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Multilevel Modeling in the ‘Wide Format’ Approach
with Discrete Data: A Solution for Small Cluster Sizes

M.T. Barendse and Y. Rosseel
Ghent University

In multilevel data, units at level 1 are nested in clusters at level 2, which in turn may be
nested in even larger clusters at level 3, and so on. For continuous data, several authors
have shown how to model multilevel data in a ‘wide’ or ‘multivariate’ format approach. We
provide a general framework to analyze random intercept multilevel SEM in the ‘wide
format’ (WF) and extend this approach for discrete data. In a simulation study, we vary
response scale (binary, four response options), covariate presence (no, between-level,
within-level), design (balanced, unbalanced), model misspecification (present, not present),
and the number of clusters (small, large) to determine accuracy and efficiency of the
estimated model parameters. With a small number of observations in a cluster, results
indicate that the WF approach is a preferable approach to estimate multilevel data with
discrete response options.

Keywords: Discrete data, multilevel, structural equation modeling, random intercepts

INTRODUCTION

Structural equation modeling (SEM) is a flexible and powerful
framework to analyze the interrelationships between many
observed and latent variables (seeBollen, 1989). The popularity
of SEM is a striking feature of quantitative research in the social
sciences (see Guo, Perron, & Gillespie, 2008; MacCallum &
Austin, 2000; Yang, 2018). Throughout the years, the SEM
framework has been extended to analyze discrete response
options, such as binary- or four-point response scales (see
Jöreskog & Moustaki, 2001; Wirth & Edwards, 2007) or data
from a hierarchical ormultilevel structure, such as employees in
teams, patients from different doctors, or students in schools
(see Hox, Moerbeek, & Van de Schoot, 2017). However, real
data are evenmore complex and often contain a combination of
multilevel structures and discrete response options. This calls
for more sophisticated estimation techniques.

Three estimation methods have been suggested in the
literature for analyzing multilevel SEM data with discrete
response options: (1) marginal maximum likelihood (MML;

see Hedeker & Gibbons, 1994), (2) Bayesian estimation (e.g.,
Fox, 2010), and, (3) the multilevel (weighted) least squares
estimation method (Asparouhov & Muthén, 2007).
Unfortunately, both MML and Bayesian estimation are com-
putationally very intensive, limiting their practical use (see
Fox, 2010; Jöreskog & Moustaki, 2001; Wirth & Edwards,
2007). The multilevel (weighted) least squares method can
handle many more latent variables, but has not been thor-
oughly studied and showed mixed results in simulation stu-
dies (Asparouhov & Muthén, 2007; Depaoli & Clifton, 2015;
Holtmann, Koch, Lochner, & Eid, 2016).

As analyzing multilevel data with discrete response
options is complex, researchers often turn to suboptimal
analyzes techniques, such as using sum-scores or ignoring
either the multilevel or discrete nature of the data (see for
example Koomen, Verschueren, van Schooten, Jak, &
Pianta, 2012; Lee, 2009; Li, Fortner, & Lei, 2015). This
is unfortunate as this may jeopardize the results of the
analysis and therefore any decision-making based on these
results. Currently lacking are statistical techniques that
offer an efficient and practical method to analyze multilevel
datasets with discrete response scales.

In this article, we propose a solution for discrete multi-
level data with a small number of observations in a cluster
(approximately < 10). The National Longitudinal Study of

Correspondence should be addressed to M. T. Barendse. Email:
mariska.barendse@ugent.be

Supplemental data for this article can be accessed here.

Structural Equation Modeling: A Multidisciplinary Journal, 27: 696–721, 2020
© 2019 Taylor & Francis Group, LLC
ISSN: 1070-5511 print / 1532-8007 online
DOI: https://doi.org/10.1080/10705511.2019.1689366

http://orcid.org/0000-0002-1632-0303
http://orcid.org/0000-0002-4129-4477
https://doi.org/10.1080/10705511.2019.1689366
https://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2019.1689366&domain=pdf&date_stamp=2020-08-03


Adolescent Health (NLSAH, 2005) data is an example of
a dataset with small cluster sizes, where at each wave
15,000 adolescents are nested in approximately 2,600
neighborhoods (i.e, about six per cluster). On a smaller
scale, among others, Koomen, Verschueren, and Pianta
(2007) collected data in Dutch primary schools with on
average two to three children in each class. To analyze
these type of data, we will use the so called ‘wide format’
(WF) approach. Using different model specifications, the
WF approach is discussed in the SEM literature for con-
tinuous multilevel data by Bauer (2003), Curran (2003),
and Mehta and Neale (2005). In the WF approach, data
are arranged in such a way that each data row corresponds
to a single cluster. The multilevel structure is then explicitly
modeled as will be explained in section “Multilevel SEM in
the WF Approach” and section “WF Approach with
Discrete Data.” The WF approach differs from the general
way multilevel data are organized and modeled, in this
article referred to as the ‘long format’ (LF) approach. In
this LF approach each row corresponds to the data of
a single unit, and many rows constitute a single cluster.
Dealing with discrete data using the WF approach yields
some additional advantages over the LF approach. First, the
WF can handle multilevel data using single-level
software. Second, the multilevel model is explicitly mod-
eled and therefore offers freedom to freely estimate para-
meters that are restricted in the LF approach.

The goal of this paper is twofold: (1) to offer a general
frequentist framework to analyze random intercept multilevel
data in the WF approach and (2) to extent and test the WF
approach for discrete data. The former goal is necessary as
different aspects of the WF approach, like the inclusion of
covariates, obtaining test statistics, dealing with unbalanced
data, and handling missing data have been described separately
in the literature; either in the context of generalized linear mixed
models (e.g., Croon&vanVeldhoven, 2007), or in the context of
WF multilevel models with different specifications (e.g., Bauer,
2003; Curran, 2003; Mehta & Neale, 2005). This fragmented
literature has not been united to a generalWF framework. To the
best of our knowledge, an extension of the WF approach to
discrete data has not been investigated yet. As will be explained
in section “WFApproachwithDiscrete Data” and the illustrative
example, the WF approach turns out to be much more compu-
tationally efficient compared to the often used MML estimation
method in the LF approach. Using the WF approach does not
require specialized multilevel software, which decreases the
complexity of estimating multilevel models.

The paper is organized as follows: First, a brief over-
view of single level SEM and multilevel SEM for contin-
uous and discrete data is given. Next, we will describe the
WF approach for continuous and discrete data. Thereafter,
we will perform a simulation study to evaluate the general
WF framework and to compare several WF estimation
methods to LF estimation methods in terms of the accuracy

and efficiency of the parameter estimates under different
conditions. Finally, the use of the WF approach for discrete
data will be illustrated by means of an application in
educational research on student-teacher relationships.

Single-level SEM

Continuous Data

The measurement equation and the structural equation
are the two fundamental equations that define the general
SEM framework. The measurement equation equals

y ¼ νþ Ληþ ε; (1)

where y is a p� 1 vector of observed variables, ν is a p� 1
vector of intercepts, Λ is a p� m matrix of factor loadings
relating the p observed variables to the m latent variables, η
is a m� 1 vector of latent variable scores, and ε is a p� 1
vector of residuals. The structural equation equals

η ¼ αþ Bηþ ζ ; (2)

where α is a m� 1 vector of latent factor means and
intercepts, B is a m� m matrix of regression coefficients
among the latent factors, and ζ is a m� 1 vector of resi-
duals. In SEM we assume that Covðε; ζÞ = 0, Covðη; εÞ = 0,
Covðη; ζÞ = 0, EðεÞ = 0, EðζÞ= 0, diagðBÞ = 0, and that
ðI� BÞ is invertible, where I is a m� m identity matrix.
Using covariance algebra we can find expressions for the
covariance and the mean structure of y, denoted by Σ and
μ. The p� p covariance matrix Σ of y is expressed as
a function of the model parameters (θ) and equals

ΣðθÞ ¼ ΛðI� BÞ�1ΨðI� BÞ�1TΛT þΘ (3)

where variances and covariances of η and ε are denoted by
Ψ and Θ. The mean structure implied by Equation 1 and
Equation 2 equals

μðθÞ ¼ νþ ΛðI� BÞ�1α: (4)

Assuming multivariate normality, the model parameters (θ)
can be estimated via maximizing the likelihood, or equiva-
lently, by minimizing the following objective function:

FML ¼ flnjΣðθÞj � lnjSj þ tr½ΣðθÞ�1S� � pg
þ f½�y� μðθÞ�TΣðθÞ�1½�y� μðθÞ�g; (5)

where S is the sample covariance matrix and �y is the
observed mean vector. Under the assumptions of multivari-
ate normality, a large enough sample size and a correct
model specification yields unbiased parameter estimates
(Bollen, 1989). Alternative estimators are the generalized
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least squares and the weighted least squares (see Bollen,
1989; Browne, 1995; Jöreskog, 1981).

Discrete Data

Items are often scored with binary codings or three- or
four-point scales. To deal with these discrete data,
a distinction is made in the SEM literature between limited
information estimation methods that use only summaries of
the data and full information estimation methods that use
all available information in the data.

Limited Information Estimation Methods. The least
squares estimation methods and the pairwise maximum
likelihood (PML) estimation method are both limited infor-
mation methods that use only summaries of the data. These
methods, mostly developed within the SEM literature,
assume underlying continuous latent response variables.
A variable yik for a certain individual on item k with Ck

response scales stems from an underlying continuous vari-
able y�ik with a normal distribution Nðy�ikj0; σ2k) and τkc
values that refer to thresholds

yik ¼ c , τk;c�1 <y�ik < τk;c (6)

for categories ck ¼ 1; 2; . . . ;Ck , with τk;0 ¼ �1 and
τk;C ¼ þ1.

