that were based on negative peak, which yielded the same results 

(Supp Fig. 1A-B). Next, we chunked the data into sliding windows with different sizes ranging 

between 5 and 50 TR. The window was advanced in steps of 1TR. To quantify global 

synchronization, we took advantage of the Fano factor which was used in classical point process 

analysis to assess the presence of globally synchronized spiking activity in E-I networks (Brunel 

and Hakim, 1999; Hahn et al., 2017; Kumar et al., 2008). To this end we calculated the sum of 

all events found within 1 TR of a window, which resulted in a sequence of counts with length 

equal to the window size. The Fano factor (FF) of the count sequence was then derived based on 

the following relationship:  

𝐹𝐹 =  
𝑣𝑎𝑟(𝑐𝑜𝑢𝑛𝑡𝑠)

𝑚𝑒𝑎𝑛(𝑐𝑜𝑢𝑛𝑡𝑠)
      (1) 

The value of the Fano factor gives insight into the correlation structure of the events within each 

time window. FF ~ 1 indicates that all the events appear independently from each other and 

seem to have been drawn from a random Poisson process. In the presence of large-scale 

synchronization of events across many brain areas, the FF increases strongly (FF>>1) as the 

synchrony confines most events now to a short period of time (1-2 TRs) which is followed by a 

period with only few events due to synchronization of the negative peaks.  FFs were computed 

                  



for each time window and summarized in a FF distribution. To quantify the overall level of 

global synchronization, we fitted a Gamma distribution which is defined as follows: 

 𝑁(𝐹, 𝛽, 𝜃) =  
𝜃𝛽

𝛤(𝛽)
 Fβ−1 e−θF(−𝜃𝐹);   𝛽 > 0, 𝜃 > 0                    (2) 

,where β denotes the shape parameter, θ the scale parameter and Γ represents the gamma 

function. Subsequently we used the shape parameter β to quantify the level of consciousness by 

assigning a single number to each condition that reflects the overall level of large-scale 

synchrony.  

For FF = 1, all events are uncorrelated and correspond to a Poisson process (Fig. 1F).  Global 

bursts of events result in higher order correlations and are characterized by a large variance in 

event counts due to a concentration of events within a few TR followed by TRs with absence of 

events. As a result, the Fano factor assumes values >> 1 and measures the degree of global 

synchronization of brain activity across all areas. We obtained the distribution of Fano factors 

from all windows for each individual of an age group, which were then merged into a single 

distribution for an entire age group. An exponential function with exponent λ was then fitted to 

both the model and empirical FF distributions. 

Statistical analysis 

To test for significant differences between beta values and other metrics across different 

consciousness conditions at the group level, we applied a jackknife approach and created N 

datasets (N = number of subjects in humans and trials in monkeys per for a given consciousness 

level) for each vigilance condition, each time concatenating N-1 subjects/trials and leave one 

out. The new datasets were then assessed using a one-way repeated measure (rm) ANOVA and 

posthoc tests with Bonferroni correction.  The significance level was set to p < 0.05. In case the 

sphericity (ε) assumption of the rm-ANOVA was violated, as assessed by a Mauchly test, the p-

values and degrees of freedom adjusted by the Huynh-Feldt estimate of ε. To compute goodness 

                  



of fit for gamma distributions fitted to the Fano factor distributions, we used a one-sample 

Kolomogorov-Smirnov test. 

Functional connectivity 

To quantify statistical dependencies between empirical and modeled fMRI time series, we 

calculated the Pearson correlation coefficients across all brain areas, which were subsequently 

averaged for each consciousness condition or Fano factor state. 

SC-FC relationship 

The structure-function relationship for each consciousness condition was assessed by computing 

the Pearson correlation coefficient between the structural connectivity matrices (human and 

monkey) and the functional connectivity matrices for different consciousness levels or Fano 

factor states.   

Integration 

We use an integration measure based on the largest connected component of the FC matrix, as 

defined previously (Deco et al., 2015). As a first step, the FC matrix is binarized by setting 

connections above a threshold θ to 1 and discarding connections below the threshold, which has 

a range between 0 and 1. We then search for the largest connected subgraph, i.e. the nodes that 

are connected without further connections to the remaining nodes of the entire matrix. The size 

of the largest component (i.e. the number of nodes pertaining to the subgraph) is calculated for 

each θ and integrated across all tested thresholds. To obtain integration values between 0 and 1, 

the result is normalized by the number of areas N and integration steps.  This integration 

measure is calculated for all consciousness levels and Fano factor states. 

