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Quantum differential equations and helices

Giordano Cotti

Abstract. These notes are a short and self-contained introduction to
the isomonodromic approach to quantum cohomology, and Dubrovin’s
conjecture. An overview of recent results obtained in joint works with
B.Dubrovin and D.Guzzetti [6], and A.Varchenko [9] is given.
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1. Quantum cohomology

1.1. Notations and conventions

Let X be a smooth projective variety over C with vanishing odd-cohomology,
i.e. H2k+1(X,C) = 0, for k ≥ 0. Fix a homogeneous basis (T1, . . . , Tn) of
the complex vector space H•(X) :=

⊕
kH

2k(X,C), and denote by t :=
(t1, . . . , tn) the corresponding dual coordinates. Without loss of generality,
we assume that T1 = 1. The Poincaré pairing on H•(X) will be denoted by

η(u, v) :=

∫

X

u ∪ v, u, v ∈ H•(X), (1.1)

and we put ηαβ := η(Tα, Tβ), for α, β = 1, . . . , n, to be the Gram matrix
wrt the fixed basis. The entries of the inverse matrix will be denoted by ηαβ ,
for α, β = 1, . . . , n. In all the paper, the Einstein rule of summation over
repeated indices is used. General references for this Section are [5, 6, 10, 11,
12, 13, 27, 29, 31].

1.2. Gromov-Witten invariants in genus 0

For a fixed β ∈ H2(X,Z)/torsion, denote by M0,k(X, β) the Deligne-Mumford
moduli stack of k-pointed stable rational maps with target X of degree β:

M0,k(X, β) := {f : (C,x) → X, f∗[C] = β} /equivalencies, (1.2)

where C is an algebraic curve of genus 0 with at most nodal singularities,
x := (x1, . . . , xk) is a k-tuple of pairwise distinct marked points of C, and
equivalencies are automorphisms of C → X identical on X and the markings.

http://arxiv.org/abs/1911.11047v1
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Gromov-Witten invariants (GW -invariants for short) of X , and their
descendants, are defined as intersection numbers of cycles on M0,k(X, β), by
the integrals

〈τd1γ1, . . . , τdk
γk〉Xk,β :=

∫

[M0,k(X,β)]virt

k∏

i=1

ev∗i γi ∧ ψdi

i , (1.3)

for γ1, . . . , γk ∈ H•(X), di ∈ N. In formula (1.3),

evi : M0,k(X, β) → X, f 7→ f(xi), i = 1, . . . , k, (1.4)

are evaluation maps, and ψi := c1(Li) are the first Chern classes of the
universal cotangent line bundles

Li → M0,k(X, β), Li|f = T ∗
xi
C, i = 1, . . . , k. (1.5)

The virtual fundamental cycle [M0,k(X, β)]
virt is an element of the Chow

ring A•
(
M0,k(X, β)

)
, namely

[M0,k(X, β)]
virt ∈ AD

(
M0,k(X, β)

)
, D := dimCX − 3 + k +

∫

β

c1(X).

See [1] for its construction.

1.3. Quantum cohomology as a Frobenius manifold

Introduce infinitely many variables t• := (tαp )α,p with α = 1, . . . , n and p ∈ N.

Definition 1.1. The genus 0 total descendant potential of X is the generating
function FX

0 ∈ C[[t•]] of descendant GW -invariants of X defined by

FX
0 (t•) :=

∞∑

k=0

∑

β

n∑

α1,...,αk=1

∞∑

p1,...,pk=0

tα1
p1
. . . tαk

pk

k!
〈τp1Tα1 , . . . , τpk

Tαk
〉Xk,β .

Setting tα0 = tα and tαp = 0 for p > 0, we obtain the Gromov-Witten potential
of X

FX
0 (t) :=

∞∑

k=0

∑

β

n∑

α1,...,αk=1

tα1 . . . tαk

k!
〈Tα1 , . . . , Tαk

〉Xk,β . (1.6)

Let Ω ⊆ H•(X) be the domain of convergence of FX
0 (t), assumed to be

non-empty. We denote by TΩ and T ∗Ω its holomorphic tangent and cotan-
gent bundles, respectively. Each tangent space TpΩ, with p ∈ Ω, is canon-

ically identified with the space H•(X), via the identification ∂
∂tα 7→ Tα.

The Poincaré metric η defines a flat non-degenerate OΩ-bilinear pseudo-
riemannian metric on Ω. The coordinates t are manifestly flat. Denote by
∇ the Levi-Civita connection of η.

Definition 1.2. Define the tensor c ∈ Γ(TΩ⊗⊙2
T ∗Ω) by

cαβγ := ηαλ∇3
λβγF

X
0 , α, β, γ = 1, . . . , n, (1.7)

and let us introduce a product ∗ on vector fields on Ω by

∂

∂tβ
∗ ∂

∂tγ
:= cαβγ

∂

∂tα
, β, γ = 1, . . . , n. (1.8)



Quantum differential equations and helices 3

Theorem 1.3 ([27, 31]). The Gromov-Witten potential FX
0 (t) is a solution of

WDV V equations

∂3FX
0 (t)

∂tα∂tβ∂tγ
ηγδ

∂3FX
0 (t)

∂tδ∂tǫ∂tφ
=

∂3FX
0 (t)

∂tφ∂tβ∂tγ
ηγδ

∂3FX
0 (t)

∂tδ∂tǫ∂tα
, (1.9)

for α, β, ǫ, φ = 1, . . . , n.

On each tangent space TpΩ, the product ∗p defines a structure of asso-

ciative, commutative algebra with unit ∂
∂t1 ≡ 1. Furthermore, the product ∗

is compatible with the Poincaré metric, namely

η(u ∗ v, w) = η(u, v ∗ w), u, v, w ∈ Γ(TΩ). (1.10)

This endows (TpΩ, ∗p, ηp, ∂
∂t1

∣∣
p
) with a complex Frobenius algebra structure.