Least Squares Estimation Methods. The three
stage weighted least squares method is often applied to
estimate models for large datasets with discrete data. In
the first stage, the thresholds are estimated using the uni-
variate data. In the second stage, the pðp� 1Þ=2 polychoric
correlations are estimated (see Olsson, 1979; Olsson,
Drasgow, & Dorans, 1982). In the third stage, the model
parameters are estimated using the weighted least squares
estimation method;

FWLS ¼ ðs� σ̂Þ0 W�1ðs� σ̂Þ; (7)

where s denotes a vector with non-redundant sample-based
statistics, σ̂ denotes a vector with the non-redundant model-
based statistics (i.e., thresholds and polychoric correla-
tions), and W�1 denotes the inverse of a weight matrix
that estimates the asymptotic covariance matrix of

ffiffiffiffi
Is

p
(see Muthén & Satorra, 1995), where I denotes the sample
size. In the least squares framework (see Browne, 1984;
Muthén, Du Toit, & Spisic, 1997), there are three different
choices for W, leading to WLS using the full weight matrix
W, DWLS using only the diagonal of W, and ULS where
W is replaced by the identity matrix (I).

Pairwise Maximum Likelihood Estimation Method.
The single level PML estimation method was introduced in
the SEM framework by Jöreskog andMoustaki (2001). In this

estimation method, the complex likelihood is broken down as
a product of bivariate (and sometimes univariate) likelihoods
which are computationally easier to handle. The PML
estimation method is part of a broader framework of
composite ML estimators which are asymptotically unbiased,
consistent, and normally distributed (see Lindsay, 1988;
Varin, 2008). In PML, the log-likelihood contribution of
a single observation is a sum of p? ¼ pðp� 1Þ=2 compo-
nents, each component being the bivariate log-likelihood of
two variables (i.e., k and l):

log li ¼
Xp�1

k¼1

Xp
l¼kþ1

½log f ðyik; yil; θÞ�

¼
X
k<1

½log f ðyik; yil; θÞ�: (8)

Given a random sample Y ¼ fy1; y2; :::yIg of size I, the total
log-likelihood of the data is the sum of all individual
contributions:

log Lðθ;YÞ ¼
XI

i¼1

log li: (9)

In principle Equation 8 is general and can deal with any type of
data (continuous or discrete, and combinations thereof). Until
now, the PML estimation method in the SEM context has only
been applied with discrete data. For discrete indicators k and l,
the exact form of f ðyik ; yil; θÞ in Equation 8 is:

log f ðyik; yil; θÞ ¼
XCk

a¼1

XCl

b¼1
Iðyik ¼ a; yil ¼ bÞ

logωðyik ¼ a; yil ¼ bÞ; θÞ;
(10)

where

ωðyik ¼ a; yil ¼ b; θÞ ¼
ðτk;a
τk;a�1

ðτl;b
τl;b�1

f ðy�ik; y�il; θÞdy�ikdy�il;

¼ ϕ2ðτk;a; τl;b; ρklÞ
� ϕ2ðτk;a�1; τl;b; ρklÞ
� ϕ2ðτk;a; τl;b�1; ρklÞ
þ ϕ2ðτk;a�1; τl;b�1; ρklÞ;

(11)

where ρkl denotes the model implied correlation between y�ik
and y�il, and ϕ2ðτ1; τ2; ρÞ denotes the bivariate cummulative
normal distribution with correlation ρ evaluated at point
ðτ1; τ2Þ. The PML estimator produces unbiased results
(see Katsikatsou, Moustaki, Yang-Wallentin, & Jöreskog,
2012).
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Scaling with Discrete Data. With discrete data, we
need to determine a metric for y�. A common way is to use
the delta parameterization where Θ is not a free parameter,
but given by

Θ ¼ Δ�2 � diagðΣ�Þ (12)

where Σ� equals ΛðI� BÞ�1ΨðI� BÞ�1TΛT with the scal-
ing factors defined as

Δ ¼ diagðΣ�Þ�1=2: (13)

Alternatively, the theta parameterization can be chosen.
Here the diagonal of Θ is an identity matrix and the scaling
factors (Δ) are obtained as:

Δ�2 ¼ diagðΣ�Þ þΘ: (14)

Full Information Estimation Method. An often used
full information estimation method is the marginal maxi-
mum likelihood (MML), as described by Bock and Aitkin
(1981). This estimation method has been developed within
the item response theory literature and integrates over the
distribution of the latent variables. The log-likelihood for
the data (i.e., Y) can be written as the sum of all of the log-
likelihoods for all individuals i:

logLðθ;YÞ ¼
XI

i¼1

log li

¼
XI

i¼1

log fiðyi; θy; θηÞ (15)

where the individual likelihood contribution of observation
i equals

li ¼
ð
DðηÞ

f ðyijη; θyÞgðη; θηÞdη

¼
ð
DðηÞ

Yp
k¼1

fikðyikjη; θyÞgðη; θηÞdη (16)

and where DðηÞ is the domain of integration and gð�Þ is the
prior density of η. The MML estimation method is compu-
tationally very intensive as it has to integrate out the latent
variables using numerical integration (i.e., Gauss-Hermite
quadrature, adaptive quadrature, Laplace approximation, or
Monte Carlo integration). This estimation method can be

applied with different link functions (e.g., probit, logit, log,
logistic, and complementary log-log).

Multilevel SEM in the LF Approach

From the late 1980’s, the SEM framework started to incor-
porate features from multilevel regression (e.g., Bryk &
Raudenbush, 1987). Schmidt (1969) was the first to
describe a saturated model of a within-covariance matrix
(i.e., individual deviations from the group mean) and
a between-covariance matrix (i.e., group means) for
balanced data. His work was further developed by
Goldstein and McDonald (1988), McDonald and
Goldstein (1989), Muthén (1989, 1990), and McDonald
(1993). More recently, estimation methods to analyze mul-
tilevel discrete data were developed. Multilevel SEM in the
LF approach is the standard way to model multilevel data
where the data is organized in such a way that each row
corresponds to a single unit.

Continuous Data

Here, we will describe the multilevel model as intro-
duced by McDonald and Goldstein (1989) with a slightly
adjusted mean structure. In a two-level set-up, the multi-
variate response vector yji can be decomposed in a between
part uj and a within part uji

yji ¼ uj þ uji; (17)

where j ¼ 1; . . . ; J is an index for the clusters, and i ¼
1; . . . ; Ij is an index for the units within a cluster. As uj
and uji are independent, the expected value equals

EðyjiÞ ¼ μb þ μw; (18)

where μw is only needed if there are variables that only
exist at the within-level. The covariance can be decom-
posed as

CovðyÞ ¼ ΣT ¼ Σb þ Σw: (19)

On both the within-level (Σw, μw) and the between-level
(Σb, μb) a different model can be fitted. Consider data from
a single cluster with z representing variables at the
between-level:

vj ¼ ½zj; yj1; yj2 . . . yjIj �T ; (20)

with the following expectation of vj

E½vj� ¼ vj ¼ ½zj; yj�T ¼ ½zj; yj1; yj2 . . . yjIj �T : (21)

The covariance matrix, referred to as VjðθÞ, can be written
as:
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Cov½vj� ¼ VjðθÞ ¼ Σzz 1TIj � Σzy

1Ij � Σyz Σyy

� �
: (22)

with Σzz ¼ Covðzj; zjÞ, Σzy ¼ Covðzj; yjÞ, and
Σyy ¼ IIj � ΣwðθÞ þ 1Ij1

T
Ij
� ΣbðθÞ. Assuming multivari-

ate normality, the model parameters in θ can be estimated
via minimizing the ML objective function which equals
minus two times the log–likelihood function without
a constant over all clusters:

FML ¼
XJ
j¼1

lnjVjj þ ðvj � vjÞTV�1
j ðvj � vjÞ: (23)

As Vj can become quite large, several methods are used to
find expressions to compute V�1

j and Vj

�� �� efficiently (see

McDonald & Goldstein, 1989).

Discrete Data

Some estimation methods for single level discrete data
can be applied in the multilevel context. As multilevel data
has a more complex structure, adjustments to the algo-
rithms have to be made.

Limited Information Estimation Methods. Due to
the work of Asparouhov and Muthén (2007) the least
squares estimation methods can be applied to discrete mul-
tilevel data. For the discrete variable k for individual i in
cluster j, the threshold parameters are now defined by

yijk ¼ c , τk;c�1<y
�
ijk<τk;c (24)

The underlying variable y�ij is decomposed into a between-
level (ubj; i.e., random intercept) and a within-level (uwij)
part:

y�ij ¼ uwij þ ubj: (25)

A separate structural model can now be defined at both
levels. The least squares estimation methods for multilevel
data in the LF approach are based on the single level least
squares estimation methods. In the first stage, the thresh-
olds are estimated using an univariate model with the two-
level maximum likelihood estimation method (Asparouhov
& Muthén, 2007). In the second stage, polychoric correla-
tions are estimated based on bivariate models by fixing the
univariate parameters to their first stage estimates
(Asparouhov & Muthén, 2007). Minimizing the fit function
with respect to the parameters of the model at both levels
with Equation 7, is the last stage of the estimation process.