Modularity 

To quantify to which degree activity during different consciousness levels or Fano factor states 

is organized in functional communities, we applied the modularity measure of Newman  

(Newman, 2006). More specifically, this measure gibes insights to what extent an FC matrix can 

                  



be broken down into nonoverlapping subnetworks, where the connectivity strength within a 

group of brain areas is maximized and minimized between different groups. This metric was 

applied to different consciousness conditions and Fano factor states. 

Computational whole-brain model 

To study the mechanisms behind global synchronization, we employed a whole-brain model 

consisting of either 90 nodes, mimicking the parcellation of areas in human data, or 432 nodes 

corresponding to the empirical monkey parcellation. The modeled brain areas were connected 

based on the patterns of long-range connections that were extracted by DTI from humans and 

monkeys. We used the measured fiber density as a proxy for the connectivity strength in the 

model. To simulate the dynamics of the local fMRI signal we used the normal-form of the Hopf 

bifurcation (Deco et al., 2017a, 2017b; Hahn et al., 2019), which corresponds to a transition 

from focus equilibrium with damped, noisy oscillations to limit cycle behavior with self-

sustained oscillations similar to networks of excitatory and inhibitory neurons (Brunel, 2000). 

The dynamics is described by the following set of coupled differential equations: 

dxj

dt
=

dRe(zj)

dt
= [aj-xj

2-yj
2]xj-ωjyj + G ∑ Cij(xi-xj) + βηj(t)i    (3) 

dyj

dt
=

dIm(zj)

dt
= [aj-xj

2-yj
2]yj + ωjxj + G ∑ Cij(yi-yj) + βηj(t)i    (4) 

 

, where 𝛽𝜂𝑗 represents additive Gaussian noise with standard deviation β = 0.01. ωj is the 

intrinsic node frequency, which translated to the BOLD frequency 𝑓𝑗 via the following 

expression: fj =
ωj

2π
. The BOLD frequency for each model node was set to 0.085 Hz and filtered 

between 0.075 and 0.095 Hz in the human data simulations or to 0.04 Hz in the monkey model 

with filtering between 0.03 and 0.05 Hz. These filters were necessary to remove high frequency 

noise imposed by the Gaussian noise and allow comparison with empirical Fano factor 

distributions. These model frequencies were chosen, since the empirical data filtered around the 

same frequency bands can reproduce the same Fano factor distributions that are seen with a 

more broadband filtering (0.01 – 0.1 Hz). The variable xj was used to model the local fMRI 

                  



signal. The parameter G scales each connection in the anatomical connectivity matrix by a 

constant value which was set to 0.1 in this study. For each consciousness level we performed a 

simulation of 100 minutes. For the single trial analysis, we simulated 18 trials of 250 TR for 

each consciousness state of the human model. For the monkey model we simulate 21,26 and 31 

trials of 250 TR for the awake, light and deep anesthesia case, respectively. These simulations 

were compared with ten long trials of a duration of 10000 TR. 

In an unconnected node, the dynamical behavior is set by bifurcation parameter 𝑎𝑗, which 

exhibits a supercritical Hopf bifurcation at aj = 0. This means that the activity transitions from 

a stable focus equilibrium governed by resonance and noisy oscillations at 𝑎𝑗 < 0 to a stable 

limit cycle at 𝑎𝑗 > 0 with self-sustained oscillations. However, as soon as a node is embedded 

in a large scale network, the impinging connections change the bifurcation point to negative 

values. In order to find the 𝑎𝑗 for the large-scale anatomical network of the human and monkey 

DTI data, we took advantage of the fact that the Fano factor distributions (see above) for small 

window sizes (5 TR), followed an exponential distribution when 𝑎𝑗 was set below the 

bifurcation (Fig. 2B). As soon as 𝑎𝑗 > bifurcation, the network produced a global oscillations 

which was visible as a bump in the FF distribution and thus a deviation of the exponential FF 

decay. We thus defined the bifurcation point as the value of 𝑎𝑗, where the exponential fit, as 

assessed by a Kolmogorov-Smirnov distance, increased to values above 0.1 (Fig. 2C). The 𝑎𝑗 

values at the bifurcation point for the human (𝑎𝑗 ~ 0.66) and monkey (𝑎𝑗 ~ -0.33) SC matrices 

where then normalized to zero (Figs 2D-G). To fit the model to the data we performed a grid 

search to find 𝑎𝑗, where the distance | βemp ‒ βmod| of the empirical and modeled FF distributions 

was minimized.  

