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Abstract
Understanding the association between autonomic nervous system [ANS] function 
and brain morphology across the lifespan provides important insights into neurovis-
ceral mechanisms underlying health and disease. Resting-state ANS activity, indexed 
by measures of heart rate [HR] and its variability [HRV] has been associated with 
brain morphology, particularly cortical thickness [CT]. While findings have been 
mixed regarding the anatomical distribution and direction of the associations, these 
inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous 
studies have been limited by small sample sizes, which impede the assessment of sex 
differences and aging effects on the association between ANS function and CT. To 
overcome these limitations, 20 groups worldwide contributed data collected under 
similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-
analysis (N = 1,218 (50.5% female), mean age 36.7 years (range: 12–87)). Findings 
suggest a decline in HRV as well as CT with increasing age. CT, particularly in the 
orbitofrontal cortex, explained additional variance in HRV, beyond the effects of 
aging. This pattern of results may suggest that the decline in HRV with increasing 
age is related to a decline in orbitofrontal CT. These effects were independent of sex 
and specific to HRV; with no significant association between CT and HR. Greater 
CT across the adult lifespan may be vital for the maintenance of healthy cardiac regu-
lation via the ANS—or greater cardiac vagal activity as indirectly reflected in HRV 
may slow brain atrophy. Findings reveal an important association between CT and 
cardiac parasympathetic activity with implications for healthy aging and longevity 
that should be studied further in longitudinal research.

K E Y W O R D S

aging, autonomic nervous system, cortical thickness, heart rate, heart rate variability, sex

1 |  INTRODUCTION

Measures of heart rate [HR] and its variability [HRV] index the 
activity of the autonomic nervous system [ANS], and hence are 
related to physiological function, general health, and well-be-
ing. HRV refers to the variation in time between successive 
heartbeats and provides a reliable estimate of cardiac para-
sympathetic (vagal) regulation of HR (Camm, 1996). Neural 
control of the heart is achieved via feedforward and feedback 
mechanisms (efferent and afferent pathways) along the neuraxis 
(Dampney,  2016; Palma & Benarroch,  2014), involving 

forebrain areas such as the insular cortex, the anterior cingulate 
cortex [ACC], and the central nucleus of the amygdala. Only 
recently has research aimed to understand individual differences 
in the association between brain morphology and ANS func-
tion, potentially reflecting integrated brain-body health.

Several studies have recently shown that resting-state 
HRV is associated with the morphology of the brain across 
regions of interest [ROI], indexed by cerebral cortical thick-
ness [CT] (Carnevali et  al.,  2019; Koenig et  al.,  2018; Lin 
et al., 2017; Wei, Chen, & Wu, 2018a, 2018b; Winkelmann 
et al., 2016; Wood, Badrov, Speechley, & Shoemaker, 2017; 
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Woodward, Kaloupek, Schaer, Martinez, & Eliez,  2008; 
Yoo et al., 2017). CT is considered to reflect cellular aspects 
of the cortical organization (Lerch, 2001). It has been sug-
gested that—in contrast to measures of brain volume—CT 
may present a more sensitive measure to index normative and 
pathological changes in the brain structure (e.g., Thambisetty 
et al., 2010). The first study addressing associations between 
HRV and brain structure reported an association between  
resting-state respiratory sinus arrhythmia and the volume of 
the right but not left ACC (manually traced) in 77, predom-
inantly male, U.S. combat veterans, suggesting that smaller 
ACC volume was associated with less parasympathetic regula-
tion of HR (lower HRV) (Woodward et al., 2008). Since then, 
several studies (Carnevali et al., 2019; Koenig et al., 2018; Lin 
et  al.,  2017; Wei, Chen, & Wu, 2018b; Wei, Chen, & Wu, 
2018a; Winkelmann et  al.,  2016; Wood et  al.,  2017; Yoo 
et al., 2017) with varying sample sizes (n = 20 to 185) have ex-
amined the association between HRV and brain morphology, 
predominantly focusing on CT (for a comprehensive review 
see Carnevali, Koenig, Sgoifo, & Ottaviani, 2018). The ma-
jority of studies in adults have reported positive correlations 
between CT and HRV (Carnevali et  al.,  2019; Winkelmann 
et al., 2016; Wood et al., 2017; Woodward et al., 2008; Yoo 
et al., 2017). However, sex and age differences in ANS func-
tion and brain morphology exist, but have not previously 
been jointly considered in studies examining the association  
between CT and HR/HRV, due to small sample sizes.