Full Information Estimation Method. The LF
MML, as described by Hedeker and Gibbons (1994)
and Rabe-Hesketh, Skrondal, and Pickles (2004a), is

based on the MML for single level data (Bock &
Aitkin, 1981). In the multilevel context, the random
intercept can be written as a vector of latent variables,
referred to as ηy, so that the extended set of latent
variables equals η� ¼ (η,ηy). This formula can be
extended to models with more latent variables at differ-
ent levels of the multilevel model. For a two level model,
the log-likelihood for the data can be written as the sum
of the log-likelihoods of all the clusters j:

log Lðθ;YÞ ¼
XJ
j¼1

log lj

¼
XJ
j¼1

log fjðyj; θy; θη� Þ
(26)

where the individual likelihood contribution of cluster j
equals

lj ¼
ð
Dðη�Þ

f ðyjjη�; θyÞgðη�; θη� Þdη�

¼
ð
Dðη�Þ

Yp
k¼1

fjkðyjkjη�; θyÞgðη�; θη� Þdη�
(27)

where Dðη�Þ is the domain of integration and gð�Þ is the
prior density of η�. The multilevel MML estimation method
is very flexible and can be extended with more levels,
covariates, different link functions (e.g., probit, logit, log,
logistic, and complementary log-log), and random slopes
(see Rabe-Hesketh et al., 2004a). Unfortunately, the MML
estimation technique for multilevel data is computationally
even more intensive than the single level MML estimation
method. To reduce the number of latent variables in two-
level factor models, the residuals at the between-level are
usually not estimated by default (e.g., Muthén & Muthén,
2010; Rabe-Hesketh, Skrondal, & Pickles, 2004b).

Multilevel SEM in the WF Approach

As an alternative to the above described LF approach to fit
multilevel data, one can use a WF approach. In this WF
approach, the multilevel model is explicitly modeled and
the data is restructured such that all units in a cluster are
stored in a single row. Despite several papers describing the
WF approach, this approach is seldom applied. Below we
offer a general framework to fit multilevel data with
a random intercept in the WF approach for both continuous
and discrete data.

Continuous Data

McArdle and Epstein (1987) were the first authors who
showed how multilevel models of individual change can be
fitted using a mean and covariance structure analysis with
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time-structured data in latent growth curve models (see also
Chou, Bentler, & Pentz, 1998; MacCallum, Kim, Malarkey,
& Kiecolt-Glaser, 1997; Meredith & Tisak, 1990; Willett &
Sayer, 1994). The latent growth curve models become
confirmatory factor analysis (CFA) models with model
parameters fixed to specific data values. A random-
intercept multilevel model can then be estimated as
a restricted CFA model, where univariate multilevel models
become multivariate uni–level models. In this way, each
data row consists of all observations in a cluster with latent
variables constructed from unit-specific versions of the
variables. Figure 1 shows data, a graphical representation,
and a formula of a random intercept model in both the LF
approach and the WF approach.

Later, Curran (2003) and Bauer (2003) further devel-
oped the WF approach and provided examples of multilevel
SEM using the WF approach. Curran extended the growth
curve model with more SEM related options, such as ran-
dom intercepts and slopes, and latent or observed covariates
at the between-level. Bauer estimated random intercept
models including level-2 predictors and structural relations
between latent variables. He also reflected on the use of
formal tests of model fit and demonstrated the applicability
of multilevel SEM with unbalanced data. In 2005, Mehta
and Neale provided a more extended framework for mod-
eling multilevel models in the WF approach with

continuous data, where person-specific data is used for
modeling means as well as covariances at an individual
level. The main difference between the representation of
Mehta and Neale and Bauer and Curran is that the models
of Mehta and Neale impose restrictions on the covariance
matrix in such a way that the model is decomposed into
a between–level and a within–level that allows for different
structures and parameter values at different levels.

In this paper, we will continue with the model of Mehta
and Neale (2005) that explicitly models the multilevel
model of McDonald and Goldstein (1989). To deal with
continuous data in the WF approach, we proceed with the
following steps:

1. Rearrange the data in such a way that each row
corresponds to a single cluster (see data in Figure 1).

2. Construct a model at the within-level involving the
variables that belong to a single unit in a cluster and
repeat this model as many times as the maximum
cluster size.

3. Put equality constraints on all parameters across units
in a cluster. For example, in a one factor model,
equality constraints are necessary on the factor load-
ings, factor variances, and error variances. If vari-
ables are both at the within- and the between-level,

1a: LF approach
> longData
y clus
2.416245 1
2.189816 1
1.868216 1
1.064450 1
3.915011 2
2.284573 2

-0.041089 2
2.034896 2
... ...

y

y

Between

Within

yij = β0 + b0j + εij

1b: WF approach

> D.wide
y1 y2 y3 y4
2.416245 2.189816 1.868216 1.064450
3.915011 2.284573 -0.041089 2.034896
... ... ... ...

ηy

y1 y2 y3 y4

1 1 1 1

Between

Within

yj = β0 + εj

FIGURE 1 A random intercept model with the corresponding data, figure and formula in both the LF (left hand side)- and WF -approach (right hand side).
Note: The rounded boxes represent the within- and between versions of the original variable y for four units per cluster. ηy corresponds to the unit-specific
version of y on the between level, which equals a factor with loadings fixed at unity. Residual variances (not shown here) contain equality restrictions to
ensure only one residual variance is estimated.
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the intercepts at the within-level should be fixed to
zero.

4. For each endogenous variable at the within-level,
construct a latent variable where the indicators cor-
respond to the unit-specific version of that variable;
The factor loadings are fixed to one; These latent
variables represent the random intercepts of these
variables in the model.

5. Construct a model at the between-level with the
newly constructed between-level latent variables.

Figure 2 shows a one factor model according to the para-
meterization of Mehta and Neale (2005) for the case where
we have three units in each cluster. The within factor is
referred to as ηfw, the unit-specific version of the variables
on the between-level is referred to as ηy, and the between
factor is referred to as ηfb. To clarify the proposed steps, we
give the lavaan syntax corresponding to Figure 2 in
Appendix A. The figure shows that the WF approach is
more flexible than the LF approach, as the equality restric-
tions across units in a cluster (e.g., e to h for the factor
loadings and/or i to l for the residual variances in Figure 2)
can all be tested by freeing the restrictions in the WF

approach. Note that within the LF approach, it is not
possible to free restrictions across clusters. Below we will
describe how to extent the framework of Mehta and Neale
(2005) and deal with covariates, missing data, and obtain fit
statistics.

WF Approach with a Covariate. The WF multilevel
model can be extended with covariates at the within- and/or
the between-level (see Croon and van Veldhoven (2007) for
adding covariates in a WF multilevel regression model).
Values for the between-level covariate are equal for all
units in a cluster and can be added to the model. The effect
of the between-covariate is calculated by regressing the
random intercept on the covariate. Values for the within-
level covariate are unique for each individual in a cluster.
The effect of the within-covariate is calculated by regres-
sing the observed variables at the within-level on the cov-
ariates with equality restrictions. As the within-level
covariate contains equality restrictions, they are considered
stochastic and jointly modeled with the other variables as
endogenous variables.

Lüdtke et al. (2008) describe multilevel models with
a covariate that exists both at the within- and the between-

y1.2 y2.2 y3.2 y4.2 y1.3 y2.3 y3.3 y4.3y4.1y3.1y2.1y1.1

ηy3
ηy4

ηy1
ηy2

ηfb

1 1
1 1 1 1 1

1 1
1

1 1

a b dc

ηfw(2)ηfw(1) ηfw(3)

e f g h e f g h e f g h

Between

Within

FIGURE 2 One factor multilevel CFA model in the WF approach (four variables with three units per cluster). Note: The rounded boxes represent the
within- and between versions of the original variables y1:1 to y4:3 for three units per cluster. ηy1 to ηy4 correspond to the unit-specific version of that variable
on the between level, where labels a to d reflect the between-level factor loadings. For identification purposes, one factor loading or the variance of ηfb must
be fixed to unity. The structures below y1:1 to y4:3 account for the within–level latent variables (i.e., ηfwð1Þ to ηfwð3Þ) with parameter labels e to h for the factor

loadings. For identification purposes, one factor loading of each within factor (ηfw) or the variance of ηfw must be fixed to unity. Identical parameter labels
indicate equality constraints in the model. Residual variances (not shown here) also contain equality restrictions (i.e., i to l). Appendix A shows the
corresponding lavaan syntax.
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level in the LF approach. One can then either aggregate the
covariate before the analysis to get between-level values for
the covariate, referred to as the multilevel manifest covari-
ate approach, or split the covariate in a within and
a between part, referred to as the multilevel latent covariate
approach. Figure 3a shows the MMC approach in WF
approach and Figure 3b shows the MLC approach in the
‘wide format approach. To obtain the correct between-level
effect in Figure 3b, one has to calculate the so called
“contextual effect” by estimating the between–level effect
(i.e., b) and subtract this from the within-level effect (i.e.,
a). Appendix B shows the lavaan syntax that can be added
to Appendix A to fit a model with a covariate on both the
within- and the between-level.

Missingness in the WF Approach. In the multilevel
SEM setting, we make a distinction between design miss-
ingness and within cluster missingness. Design missingness
occurs with an unbalanced multilevel design, where the
cluster sizes differ. In the WF approach the cluster with

the largest number of units determines the width of the
dataset and all other clusters with less units have missing
values (see Bauer, 2003). With cluster missingness, we
have missing values for some variables within a complete
cluster. If we assume missing at random (MAR), we can
deal with both types of missing data by using full informa-
tion maximum likelihood (Arbuckle, 1996; Neale, 2000).