Model lesion analysis 

To study the role of individual brain areas for model dynamics and global synchronization we 

conducted a lesion simulations by setting the bifurcation parameter of single nodes j to a value 

of aj = -2.65  in humans and aj = -1.31 for monkeys, while keeping the other nodes at values that 

                  



correspond to the awake state (-0.663 for humans, -0.329 for monkeys). The impact on global 

synchronization by a single node lesion was then quantified by the lesion index λ, which we 

defined as follows: 

𝜆 =  
𝛽𝑎𝑤𝑎𝑘𝑒

𝛽𝑙𝑒𝑠𝑖𝑜𝑛
                                (5) 

, where 𝛽𝑎𝑤𝑎𝑘𝑒 represents the beta value of the FF distribution found in the awake state (human 

or monkey) and  𝛽𝑙𝑒𝑠𝑖𝑜𝑛 indicates the beta value after the node lesion with a simulation time of 

10 minutes. The lesion index λ ranges between 0 and 1, and reflects the fraction of global 

synchrony after the lesion as compared to the awake state in either monkey or human data 

models. Thus λ~1 means that the global synchronization are barely affected by the lesion, while 

λ<<1 is a result of a strong influence of a given node on global dynamics.  

Graph theoretical analysis 

The SC matrices of human and monkeys were studied using several graph analysis tools. A rich 

club was identified in both SC networks. Rich-club identification implies the calculation of the 

k-density, a recursive calculation that computes the density of the remaining network after all 

nodes with degree k’ ≤ k have been removed, until no nodes are left (Zamora-López et al., 

2010). The case k = 0 corresponds to the density of the original network. If the k-density grows 

with k, it means that the nodes with largest degree are densely interconnected with each other. If 

the k-density decays, it means that the nodes with largest degree are indeed not connected with 

each other. The two SC networks display a growing k-density function and clearly contain a 

rich-club, taken as the remaining subset of hubs with node degree k’ > 47 in humans and k’ > 

108 in monkeys.  

Communicability (M) is a graph metric that quantifies the “influence” one node exerts over 

another given the path structure of the network (Estrada and Hatano, 2008). It accounts for the 

fact that (i) information flows along all possible paths, not only across the shortest ones, and (ii) 

that shorter paths are more relevant while influence decays with the length of the path 

                  



(Bettinardi et al., 2017). Given the adjacency matrix A of the matrix, communicability is 

defined as the matrix exponential, e
A
, which can be decomposed as the power series: 

𝐶 = 𝑒𝐴 = 𝟏 +  𝐴 +
𝐴2

2!
 +

𝐴3

3!
 +

𝐴4

4!
+ ⋯,  

where the powers (A
n
)ij represent the number of paths of length n that run from node i to node j. 

The communicability of every node, taken as the column sum of the matrix C, was then 

correlated with the lesion index. 

The activity during different consciousness levels (or Fano factor states) is organized into 

functional communities. Therefore, to quantify the level of segregation in the functional 

connectivity (FC) matrices we performed a community detection procedure on them. 

Partitioning the networks into clusters was performed using the Louvain method, optimizing the 

weighted Newman modularity (Newman, 2006). This measure evaluates the “goodness” of the 

partition, giving insights to what extent the FC matrices can be broken down into 

nonoverlapping subnetworks. Optimization of modularity implies that the connectivity strength 

within a group of brain areas is maximized while the strength between different groups is 

minimized. Thus, modularity provides a quantitative indication of the level of functional 

segregation in the FC. This metric was applied to different consciousness conditions and Fano 

factor states. 

To quantify the asymmetry of communicability between the two hemispheres, we first 

computed communicability of a given node for the right (r) and left hemisphere (l) separately 

and then calculated the asymmetry (S) according to the following expression: 

 

        𝑆𝑟𝑙 =  
|Ml− Mr|

Ml+ Mr
                           (6) 

Asymmetry values range between 0 and 1, such that 𝑆𝑟𝑙  ~ 1 indicates full asymmetry and 

𝑆𝑟𝑙  ~ 0 complete symmetry. 
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