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A B S T R A C T   

Living systems, from single cells to higher vertebrates, receive a continuous stream of non-stationary inputs that they sense, for e.g. via cell surface receptors or 
sensory organs. By integrating these time-varying, multi-sensory, and often noisy information with memory using complex molecular or neuronal networks, they 
generate a variety of responses beyond simple stimulus-response association, including avoidance behavior, life-long-learning or social interactions. In a broad sense, 
these processes can be understood as a type of biological computation. Taking as a basis generic features of biological computations, such as real-time responsiveness 
or robustness and flexibility of the computation, we highlight the limitations of the current attractor-based framework for understanding computations in biological 
systems. We argue that frameworks based on transient dynamics away from attractors are better suited for the description of computations performed by neuronal 
and signaling networks. In particular, we discuss how quasi-stable transient dynamics from ghost states that emerge at criticality have a promising potential for 
developing an integrated framework of computations, that can help us understand how living system actively process information and learn from their continuously 
changing environment.   

1. Introduction 

When referring to computations, the associated concept usually re
flects the formal definition of computation adopted during the first half 
of the 20th century which was devised with the purpose of answering 
questions relating e.g. the extent to which mathematics can be reduced 
to discrete logical formulas, and how mathematical proofs or calcula
tions may be automated [14,51]. For example, a function on the integer 
numbers is called computable, if an output integer can be calculated by 
an algorithm after a finite number of steps [51]. This implies that 
computation, in an abstract way, refers to a defined mapping between 
inputs and outputs. In that broad sense, many basic processes charac
teristic of living systems on all scales of organization, from single cells in 
tissues to free-living single-cell organisms and higher vertebrates, can be 
defined in terms of computation. While vertebrates and many other 
multi-cellular organisms rely on neuronal networks, single cells and 
single-cell organisms use protein and/or gene-regulatory networks as 
computational entities to integrate multi-dimensional sensory informa
tion (inputs) with memory, generating complex self-organized behavior 
(output) [26]. A fox that chases a rabbit, for example, uses its neuronal 
network to continually process sensory (visual, auditory, olfactory, 
tactile etc.) information which is disrupted and changes over time and 
space, i.e. when the rabbit hides behind a bush (Fig. 1a, top). In order to 

avoid random change in the running direction in the absence of a visual 
contact with the rabbit, the fox integrates the current sensory informa
tion with the memory of the last localization of the rabbit to determine 
its behavior. Immune cells in our body that chase invading bacteria, 
however, face similar challenges as the fox chasing the rabbit: the cells’ 
navigation is guided by local chemical cues secreted by the bacteria that 
are noisy, disrupted, and vary over time and space, in order to engulf and 
degrade the motile invading microbes (Fig. 1a, bottom). To avoid im
mediate switching to random migration when signals are disrupted, 
single cells, just like the fox chasing a rabbit, require a memory of the 
localization of the last encountered chemical signal, as a means of 
generating a reliable migration trajectory over long distances. We will 
refer to such computations performed by living systems as biological or 
natural computations. 

This description of processes in living systems through the concept of 
computation has inevitably led to a frequent referral to terms such as 
’circuitry’, ’computer/machine’, ’execution of programs’ or ’interpre
tation of code’. However, their indiscriminate use can easily convey 
misleading ideas (and often does) by neglecting fundamental differences 
between the computational process in living and engineered systems 
[13,44,59,60,65,72,74]. For example, computers accept input once at 
the beginning of the computation (i.e., do not accept signals while 
performing a particular task), and obtaining the result of the 
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computation requires presentation of the complete input [47]. In 
contrast, living systems compute in real-time (like the fox and the im
mune cell), using incomplete inputs which continuously change across 
time and space. The process of natural computation itself is adaptive, 
while yielding robust and reproducible responses even in the presence of 
noise, whereas computer algorithms account only for robustness and 
reproducibility of computations, which is achieved by minimizing noise 
(in the constituting computer circuits). Moreover, living systems are 
characterized by on-the-fly and life-long learning, features that have not 
been realized in any man-made system so far. We therefore discuss in 
this article the current concepts of computation from a dynamical sys
tems point of view and argue that they explain information processing in 
living systems only to a very limited extent. We advocate the necessity to 
base theories of biological computation on transients which can serve as 
a dynamical basis through which the majority of the observed features of 
natural computation can be captured [5,7,8,16,22,37,46,47,50,53,63]. 
Given that from a conceptual viewpoint, the challenges, which single 
cells and higher vertebrates face are overlapping to a large degree, we 
emphasize in this review the necessity for a general theory of natural 
computations and learning that is applicable to both neural and aneural 
systems. 