Evaluation of Fit and Calculation of Intra Class
Correlation. Both the evaluation of fit and the calcula-
tion of the intra class correlations (ICC) in the WF
approach depend on the estimation of an unstructured or
saturated (H1) model. The arbitrary ordering of the units in
a multilevel model needs some modification in the unstruc-
tured model. The notion of interchangeability, which entails
that there is nothing in the model that distinguishes one unit
from another within a given cluster, is important here
(Bauer, 2003). The appropriate unstructured model is
more complex and contains equality restrictions across
units in a cluster, following the notion that units are

3a: MMC ηy1 x̄1

y1.1 y1.2 y1.3 y1.4

x1.1 x1.2 x1.3 x1.4

1 1 1 1

a a a a

b

Between

Within

3b: MLC ηy1
ηx1

y1.1 y1.2 y1.3 y1.4

x1.1 x1.2 x1.3 x1.4

1 1 1 1

a a a a

1 1 1 1

b

Between

Within

FIGURE 3 A random intercept path model in the WF approach with four items and a within– and a between-covariate modeled in two distinct ways. Note:
ηy represents a random intercept and ηx represents an aggregated covariate on the between-level. Identical parameter labels a indicate equality constraints in

the model. MMC refers to the multilevel manifest covariate approach (Figure 3a) and MLC refers to multilevel latent covariate approach (Figure 3b). The
rounded boxes represent the within- and between versions of the original variables. Residual variances (not shown here) contain equality restrictions.
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essentially interchangeable. In the calculation of a fit sta-
tistic, the model of interest will then be compared with the
unstructured model (H1) that serves as a benchmark of
perfect fit that takes the multilevel structure into account.
Figure 4 shows, for example, an unrestricted model with
three units per cluster with the associated equality restric-
tions to describe the multilevel structure. This model can be
used to calculate the chi-square value of the one-factor
model shown in Figure 2. If models also include
a covariate, the within-level and/or between-level covari-
ates are also part of the unrestricted model (H1).

The intra class correlation (ICC), that calculates how
much variance in a response variable stems from between
group differences, also needs the estimation of an unstruc-
tured model in the WF approach. For the calculation of the
ICC one only needs the variance of each variable at both
levels in the unstructured model (ICC = Var between/(Var
between + Var within); see Hox et al., 2017).

WF Approach with Discrete Data

Although the discrete nature of the data has to be taken into
account, the general procedure to estimate multilevel mod-
els with discrete data in the WF approach is somewhat
similar to the estimation of continuous data in the WF
approach. With continuous responses, the WF approach
and the LF approach result in identical parameter estimates

and standard errors. However, with discrete data the WF
estimates are no longer identical to the LF estimates. We
will use the same stepwise procedure as the one described
with continuous data. Step 1 to Step 3 and Step 5 are
identical, but Step 4 needs to be adjusted with discrete data:

4. For each endogenous variable at the within-level, con-
struct a latent variable where the indicators correspond
to the unit-specific version of that variable; The factor
loadings are fixed to one; These latent variables repre-
sent the random intercepts of these variables in the
model. The thresholds are restricted according to
a similar structure with unit-specific restrictions.

Modeling the between-level with discrete data is equivalent
to modeling the between-level with continuous data, but the
within-level needs to be adjusted to take the thresholds into
account. Figure 5 represents, for example, a very simple
random intercept only model with four response options.
Both the theta- and delta parameterization are applicable to
fit multilevel data in the WF approach. With discrete
response options, equality restrictions on the thresholds
across units are necessary. As Figure 5 has four response
options, three thresholds are estimated. To illustrate how
this works in practice, Appendix C gives the corresponding
(stepwise) lavaan syntax in the theta parameterization.

More complex models than the one shown in Figure 5
can be estimated. Appendix D shows how to fit a one factor

y1.2 y2.2 y3.2 y4.2 y1.3 y2.3 y3.3 y4.3y4.1y3.1y2.1y1.1
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FIGURE 4 Unrestricted model in the WF approach (four variables with three units per cluster). Note: The rounded boxes represent the within- and
between versions of the original variables y1:1 to y4:3 for three units per cluster. ηy1 to ηy4 correspond to the unit-specific version of that variable on the
between level, where labels a to f reflect the between-level covariances. The structures below y1:1 to y4:3 account for the within–level latent variables (i.e.,
ηfwð1Þ to ηfwð3Þ) with parameter labels g to l reflecting the covariances on the within-level. Identical parameter labels indicate equality constraints in the

model. Residual variances are not shown here, but also contain equality restrictions.
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model with discrete data in lavaan according to the
proposed steps . Similar to the continuous case, covariates
can be added to the model (see Appendix B and Figure 3a
and b). Adding (random) discrete covariates can be an area
of concern in multilevel analysis, as discrete covariates
should be considered discrete and not continuous. The
WF approach can also add discrete covariates by estimating
thresholds for the covariate. This is in contrast with for
example multilevel least squares estimation methods in the
LF approach, where discrete covariates are considered con-
tinuous. In the LF MML estimation approach the covariates
are usually considered as fixed, and are regressed out,
rendering the distinction between discrete (dummy) and
continuous covariates irrelevant.

In theory, all single level estimators for discrete data can
be used to estimate multilevel models in the WF approach.
However, model estimation, missing data procedures, and
the calculation of fit statistics are dependent on the chosen
estimation method, as briefly outlined below.

Least Squares Estimation Methods

Model Estimation. The least squares estimation
methods (i.e., ULS, WLS, DWLS) are able to estimate all
multilevel models in the WF approach.

Missing Data. As the least squares estimation
method is a multiple step estimation method, the procedure
for missing data also consists of different steps. In the first
step, the univariate information is analyzed and listwise
deletion is applied. In the second step, only the cases
where both variables are observed contribute to the calcula-
tion of the bivariate likelihood for estimation of the

polychoric and/or polyserial correlations. This is referred
to as the complete-pairs (CP) procedure.

Evaluation of Fit and ICC. Similar to the calculation
of a fit statistic with continuous data, the chi-square test
statistic is calculated by comparing the model of interest to
the unrestricted model. An unrestricted model (see Figure 4
for an example with continuous data) is easily estimated
with the least squares estimation method. Dependent on the
least squares estimation method (i.e., ULS, WLS, DWLS)
different test statistics can be calculated: (1) uncorrected,
standard chi-square test statistic, (2) mean and variance
adjusted test statistic (Satterthwaite type; Satorra, 2000;
Satorra & Bentler, 1994), and (3) scaled and shifted test
statistic (Asparouhov & Muthén, 2010).

The PML Estimation Method

Model Estimation. Renard (2002) already applied the
PML estimation method in the WF approach in a random
intercept regression model with binary responses. Similar to
the least squares approaches, the PML estimation method can
estimate all multilevel models in the WF approach.

Missing Data. Katsikatsou and Moustaki (2017)
developed two different approaches to deal with missing
data, namely complete-pairs (CP) PML and available-cases
(AC) PML. Similarly to the least squares estimation meth-
ods for model estimation, the CP procedure only takes the
bivariate likelihood into account in case both variables are
observed. In the AC procedure, the univariate likelihood of
the observed variables where one variable is observed and
the other is missing, also contributes to the likelihood. As

ηy1

y∗
1.1 y∗

1.2 y∗
1.3 y∗

1.4

y1.1 y1.2 y1.3 y1.4

τ 1 τ 2 τ 3 τ 1 τ 2 τ 3 τ 1 τ 2 τ 3 τ 1 τ 2 τ 3

1 1 1 1
Between

Within

FIGURE 5 Random intercept only model with four items. Note: (ηy1 ) refers to a random intercept, τ refers to the thresholds, and y� refers to the underlying
latent response variables. Identical parameter labels indicate equality constraints.
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long as the thresholds are not the parameters of interest, CP
and AC provide reliable results and can be used inter-
changeably (see Katsikatsou & Moustaki, 2017).

Evaluation of Fit and ICC. The PML estimation
method can estimate an unrestricted (H1) model for the
calculation of the ICC and to provide fit statistics. The
PML estimation method can calculate a robust likelihood
ratio test (PL-LRT; Katsikatsou & Moustaki, 2016).

The MML Estimation Method

Model Estimation. As the MML estimation method
has to integrate out the latent variables, the MML estima-
tion method cannot estimate all models in the WF
approach. In practice, the number of latent variables is
therefore restricted to a maximum of about four latent
variables. The basic number of latent variables in a one
factor model (see Figure 2) is already higher than the
maximum of four latent variables that the MML estimation
method can handle. To model more dimensions, one can
turn to Monte Carlo integration solutions instead of using
numerical integration. However, this method is very time
consuming. The two-tiers MML approach of Cai (2010)
may reduce the number of dimensions, but this method still
needs many dimensions as many latent variables are
related. From a pragmatic point of view, only multilevel
regression or path models (without latent variables) can be
estimated in the WF approach.

Missing Data. The advantage of the MML estimation
method is that it can handle missing data via full informa-
tion maximum likelihood (Arbuckle, 1996; Neale, 2000).

Evaluation of Fit and ICC. The MML estimation
method can fit an unstructured model if the number of
items is restricted to about four variables. In practice, it is
usually not possible to estimate unrestricted models to
calculate the ICCs and fit statistics.

SIMULATION STUDY

A simulation study is performed to evaluate the WF
approach under conditions encountered in practice and to
compare the WF approach to the well known LF approach
with discrete data. In the WF approach, we use the PML
estimation method (Jöreskog & Moustaki, 2001) and the
diagonally weighted least squares estimation method
(DWLS; Muthén et al., 1997), as the latter estimation
method has been shown to give accurate results in CFA
simulation studies (Beauducel & Herzberg, 2006; Flora &
Curran, 2004; Yang-Wallentin, Jöreskog, & Luo, 2010).
The estimation methods in the WF approach will be com-
pared to the DWLS and the MML in the LF approach.

Using simulated data, we will determine the accuracy and
efficiency of the parameter estimates under different con-
ditions. We vary response scales (two-point, four-point),
inclusion of a covariate (none, within, between), the num-
ber of clusters (200, 1000), and the balancedness of the data
(balanced: three units per cluster; unbalanced: 3/6/9 units
per cluster). As a consequence of the latter condition, the
condition with 200 clusters and unbalanced data includes
90 clusters with 9 units, 70 clusters with 6 units, and 40
clusters with 3 units, while the condition with 1000 clusters
and unbalanced data includes 500 clusters with 9 units, 300
clusters with 6 units, and 200 clusters with 3 units.