Definition 1.4. The vector field

E = c1(X) +
n∑

α=1

(
1− 1

2
deg Tα

)
tα

∂

∂tα
, (1.11)

is called Euler vector field. Here, degTα denotes the cohomological degree of
Tα, i.e. degTα := rα if and only if Tα ∈ Hrα(X,C). We denote by U the
(1, 1)-tensor defined by the multiplication with the Euler vector field, i.e.

U : Γ(TΩ) → Γ(TΩ), v 7→ E ∗ v. (1.12)

Proposition 1.5 ([11, 13]). The Euler vector field E is a Killing conformal
vector field, whose flow preserves the structure constants of the Frobenius
algerbas:

LEη = (2− dimCX)η, LEc = c. (1.13)

The structure (Ω, c, η, ∂
∂t1 , E) gives an example of analytic Frobenius

manifold, called quantum cohomology of X and denoted by QH•(X), see
[11, 12, 13, 29].

1.4. Extended deformed connection

Definition 1.6. The grading operator µ ∈ End(TΩ) is the tensor defined by

µ(v) :=
2− dimCX

2
v −∇vE, v ∈ Γ(TΩ). (1.14)

Consider the canonical projection π : C∗ × Ω → Ω, and the pull-back
bundle π∗TΩ. Denote by

1. TΩ the sheaf of sections of TΩ,
2. π∗TΩ the pull-back sheaf, i.e. the sheaf of sections of π∗TΩ
3. π−1TΩ the sheaf of sections of π∗TΩ constant on the fibers of π.

All the tensors η, c, E,U , µ can be lifted to π∗TΩ, and their lifts will be
denoted by the same symbols. The Levi-Civita connection ∇ is lifted on
π∗TΩ, and it acts so that

∇ ∂
∂z
v = 0 for v ∈ (π−1

TΩ)(Ω), (1.15)

where z is the coordinate on C∗.
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Definition 1.7. The extended deformed connection is the connection ∇̂ on the
bundle π∗TΩ defined by

∇̂wv = ∇wv + z · w ∗ v, (1.16)

∇̂ ∂
∂z
v = ∇∂z

v + U(v)− 1

z
µ(v), (1.17)

for v, w ∈ Γ(π∗TΩ).

Theorem 1.8 ([11, 13]). The connection ∇̂ is flat.

1.5. Semisimple points and orthonormalized idempotent frame

Definition 1.9. A point p ∈ Ω is semisimple if and only if the corresponding
Frobenius algebra (TpΩ, ∗p, ηp, ∂

∂t1 |p) is without nilpotents. Denote by Ωss

the open dense subset of Ω of semisimple points.

Theorem 1.10 ([24]). The set Ωss is non-empty only if X is of Hodge-Tate1

type, i.e. hp,q(X) = 0 for p 6= q.

On Ωss there are n well-defined idempotent vector fields π1, . . . , πn ∈
Γ(TΩss), satisfying

πi ∗ πj = δijπi, η(πi, πj) = δijη(πi, πi), i, j = 1, . . . , n. (1.18)

Theorem 1.11 ([10, 11, 13]). The idempotent vector fields pairwise commute:
[πi, πj ] = 0 for i, j = 1, . . . , n. Hence, there exist holomorphic local coordi-

nates (u1, . . . , un) on Ωss such that ∂
∂ui

= πi for i = 1, . . . , n.

Definition 1.12. The coordinates (u1, . . . , un) of Theorem 1.11 are called
canonical coordinates.

Proposition 1.13 ([11, 13]). Canonical coordinates are uniquely defined up to
ordering and shifts by constants. The eigenvalues of the tensor U define a
system of canonical coordinates in a neighborhood of any semisimple point of
Ωss.

Definition 1.14. We call orthonormalized idempotent frame a frame (fi)
n
i=1

of TΩss defined by

fi := η(πi, πi)
− 1

2πi, i = 1, . . . , n, (1.19)

for arbitrary choices of signs of the square roots. The Ψ-matrix is the matrix
(Ψiα)

n
i,α=1 of change of tangent frames, defined by

∂

∂tα
=

n∑

i=1

Ψiαfi, α = 1, . . . , n. (1.20)

Remark 1.15. In the orthonormalized idempotent frame, the operator U is
represented by a diagonal matrix, and the operator µ by an antisymmetric
matrix:

U := diag(u1, . . . , un), ΨUΨ−1 = U, (1.21)

V := ΨµΨ−1, V T + V = 0. (1.22)

1Here hp,q(X) := dimC Hq(X,Ωp
X
), with Ωp

X
the sheaf of holomorphic p-forms on X,

denotes the (p, q)-Hodge number of X.
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2. Quantum differential equation

The connection ∇̂ induces a flat connection on π∗(T ∗Ω). Let ξ ∈ Γ(π∗(T ∗Ω))
be a flat section. Consider the corresponding vector field ζ ∈ Γ(π∗(TΩ)) via
musical isomorphism, i.e. such that ξ(v) = η(ζ, v) for all v ∈ Γ(π∗(TΩ)).

The vector field ζ satisfies the following system2 of equations

∂

∂tα
ζ = zCαζ, α = 1, . . . , n, (2.1)

∂

∂z
ζ =

(
U +

1

z
µ

)
ζ. (2.2)

Here Cα is the (1, 1)-tensor defined by (Cα)βγ := cβαγ .

Definition 2.1. The quantum differential equation (qDE) of X is the differ-
ential equation (2.2).

The qDE is an ordinary differential equation with rational coefficients.
It has two singularities on the Riemann sphere P

1(C):

1. a Fuchsian singularity at z = 0,
2. an irregular singularity (of Poincaré rank 1) at z = ∞.

Points of Ω are parameters of deformation of the coefficients of the qDE.
Solutions ζ(t, z) of the joint system of equations (2.1), (2.2) are “multivalued”

functions wrt z, i.e. they are well-defined functions on Ω × Ĉ∗, where Ĉ∗ is
the universal cover of C∗.