1.1 | Sex differences

Sex differences in resting-state HR and HRV have been re-
ported. In adults, females show greater cardiac vagal activ-
ity, indexed by greater HRV, despite higher HR (Koenig & 
Thayer,  2016). In children and adolescents, females show 
lower HRV and higher HR (Koenig, Rash, Campbell, Thayer, 
& Kaess, 2017). Neuroimaging meta-analyses examining sex 
differences in brain morphology have shown that, compared 
to females, males have larger total brain volumes (Ruigrok 
et  al.,  2014). Sex differences in volume and tissue density 
have been shown for specific brain regions including the 
amygdala, hippocampus, and insula (Ruigrok et  al.,  2014). 
Regarding CT, studies suggest greater thickness of temporal 
and parietal cortices in females that are maintained across 
aging (Sowell et al., 2007). More recently, the largest sin-
gle-sample study drawing on data from the UK Biobank 
(n = 5,216) showed that although adult males have larger cor-
tical and subcortical volumes—except the right insula—adult 
females showed greater CT in 47 out of 68 ROI investigated 
(Ritchie et al., 2018). Given the positive association between 
CT and HRV in adults (Carnevali et al., 2019; Winkelmann 
et al., 2016; Wood et al., 2017; Woodward et al., 2008; Yoo 
et al., 2017), greater CT in females may be associated with sex 

differences in cardiac vagal activity (Koenig & Thayer, 2016). 
However, previous work has not been sufficiently powered to 
realistically address this hypothesis. Further, the direction of 
association remains speculative.

1.2 | Age differences

Cardiac ANS function changes across the lifespan. Healthy 
aging is associated with a steady decrease in HRV (Antelmi 
et  al.,  2004; Jandackova, Scholes, Britton, & Steptoe,  2016; 
Voss, Schroeder, Heitmann, Peters, & Perz, 2015; Zhang, 2007). 
Potential mechanisms underlying this decrease include changes 
in baroreceptor sensitivity, structural, and functional changes 
in the sinoatrial node, as well as changes in vascular wall re-
ceptor sensitivity and adrenergic activity in general (Seals 
& Esler,  2000). Similarly, CT declines with increasing age 
(Storsve et al., 2014; Thambisetty et al., 2010). Studies examin-
ing the association between HRV and CT have shown that the 
correlation between vagally mediated HRV and CT changes as 
a function of age (Wood et al., 2017; Yoo et al., 2017), even 
after adjusting for cardiorespiratory fitness (Wood et al., 2017). 
Studies illustrating weaker correlations between brain morphol-
ogy and ANS function in older age suggest that reduced CT (in 
particular of the ACC (Carnevali et al., 2018; Yoo et al., 2017) 
and medial prefrontal cortex (mPFC) (Wood et al., 2017). in 
aging may contribute to the reduction in cardiac vagal activity 
with advancing age (alongside peripheral factors). However, 
CT of other ROI, such as the left lateral orbitofrontal cortex 
(OFC) (Wood et  al.,  2017), show age-invariant associations 
with vagally mediated HRV. Most interestingly, the association 
between CT and ANS function seems to change in direction 
from adolescence to adulthood (Koenig et al., 2018). That is, 
unlike in adults where studies repeatedly have shown a posi-
tive association between HRV and CT (Carnevali et al., 2019; 
Winkelmann et  al.,  2016; Wood et  al.,  2017; Woodward 
et al., 2008; Yoo et al., 2017), this pattern is inverted in adoles-
cents (Koenig et al., 2018). However, no single study has previ-
ously examined the relationship between HRV and CT across a 
continuum from adolescence to older age. Moreover, no study 
has been sufficiently powered to examine the association be-
tween HRV and CT across the lifespan, while also robustly in-
vestigating potential interactions with sex.

1.3 | Study aims and hypotheses

The aim of the present study was to pool existing data on CT 
and autonomic function, indexed by HR and HRV, to identify 
differences in the association between brain morphology and 
resting-state ANS activity (a) across aging and (b) as a function 
of sex in healthy subjects. We focused on HRV as the primary 
outcome of ANS function and aimed to conduct all analyses on 
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HR and HRV, addressing HRV (in contrast to HR) as an indirect 
correlate of cardiac vagal activity. We focused on CT in seven 
ROI per hemisphere, that have previously been shown to be as-
sociated with HRV (Carnevali et al., 2019; Koenig et al., 2018; 
Lin et al., 2017; Wei et al., 2018a; Wei et al., 2018b; Winkelmann 
et  al., 2016; Wood et  al., 2017; Woodward et  al., 2008; Yoo 
et al., 2017). However, assuming that the association between 
HRV and CT would vary by region we further assessed whole-
brain morphology, quantifying CT for a total of 68 ROI (34 
for each hemisphere) according to the Desikan-Killiany atlas 
(Desikan et al., 2006). We hypothesized that higher HRV and 
lower HR are associated with greater CT and those correlations 
between HRV and CT are stronger than correlations between 
HR and CT. Based on prior findings, we expected that HRV 
and CT decrease with increasing age (continuous correlation). 
Given that different regions of the brain change differentially 
over time, we aimed to identify specific brain regions associ-
ated with the decline in HRV.