In a fully crossed design, these factors yield 2� 3� 2�
2 ¼ 24 different conditions. In addition, 8 conditions were
added to include a small misspecification in the first item at
the between-level, as this condition is not crossed with
conditions including a covariate. In each condition, 500
datasets are generated. The performance of each method
is evaluated by calculating the relative bias, namely the
accuracy of the estimated parameters (% bias

¼ ðθ̂� θÞ=θÞ � 100) and standard errors (% bias = ((SD-
SE)/SD)*100), where SD refers to the standard deviation of
the parameter estimates across replications and the SE is
the mean of the estimated standard errors across
replications.

Data Generation

The data are generated according to the population model
as shown in Figure 6. Factor loadings were equal across
levels, and more variance was generated at the within-level
(i.e., ηfw) than at the between-level (i.e., ηfb) to mimic real
data examples (see Snijders & Bosker, 1999). The residual
variances at the within-level imply an identity matrix, to
resemble the theta parameterization. The solid lines show
the basic multilevel factor model without additional effects
of the covariates (i.e., z2 and w) or a misspecification (i.e.,
z1). As we consider a model with zero error variances at the
between-level, we assume that factors have the same inter-
pretation across all clusters and ensure that no other vari-
ables than the specified latent variables are affecting the
between-level responses. This is referred to as measure-
ment invariance restrictions that are necessary to interpret
a factor model meaningfully, as described by Muthén
(1990), Rabe-Hesketh et al. (2004a), and Mehta and
Neale (2005).

Using the parameter values of the basic factor model
from Figure 6, the intraclass correlation equals 0.1111 for
all items, which is considered ‘common’ in, for example,
educational data (see Snijders & Bosker, 1999). The

1 ICC (see Hox et al., 2017) = Var between/(Var between + Var
within); = (:52 � 1)/ðð:52 � 1Þ + (:52 � 4) + 1 (residual variance in theta
parameterization)) = 0.111.
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variance on the within-level is chosen to be larger than on
the between-level. The factor loadings on both the within-
and between-level are chosen to be :5, as these values are
commonly used in simulation studies (see Schilling and
Bock (2005); Kim, Yoon, Wen, Luo, and Kwok (2015))
or found in empirical data (see Merz and Roesch (2011);
Dyer, Hanges, and Hall (2005)).

Continuous data were drawn from a multivariate normal
distribution in the WF approach with zero means, and V j in
Equation 22 as the population covariance matrix. Discrete
data are obtained by discretizing the continuous data such
that the population proportions for the two categories equal
.50, .50 and the population proportions for four categories
equal approximately .16, .34, .34, and .16.

In some conditions, the basic factor model is extendedwith
additional effects (see the dotted lines in Figure 6). In
a misspecified model a non-zero a value of .45 has an addi-
tional effect on the first item. Non-zero values for b and c
indicate an additional effect of the covariate at the between- or
within-level. Both z2 and w have unity variance and b and c
were set to .3. Appendix E shows a summary of the design
factors and the model parameters used in the simulation study.

Estimation

The computer program lavaan (Rosseel, 2012) is used for
most calculations. As lavaan does not deal with discrete data
in the LF approach yet, we use the computer program Mplus
(Muthén and Muthén, 2010). We use robust standard errors
for all estimation methods. To obtain comparable results to
the LF estimation methods with the probit link, we use the
theta parameterization when the WF estimation methods are
applied. In agreement with the data generation and according
to measurement invariance restrictions, the residuals at the
between-level are not estimated. This reduces the number of
dimensions drastically and enables us to include the MML
estimation method in our simulation study. The MML esti-
mation method is used with adaptive quadrature with 25
integration points per latent variable. The factor variances
were fixed to set the metric of the factors. All multilevel
models are estimated without restrictions on the factor load-
ings across levels, as this will give us an indication on how
well the parameters are estimated at different levels.
Standard missing data procedures are used to deal with
unbalanced data and for the PML estimation method we
chose the complete pairs (CP) procedure.

z1 z2ηfb

y1 y2 y3 y4

.5 .5 .5 .5a

b

Between

Within

y1 y2 y3 y4

ηfw wc

0 0 0 0

1 1 1 1

.5 .5 .5 .5

1

4

1 1

1

FIGURE 6 A two level data generation model in the LF approach. Note: The solid lines represent the general model and the dashed lines are only added in
certain conditions. In a misspecified model a non-zero a indicates an additional effect on the first item. Non-zero values for b and c indicate an additional
effect of the covariate on the between- or within-level.
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Results

After applying each of the four estimation methods to each
of the 16,000 datasets, we find that the LF DWLS estimation
method does not always converge, albeit in a tiny fraction of
the number of datasets (0.018 percent of the datasets). To
validly compare all estimation methods, the problematic
datasets were replaced by new datasets. Below we will
describe the relative bias (expressed in percentages) of the
estimated factor loadings and the regression coefficients of
the covariate at the latent within- or between-factors2.

Balanced Data

Bias of Factor Loadings. Figure 7 shows the rela-
tive bias of the factor loadings at the within-level for
different estimation methods. In general, the bias is very
low across all conditions and only slightly higher in condi-
tions with a misspecification and the MML estimation
method. Figure 8 shows the relative bias of the between-
level factor loadings for different estimation methods. All
methods show increased bias at the between-level, espe-
cially in conditions with a misspecification when the MML
estimation method was used. For this specific condition, the
relative bias equals 7.12% for two point scales and 11.86%
for four point scales.

Bias Standard Errors of Factor Loadings. Figures
9 and 10 show the relative bias of the standard errors asso-
ciated with the factor loadings at the within- and the
between-level, respectively. Figure 9 shows small bias
across all conditions with the MML estimation method and
the estimation methods in the WF approach. The bias of the

standard errors at the between-level (see Figure 10) is small
across all estimation methods, except for the MML estima-
tion method where the relative bias is unexpectedly high.

Unbalanced Data

Bias of Factor Loadings. The relative bias of the
factor loadings with unbalanced data across all conditions at
both the within-level and the between-level generally show
the same picture as those with balanced data. Once again the
bias in the MML estimation method is somewhat higher in
conditions with a misspecification at the within-level and
especially high in conditions with a misspecification at the
between-level. The corresponding figures are shown in the
supplementary materials.

Bias Standard Errors of Factor Loadings. The
relative bias of the standard errors associated with the
factor loadings at the within-level is shown in Figure 11.
The bias is reasonable in the MML estimation method and
the WF approaches. Only the DWLS estimation method in
the LF approach shows a slightly deviant pattern in many
conditions. Figure 12 shows the relative bias of the stan-
dard errors associated with the factor loadings at the
between-level. The WF estimation methods show higher
relative bias across all conditions (i.e., about 10%). The
DWLS estimation method in the LF approach shows lower
bias than the other estimation methods and the MML esti-
mation method shows more variation in the relative bias
across all conditions.

Bias Associated with Regression Coefficients of
the Covariate

Overall, the relative bias in both the parameter estimates
and the associated standard errors related to the regression
coefficients of the covariate is very low across all
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FIGURE 7 Bias of within factor loadings in balanced data.

2 All R scripts (e.g., data generation scripts and scripts to analyze the
data) are available at the Open Science Foundation (OSF), following the
link https://osf.io/fa2gp/.
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FIGURE 9 SE bias of within factor loadings in balanced data.
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FIGURE 10 SE bias of between factor loadings in balanced data.
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FIGURE 8 Bias of between factor loadings in balanced data.

MULTILEVEL MODELING IN THE ‘WIDE FORMAT’ APPROACH WITH DISCRETE DATA 709



conditions and all estimation methods. The corresponding
figures are shown in the supplementary materials.

Summary of Results

With all estimation methods, the bias of the regression
coefficients associatedwith the covariate and the corresponding
standard error at the within- and the between-level is largely
unbiased across all conditions. The bias of the factor loadings
and the associated standard errors show more variation across
estimation methods and/or conditions. Overall, the bias of both
the factor loadings and the standard errors across all conditions
is higher at the between-level than at the within-level. The WF
estimation methods are largely unbiased across conditions and
more relative bias of the standard errors at the between-level are
noticeablewith unbalanced data.TheDWLS estimationmethod
in the LF approach shows a deviant pattern compared to all
other estimation methods in many conditions. In general, the

MML estimationmethod in the LF approach exhibits more bias
than all other estimation methods. Perhaps most prominently
the high bias in both the factor loadings and their associated
standard errors in conditions with a misspecification.

In describing the parameter estimates, we did not men-
tion the thresholds as these parameters are often not of
theoretical interest. For all conditions, the bias in the
thresholds was very low for all estimation methods. The
figures are shown in the supplementary materials.

ILLUSTRATION

Data

The WF approach to estimate multilevel data is illustrated
with data from the dependency scale of a Dutch translation
of the Student-Teacher Relationship Scale (STRS; Koomen
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et al., 2007). As the dataset contains small clusters sizes,
the WF approach is very suitable. Through this example,
we will show how the WF can be used to estimate multi-
level models with different estimation methods. In the
dataset of Koomen et al. (2007) primary school teachers
filled in six questions regarding overly dependent and
clingy child behavior for only a few children (mean = 2.3)
from their class, aged 3 to 12:

1. This child fixes his/her attention on me the whole day
long.

2. This child reacts strongly to separation from me.
3. This child is overly dependent on me.
4. This child asks for my help when he/she really does

not need help.
5. This child expresses hurt or jealousy when I spend

time with other children.
6. This child needs to be continually confirmed by me.