2. Results 

2.1. Computing with stable attractors: machines, neuronal networks and 
cellular signaling 

The existing theoretical frameworks for biological computations 
mainly refer to Turing-like computations [83]. Let us exemplify this by 
considering an every-day example of a finite-state machine, a turnstile. 
A turnstile can be found in two different states, closed (S1) and open (S2). 
It requires an input, i.e. a coin to switch from the closed to the open state 
(S1 → S2), and a second input, a push, to return to the closed state (S2 → 
S1). If a coin is inserted when the system is in S2 (open), or if its bars are 
pushed when it is in S1 (closed), the machine does not respond (Fig. 1b). 
For this system, the computation is realized through the switching be
tween the distinct stable states (S1, S2) that are available, such that the 
specific inputs (coin, push) are mapped to a defined state of the turnstile. 
Despite that this machine has a very limited computational power that 
does not reflect that of Turing machines in general, we will use it to 
demonstrate a line of thought that (i) the state-dependent computations 
performed by machines display limitations for tasks that are relevant for 
living systems, and that (ii) a range of computations performed by living 

systems lie outside of the domain of machines, prompting us to propose 
that a broader definition and mechanisms of computations are necessary 
to describe biological computations. 

The computations of the turnstile, in the language of dynamical 
systems, can be formalized as attractor-based computation. Turing 
implicitly used this idea in his unpublished work on intelligent machines 
[85], as well as in his seminal work on self-organization in living systems 
[84]. The idea, however, was clearly explicated by Hebb [27] and 
Hopfield [29] for neuronal networks, receiving formalization by Hirsch 
and Baird [28]: ”as the overall system evolves in time, each subsystem 
passes through a sequence of attractors that are related to specific output 
of the system, and this sequence is termed as the computation process”. In 
this view, the number and type of attractors is an intrinsic property of 
the system, determined by the underlying network topology and nodal 
dynamics. Thus, restricting only to fixed point dynamics for simplicity, 
the possible solutions of the system form a so-called quasi-potential 
landscape which can be explicitly calculated for gradient systems [73]. 
Each valley in the landscape corresponds to a stable state, separated by 
unstable states or saddles (Fig. 1c). The external signals induce switch
ing between the available states, such that a signal is uniquely associated 
with a specific valley. This also implies that in absence of a perturbation, 
the dynamics would be retained indefinitely in a valley. The same 
conceptual framework has been also adopted to study signaling net
works in single cells. Large numbers of experimental and theoretical 
studies over the past two decades have been focused on identifying the 
underlying protein- or gene-interaction networks or network modules 
[12,18], relating the possible attractors with the observed phenotypes or 
responses [1,3,32,62,66,67,69]. The question is however, to which 
extent attractor-based computations can explain the basic features of 
natural computations, the simplest being real-time processing of 
non-stationary signals. 

2.2. Limitations of the current framework: an example from single-cell 
signaling 

Let us consider a bistable system as a minimal case of multistability, 
i.e. as a system that has multiple, coexisting states/attractors (cf. Box 1). 
In the quasi-potential landscape analogy, this corresponds to a landscape 
with two valleys, separated by a saddle. Generally, bistability can 
emerge via double negative or positive feedback loops, common motifs 
in gene regulatory [61,87], neuronal [41,43], as well as in signaling 
networks including, e.g., the experimentally identified Epidermal 
growth factor receptor (EGFR) network [75] (Fig. 2a). For parametric 