Regarding sex differences, we expected that females would 
show higher HR, higher HRV, and greater CT compared to 
males (group comparisons). Addressing the interaction between 
age and sex, we hypothesized that the decrease in HRV and CT 
with increasing age is smaller in females compared to males 
(relative change in HRV/CT per life-year). We also addressed 
potential sex differences in the association between CT and HR/
HRV independent of age, with no a priori directed hypotheses. 
Finally, addressing if CT predicts HR/HRV as a function of age 
and sex, we hypothesized that slower decline of CT in females 
is associated with slower decline in HRV across aging.

2 |  METHOD

Authors of previous studies and those with potential access to 
data on the association between HRV and CT were contacted 
and invited to participate in the project. A preprint detailing 

the hypotheses, strategies for pooling of data, and analyses 
of the project was posted on the Open Science Framework 
(https://osf.io/btjpw/) on April 1, 2018 to attract additional 
potential collaborators. To pool data across participants from 
each research group, the variables listed in Table 1 were pro-
vided by all contributing authors.

2.1 | Heart rate and heart rate variability

Recordings of HR/HRV based on electrocardiography (ECG) 
and photoplethysmography (PPG) were eligible for inclusion. 
There were no restrictions with respect to other features of the 
recording of HR and HRV (e.g., sampling frequency, body po-
sition). Contributing authors were requested to provide details 
on procedures and methodological features of HR/HRV re-
cordings according to standard reporting items following the 
GRAPH recommendations (Quintana, Alvares, & Heathers, 
2016), which are available for each research group as 
Supporting Information (see online Appendix A). RMSSD is a 
time-domain measure of HRV, reflecting cardiac vagal con-
trol. Time-domain measures of vagally mediated HRV, such 
as RMSSD, and HRV indices derived from frequency domain 
analysis, such as spectrally derived high-frequency (HF) HRV, 
provide information of different qualities and details (Hill, 
Siebenbrock, Sollers, & Thayer,  2009; Penttilä et  al.,  2001; 
Sinnreich, Kark, Friedlander, Sapoznikov, & Luria,  1998). 
Although RMSSD and HF-HRV are highly correlated 
(Goedhart, van der Sluis, Houtveen, Willemsen, & de 
Geus, 2007), time domain parameters may be estimated with 
less bias and considerably smaller error compared with fre-
quency-domain parameters (Kuss, Schumann, Kluttig, Greiser, 
& Haerting, 2008). Further, frequency-domain measures such 
as HF-HRV are more likely to be affected by respiration (Hill 
et al., 2009; Penttilä et al., 2001), which varies by age (Fleming 
et  al.,  2011). Misspecifying frequency-bands or applying 

Variable Description

Id A random number (no original study ID) that was re-coded after pooling of data

Sex Participants’ sex, coded as female (no [0]/ yes [1])

Age Participants’ age in years

Height Participants’ height in centimeters [cm]; if data were provided in units other than 
cm, data were transformed according to established conversion factors

Weight Participants’ weight in kilograms [kg]; if data were provided in units other than 
kg, data were transformed according to established conversion factors

RMSSD The root mean square of successive differences between adjacent R-R intervals 
in milliseconds [ms], as a measure of vagally mediated HRV

HR Mean HR in beats per minute [bpm]

Thick_* CT of ROI in millimeters [mm]; 68 (34 for each hemisphere) ROI defined 
according to the Desikan-Killiany atlas (Desikan et al., 2006)

T A B L E  1  Variables for pooling data

https://osf.io/btjpw/
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identical frequency-bands across aging might, therefore, lead 
to erroneous data (Shader et al., 2018). Further, the estimation 
of RMSSD is more robust at lower sample rates compared to 
frequency-domain measures (Ellis, Zhu, Koenig, Thayer, & 
Wang, 2015). In sum, RMSSD is robust across sampling meth-
ods (including relatively short recordings (Munoz et al., 2015), 
making it a useful measure of HRV when pooling data from 
multiple cohorts with varying recording and experimental pro-
tocols.1 Further, in line with recent recommendations (Geus, 
Gianaros, Brindle, Jennings, & Berntson, 2019), we repeated 
the HRV analysis using the coefficient of variation (CV) of 
HRV to account for chronotropic state in sensitivity analyses 
(CV = 100 × (RMSSD/HR).2

2.2 | Cortical thickness

Contributing authors were required to report the procedures 
and methodological features of brain morphology measure-
ment according to recent suggestions (Vijayakumar, Mills, 
Alexander-Bloch, Tamnes, & Whittle, 2017). Reporting items 
were collected using a pre-formatted method sheet, provided 
for each research group within the Supporting Information 
(see online Appendix A). Based on the existing literature 
(Carnevali et al., 2019; Koenig et al., 2018; Lin et al., 2017; 
Wei et  al.,  2018a, 2018b; Winkelmann et  al.,  2016; Wood 
et al., 2017; Woodward et al., 2008; Yoo et al., 2017) report-
ing on the association between CT and HR/HRV, seven ROI 
(caudal anterior cingulate cortex [caudal ACC]; rostral ante-
rior cingulate cortex [rostral ACC]; insula; medial orbitofron-
tal cortex [medial OFC]; lateral orbitofrontal cortex [lateral 
OFC]; rostral middle frontal gyrus [rostral MFG]; superior 
frontal gyrus [SFG]), each for the left and right hemisphere 
(i.e., total of 14 ROI), were pre-selected for full reporting of 
statistics and graphical display in the manuscript. Full report-
ing of findings on all 68 ROI and additional data for meta- 
analytical research are available in the Supporting Information 
(see online Appendix B). All data were provided as CSV files 
that were pooled by the corresponding author using scripts 
in STATA (Version 15; StataCorp LP, College Station, TX, 
USA), ensuring the reproducibility of pooling procedures.