A multilevel one factor is specified using the six depen-
dency items (see Figure 6 for a one factor model with 4
items). Responses were given on a 5-point scale ranging
from 1 (‘definitely does not apply’) to 5 (‘definitely does
apply’). For simplicity, we only selected classes where
teachers rated at most three children. This resulted in data
from 1047 students (497 boys and 550 girls) that were
gathered from 559 primary school teachers (144 men and
415 woman) with an average cluster size of 1.873. In
a preliminary analysis a one factor model is fitted, treating
the data as continuous, using ML with robust standard
errors and fit statistics. Note that with continuous data, the
results as well as the fit statistics of the WF approach are
identical to the results of the LF approach. This multilevel
model fits the data well (χ2 (18) = 29.990, p = .038,
RMSEA = 0.025, CFI = 0.992, SRMR (within-level)
= 0.030, SRMR (between-level) = 0.073).

Statistical Analysis

Data were first reordered in the WF approach such that all
the children in a class are row-wise displayed. As not all
clusters have an equal number of children, clusters with
less than three children have missing values (i.e., design
missingness see Paragraph 1.3). We will use the same
estimation methods as the ones used in the simulation
study (i.e., PML and DWLS in the WF approach and
MML and DWLS in the LF approach) and mainly focus
on the parameter estimates and the associated standard
errors. Similar to the simulation study, all WF approaches
were estimated with lavaan (Rosseel, 2012) and all LF
approaches were estimated with Mplus (Muthén &
Muthén, 2010). The gender of the student (i.e., sk) and
the gender of the primary school teacher (i.e., sl) are the
binary covariates in the analysis.

We will fit the following multilevel models with the
STRS data in the WF approach:

● Model 0: Unstructured model without covariates
● Model 1: CFA without covariates
● Model 2: CFA without covariates with measurement
invariance restrictions

● Model 3: Unstructured model with binary covariates
● Model 4: CFA with binary covariates
● Model 5: CFA with binary covariates with measure-
ment invariance restrictions

● Model 6: Unstructured model with continuous
covariates

● Model 7: CFA with continuous covariates
● Model 8: CFA with continuous covariates with mea-
surement invariance restrictions

All models are fitted according to the proposed steps
in section “WF Approach with Discrete Data3.” We
subsequently fit three models without covariates
(Model 0 - Model 2), three models with the covariates
treated as categorical (Model 3 - Model 5), and three
models with covariates treated as continuous (Model 6 -
Model 8). Note that estimation methods in the LF
approach do not need unstructured models (Model 0
and Model 3).

In models without restrictions (Model 1, Model 4, and
Model 7), the factor loadings at the within-level can be
different from the factor loadings at the between-level and
the residuals at the between-level (i.e., random intercept var-
iances leftover) are freely estimated. These kind of multilevel
models have a complicated interpretation as the within-level
factor loadings should then be interpreted as a summary of all
possible cluster factor loadings. Nevertheless, the model with-
out restrictions can serve as a baseline model for models with
restrictions across clusters. Models with measurement invar-
iance restrictions (Model 2, Model 5, and Model 8) ensure
that factors have the same interpretation across all clusters,
and restrictions on the residuals at the between-level ensure
that the clusters have the same intercepts and that no other
variables than the specified latent variables are affecting the
between-level responses (see Mehta & Neale, 2005; Muthén,
1990; Rabe-Hesketh et al., 2004a).

It is important to note that the MML estimation method
cannot estimate Model 0 or CFA models without measure-
ment invariance restrictions, as the number of latent vari-
ables in all other models exceeds the number of dimensions
the MML estimation method can handle. This has to do

3The syntax can be found at the OSF. The syntax used to fit the STRS
data is quite similar to the syntax printed in Appendix D (see Appendix
B for adding covariates).
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with the estimation of the errors on the between-level, that
are modeled as additional latent variables.

Results

To briefly illustrate the use of fit statistics in the WF approach,
Table 1 contains the intra-class coefficients (ICC) according to
the DWLS and PML estimation methods in the WF approach
and the DWLS estimationmethod in the LF approach. The ICC
values are almost equivalent across estimation methods.
Forcing the MML to calculate the ICC will lead to too many
latent variables which is computationally too intensive. Table 2
shows the χ2 values and the degrees of freedom of the models
of interest and the unstructured models for the STRS data using
the DWLS estimation method with the scaled and shifted test
statistic (Asparouhov & Muthén, 2010). In the WF approach,
the model of interest and the unrestricted model are necessary
to obtain the multilevel test statistic. The last two columns
indicate the chi-square test statistics and the associated degrees
of freedom for the various multilevel models obtained via
a scaled chi-square difference test (Satorra, 2000). The results
indicate that the general model with or without covariates fits
the data well, while models with invariance restrictions do not
fit the data. To give a general idea of the estimation time of the
used estimation methods, we saved the estimation time of
a model without covariates and errors on the between level;
DWLS in the WF approach: 0.11 minutes, PML in the WF
approach: 3.24 minutes, MML in the long format approach:
4:25 minutes, and DWLS in the LF approach: 1:53 minutes.

Column 2 to 5 of Table 3 contains the parameter esti-
mates and the standard errors of a model without measure-
ment invariance restrictions across levels for different
estimation methods with a discrete covariate. Only the
theta parameterization ensures that the WF approach is
comparable to the LF approaches. As the DWLS estimation
method in the LF approach cannot include the covariate as
a discrete covariate, Column 6 to 11 contain the parameter
estimates and the standard errors of a model without mea-
surement invariance restrictions across levels for different
estimation methods with a continuous covariate. During
estimation we noticed that the DWLS in the WF approach
had problems constructing a weight matrix (i.e., W), which
is most likely due to treating the binary covariates as

continuous. The model shown in Table 3 contains too
many dimensions (i.e., six errors variances at the between-
level and two latent variables) to estimate this model with
the MML estimation method in the LF approach.

The results of Table 3 indicate that the parameter estimates
of the PML estimation method and the DWLS estimation
method in the WF approach are quite similar and only the
parameter estimates for the DWLS estimation method in the
LF approach are somewhat deviating. For all estimationmeth-
ods, the error variances are not equal to zero, which indicate
that the intercepts of all classes are not equal to each other and
that other variables than the specified latent variables may
affect the between-level responses.

Column 2 to 7 of Table 4 show the parameter estimates
and the standard errors of the STSR models with measure-
ment invariance restrictions across levels. The model fits
poor in terms of the χ2 fit statistic, however, the calculation
of the Correlation Root Mean Squared Residual (CRMR;
Bentler, 1985; Maydeu-Olivares, 2017; Ogasawara, 2001),
that is less dependent on the sample size, showed reason-
able fit values (e.g., 0.0148, z = 1.425, p > .05 for Model 2).
The measurement invariance restrictions facilitate the inter-
pretation of the effect of the covariates. As boys were
scored 0 and girls 1, the unstandardized effect of depen-
dency on the gender of the child equals 0.106 in, for
example, the WF DWLS estimation method with
a discrete covariate. This means that teachers experience
more dependency with girls than with boys. The unstandar-
dized direct effect in the WF DWLS of dependency on the
gender of the teacher is −0.098 indicating that male tea-
chers experience more dependency than female teachers.
Overall, the parameter estimates of the multilevel MML are
quite similar to the ones obtained by the WF approach. The
effect of the covariate is also about equal in terms of ratios.
The parameter estimates of the LF DWLS are again some-
what deviating. The last six columns of Table 4 show the
parameter estimates and the standard errors of the models
with and without measurement invariance restrictions with
continuous covariates in the WF approach.

TABLE 1
ICC for Different Estimation Methods

DWLS(LF) DWLS(WF) PML(WF)

Item 1 0.463 0.460 0.453
Item 2 0.362 0.409 0.379
Item 3 0.145 0.151 0.137
Item 4 0.274 0.276 0.283
Item 5 0.421 0.417 0.412
Item 6 0.203 0.207 0.204

TABLE 2
χ2 Test Statistics for the DWLS Estimation Method in the WF

H1 H0 model fit

df χ2 df χ2 df χ2

Models without covariates
Model 0 & Model 1: 164 152.111 182 166.752 18 8.010
Model 0 & Model 2: 164 152.111 193 310.396 29 112.336*
Models with binary covariates
Model 3 & Model 4: 226 212.385 254 238.925 28 20.783
Model 3 & Model 5: 226 212.385 265 389.558 39 135.324*
Models with covariates
Model 6 & Model 7: 234 168.540 262 192.628 28 19.000
Model 6 & Model 8: 234 168.540 273 342.596 39 133.402*

Note: * = p <0.05
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Conclusion

The STRS data shows that the WF approach can be used in
datasets with a relatively small number of units in each cluster.
Using the stepwise approach from section “Multilevel SEM in
the WF Approach” and section “WF Approach with Discrete
Data”, various CFA models, including models with covariates
and measurement bias restrictions, can be fitted to the STRS
data. The DWLS in both the LF- andWF approch and the PML
estimation method can estimate all suggested models. Due to
the increasing dimensionality, the MML estimation method
cannot fit models with error variances on the between-level
(see Table 3). We hesitate to interpret the results of the the
DWLS estimation method in the LF approach, as it shows
a different pattern of parameter estimates compared to all
other estimation methods.

Discussion

In this article, we united the fragmented literature on the
WF approach into a general framework for random

intercept SEM multilevel models for a small number of
observations in a cluster that can handle unbalanced data,
missing data, and covariates at both the within- and the
between-level. In addition, we also extent the WF approach
for discrete data and provide an illustration. With small
cluster sizes, the least squares estimation methods and the
PML estimation method are very useful to fit all multilevel
models in the WF approach. Only the MML estimation
method is harder to use in the WF approach as it is com-
putationally very intensive and only of practical use in the
estimation of multilevel regression or path models. To
make the WF approach applicable, we used the Open
Science Framework to provide the readers with the
R script of the empirical example, and the R scripts and
artificial data that corresponds to the models presented in
the appendix.