2.1. Solutions in Levelt form at z = 0 and topological-enumerative solution

Theorem 2.2 ([5, 11, 13]). There exist fundamental systems of solutions Z0(t, z)
of the joint system (2.1), (2.2) with expansions at z = 0 of the form

Z0(t, z) = F (t, z)zµzR, R =
∑

k≥1

Rk, F (t, z) = I +

∞∑

j=1

Fj(t)z
j (2.3)

where (Rk)αβ 6= 0 only if µα − µβ = k. The series F (t, z) is convergent and
satisfies the orthogonality condition

F (t,−z)T ηF (t, z) = η. (2.4)

Definition 2.3. A fundamental system of solutions Z0(t, z) of the form de-
scribed in Theorem 2.3 are said to be in Levelt form at z = 0.

Remark 2.4. Fundamental systems of solutions in Levelt form are not unique.
The exponent R is not uniquely determined. Moreover, even for a fixed
exponent R, the series F (t, z) is not uniquely determined, see [5]. It can
be proved that the matrix R can be chosen as the matrix of the operator
c1(X) ∪ (−) : H•(X) → H•(X) wrt the basis (Tα)

n
α=1 [13, Corollary 2.1].

2We consider the joint system (2.1), (2.2) in matrix notations (ζ a column vector whose

entries are the components ζα(t, z) wrt ∂
∂tα

). Bases of solutions are arranged in invertible

n× n-matrices, called fundamental systems of solutions.
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Remark 2.5. Let Z0(t, z) be a fundamental system of solutions in Levelt form
(2.3). The monodromy matrix M0(t), defined by

Z0(t, e
2π

√
−1z) = Z0(t, z)M0(t), z ∈ Ĉ∗, (2.5)

is given by

M0(t) = exp(2π
√
−1µ) exp(2π

√
−1R). (2.6)

In particular, M0 does not depend on t.

Definition 2.6. Define the functions θβ,p(t, z), θβ(t, z), with β = 1, . . . , n and
p ∈ N, by

θβ,p(t) :=
∂2FX

0 (t•)

∂t10∂t
β
p

∣∣∣∣∣
tαp=0 for p>1, tα0 =tα for α=1,...,n

, (2.7)

θβ(t, z) :=

∞∑

p=0

θβ,p(t)z
p. (2.8)

Define the matrix Θ(t, z) by

Θ(t, z)αβ := ηαλ
∂θβ(t, z)

∂tλ
, α, β = 1, . . . , n. (2.9)

Theorem 2.7 ([5, 13]). The matrix Ztop(t, z) := Θ(t, z)zµzc1(X)∪ is a funda-
mental system of solutions of the joint system (2.1)-(2.2) in Levelt form at
z = 0.

Definition 2.8. The solution Ztop(t, z) is called topological-enumerative solu-
tion of the joint system (2.1), (2.2).

2.2. Stokes rays and ℓ-chamber decomposition

Definition 2.9. We call Stokes rays at a point p ∈ Ω the oriented rays Rij(p)
in C defined by

Rij(p) :=
{
−
√
−1(ui(p)− uj(p))ρ : ρ ∈ R+

}
, (2.10)

where (u1(p), . . . , un(p)) is the spectrum of the operator U(p) (with a fixed
arbitrary order).

Fix an oriented ray ℓ in the universal cover Ĉ∗.

Definition 2.10. We say that ℓ is admissible at p ∈ Ω if the projection of the
the ray ℓ on C∗ does not coincide with any Stokes ray Rij(p).

Definition 2.11. Define the open subset Oℓ of points p ∈ Ω by the following
conditions:

1. the eigenvalues ui(p) are pairwise distinct,
2. ℓ is admissible at p.

We call ℓ-chamber of Ω any connected component of Oℓ.
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2.3. Stokes fundamental solutions at z = ∞
Fix an oriented ray ℓ ≡ {arg z = φ} in Ĉ∗. For m ∈ Z, define the sectors in

Ĉ∗

ΠL,m(φ) :=
{
z ∈ Ĉ∗ : φ+ 2πm < arg z < φ+ π + 2πm

}
, (2.11)

ΠR,m(φ) :=
{
z ∈ Ĉ∗ : φ− π + 2πm < arg z < φ+ 2πm

}
. (2.12)

Definition 2.12. The coalescence locus of Ω is the set

∆Ω := {p ∈ Ω: ui(p) = uj(p), for some i 6= j} . (2.13)

Theorem 2.13 ([11, 13]). There exists a unique formal solution Zform(t, z) of
the joint system (2.1), (2.2) of the form

Zform(t, z) = Ψ(t)−1G(t, z) exp(zU(t)), (2.14)

G(t, z) = I +

∞∑

k=1

1

zk
Gk(t), (2.15)

where the matrices Gk(t) are holomorphic on Ω \∆Ω.

Theorem 2.14 ([11, 13]). Let m ∈ Z. There exist unique fundamental sys-
tems of solutions ZL,m(t, z), ZR,m(t, z) of the joint system (2.1), (2.2) with
asymptotic expansion

ZL,m(t, z) ∼ Zform(t, z), |z| → ∞, z ∈ ΠL,m(φ), (2.16)

ZR,m(t, z) ∼ Zform(t, z), |z| → ∞, z ∈ ΠR,m(φ), (2.17)

respectively.

Definition 2.15. The solutions ZL,m(t, z) and ZR,m(t, z) are called Stokes
fundamental solutions of the joint system (2.1), (2.2) on the sectors ΠL,m(φ)
and ΠR,m(φ) respectively.

2.4. Monodromy data

Let ℓ ≡ {arg z = φ} be an oriented ray in Ĉ∗ and consider the corresponding
Stokes fundamental systems of solutions ZL,m(t, z), ZR,m(t, z), for m ∈ Z.

Definition 2.16. We define the Stokes and central connection matrices S(m)(p),
C(m)(p), with m ∈ Z, at the point p ∈ Oℓ by the identities

ZL,m(t(p), z) = ZR,m(t(p), z)S(m)(p), (2.18)

ZR,m(t(p), z) = Ztop(t(p), z)C
(m)(p). (2.19)

Set S(p) := S(0)(p) and C(p) := C(0)(p).