Fig. 1. Examples of natural and machine computations. (a) Top: A predator hunting its prey integrates time-varying (e.g. the prey escapes and/or hides) and multi- 
sensory (visual, olfactory, auditory etc.) inputs and continually adapts its response in real-time. A large fraction of the animal kingdom relies on the brain’s neuronal 
network to process such information. Bottom: A leukocyte chasing a bacterium faces similar challenges, yet relies on networks comprising entities of a completely 
different nature (i.e. molecules such as proteins, nucleic acids etc) to solve this task. Despite large differences in scale, type and phylogeny, the similarity of the tasks 
from an information processing perspective implies similar dynamical principles to underline the computational process. Gray circles: red blood cells. Dashed/solid 
lines: Prey(bacteria)/predator(leukocyte) tracks. (b) Turnstile, an example of a finite-state-machine, and a schematic representation of the underlying state- 
dependent computational process. (c) Quasi-potential landscape depicting the possible dynamical solutions, that are an intrinsic property of the underlying 
(signaling/genetic/neuronal) network topology and node dynamics. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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organization in the bistable regime (Fig. 2b), in this case defined by a 
certain range of EGFR concentrations on the plasma membrane, the 
system has two available stable states: basal (S1) and high 
EGFR-phosphorylated (S2) state. A pulse of epidermal growth factor 
(EGF) induces a transition from S1 to S2, however, the high EGFRp state 
will be maintained even after removal of the EGF signal, as S2 is also a 
stable attractor. This can be seen from the temporal EGFRp profile, as 
well as the trajectory of the signaling state of the EGFR network 
(Fig. 2c). Thus, addition of subsequent EGF pulses will not lead to 
further state changes in the system, implying that the cell will remain 
unresponsive to upcoming changes in the environment. Better under
standing of these temporal system’s responses can be gained from a 
quasi-potential landscape description: as noted above, the organization 
in the bistable regime corresponds to a quasi-potential landscape with 
two wells, corresponding to S1 and S2 (Fig. 2d). In absence of a signal, 
the system resides in S1. Upon EGF addition, the quasi-potential land
scape remodels to a single well corresponding to S2, resulting in a robust 
EGFR phosphorylation. When the EGF is removed, however, the land
scape resets to its former double-well shape, but the system remains in 
the S2 well and thereby is unresponsive to upcoming signals (Fig. 1c), 
just like the turnstile does not respond to a coin when already in S2. 

That such state-dependent computation limits responsiveness to 
time-varying signals has also been experimentally demonstrated for 
epithelial cells [75], implying broad consequences for the mechanistic 
understanding of how cells navigate in dynamic spatio-temporal 
chemical fields, e.g. during wound healing or embryogenesis [49,68]. 
We and others have shown, using numerical simulations, for example, 
that the cellular migration will be ”locked” in the direction of the initial 
input, leaving the cell unresponsive to any further spatial or temporal 
signal changes (Fig. 2e), unless the upcoming signals have ~7 fold 
higher amplitude [9,57]. Moreover, this attractor-based framework of 
computation also does not explain how cells can resolve two competing 
chemoattractant signals [56,57], as observed for example for leukocyte 
navigation [21]. 

These findings therefore suggest that the attractor-based framework 

reaches its limitations for biological computations in single cells: 
although it provides an explanation for robustness (i.e. maintaining 
directional memory when the signal is disrupted), it cannot capture the 
flexibility of natural computations - adaptation to dynamic signals that 
vary over space and/or time, and thus processing of dynamic signals in 
real time. Moreover, the attractor-based description also faces an addi
tional, formal problem. As depicted in Fig. 2d, under non-stationary 
cues, the quasi-potential landscape that underlies the dynamical struc
ture of the system continuously changes [56,57,75,76,86]. Since the 
number and positions of steady states are not preserved, the steady 
states are not formal solutions of the system. It has been therefore argued 
across different systems including developmental [19,34,52], signaling 
[38,56,76] or neuronal systems [7,8,16,53,58,63,79], that trajectories 
or so-called transient dynamics are better suited to describe natural 
computations. 

2.3. Computing with transients: chaotic itinerancy and heteroclinic 
networks 

Trajectories represent the evolution of the state of the system in 
phase-space. In the presence of attractors, a trajectory will converge 
asymptotically to a valley in the quasi-potential landscape and remain 
trapped in it (switching from S1 to S2 in the case of the turnstile and the 
EGFR system (Fig. 1b and 2d)). However, when the landscape contin
uously changes, the trajectory, thus the dynamics of the system can be 
maintained away from the attractors [56,57,86]. In such cases, in
stabilities have been advocated as an advantageous substitute to 
attractors, suggesting that systems can exploit unstable states to 
compute [4]. One can think of these as instabilities of a special type that 
have both stable and unstable directions and are referred to as 
quasi-attractors or attractor-ruins [24,54,80]. The presence of the un
stable directions allows the trajectory to sporadically switch from one 
quasi-attractor to another, resulting in the existence of low-dimensional 
ordered motion. This can be realized for example in chaotic systems, 
such as networks of nonlinear oscillators (asynchronous neuronal 

Box 1 
Concepts from nonlinear dynamics  

● Phase-space: When studying a system of interest (e.g. a cell, neuronal circuit, etc.), a mathematical description captures the evolution of the 
dynamics of the relevant system’s variables. These can be for e.g. the concentrations of proteins in a cell, ionic currents in a single neuron, or 
the instantaneous firing rates of individual neurons in a neuronal network. Together, the space spanned by the system’s variables is called the 
phase space. A point in phase space represents a joint state of all variables in the system.  