2.3 | Statistical analyses

In the initial study protocol, we did not consider the exclu-
sion of outliers after pooling of data. Thus, in a deviation 

from the original plan, multivariate outliers (including 
RMSSD and CT in 14 pre-selected ROI) were detected 
and removed for each research group's data set (rather 
than the sample as a whole) using the “mvoutlier” pack-
age in R (Filzmoser, Maronna, & Werner, 2008). RMSSD 
values that were physiologically unlikely (>150  ms) and 
body mass index [BMI] values indicative of morbid obe-
sity (>45  kg/m2) were also excluded from the data set. 
Summary statistics for the pooled sample were calculated 
for the following variables: age (in years); HR (in bpm); 
HRV (in ms) and BMI (in kg/m2). Welch's t tests were used 
to compare HRV and HR between sexes, and Pearson cor-
relations were computed for the relationship between HRV 
and HR, as well as age and BMI.

A series of regression models were used to predict HR or 
HRV by the research group (data set), age, sex, sex × age, 
and CT for each of the 68 ROI, with all variables added at 
once to each model. To address issues of multiple testing 
within a frequentist framework, we used the false discovery 
rate (FDR) method. P values lower than .05 were consid-
ered statistically significant. The t-statistics, p values, and 
FDR corrected p values for the brain region coefficients 
were of specific interest as these assess the relationship be-
tween CT and HR or HRV after adjusting for the research 
group (data set), age, sex, and sex × age. The p values and 
FDR corrected p values were computed for each ROI.

A series of Bayesian regression models were also used 
to assess the relative evidence of two models predicting 
the cardiac measures: A full model (CT for a given ROI, 
research group, BMI, age, sex, sex × age) and a covariate 
model (research group, BMI, age, sex, sex × age). Greater 
relative evidence for the full model, relative to the covari-
ate model, would suggest that CT is related to HRV over 
and above the effects of research group, BMI, age, sex, and 
sex × age. Full models were constructed for all 68 ROI. A 
conservative default prior distribution with an r scale of 
0.354, which is often referred to as a “medium” r scale, 
were used. This prior width reflects a belief that there is 
a 50% chance that the true effect size is within a −0.354 
to +0.354 interval, which is consistent with a small effect 
size. Bayes factors (BF) greater than 3 and 10 were consid-
ered moderate and strong evidence, respectively, for one 
model relative to the other (Jeffreys,  1998; Quintana & 
Williams,  2018). All analyses and figures were prepared 
using the R statistical environment (version 3.3.2).

3 |  RESULTS

3.1 | Sample characteristics

After removal of multivariate outliers, the final sample com-
prised 1,218 participants (50.5% female). The mean age was 

 1As explained in Appendix A of the Supporting Information, one group 
provided absolute MSD, a mathematical approximate of RMSSD (Allen 
et al. 2007).

 2Note that the original paper suggests to use IBI, that was not available for 
all studies in this pooled analysis. Therefore, we used mean HR.
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36.7 [standard deviation [SD] =14.9 [range: 12–87]) years. 
Participants’ mean height was 172.7 (9.9 [130–210.8]) cm, 
and mean weight was 74.8 (15.7 [36.1–132.4]) kg. The 
mean BMI was 25 (4.6 [16–44.3]) kg/m2. Mean HR was 
68.6 (10.7 [38–115.9]) bpm. Mean HRV (RMSSD) was 39.9 
(25 [2–148.8]) ms. There were significant differences in the 
male:female ratio by the research group [χ2(19)  =  121.1,  
p < .001]. Sample characteristics by the research group are 
provided in the Supporting Information (online Appendix B, 
Table S1–S4).

3.2 | Differences in heart rate and heart rate 
variability by age and sex

There were no sex differences in HRV (p = .39; BF = 0.18; 
d = 0.05; Figure 1a), but females had higher HR than males 
(p < .001; BF > 1,000; d = 0.28; Figure 1b). On average, 
males had higher BMI than females (p = .045; BF = 0.85; 

d = 0.11). There was a negative correlation between HRV and 
age [r = −0.44, 95% CI (−0.49, −0.4), p < .001, n = 1,218; 
Figure  1c), but no correlation between HR and age [r = 
0.04, 95% CI (−0.02, 0.1), p = .16, n = 1,218; Figure 1d). 
Accounting for the research group, there was no sex × age 
interaction for HRV (t = 0.89, p = .37) or HR (t = −1.16,  
p = .25).