Definition 2.17. The monodromy data at the point p ∈ Oℓ are defined as the
4-tuple (µ,R, S(p), C(p)), where

• µ is the (matrix associated to) the grading operator,
• R is the (matrix associated to) the operator c1(X)∪ : H•(X) → H•(X),
• S(p), C(p) are the Stokes and central connection matrices at p, respec-

tively.
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Remark 2.18. The definition of the Stokes and central connection matrices
is subordinate to several non-canonical choices:

1. the choice of an oriented ray ℓ in Ĉ∗,
2. the choice of an ordering of canonical coordinates u1, . . . , un on each
ℓ-chamber,

3. the choice of signs in (1.19), and hence of the branch of the Ψ-matrix
on each ℓ-chamber.

Different choices affect the numerical values of the data (S,C), see [5]. In par-
ticular, for different choices of ordering of canonical coordinates, the Stokes
and central connection matrices transform as follows:

S 7→ ΠSΠ−1, C 7→ CΠ−1, Π permutation matrix. (2.20)

Definition 2.19. Fix a point p ∈ Oℓ with canonical coordinates (ui(p))
n
i=1.

Define the oriented rays Lj(p, φ), j = 1, . . . , n, in the complex plane by the
equations

Lj(p, φ) :=
{
uj(p) + ρe

√
−1(π

2 −φ) : ρ ∈ R+

}
. (2.21)

The ray Lj(p, φ) is oriented from uj(p) to ∞. We say that (ui(p))
n
i=1 are in

ℓ-lexicographical order if Lj(p, φ) is on the left of Lk(p, φ) for 1 ≤ j < k ≤ n.

In what follows, it is assumed that the ℓ-lexicographical order of canon-
ical coordinates is fixed at all points of ℓ-chambers.

Lemma 2.20 ([5, 13]). If the canonical coordinates (ui(p))
n
i=1 are in ℓ-lexicogra-

phical order at p ∈ Oℓ, then the Stokes matrices S(m)(p), m ∈ Z, are upper
triangular with 1’s along the diagonal.

By Remarks 2.4 and 2.5, the matrices µ and R determine the mon-
odromy of solutions of the qDE,

M0 := exp(2π
√
−1µ) exp(2π

√
−1R). (2.22)

Moreover, µ and R do not depend on the point p. The following theorem
furnishes a refinement of this property.

Theorem 2.21 ([5, 11, 13]). The monodromy data (µ,R, S, C) are constant in
each ℓ-chamber. Moreover, they satisfy the following identities:

CSTS−1C−1 =M0, (2.23)

S = C−1 exp(−π
√
−1R) exp(−π

√
−1µ)η−1(CT )−1, (2.24)

ST = C−1 exp(π
√
−1R) exp(π

√
−1µ)η−1(CT )−1. (2.25)

Theorem 2.22 ([5]). The Stokes and central connection matrices Sm, Cm, with
m ∈ Z, can be reconstructed from the monodromy data (µ,R, S, C):

S(m) = S, C(m) =M−m
0 C, m ∈ Z. (2.26)

Remark 2.23. Points ofOℓ are semisimple. The results of [4, 5, 7, 8] imply that
the monodromy data (µ,R, S, C) are well defined also at points p ∈ Ωss∩∆Ω,
and that Theorem 2.21 still holds true.
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Remark 2.24. From the knowledge of the monodromy data (µ,R, S, C) the
Gromov-Witten potential FX

0 (t) can be recostructed via a Riemann-Hilbert
boundary value problem, see [5, 6, 13, 23]. Hence, the monodromy data may
be interpreted as a system of coordinates in the space of solutions of WDV V
equations.

2.5. Action of the braid group Bn

Consider the braid group Bn with generators β1, . . . , βn−1 satisfying the re-
lations

βiβj = βjβi, |i− j| > 1, (2.27)

βiβi+1βi = βi+1βiβi+1. (2.28)

Let Un be the set of upper triangular (n × n)-matrices with 1’s along the
diagonal.

Definition 2.25. Given U ∈ Un define the matrices Aβi(U), with i = 1, . . . , n−
1, as follows

(
Aβi(U)

)
hh

:= 1, h = 1, . . . , n, h 6= i, i+ 1, (2.29)
(
Aβi(U)

)
i+1,i+1

= −Ui,i+1, (2.30)
(
Aβi(U)

)
i,i+1

=
(
Aβi(U)

)
i+1,i

= 1, (2.31)

and all other entries of Aβi(U) are equal to zero.

Lemma 2.26 ([5, 11, 13]). The braid group Bn acts on Un × GL(n,C) as
follows:

Bn × Un ×GL(n,C) −−−−−−−−−−→ Un ×GL(n,C)

(βi, U, C) 7−−−−→ (Aβi(U) · U · Aβi(U), C ·Aβi(U)−1)

We denote by (U,C)βi the action of βi on (U,C).

Fix an oriented ray ℓ ≡ {arg z = φ} in Ĉ∗, and denote by ℓ its projection
on C∗. Let Ωℓ,1,Ωℓ,2 be two ℓ-chambers and let pi ∈ Ωℓ,i for i = 1, 2. The
difference of values of the Stokes and central connection matrices (S1, C1)
and (S2, C2), at p1 and p2 respectively, can be described by the action of the
braid group Bn of Lemma 2.26.

Theorem 2.27 ([5, 11, 13]). Consider a continuous path γ : [0, 1] → Ω such
that

• γ(0) = p1 and γ(1) = p2,
• there exists a unique to ∈ [0, 1] such that ℓ is not admissible at γ(to),
• there exist i1, . . . , ik ∈ {1, . . . , n}, with |ia − ib| > 1 for a 6= b, such that

the rays3
(
Rij ,ij+1(t)

)r
j=1

(resp.
(
Rij ,ij+1(t)

)k
j=r+1

) cross the ray ℓ in

the clockwise (resp. counterclockwise) direction, as t→ t−o .

3Here the labeling of Stokes rays is the one prolonged from the initial point t = 0.