● Phase-space flow: Closely neighboring areas in phase space often exhibit similar dynamics, allowing to understand the system’s behavior by 
visualizing the direction in which the state of the system moves from a collection of nearby points via arrows. The resulting vector field 
indicates the flow in phase space.  

● Trajectory in phase-space: A set of vectors that describes the evolution of the state of the system over time.  
● Attractors: Abstract objects in phase-space towards which the system’s trajectories converge. The area or volume in phase-space from which 

the trajectories are attracted is called basin of attraction, implying that small perturbations only lead to short-lived deviations from the 
asymptotic dynamics. Different types of attractors include: a stable fixed point (often also called a steady state), stable limit cycles (oscil
lations) or chaotic attractors.  

● Unstable objects: Unstable objects include unstable fixed points/limit cycles and saddles. When in the vicinity of an unstable object, the 
system’s trajectories diverge, in contrast to attractors. Saddles are special types of unstable objects that attract the trajectories from two 
directions along the stable manifold, and repell them from two directions along the unstable manifold.  

● Quasi-potential landscape: Geometric description of the over-all system’s dynamics, where valleys correspond to attractors, separated by 
saddles or unstable states.  

● Bifurcation: Parameter value for which a sudden qualitative change in the dynamics of a system occurs. A bifurcation diagram is a graphical 
depiction of the bifurcations in a system using the values of parameters and the variables plotted against each other.  

● Criticality: System’s parameter organization at a transition between two dynamical regimes (in the vicinity of a bifurcation), for example 
between a fixed point and a limit cycle.  

● Ghosts: Phase-space objects characterized with shallow slope in the quasi-potential landscape that funnel system’s trajectories towards an 
unstable direction.  

● Quasi-stability: Transient stability of the system’s dynamics by trapping the trajectory in a specific phase-space area, e.g. due to a ghost 
state. Note that the time spent in this area can be considerably longer than the time-scales of the underlying processes.  

● Noise: Stochastic, random-like fluctuations in the system dynamics due to processes like Brownian motion, variability in gene expression etc.  
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networks) or coupled maps [35,36,80,81], and is known as chaotic 
itinerancy (Fig. 3a) [30,35,80]. The transient trapping in the vicinity of 
the quasi-attractor is proposed to enable robustness via quasi-stability, 
and since the trajectories do not settle on any attractor, the computa
tions can potentially adapt to dynamic signals. Thus, chaotic itinerancy 
has been proposed in the general context for natural computation, in 
particular modeling brain activity, decision making or forming of 
cognitive functions (cf.[31] and references within). However, this 
description is limited to systems that display chaotic dynamics. 

Following a growing body of empirical evidence that a large class of 
natural systems display quasi-stable and sequential (but not chaotic) 
dynamics, including neuronal firing patterns during olfactory sensing or 
discrimination tasks [6,53,64], pattern matching during camouflage in 
animals [88], cellular signaling systems [38,56], replicator networks 
[70] etc., computation with heteroclinic networks [4,53,58,63,79] has 
been proposed as a mechanism that generates such sequential dynamics. 
Heteroclinic objects consist of joined saddles, such that the unstable 
manifold of the preceding is the stable manifold for the next saddle in 
the sequence (Fig. 3b). In such systems, computations are performed 

when external input signals typically induce long ‘complex’ orbits that 
pass near a sequence of several ‘simple’ saddles. Moreover, in the course 
of the temporal evolution, the system’s trajectory slows down and is 
transiently trapped in the vicinity of the saddle fixed point, followed by a 
quick transition to the upcoming saddle in the sequence (Fig. 3b, top). 
However, we have recently demonstrated theoretically that the fidelity 
of heteroclinic objects to reliably guide trajectories is lost in the presence 
of moderate noise intensities [42]. Since the saddle has two unstable 
directions, noise can easily drive the trajectory away from the path 
(Fig. 3b, bottom). This implies that heteroclinic networks are likely not 
suitable as a generic dynamical framework for computations in living 
systems which are inherently noisy. 