3.3 | Associations between cortical 
thickness and age

There was no sex difference in mean CT across ROI  
(p = .08; BF = 0.57; d = 0.1). There was a negative correla-
tion between age and mean CT across ROI [r = −0.49; 95% 
CI (−0.53, −0.44); p < .001], and between age and CT for 
each ROI. CT in the preselected 14/68 ROI was negatively 
associated with age, accounting for the research group 
(all FDR corrected p values < 0.001; online Appendix B,  

F I G U R E  1  Resting heart rate (HR) and heart rate variability by sex and age. Box and violin plots illustrate HRV (indexed by RMSSD) (a) and 
HR (b) in males and females, with red dots reflecting mean values. Scatterplots with marginal distributions illustrate the relationship between HRV 
(indexed by RMSSD) (c) and HR (d) with age. A line of best fit for both males and females (95% confidence region in grey) was overlaid in each 
scatterplot

(a) (b)

(c) (d)
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Figure  S1 and Table  S2). Accounting for the research 
group, there was a significant effect of age (t = −16.2,  
p < .001), but no effect of sex (t = 0.82, p = .41) or sex × age 
interaction (t = 0.29, p = .78) on mean CT. Regarding our 
pre-selected 14/68 ROI, there were significant sex differ-
ences in the CT of the left and right caudal ACC (thinner in 
females), left and right insula (thicker in females), left lat-
eral OFC (thicker in females), and left medial OFC (thicker 
in females) (p < .05 after applying a FDR correction for 14 
tests; online Appendix B, Table S3).

3.4 | Associations between cortical 
thickness, heart rate, and heart rate variability

Overall, there was a correlation between HRV and mean 
CT (r = .23, p < .0001), but no significant relationship 
between HR and mean CT (r = −.02, p = .4). Zero-order 
correlations between HR/HRV and CT by sex are pro-
vided in the Supporting Information (online Appendix B, 
Tables S4–S9).

Regression models for each of the 14 pre-selected ROI 
predicting HRV by CT, age, and research group revealed 
that CT was associated with HRV when accounting for 
age and research group for the left (t  =  3.26, p = .001; 
FDR corrected p = .016) and right (t  =  2.82, p = .005, 
FDR corrected p = .034) lateral OFC (online Appendix B, 
Figure S2; Table S10). Age was associated with HRV when 
accounting for CT and research group for all 14 pre-spec-
ified ROI (all FDR corrected p values < 0.001; online 
Appendix B, Table S11). There were no main effects of sex 
or age or sex × age interactions for the prediction of HRV 
for any of the pre-selected ROI, accounting for the research 
group (online Appendix B, Table  S12). Regression mod-
els for each pre-selected ROI predicting HR by CT, age, 
sex, sex × age interaction, and research group revealed no 
main effects or interactions after FDR corrections (online 
Appendix B, Table S13).

3.5 | Primary analyses

Frequentist analyses on the relationship between pre- 
specified ROI and HRV revealed a significant relationship 
between CT of the left lateral OFC and HRV (t  =  3.29,  
p = .001; FDR corrected p = .015) accounting for all po-
tential confounds including research group, BMI, age, sex, 
and sex × age (Figures 2 and 3). There was an association 
between HRV and CT of the right lateral OFC (t  =  2.68,  
p = .007), right medial OFC (t = 2.39, p = .017), right insula 
(t = 2.47, p = .014), and left insula (t = 2.35, p = .019), but 
these effects did not remain significant after FDR correction 
(online Appendix B, Table S14). Analysis also revealed an 

association between age and HRV accounting for sex, re-
search group, BMI, and CT for the 14 pre-specified ROI (all 
FDR corrected p values < 0.001), suggesting that HRV de-
creases with age (Table S14). However, there was no effect 
of sex or sex × age on HRV, accounting for research group, 
age, BMI, and CT of the 14 pre-specified ROI (all FDR cor-
rected p values > .05).

Frequentist analyses revealed no relationship between CT 
of any of the 14 pre-specified ROI and HR (Table S9) ac-
counting for research group, BMI, age, sex, and sex × age. 
There was no significant effect of age or sex × age on HR 
accounting for sex, research group, BMI, and CT of the 14 
pre-specified ROI (online Appendix B, Table S15).

When adjusting HRV for HR, there was also a statistically 
significant relationship between CV and CT of the left lateral 
OFC (t = 2.74, p = .006), left insula (t = 2.45, p = .01), right 
lateral OFC (t = 2.49, p = .01), right medial OFC (t = 2.48, 
p = .01), and right insula (t = 2.3, p = .02) accounting for 
potential confounds. However, after FDR correction these re-
lationships were only on the border of traditional statistical 
significance in frequentist analyses (all p's < .06). Analysis 
also revealed significant FDR corrected relationships be-
tween age and HRV, accounting for sex, research group, 
BMI, and CT for all 14 pre-specified ROI, suggesting that 
HRV adjusted for HR decreases with age. However, there 
were no statistically significant age × sex interactions for any 
pre-specified ROI.