In general, modeling multilevel data in the WF approach
has several advantages over modeling multilevel data in the
LF approach. First, the WF approach is computationally
very efficient compared to the MML estimation method in

TABLE 3
Parameter Estimates of Model 4 and Model 7

binary covariate continuous covariate

DWLS(WF) PML(WF) DWLS(WF) PML(WF) DWLS(LF)

θ SE Var SE Var SE Var SE :52 � 1 SE

λw1;1 1.000 - 1.000 - 1.000 - 1.000 - 1.000 -

λw1;2 2.475 0.446 2.352 0.426 2.477 0.446 2.361 0.434 2.029 0.319

λw1;3 2.058 0.354 1.947 0.364 2.008 0.340 1.951 0.367 1.589 0.242

λw1;4 1.428 0.247 1.445 0.257 1.392 0.238 1.445 0.258 1.166 0.177

λw1;5 1.889 0.307 1.864 0.322 1.874 0.302 1.862 0.325 1.574 0.222

λw1;6 3.097 0.592 3.069 0.679 3.161 0.618 3.053 0.681 2.186 0.333

VarðηwÞ 0.217 0.064 0.221 0.069 0.222 0.065 0.223 0.070 0.325 0.077
VarðskÞ - - - - 0.249 0.003 0.250 0.001 - -
IntðskÞ - - - - 0.535 0.021 0.521 0.012 - -
ηw on sk 0.073 0.026 0.070 0.026 0.108 0.054 0.112 0.042 0.141 0.050

λb1;1 1.000 - 1.000 - 1.000 - 1.000 - 1.000 -

λb1;2 1.259 0.207 1.227 0.222 1.264 0.209 1.229 0.227 1.281 0.230

λb1;3 0.517 0.115 0.503 0.117 0.519 0.114 0.503 0.117 0.544 0.119

λb1;4 0.835 0.164 0.833 0.164 0.840 0.164 0.833 0.164 0.892 0.183

λb1;5 0.934 0.126 0.965 0.137 0.936 0.127 0.965 0.142 1.034 0.169

λb1;6 0.608 0.129 0.610 0.153 0.613 0.133 0.609 0.156 0.652 0.139

VarðηbÞ 0.749 0.172 0.689 0.156 0.761 0.173 0.701 0.160 0.658 0.170

ηb on sl −0.174 0.078 −0.163 0.077 −0.287 0.131 −0.271 0.128 −0.248 0.124

VarðslbÞ - - - - 0.191 0.009 0.195 0.007 - -
IntðslÞ - - - - 0.742 0.007 0.734 0.015 - -

Θb
1;1

0.261 0.143 0.304 0.132 0.267 0.143 0.304 0.133 0.483 0.138

Θb
2;2

0.395 0.206 0.299 0.186 0.404 0.210 0.306 0.188 0.244 0.157

Θb
3;3

0.138 0.114 0.115 0.097 0.131 0.111 0.116 0.098 0.113 0.095

Θb
4;4

0.011 0.111 0.083 0.116 0.001 0.109 0.083 0.116 0.021 0.107

Θb
5;5

0.604 0.188 0.587 0.182 0.603 0.187 0.585 0.180 0.611 0.138

Θb
6;6

0.530 0.233 0.534 0.239 0.557 0.248 0.527 0.237 0.370 0.129

Note: (1) Thresholds are not shown here; (2) For identification purposes the first factor loading on the between-level and the within-level are fixed to one.
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the LF approach opening up the possibility to analyze
models with many latent variables. The illustration showed
that a simple one factor model with errors on the between-
level contains already too many latent variables to estimate
with the MML estimation method in the LF approach.
Estimating this model in the WF approach with PML and
DWLS causes no problems. This offers new possibilities to
estimate factor models with errors on the between-level.
Second, the WF approach does not need as many restric-
tions as the LF approach. Where the LF approach implicitly
forces equality constraints on, for example, the factor load-
ings and the thresholds across clusters, the WF approach
can test all these restrictions. Third, there is no special SEM
software needed to perform multilevel analysis with dis-
crete data, as single level software is capable of performing
the multilevel analysis. Despite the potential advantages,
there are of course a number of limitations. First, larger
cluster sizes and/or more variables require a larger number
of clusters. Second, highly unbalanced data are problematic
in the WF approach. If, for example, all clusters contain no
more than five units, except for one cluster with twenty
units, we would advice to randomly sample five units from
this cluster to deal with this highly unbalanced data in the
WF approach. Third, it is tedious to specify a multilevel
model in the WF approach using current SEM software. As
the maximum number of units increase, the size of the
model syntax increases too. In the future, we plan to
develop scripts that will automatically generate the model
syntax.

The simulation study showed that the estimation meth-
ods in the WF approach are capable to estimate multilevel

models under the simulated conditions. The parameter esti-
mates of the estimation methods in this simulation study
with the WF approach are largely unbiased and not so
much influenced by the balancedness of the data, the num-
ber of clusters, and model misspecification. It is noticeable
that the bias of the parameter estimates and the standard
errors at the between-level are larger than the bias at the
within-level. Of course, the between-level contains less
units than the within-level, which influences the bias of
the parameter estimates and the standard errors. The
DWLS and the PML estimation method in the WF
approach show very similar results, which can be explained
by the fact that they both rely on bivariate information. The
MML estimation method in the LF approach shows com-
parable results to the estimation methods in the WF
approach, except in conditions with a misspecification,
where the bias in the parameter estimates is alarmingly
high. The high bias of the standard errors at the between-
level with four response scales in the MML estimation
method, was also surprising. The DWLS estimation method
in the LF approach is hindered by some convergence pro-
blems and shows a different pattern of results compared to
all other estimation methods. As it is impossible to consider
all plausible scenarios in a single simulation study, general-
ization beyond the range of the conditions studied should
be undertaken with caution.

The illustrative dataset on the student-teacher relation-
ship shows that the WF approach is capable of estimating
different multilevel models in real data. If the MML esti-
mation is feasible (as in Table 4), the results of the WF
approach are very similar to the results of the MML

TABLE 4
Parameter Estimates of Model 5 and Model 8

binary covariate continuous covariate

DWLS(WF) PML(WF) MML(LF) DWLS(WF)
PML(WF)

DSMV(LF)

θ SE θ SE θ SE θ SE θ SE θ SE

λ1;1 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 -
λ1;2 1.611 0.167 1.697 0.204 1.845 0.186 1.613 0.168 1.697 0.209 1.881 0.256
λ1;3 0.994 0.103 0.993 0.126 1.174 0.117 0.989 0.102 0.993 0.127 1.206 0.151
λ1;4 1.115 0.126 1.161 0.142 1.246 0.129 1.109 0.125 1.161 0.140 1.109 0.151
λ1;5 1.138 0.101 1.224 0.121 1.300 0.120 1.136 0.100 1.224 0.124 1.469 0.173
λ1;6 1.081 0.105 1.100 0.139 1.318 0.130 1.080 0.105 1.101 0.141 1.554 0.175
VarðηwÞ 0.409 0.070 0.374 0.062 0.324 0.052 0.415 0.070 0.377 0.064 0.440 0.086
VarðskÞ - - - - - - 0.249 0.003 0.250 0.001 - -
IntðskÞ - - - - - - 0.535 0.021 0.521 0.012 - -
ηw on sk 0.106 0.037 0.095 0.035 0.143 0.050 0.157 0.082 0.152 0.056 0.164 0.057
VarðηbÞ 0.346 0.072 0.289 0.068 0.266 0.053 0.351 0.073 0.293 0.070 0.267 0.065

ηb on sl −0.098 0.052 −0.089 0.049 −0.119 0.072 −0.162 0.088 −0.148 0.081 −0.127 0.078

VarðslbÞ - - - - - - 0.191 0.009 0.195 0.007 - -
IntðslÞ - - - - - - 0.742 0.007 0.734 0.015 - -

Note:(1) Thresholds are not shown here; (2) For identification purposes the first factor loading on the between-level and the within-level are fixed to one.
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estimation method in the LF approach. The results of the
DWLS in the LF approach are typically somewhat deviant.
Although we did not encounter difficulties with empty cells
in our example, empty cells caused by within-cluster miss-
ingness or design missingness can be problematic in the
WF approach. Potential solutions for datasets with empty
cells are discussed by Agresti and Yang (1987).

In the illustration, we briefly showed how to calculate
the χ2 goodness-of-fit statistic in the WF approach. As the
fit in a multilevel model expresses the combined (mis)fit at
both the within- and the between-level, more attention
should be given to this topic. The within-level has generally
more influence on the overall fit than the between-level, as
the number of units at the within-level is higher than the
number of units at the between-level. Ryu and West (2009)
and Boulton (2011) proposed level specific fit measures for
multilevel SEM.

In this study, we only considered models with a random
intercept. Multilevel models can be extended by adding
random slopes, where the impact of covariates is allowed
to vary across clusters. The estimation of random slopes
requires case-wise estimation. With discrete data in the LF,
only the MML estimation method can estimate models with
a random slope. In the WF approach, the PML estimation
method seems best suited to estimate models including
a random slope in for example generalized linear mixed
models (see Bellio & Varin, 2005; Cho & Rabe-Hesketh,
2011; Tibaldi et al., 2007). Compared to the MML in the
LF approach, the PML estimation method in the WF
approach can in theory estimate many random slopes and
other latent variables. The WLS estimation method in the
WF approach uses a two-step estimation procedure and can
therefore not estimate models with random slopes.