2.4. What can be learned about real-time computations from single cells? 

As outlined in the introduction, living systems base their behavioral 
responses on noisy, often conflicting and incomplete time-varying sig
nals, regardless of whether considering a migrating cell following 
chemotactic cues or a predator hunting its prey. The question therefore 

Fig. 2. Attractor-based computations in cell signaling networks. (a) Cell-surface receptor module enabling sensing of time-varying growth factor signals. EGFRp: 
phosphorylated epidermal growth factor receptor; EGF-EGFRp: epidermal growth factor (EGF) ligand-bound receptor fraction. (b) Bifurcation diagram corresponding 
to (a), and a schematic representation of the underlying state-dependent computational process for organization in the bistable regime. SN: saddle-node bifurcation. 
(c) EGFRp temporal response to single and multiple EGF pulses for organization in the bistable regime, and a corresponding phase-space trajectory (right). Details in 
Refs. [75,76]. (d) Corresponding quasi-potential landscape description. Note the remodeling of the landscape in the presence of transient external signals. (e) 
Schematic representation of cell migration through disrupted and spatially non-uniform growth factor field for receptor network organized in the bistable regime. 
The direction is determined by the initial signal the cell encounters. Green/red lines: migration trajectory in presence/absence of signals; arrows denote temporal 
evolution. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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arises whether understanding the mechanism of real-time computations, 
for example, for a given single cell task would allow to extract a possible 
dynamical basis on which a generic framework of natural computations 
can be set. 

We recently explored this question by investigating how epithelial 
cells navigate in dynamic EGF chemo-attractant fields. To establish a 
long-distance migration trajectory, cells would require a dynamic 
memory to integrate the environmental signals and to quickly adapt the 
computations following signal changes, while simultaneously allowing 
for robustness in the responses. Using the EGFR network, we have shown 
that under physiological conditions, cell do not implement state- 
dependent computations to solve this task. In contrast, the system is 
actually organized at criticality [33,75], i.e. exactly at the border be
tween mono- and bistability (Fig. 4a), where in absence of a growth 
factor signals, only one steady state, S1, is stable. This organization turns 
out to be crucial for epithelial cells to sense time-varying signals. What is 
then here the mechanism of computation? 

To understand how cells compute in which direction to migrate 
when signals change over space and time, we used the quasi-potential 
landscape description of the EGFR system in conjunction with the sys
tem’s state trajectories. As mentioned before, the quasi-potential land
scape changes under influence of time-varying EGF signals (the simplest 
being a single EGF pulse). In this case, upon signal addition, the land
scape remodels such that the S1 well is lost and the S2 well is stabilized. 
This landscape remodeling guides the system’s state trajectory from S1 
to S2, enabling robust EGFR phosphorylation. However, when S2 is lost 
upon signal removal, on its place a region with a shallow slope is formed. 
Due to the topological characteristics of this region (three attracting and 
a single repelling direction, which canalizes the flow (Fig. 4b)), the 
trajectory is transiently trapped in a slow region before transiting 
rapidly to S1. This slow movement of the trajectory is manifested as high 
EGFRp maintained for a transient period of time after EGF removal 
(Fig. 4b and c). Dynamically, this corresponds to a ghost state [75,77]. 
The prolonged EGFRp due to the presence of the ghost therefore acts as a 
temporal memory that the cell encountered an EGF signal. In single 
epithelial cells, this memory lasts ~40min on average [56], which 
generates a slow time-scale in the system, despite the sub-minute 
timescale of phosphorylation-dephosporylation events. 

Cells then use this memory to integrate signals over time. For 
example, if the following EGF pulse is received while the trajectory is in 
the ghost, the time the systems stays in the ghost will be prolonged, 
resulting in longer overall high EGFRp activity. In contrast, if the pulse is 
received outside of the ghost, the system re-sets to S1 and generates 