F I G U R E  2  Association between heart rate variability and cortical 
thickness in pre-specified ROI accounting for research group, BMI, 
age, sex, and sex × age. Grey dots represent the FDR corrected  
p values of pre-specified ROI coefficients. A −log10 transformed  
p value was used for the purposes of visualization. The vertical dashed 
red line represents an FDR corrected p value threshold of .05 (−log10 
transformed)
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Exploratory analysis of all 34 ROI in the right hemisphere 
revealed significant associations between RMSSD and CT 
of the isthmus cingulate (t  =  2.15, p = .03), lateral OFC 
(t = 2.68, p = .007), lingual (t = 1.96, p = .049), medial OFC 
(t = 2.39, p = .02), middle temporal (t = 2.45, p = .01), pars 
triangularis (t = 2.55, p = .01), insula (t = 2.47, p = .012), 
and superior temporal regions (t = 2.26, p = .02; Figure 3; on-
line Appendix B, Table S16), accounting for research group, 
BMI, age, sex, and sex × age. However, none of these effects 
remained significant after FDR correction. There were no 
FDR corrected significant associations between HR and CT 
for any region after accounting for research group, BMI, age, 
sex, and sex × age (online Appendix B, Table S17).

Exploratory analysis of all 34 regions in the left hemi-
sphere revealed associations between HRV and CT of the 
inferior temporal gyrus (t = 2.73, p = .006; FDR corrected 
p = .11), lateral OFC (t = 3.29, p = .001; FDR corrected  
p = .04) middle temporal (t = 2.28, p = .02; FDR corrected 
p = .16), pars opercularis (t = 2.27, p = .02; FDR corrected 
p = .16), pars orbitalis (t = 2.05, p = .04; FDR corrected  
p = .18), rostral MFG (t = 1.98, p = .048; FDR corrected  
p = .18) superior temporal (t = 1.99, p = .047; FDR cor-
rected p = .18), supra marginal (t = 2.21, p = .03; FDR cor-
rected p = .16), and insula regions (t = 2.35, p = .02; FDR 
corrected p = .16; Figure 3; online Appendix B, Table S16), 
accounting for research group, BMI, age, sex, and sex × age. 
There was no association between CT of any pre-specified 
ROI or any right or left hemisphere region and HR account-
ing for research group, BMI, age, sex, and sex × age after 
FDR correction (online Appendix B, Table S17).

Exploratory analysis of all 34 ROI in the right hemisphere 
revealed significant associations between HRV adjusted for HR 
(CV and CT of the lateral OFC (t = 2.49, p = .01), medial OFC 
(t = 2.48, p = .01), middle temporal (t = 2.3, p = .02), parahip-
pocampal (t = 2.26, p = .02), pars triangularis (t = 2.26, p = 
.02), superior temporal (t = 2.53, p = .01), and insula (t = 2.3, 
p = .02). None of these statistically significant associations 
survived FDR correction for multiple tests. Exploratory anal-
ysis of all 34 ROI in the left hemisphere revealed significant 
associations between HRV adjusted for HR (CV) and CT of the 
entorhinal (t = 2.19, p = .03), inferior temporal (t = 2.59, p = 
.01), lateral OFC (t = 2.74, p = .01), middle temporal (t = 2.21, 
p = .03), pars opercularis (t = 1.99, p = .047), superior temporal 

(t = 2.16, p = .03), supramarginal (t = 2.09, p = .04), and insula 
(t = 2.4, p = .01). None of these statistically significant associ-
ations survived FDR correction for multiple tests in traditional 
frequentist analyses.

Bayesian analysis revealed moderate evidence for the full 
model (CT for a given ROI, research group, BMI, age, sex, 
sex × age) relative to the covariate model (research group, 
BMI, age, sex, sex × age) for the prediction of HRV for anal-
yses including CT of the left lateral OFC (BF = 5.22) and 
left inferior temporal gyrus (BF  =  8.83; Figure  4, online 
Appendix B, Table S18). This suggests that CT in these re-
gions is related to HRV over and above the effects of research 
group, age, sex, and sex × age. In regards to the prediction of 
HR, there was moderate evidence for the full relative to the 
covariate model when including CT of the left (BF = 7.51) 
and right (BF = 3.09) parahippocampal regions, suggesting 
that CT in these regions is related to HR over and above the 
effects of research group, age, sex, and sex  ×  age (online 
Appendix B, Table S19).