The PML estimation method seems a promising, perhaps
underused, estimation method that was initially developed for
discrete data (see Jöreskog & Moustaki, 2001). So far, exo-
genous covariates in the PML estimation method are
regressed out first and further calculations are done on the
residual correlations. However, in the WF approach the cov-
ariates are considered as stochastic variables, where the PML
estimation method has to deal with pairs of variables that are
potentially a mixture of discrete and continuous variables and
combinations thereof. This is the first study that deals with
a mixture of discrete and continuous variables in estimating
SEM with the PML estimation method. As mentioned above,
the PML estimation method is also capable of estimating
random slopes. In addition, with very unequal cluster sizes,
the PML estimation method could be extended by using
weights (e.g., Joe & Lee, 2009; Renard, 2002).

In future research, the WF approach can easily be
extended to more than two levels or used to estimate multi-
group multilevel models or multilevel longitudinal models,
where the mean structure is also of importance. Additionally,

the possibilities of the PML estimation method with case-
wise estimation can be explored to estimate models with
random slopes and/or models in the WF approach where
the number of columns (variables � observations) is larger
than the number of rows (number of clusters).
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APPENDIX

Appendix A: lavaan syntax for a multilevel one factor model with a covariate on both levels (i.e., w and z) in the WF
approach

# Syntax corresponding to Figure 2 with three observations in each cluster model <- ’

### Step 2: Model for the within level
### Step 3: Equality constraints on the within level (labels e to h =
### within factor loadings (λ), fvw1 to fvw3 = within factors (ηf w),
### and rw1 to rw4 = residuals variances (Θ))
# within structure via factor loadings and within factors variances
fw1 =∼ e*y1.1 + f*y2.1 + g*y3.1 + h*y4.1
fw2 =∼ e*y1.2 + f*y2.2 + g*y3.2 + h*y4.2
fw3 =∼ e*y1.3 + f*y2.3 + g*y3.3 + h*y4.3
fw1 ∼∼ fvw*fw1
fw2 ∼∼ fvw*fw2
fw3 ∼∼ fvw*fw3

# uncorrelated fw1, fw2, fw3
fw1 ∼∼ 0*fw2 + 0*fw3; fw2 ∼∼ 0*fw3

# within intercepts (fixed to zero)
y1.1 + y2.1 + y3.1 + y4.1 ∼ 0*1
y1.2 + y2.2 + y3.2 + y4.2 ∼ 0*1
y1.3 + y2.3 + y3.3 + y4.3 ∼ 0*1

# common residual variances
y1.1 ∼∼ rw1*y1.1; y1.2 ∼∼ rw1*y1.2; y1.3 ∼∼ rw1*y1.3
y2.1 ∼∼ rw2*y2.1; y2.2 ∼∼ rw2*y2.2; y2.3 ∼∼ rw2*y2.3
y3.1 ∼∼ rw3*y3.1; y3.2 ∼∼ rw3*y3.2; y3.3 ∼∼ rw3*y3.3
y4.1 ∼∼ rw4*y4.1; y4.2 ∼∼ rw4*y4.2; y4.3 ∼∼ rw4*y4.3

### Step 4: construct latent variables that represent random intercepts
### of the variables y1,y2,y3, and y4 on the between level
by1 =∼ 1*y1.1 + 1*y1.2 + 1*y1.3
by2 =∼ 1*y2.1 + 1*y2.2 + 1*y2.3
by3 =∼ 1*y3.1 + 1*y3.2 + 1*y3.3
by4 =∼ 1*y4.1 + 1*y4.2 + 1*y4.3

# between intercepts
by1 + by2 + by3 + by4 ∼ 1

### Step 5: construct a model at the between level
# between factor
fb =∼ a*by1 + b*by2 + c*by3 + d*by4

# residual variances on the between-level
by1 ∼∼ by1; by2 ∼∼ by2; by3 ∼∼ by3; by4 ∼∼ by4

# between factor not correlated with the within factors fb ∼∼ 0*fw1 + 0*fw2 + 0*fw3
’

# fitting the model with ML
fit <- sem(model, data = wideData)
summary(fit)
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Appendix B: additional lavaan syntax to add a covariate on both the witin-level (i.e.,w) and the between-level (i.e.,
z) in the model of Appendix A

#within covariate (w) part: common variance (wwv)
w.1 ∼∼ wwv*w.1; w.2 ∼∼ wwv*w.2; w.3 ∼∼ wwv*w.3;

# common mean for w
w.1 + w.2 + w.3 ∼ iw*1

# common slope (ws)
fw1 ∼ ws*w.1
fw2 ∼ ws*w.2
fw3 ∼ ws*w.3

# insert a covariate on the between-level z (as latent variable)
zb =∼ 1*z; z ∼ 0*1; z ∼∼ 0*z
zb ∼∼ zb
zb ∼ 1
zb ∼∼ 0*fw1 + 0*fw2 + 0*fw3

# between regression
fb ∼ breg*zb

Appendix C: lavaan syntax for a multilevel regression model with discrete responses in the WF approach

# Random intercept regression model for discrete outcomes (4-point scales) model <- ’

### Step 2: Model for the within level
### Step 3: Equality constraints on the within level: not necessary
# common plain variance for y
y1 ∼∼ 1*y1; y2 ∼∼ 1*y2; y3 ∼∼ 1*y3; y4 ∼∼ 1*y4;

### Step 4: construct a latent variable that represents the random
### intercept of y on the between level and put equality constraints
### on the th1 to th3 = thresholds (τ))

# construct beween version of y
yb =∼ 1*y1 + 1*y2 + 1*y3 + 1*y4
yb ∼ 0*1

# equal thresholds
y1 + y2 + y3 + y4 | th1*t1 + th2*t2 + th3*t3

### Step 5: construct a model at the between level yb ∼∼ bvar*yb
’

# fit the model with for example the DWLS estimation method Wfit <- sem(model, data = D.wide,
ordered = paste0(“y”,1:4),

estimator = “DWLS”, parameterization = “theta”) summary(Wfit)

Appendix D: lavaan syntax for the multilevel one factor model with discrete responses in the WF approach

# Syntax corresponding to three observations in each cluster
# with discrete outcomes (4-point scales) in the theta parameterization model <- ’

### Step 2: Model for the within level
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### Step 3: Equality constraints on the within level (labels e to h =
### within factor loadings (λ) and fvw1 to fvw3 = within factors (ηf w))
# within structure via factor loadings, common variance within factors
fw1 =∼ e*y1.1 + f*y2.1 + g*y3.1 + h*y4.1
fw2 =∼ e*y1.2 + f*y2.2 + g*y3.2 + h*y4.2
fw3 =∼ e*y1.3 + f*y2.3 + g*y3.3 + h*y4.3
fw1 ∼∼ fvw*fw1
fw2 ∼∼ fvw*fw2
fw3 ∼∼ fvw*fw3
# uncorrelated fw1, fw2, fw3
fw1 ∼∼ 0*fw2 + 0*fw3; fw2 ∼∼ 0*fw3

# within intercepts (fixed to zero)
# y1.1 + y2.1 + y3.1 + y4.1 ∼ 0*1)
# y1.2 + y2.2 + y3.2 + y4.2 ∼ 0*1)
# y1.3 + y2.3 + y3.3 + y4.3 ∼ 0*1)

# unit residual variances: theta parameterization
y1.1 ∼∼ 1*y1.1; y1.2 ∼∼ 1*y1.2; y1.3 ∼∼ 1*y1.3
y2.1 ∼∼ 1*y2.1; y2.2 ∼∼ 1*y2.2; y2.3 ∼∼ 1*y2.3
y3.1 ∼∼ 1*y3.1; y3.2 ∼∼ 1*y3.2; y3.3 ∼∼ 1*y3.3
y4.1 ∼∼ 1*y4.1; y4.2 ∼∼ 1*y4.2; y4.3 ∼∼ 1*y4.3

### Step 4: construct latent variables that represent random intercepts
### with corresponding restrictions on the th1 to th3 = thresholds (τ))

# between version of y1,y2,y3,y4
by1 =∼ 1*y1.1 + 1*y1.2 + 1*y1.3
by2 =∼ 1*y2.1 + 1*y2.2 + 1*y2.3
by3 =∼ 1*y3.1 + 1*y3.2 + 1*y3.3
by4 =∼ 1*y4.1 + 1*y4.2 + 1*y4.3

# equal thresholds
y1.1 + y1.2 + y1.3 | th11*t1 + th12*t2 + th13*t3
y2.1 + y2.2 + y2.3 | th21*t1 + th22*t2 + th23*t3
y3.1 + y3.2 + y3.3 | th31*t1 + th32*t2 + th33*t3
y4.1 + y4.2 + y4.3 | th41*t1 + th42*t2 + th34*t3

# between intercepts
by1 + by2 + by3 + by4 ∼ 0*1

### Step 5: construct a model at the between level
# between factor
fb =∼ a*by1 + b*by2 + c*by3 + d*by4

# residual variances
# by1 ∼∼ 0*by1; by2 ∼∼ 0*by2; by3 ∼∼ 0*by3; by4 ∼∼ 0*by4

# between factors not correlated with the within factors fb ∼∼ 0*fw1 + 0*fw2 + 0*fw3
’

#fit the model with for example the PML estimation method
Pfit <- sem(model, data = wideData, ordered = paste(rep(c(“y1”,“y2”,

“y3”,“y4”), 3), rep(1:3, each = 4), sep = “.”), estimator = “PML”
, parameterization = “theta”)

summary(Pfit)
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Appendix E: Summary of the design factors and the model parameters used in the simulation study

Model parameter & design factors value

Var(ηfw) 4

a .45

b,c .3

Var(ηfb) 1

λw, λb .5

Var(z1), Var(z2), Var(w) 1

diag(Θw) 1

diag(Θb) 0

total Var(y) 2.25

mean (z1, z1, w) 0

proportions 2-point scale .50,.50

proportions 4-point scale .16, .34, .34, .16

Balanced: number of clusters (Ij) 200(3)/1000(3)

Unbalanced: number of clusters (Ij) 90(9),70(6),40(3)/500(9),300(6),200(3)
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