10 Giordano Cotti

Then, we have

(S2, C2) = (S1, C1)
β , β :=




r∏

j=1

βij


 ·

(
k∏

h=r+1

βih

)−1

. (2.32)

Remark 2.28. In the general case, the points p1 and p2 can be connected by
concatenations of paths γ satisfying the assumptions of Theorem 2.27.

Remark 2.29. The action of Bn on (S,C) also describes the analytic contin-
uation of the Frobenius manifold structure on Ω, see [13, Lecture 4].

3. Derived category, exceptional collections, helices

3.1. Notations and basic notions

Denote by Coh(X) the abelian category of coherent sheaves on X , and by
Db(X) its bounded derived category. Objects of Db(X) are bounded com-
plexes A• of coherent sheaves on X . Morphisms are given by roofs : if A•, B•

are two bounded complexes, a morphism f : A• → B• in Db(X) is the datum
of

• a third object C• in Db(X),
• two homotopy classes of morphisms of complexes q : C• → A• and
g : C• → B•,

• the morphism q is required to be a quasi-isomorphism, i.e. it induces
isomorphism in cohomology.

C•

q

}}④④
④④
④④
④④ g

!!
❈❈

❈❈
❈❈

❈❈

A•
f

//❴❴❴❴❴❴❴ B•

(3.1)

The derived category Db(X) admits a triangulated structure, the shift functor
[1] : Db(X) → Db(X) being defined by

A•[1] := A•+1, A• ∈ Db(X). (3.2)

Denote by Hom•(A•, B•) :=
⊕

k∈Z
Hom(A•, B•[k]). General references for

this Section are [17, 20, 21, 32].

3.2. Exceptional collections

Definition 3.1. An object E ∈ Db(X) is called exceptional iff

Hom•(E,E) ∼= C. (3.3)

Definition 3.2. An exceptional collection is an ordered family (E1, . . . , En) of
exceptional objects of Db(X) such that

Hom•(Ej , Ei) ∼= 0 for j > i. (3.4)

An exceptional collection is full if it generates Db(X) as a triangulated cat-
egory, i.e. if any full triangulated subcategory of Db(X) containing all the
objects Ei’s is equivalent to Db(X) via the inclusion functor.
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Example. In [2] A. Beilinson showed that the collection of line bundles

B := (O,O(1), . . . ,O(n)) (3.5)

on Pn is a full exceptional collection. M. Kapranov generalized this result in
[25], where full exceptional collections on Grassmannians, flag varieties of
group SLn, and smooth quadrics are constructed.

Denote by G(k, n) the Grassmannian of k-dimensional subspaces in Cn,
by S∨ the dual of its tautological bundle. Let Sλ be the Schur functor (see
[15]) labelled by a Young diagram λ inside a rectangle k × (n − k). The
collection K :=

(
SλS∨)

λ
is full and exceptional in Db(G(k, n)). The order of

the objects of the collection is the partial order defined by inclusion of Young
diagrams.

3.3. Mutations and helices

Let E be an exceptional object in Db(X). For any X ∈ Db(X), we have
natural evaluation and co-evaluation morphisms

j∗ : Hom•(E,X)⊗ E → X, j∗ : X → Hom•(X,E)∗ ⊗ E. (3.6)

Definition 3.3. The left and right mutations of X with respect to E are the
objects LEX and REX uniquely defined by the distinguished triangles

LEX [−1] // Hom•(E,X)⊗ E
j∗

// X // LEX, (3.7)

REX // X
j∗

// Hom•(X,E)∗ ⊗ E // REX [1], (3.8)

respectively.

Remark 3.4. In general, the third object of a distinguished triangle is not
canonically defined by the other two terms. Nevertheless, the objects LXE
and REX are uniquely defined up to unique isomorphism, because of the
exceptionality of E, see [6, Section 3.3].

Definition 3.5. Let E = (E1, . . . , En) be an exceptional collection. For any
i = 1, . . . , n− 1 define the left and right mutations

LiE : = (E1, . . . ,LEi
Ei+1, Ei, . . . , En), (3.9)

RiE : = (E1, . . . , Ei+1,REi+1Ei, . . . , En). (3.10)

Theorem 3.6 ([20, 32]). For all i = 1, . . . , n− 1 the collections LiE and RiE

are exceptional. Moreover, we have that

LiRi = RiLi = Id, Li+1LiLi+1 = LiLi+1Li, i = 1, . . . , n,

LiLj = LjLi, |i− j| > 1.

According to Theorem 3.6, we have a well-defined action of Bn on the
set of exceptional collections of length n in Db(X): the action of the generator
βi is identified with the action of the mutation Li for i = 1, . . . , n− 1.
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Definition 3.7. Let E = (E1, . . . , En) be a full exceptional collection. We
define the helix generated by E to be the infinite family (Ei)i∈Z of exceptional
objects obtained by iterated mutations

En+i := REn+i−1 . . .REi+1Ei, Ei−n := LEi−n+1 . . .LEi−1Ei, i ∈ Z.

Any family of n consecutive exceptional objects (Ei+k)
n
k=1 is called a foun-

dation of the helix.

Lemma 3.8 ([20]). For i, j ∈ Z, we have Hom•(Ei, Ej) ∼= Hom•(Ei−n, Ej−n).

3.4. Exceptional bases in K-theory

Consider the Grothendieck group K0(X) ≡ K0(Db(X)), equipped with the
Grothendieck-Euler-Poincaré bilinear form

χ([V ], [F ]) :=
∑

k

(−1)k dimC Hom(V, F [i]), V, F ∈ Db(X). (3.11)

Definition 3.9. A basis (ei)
n
i=1 of K0(X)C is called exceptional if χ(ei, ei) = 1

for i = 1, . . . , n, and χ(ej , ei) = 0 for 1 ≤ i < j ≤ n.

Lemma 3.10. Let (Ei)
n
i=1 be a full exceptional collection in Db(X). The K-

classes ([Ei])
n
i=1 form an exceptional basis of K0(X)C.