4 |  DISCUSSION

4.1 | Summary of findings

Understanding the brain morphological correlates of auto-
nomic function is important for basic research and clinical 
applications. To this end we pooled data from 20 research 
groups worldwide, comprising a total of n = 1,218 healthy 
participants. Our results illustrate, that some of the previously 
reported associations between CT and HRV are likely attrib-
utable to type 1 errors and, moreover, some likely existing 
associations have been missed due to type II error—consider-
ing a traditional frequentist framework relying on the inter-
pretation of p values. In principle, we were able to confirm 
findings from prior studies, illustrating that HRV (measured 
in the time domain) and CT decline with increasing age. We 
found no evidence for a linear increase or decrease in HR 
across aging. We found that HRV was associated with both 
mean CT across all ROI and CT for the 14 selected ROI hy-
pothesized to be most integral to changes in cardiac function 
(i.e., HR and HRV). No such associations were found for HR. 
Strongest evidence was found for an association between the 

F I G U R E  3  The relationship between heart rate variability and cortical thickness across 68 brain regions, accounting for BMI, age, sex, 
sex × age, and research group. For the pre-specified ROI analysis, the cortical thickness of the lateral orbitofrontal region was significantly related 
to HRV (p = .015, FDR corrected), accounting for covariates. Color scale reflecting t-statistics
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decline in lateral OFC thickness and decline in HRV across 
aging. In contrast to our hypothesis, no correlations between 
HR and CT were found. Findings suggest that the associations 
between brain structure and cardiac function may be specific 
to cardiac vagal activity, indexed by HRV, as suggested in 
previous studies (Koenig et al., 2018; Yoo et al., 2017). In our 
statistical approach, we corrected for multiple testing, used 
Bayesian models with a conservative default prior distribu-
tion and further presented sensitivity analyses adjusting HRV 
for HR, to account for chronotropic states—the later not being 
necessarily required when investigating healthy cardiac func-
tion (Geus et al., 2019). Given this large set of analyses, we 
will focus the discussion on the general pattern of results that 
emerged.

Based on recent meta-analytic evidence (Koenig & 
Thayer, 2016), we expected sex differences in HR, HRV and 
CT. In line with our hypotheses, we found higher HR in fe-
males compared to males; however, there were no sex differ-
ences in HRV. Prior studies have shown that sex differences 
in HRV and HR vary across age groups. That is, in children 
and adolescents, HRV is decreased and HR increased in fe-
males, whereas in adults, HRV and HR are both increased 
in females (Koenig et  al.,  2017; Koenig & Thayer,  2016). 
Again, the present sample included children and adolescents 
as well as adults, potentially masking sex effects to some 
degree. Regarding brain morphology, we found no sex dif-
ferences in mean CT (across all ROI), but there were differ-
ences for a subset of the 14 pre-selected ROI including the 

F I G U R E  4  Association between heart 
rate variability and cortical thickness in all 
ROI, accounting for research group, BMI, 
age, sex, and sex × age. Grey dots represent 
the Bayes factors for the comparison of a 
covariate model and a model with covariates 
and cortical thickness (full model). The 
dashed vertical blue line represents a Bayes 
factor of 0.33 and the dashed vertical red 
line represents a Bayes factor of 3. Bayes 
factor values above three are considered 
moderate evidence for a model, relative to a 
competing model
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left and right caudal ACC, left and right insula, and left lat-
eral OFC. In line with findings from previous studies (Sowell 
et al., 2007)—with the exception of the left and right ACC 
(thinner in females)—females showed greater CT in each of 
these ROI. Differences in CT for these ROI could explain sex 
differences in cardiac function on a neural structural level. 
However, we only found significant sex differences for HR 
(but not for HRV), which did not show any direct association 
with CT.

Different from our hypotheses, we found no evidence 
for differences between males and females in the effects of 
aging on cardiac function or CT. The decline in CT and HRV 
with increasing age was observed even after adjusting for 
sex. Based on the present findings, it is suggested that the 
decline in HRV across aging is associated with a decline in 
mean CT across all ROI, independent of sex. Importantly, 
this association was specific for HRV and not found for HR. 
Frequentist analyses including FDR correction and comple-
mentary Bayesian analyses suggest that a decline of OFC CT 
in both hemispheres is most strongly associated with the de-
cline in HRV.

A recent study illustrated the association between var-
ious vascular risk factors and atrophy in grey and white 
matter macro- and microstructure (Cox et al., 2019), sup-
porting the notion that atherosclerosis (or vascular health 
more generally) may be the underlying mechanism that ex-
plains the present observations. However, unlike Cox et al. 
found additive effects of small effect size across various 
ROI and magnetic resonance imaging measures, in addition 
to findings on global CT, we found converging evidence for 
a specific association between HRV and OFC CT in aging. 
Thus, one may speculate that in addition to the bottom-up 
effects of cardiac activity on brain morphology, top-down 
mechanisms may contribute to the present observations. In 
this regard, greater CT of the OFC may be vital to regu-
late ANS activity (Thayer & Lane, 2000, also see Thayer 
et  al.,  2009), ultimately promoting the maintenance of 
healthy cardiac function across aging. The strong associa-
tion between OFC CT and HRV potentially illustrates a hub 
through which important psychological functions (i.e., cog-
nitive, affective, and behavioral) are connected with physi-
ological longevity on a neural and peripheral level (Thayer, 
Ahs, Fredrikson, Sollers, & Wager, 2012). In this regard, 
HRV may promote better functional connectivity among 
ROI, ultimately preserving greater CT in aging (Mather & 
Thayer,  2018). Longitudinal studies are warranted to fur-
ther clarify these associations. Physical activity and fitness 
(Williams et al., 2017) may further explain variance in both 
outcomes of interest and partially explain the association 
between HRV and CT. While evidence on fitness interven-
tions in the elderly, to increase CT and reduced associated 
cognitive impairment is mixed (Frederiksen et  al.,  2018; 
Reiter et al., 2015), physical fitness may show differential 

association with CT by age group (Williams et al., 2017) 
and reduce cortical atrophy (Cox et al., 2019).

While HRV showed stronger associations with CT com-
pared to HR, an interesting finding emerged regarding CT of 
the parahippocampal regions in both hemispheres, suggest-
ing that CT in these regions is related to HR. Just recently, 
a study found that the spontaneous firing rate of more than 
a third of neurons in the anterior parahippocampal gyrus 
is directly related to the cardiac-cycle duration in humans 
(Kim et  al.,  2019). While animal studies have shown that 
parahippocampal structures project to autonomic nuclei on 
a functional level, we can only speculate on the present find-
ing concerning the association between resting HR and CT. 
Further, evidence from clinical studies shows that atrophy of 
the parahippocampal gyrus is present in patients with heart 
failure (Meguro, Meguro, & Kunieda, 2017). While hypoper-
fusion is discussed as a mechanism underlying this associ-
ation, our findings illustrate a general association between 
HR and CT of parahippocampal gyrus, as higher HR seems 
associated with lower CT in this ROI.

4.2 | Strengths and limitations

The present study draws on the—to-date—largest sample to 
investigate the association between resting-state ANS func-
tion and CT. However, the present approach of pooling data 
in a joint effort of researchers worldwide has some limita-
tions that need to be addressed. Potential sociodemographic 
confounders of ANS function and CT were not available in 
the present study, including ethnicity (Hill et al., 2015) and 
socioeconomic status (Piccolo, Merz, He, Sowell, & Noble, 
2016). In particular, the inability to control for ethnic differ-
ences is notable, as there is striking evidence for an ethnic 
difference in cardiovascular risk as well as mortality (e.g., 
Meadows et  al.,  2011) and health disparities in association 
with aging (Ferraro, Kemp, & Williams, 2017). These effects 
were potentially masked by not controlling for ethnicity. We 
included weight, height, and BMI as important confounders 
of HRV (Koenig et al., 2015) and CT (Medic et al., 2016), 
which were measured in most data sets. Broader consen-
sus on variables that should be assessed in studies of HRV 
would facilitate similar projects of pooling HRV data in the 
future. Further, we did not address the impact of health-re-
lated variables such as smoking (Barutcu et al., 2005; Karama 
et  al.,  2015), alcohol consumption (Momenan et  al.,  2012; 
Quintana, Guastella, McGregor, Hickie, & Kemp, 2013) or 
general measures of health status (Jarczok et al., 2015), in-
cluding physical activity, as these data were not available 
across all studies that contributed data. However, we included 
data from healthy participants only, as specified by the initial 
study protocols of included studies (see online Appendix A 
for further information). Regarding the analyses examining 
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sex differences, we were not able to address the potential in-
fluence of menopausal status or menstrual cycle phase in fe-
males (Bai, Li, Zhou, & Li, 2009; Herting, Gautam, Spielberg, 
Dahl, & Sowell, 2015), or the role of sex hormones in gen-
eral (Herting et al., 2015). Although pooling of data enabled 
the present analyses on a large sample, and methodological 
differences and sample heterogeneity across primary studies 
were controlled for in statistical analyses, differences in pre-
processing of data may still have contributed to the results. 
This seems particularly relevant when pooling data across 
children, adolescents, and adults. It has previously been 
shown that associations between CT and HRV are inverse in 
adolescents compared to adults (Koenig et al., 2018). Thus, 
while controlling for age in all analyses, such opposite trends 
in age groups might have resulted in diminishing the total ef-
fect. Finally, the present analyses were based on a commonly 
used brain atlas (i.e., Desikan-Killiany), investigating CT, 
thus not covering other structural information from potential 
regions of interest in detail (e.g., hippocampal volume).

The present study contributes to a better understanding of the 
association between healthy cardiac function across aging and 
brain morphology. Findings suggest an association between the 
decline of CT and the decline of HRV across the lifespan. The 
present analyses emphasize the important role of the bilateral 
OFC in maintaining greater vagal control over cardiac activity 
and suggest a cardio-protective mechanism underlying health 
and disease from a neurovisceral perspective. Understanding 
which brain areas are associated with autonomic function has 
important clinical implications, potentially leading to better fo-
cused clinical interventions (e.g., brain stimulation).
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