The action of the braid group on the set of exceptional collections in
Db(X) admits a K-theoretical analogue on the set of exceptional bases of
K0(X)C, see [6, 20].

4. Dubrovin’s conjecture

4.1. Γ-classes and graded Chern character

Let V be a complex vector bundle on X of rank r, and let δ1, . . . , δr be its
Chern roots, so that cj(V ) = sj(δ1, . . . , δr), where sj is the j-th elementary
symmetric polynomial.

Definition 4.1. Let Q be an indeterminate, and F ∈ C[[Q]] be of the form

F (Q) = 1 +
∑

n≥1 αnQ
n. The F -class of V is the charcateristic class F̂V ∈

H•(X) defined by F̂V :=
∏r

j=1 F (δj).

Definition 4.2. The Γ±-classes of V are the characteristic classes associated
with the Taylor expansions

Γ(1±Q) = exp

(
∓γQ+

∞∑

m=2

(∓1)m
ζ(m)

m
Qn

)
∈ C[[Q]], (4.1)

where γ is the Euler-Mascheroni constant and ζ is the Riemann zeta function.

If V = TX , then we denote Γ̂±
X its Γ-classes.

Definition 4.3. The graded Chern character of V is the characteristic class
Ch(V ) ∈ H•(X) defined by Ch(V ) :=

∑r
j=1 exp(2π

√
−1δj).
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4.2. Statement of the conjecture

Let X be a Fano variety. In [12] Dubrovin conjectured that many properties
of the qDE of X , in particular its monodromy, Stokes and central connection
matrices, are encoded in the geometry of exceptional collections in Db(X).
The following conjecture is a refinement of the original version in [12].

Conjecture 4.4 ([6]). Let X be a smooth Fano variety of Hodge-Tate type.

1. The quantum cohomology QH•(X) has semisimple points if and only if
there exists a full exceptional collection in Db(X).

2. If QH•(X) is generically semisimple, for any oriented ray ℓ of slope
φ ∈ [0, 2π[ there is a correspondence between ℓ-chambers and helices
with a marked foundation.

3. Let Ωℓ be an ℓ-chamber and Eℓ = (E1, . . . , En) the corresponding ex-
ceptional collection (the marked foundation). Denote by S and C Stokes
and central connection matrices computed in Ωℓ.
(a) The matrix S is the inverse of the Gram matrix of the χ-pairing

in K0(X)C wrt the exceptional basis [Eℓ],

(S−1)ij = χ(Ei, Ej); (4.2)

(b) The matrix C coincides with the matrix associated with the C-
linear morphism

D
−
X : K0(X)C −→H•(X) (4.3)

F 7−−−−→ (
√
−1)d

(2π)
d
2

Γ̂−
X exp(−π

√
−1c1(X))Ch(F ), (4.4)

where d := dimCX, and d is the residue class d (mod 2). The ma-
trix is computed wrt the exceptional basis [Eℓ] and the pre-fixed
basis (Tα)

n
α=1 of H•(X).

Remark 4.5. Conjecture 4.4 relates two different aspects of the geometry
of X , namely its symptectic structure (GW -theory) and its complex struc-
ture (the derived category Db(X)). Heuristically, Conjecture 4.4 follows from
Homological Mirror Symmetry Conjecture of M. Kontsevich, see [6, Section
5.5].

Remark 4.6. In the paper [26] it was underlined the role of Γ-classes for
refining the original version of Dubrovin’s conjecture [12]. Subsequently, in
[14] and [16, Γ-conjecture II] two equivalent versions of point (3.b) above were
given. However, in both these versions, different choices of solutions in Levelt
form of the qDE at z = 0 are chosen wrt the natural ones in the theory of
Frobenius manifolds, see Remark 2.4, and [6, Section 5.6].

Remark 4.7. If point (3.b) holds true, then automatically also point (3.a)
holds true. This follows from the identity (2.24) and Hirzebruch-Riemann-
Roch Theorem, see [6, Corollary 5.8].
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Remark 4.8. Assume the validity of points (3.a) and (3.b) of Conjecture 4.4.
The action of the braid group Bn on the Stokes and central connection matri-
ces (Lemma 2.26) is compatible with the action of Bn on the marked founda-
tions attached at each ℓ-chambers. Different choices of the branch of the Ψ-
matrix correspond to shifts of objects of the marked foundation. The matrix
M−1

0 is identified with the canonical operator κ : K0(X)C → K0(X)C, [F ] 7→
(−1)d[F ⊗ ωX ]. Equations (2.26) imply that the connection matrices C(m),
with m ∈ Z, correspond to the matrices of the morphism D

−
X wrt the founda-

tions (Eℓ⊗ω⊗m
X )[md]. The statement S(m) = S coincides with the periodicity

described in Lemma 3.8, see [6, Theorem 5.9].

Remark 4.9. Point (3.b) of Conjecture 4.4 allows to identify K-classes with
solutions of the joint system of equations (2.1), (2.2). Under this identifi-
cation, Stokes fundamental solutions correspond to exceptional bases of K-
theory. In the approach of [9, 33], where the equivariant case is addressed,
such an identification is more fundamental and a priori, see Section 6.

5. Results for Grassmannians

Conjecture 4.4 has been proved for complex Grassmannians G(k, n) in [6, 16].
See also [22, 34]. The proof is based on direct computation of the monodromy
data of the qDE at points of the small quantum cohomology, namely the
subset H2(G(k, n),C) of Ω. Here we summarize the main results obtained.

Remark 5.1. If4 π1(n) ≤ k ≤ n−π1(n), the small quantum locus of G(k, n) is
contained in the coalescence locus ∆Ω, see [3]. In these cases, the computation
of the monodromy data is justified by the results of [4, 5, 7, 8]. See also
Remark 2.23.

5.1. The case of projective spaces

Denote by σ ∈ H2(Pn−1,C) the hyperplane class and fix the basis (σk)n−1
k=0

of H•(Pn−1). The joint system (2.1), (2.2) for Pn−1, restricted at the point
tσ ∈ H2(Pn−1,C), with t ∈ C, is

∂Z

∂t
= zC(t)Z, (5.1)

∂Z

∂z
=

(
U(t) + 1

z
µ

)
Z, (5.2)

with

U(t) =















0 nq

n 0
n 0

. . .
. . .

n 0















, q := e
t
, C(t) =

1

n
U(t), (5.3)

µ = diag

(

−
n− 1

2
,−

n− 3

2
, . . . ,

n− 3

2
,
n− 1

2

)

. (5.4)

4Here π1(n) denotes the smallest prime number which divides n.
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The canonical coordinates are given by the eigenvalues of the matrix U(t),

uh(t) = ne
2πi(h−1)

n q
1
n h = 1, . . . , n. (5.5)

Fix the orthonormalized idempotent vector fields, f1(t), . . . , fn(t), given by

fh(t) :=

n∑

ℓ=1

f ℓ
h(t)σ

ℓ−1, f ℓ
h(t) := n− 1

2 q
n+1−2ℓ

2n e(1−2ℓ)iπ (h−1)
n h, ℓ = 1, . . . , n,

and consider the following branch of the Ψ-matrix,

Ψ(t) :=




f1
1 (t) . . . f1

n(t)
...

...
fn
1 (t) . . . fn

n (t)




−1

. (5.6)

Theorem 5.2 ([6]). Fix the oriented ray ℓ in Ĉ∗ of slope φ ∈ [0, πn [. For suitable
choices of the signs of the columns of the Ψ-matrix (5.6), the central connec-
tion matrix computed at 0 ∈ H•(Pn−1) coincides with the matrix attached to
the morphism

D
−
Pn−1 : K0(P

n−1)C → H•(Pn−1)

computed wrt the exceptional bases

O

(n

2

)

,
∧1

T

(n

2
− 1

)

,O
(n

2
+ 1

)

,
∧3

T

(n

2
− 2

)

, . . . ,O(n− 1),
∧n−1

T (5.7)

for n even, and

O

(

n− 1

2

)

,O

(

n+ 1

2

)

,
∧2

T

(

n− 3

2

)

, (5.8)

O

(

n+ 3

2

)

,
∧4

T

(

n− 5

2

)

, . . . ,O (n− 1) ,
∧n−1

T

for n odd. In particular, Conjecture 4.4 holds true for Pn−1.

Remark 5.3. Exceptional collections (5.7) and (5.8) are related to Beilinson’s
exceptional collection (3.5) by mutations and shifts. For different choices
of the ray ℓ, the exceptional collections attached to the monodromy data
computed at 0 ∈ H•(Pn−1) are given (up to shifts) by the following list, see
[6, 9].

1. Case n odd: an exceptional collection either of the form

O

(

−k −
n− 1

2

)

, T

(

−k −
n− 1

2
− 1

)

, O

(

−k −
n− 1

2
+ 1

)

,

∧3

T

(

−k −
n− 1

2
− 2

)

, O

(

−k −
n− 1

2
+ 2

)

, . . . ,
∧n−4

T (−k − n+ 2) ,

O(−k − 1),
∧n−2

T (−k − n+ 1) , O(−k),

or of the form

O

(

−k −
n− 1

2

)

, O

(

−k −
n− 1

2
+ 1

)

,
∧2

T

(

−k −
n− 1

2
− 1

)

,

O

(

−k −
n− 1

2
+ 2

)

,
∧3

T

(

−k −
n− 1

2
− 2

)

. . . , O(−k − 1),

∧n−3

T (−k − n+ 2) , O(−k),
∧n−1

T (−k − n+ 1) ,

for some k ∈ Z
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2. Case n even: an exceptional collection either of the form

O

(

−k −
n

2

)

, O
(

−k −
n

2
+ 1

)

,
∧2

T

(

−k −
n

2
− 1

)

, O

(

−k −
n

2
+ 2

)

, . . . ,

. . . ,
∧n−4

T (−k − n+ 2) , O(−k − 1),
∧n−2

T (−k − n+ 1) , O(−k),

or of the form

O

(

−k −
n

2
+ 1

)

, T
(

−k −
n

2

)

, O

(

−k −
n

2
+ 2

)

,
∧3

T

(

−k −
n

2
− 1

)

, . . . ,

. . . , O(−k − 1),
∧n−3

T (−k − n+ 2) , O(−k),
∧n−1

T (−k − n+ 1) ,

for some k ∈ Z.

5.2. The case of Grassmannians

Denote by G the Grassmannian G(k, n) parametrizing k-dimensional sub-
spaces in Cn, and by P the projective space Pn−1. Let ξ1, . . . , ξk be the Chern
roots of the dual of the tautological bundle S on G, and denote by hj(ξ) the
j-th complete symmetric polynomial in ξ1, . . . , ξk. An additive basis of the
cohomology ring

H•(G) ∼= C[ξ1, . . . , ξk]
Sk

/
〈hn−k+1, . . . , hn〉, (5.9)

is given by the Schubert classes (σλ)λ⊆k×(n−k), labelled by partitions λ with
Young diagram inside a k × (n− k) rectangle. Under the presentation (5.9),
the Schubert classes are given by Schur polynomials in ξ,

σλ :=
det
(
ξ
λj+k−j
i

)
1≤i,j≤k∏

i<j(ξi − ξj)
. (5.10)

Denote by ηP and ηG the Poincaré metrics on H•(P) and H•(G) respectively.

The metric ηP induces a metric η∧k
P

on the exterior power
∧k

H•(P):

η∧k
P (α1 ∧ . . . ,∧αk, β1 ∧ . . . ,∧βk) := det (ηP(αi, βj))1≤i,j≤k . (5.11)

Theorem 5.4 ([6, 16]). We have a C-linear isometry

I :
(∧k

H•(P), (−1)(
k

2)η∧k
P

)
→ (H•(G), ηG) , σν1 ∧ · · · ∧ σνk 7→ σν̃ ,

where n−1 ≥ ν1 > ν2 > · · · > νk ≥ 0 and ν̃ := (ν1−k+1, ν2−k+2, . . . , νk).

Consider the domain ΩG ⊂ H•(G) (resp. ΩP ⊂ H•(P)) where the GW -
potential FG

0 (resp. F P
0 ) converges. Let t ∈ C and consider the points

p := tσ1 ∈ H2(G,C), p̂ :=
(
t+ π

√
−1(k − 1)

)
σ ∈ H2(P,C), (5.12)

in the small quantum cohomology of G and P respectively. Theorem 5.4 allow

us to identify5 the tangent spaces TpΩG and
∧k

Tp̂ΩP.

Lemma 5.5 ([6, 16]). Let ΨP(t) be the Ψ-matrix defined by (5.6). Then the

matrix ΨG(t) := (
√
−1)(

k

2)
∧k

ΨP(t + π
√
−1(k − 1)) defines a branch of the

Ψ-matrix for G.

5In what follows, if A is a n× n-matrix, we denote by
∧k A the matrix of k× k-minors of

A, ordered in lexicographical order.



Quantum differential equations and helices 17

The following results show that under the identification of Theorem 5.4,
solutions and monodromy data of the joint system (2.1), (2.2) for G can be
reconstructed from solutions for the joint system for P.

Theorem 5.6 ([6]). Let ZP(t, z) be a solution of the joint system (5.1), (5.2).
The function

ZG(t, z) :=
∧k (

ZP(t+ π
√
−1(k − 1), z)

)
(5.13)

is a solution for the joint system for G, namely

∂ZG

∂t
= zCG(t)ZG, (5.14)

∂ZG

∂z
=

(
UG(t) +

1

z
µG

)
ZG. (5.15)

Corollary 5.7 ([6]). Fix an oriented ray ℓ in Ĉ∗ admissible at both points p, p̂
in (5.12). Denote by SP(p̂), SG(p) and CP(p̂), CG(p) the Stokes and central
connection matrices at p̂ and p, respectively. We have

SG(p) =
∧k

SP(p̂), (5.16)

CG(p) = (
√
−1)−(

k
2)
(∧k

CP(p̂)

)
exp(π

√
−1(k − 1)σ1∪). (5.17)

Proof. Denote by

• ZP
top(t, z) and ZG

top(t, z) the topological-enumerative solutions for P and
G respectively, restricted at their small quantum cohomologies;

• Z
P/G
L/R,m(t, z), with m ∈ Z, the Stokes fundamental solutions of the joint

systems (2.1), (2.2) for P and G respectively.

We have

ZG

top(t, z) =

(∧k
ZP

top(t+ π
√
−1(k − 1), z)

)
· exp(−π

√
−1(k − 1)σ1∪),

ZG

L/R,m(t, z) = (
√
−1)−(

k
2)
∧k

ZP

L/R,m(t+ π
√
−1(k − 1), z).

See [6] for proofs of these identities. �

Corollary 5.8 ([6]). The central connection matrix computed at 0 ∈ H•(G)
coincides with the matrix attached to the morphism

D
−
G
: K0(G)C → H•(G)

computed wrt an exceptional basis of K0(G)C. Such a basis is the projection
in K-theory of an exceptional collection of Db(G) related by mutations and
shifts to the twisted Kapranov excptional collection

(SλS∨ ⊗ L), L := det

(∧2
S∨
)
. (5.18)

In particular, Conjecture 4.4 holds true for G.
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6. Results on the equivariant qDE of Pn−1

Gromov-Witten theory, as described in Section 1.2, can be suitably adapted
to the equivariant case [18]. Given a variety X equipped with the action of
a group G, a quantum deformation of the equivariant cohomology algebra
H•

G(X,C) can be defined.

Consider the projective space P
n−1 equipped with the diagonal action

of the torus T := (C∗)n. Although the isomonodromic system (5.1), (5.2)
does not admit an equivariant analog, the differential equation (5.1) only can
be easily modified. By change of coordinates q := exp(t), setting z = 1, and
replacing the quantum multiplication ∗q by the corresponding equivariant
one ∗q,z, equation (5.1) takes the form

q
d

dq
Z = σ ∗q,z Z. (6.1)

Here the equivariant parameters z = (z1, . . . , zn) correspond to the factors
of T, and Z(q, z) takes values in H•

T
(Pn−1,C). Equation (6.1) admits a com-

patible system of difference equations, called qKZ difference equations

Z(q, z1, . . . , zi − 1, . . . , zn) = Ki(q, z)Z(q, z), i = 1, . . . , n, (6.2)

for suitable linear operators Ki’s, introduced in [33]. The joint system (6.1),
(6.2) is a suitable limit of an analogue one for the cotangent bundle T ∗Pn−1,
see [19, 30]. The existence and compatibility of such a joint system for
more general Nakajima quiver varieties is justified by the general theory of
D. Maulik and A. Okounkov [28].

In [33], the study of the monodromy and Stokes phenomenon at q =
∞ of solutions of the joint system (6.1), (6.2) is addressed. Furthermore,
elements of KT

0 (P
n−1)C are identified with solutions of the joint system (6.1),

(6.2): Stokes bases of solutions correspond to exceptional bases.

In [9], the authors describe relations between the monodromy data of
the joint system of the equivariant qDE (6.1) and qKZ equations (6.2) and
characteristic classes of objects of the derived category Db

T
(Pn−1) of equivari-

ant coherent sheaves on Pn−1. Equivariant analogs of results of [6, Section 6]
are obtained.

The B-Theorem of [9] is the equivariant analog of Theorem 5.2. More-
over, in [9] the Stokes bases of solutions of the joint system (6.1), (6.2)
are identified with explicit T-full exceptional collections in Db

T
(Pn−1), which

project to those listed in Remark 5.3 via the forgetful functor Db
T
(Pn−1) →

Db(Pn−1). This refines results of [33]. Finally, in [9] it is proved that the
Stokes matrices of the joint system (6.1), (6.2) equal the Gram matrices of
the equivariant Grothendieck-Euler-Poincaré pairing on KT

0 (P
n−1)C wrt the

same exceptional bases.
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