another loop in phase-space, resulting in distinct temporal EGFRp pro
file (Fig. 4d). Thus, ghosts aid differential integration of time-varying 
EGF signals depending on their frequency [76]. Since ghosts enable 
for information to be stored over time, while still maintaining respon
siveness to upcoming signals, they correspond to a mechanism of a 
’working memory’ on the level of single cells. We have shown both 
theoretically and experimentally that the working memory of the EGFR 
network is necessary for epithelial cells to robustly maintain directional 
migration when signals are disrupted, while remaining sensitive 
(adaptive) to newly encountering chemoattractant signals (Fig. 4e) [56, 
57]. From a computational perspective, this example demonstrates that 
single cells do not rely on attractor-based computations, but rather 
utilize transient states i.e. ghosts, to maintain information about previ
ously sensed signals, whereas the quasi-stability of these states enables 
the integration of complex environmental signals to determine a robust, 
yet adaptable response. Ghosts could therefore potentially serve as an 
elementary mechanism of natural computations, as they enable to 
explain real-time response, flexibility, robustness, and adaptability of 
natural computations. 

However, to capture complexity of natural computations, such as 
sequential and context-dependent responses for example [39,88], the 
underlying biochemical and/or neuronal network likely necessitates 
composite ghost-based phase-space objects that can give rise to differ
ential dynamics. In a recent theoretical work, we have taken the first 
steps and, based on a geometrical perspective on ghost states, demon
strated that multiple ghosts can be aligned to form ghost channels 
(Fig. 4f) or ghost cycles, in the same way that saddles can form heter
oclinic objects (i.e. Fig. 3b). These structures enable reproducibility of 
the dynamics, even under large noise intensity, indicating that they are 
likely suitable model for natural computations [42]. The hypothesis that 
ghost scaffolds could underline natural computations is further 
strengthened with the fact that ghost cycles, for example, are typical for 
gene-regulatory network models [19,34,40]. Additionally, it is 
straightforward to describe how hybrid phase-space objects composed of 
ghost and saddles for example, can arise in general neuronal or signaling 
network models (schematic shown in Fig. 4g). Such structures bear high 
resemblance to manifolds that emerge from the analysis of neuronal 
dynamics of simple animals [39]. Hybrid ghost scaffolds thereby offer a 
promising new framework for studying natural computation, as they 
potentially reproduce dynamical features observed in living systems at 
different scales. 

Fig. 3. Computing with trajectories. (a) Schematic representation of attraction to, and escape from, a quasi-attractor in chaotic itinerancy [37]. (b) Schematic of a 
heteroclinic channel consisting of multiple saddles (inset) connected such that the unstable manifold of the preceding saddle is connected to the stable manifold of the 
following in the sequence. Reproducible trajectory guidance can be achieved in the deterministic case or low noise intensities (top), whereas moderate noise levels 
compromise the reliability (bottom) [42]. 
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3. Computations at criticality as a possible road forward 

Living systems are no trivial input-output devices, and even single 
cells or ’simple’ species are capable of a surprising variety of complex 
behaviors, such as memory, learning, hunting, social interactions etc. [2, 
15,17,25,45]. This property is inevitably related to the nature of bio
logical computations: living systems generally balance between opposed 
features, for example robustness and adaptability. The classical 
computational frameworks, such as the attractor-based computations 
that also reflects the functioning of the computers and machines (in an 
abstract sense), on the other hand, account only for one of these features 
- the robustness. Thus, a cell that would implement attractor-based 
computations will remain unresponsive in a dynamic physiological 
environment, as we have argued using the example of the EGFR 
network. Computation with unstable states or saddles, on the other 
hand, does not fulfill the requirement of reproducible transients, such 
that robustness in the responsiveness cannot be guaranteed. The ghost 
states, in contrast, demonstrate a potential to serve as a basic compu
tational ’unit’ of natural computations. These states typically occur for 

organization at criticality, i.e. at the transition between two distinct 
dynamical regimes (e.g. between mono- and bistability). 

Indeed, criticality has long been a candidate for a governing princi
ple of living systems, especially brain dynamics [11,46–48,55,71]. In 
this context however, criticality has been discussed as a transition be
tween ordered and a chaotic regime, where the former refers to the 
(neuronal) activity fading away quickly into a featureless attractor and 
the latter to a regime where slightly similar initial conditions lead to 
diverging dynamics. The chaotic regime thus erases any correlation 
between potentially related inputs and results in trajectories without 
computational significance. The so-called criticality or ’edge of chaos’ 
separates both behaviours, balancing the stability of the ordered phase 
and the versatile dynamics of the chaotic dynamics. The chaotic itiner
ancy we have discussed however, can be also realized via critical states 
[82], which implies that organization at criticality could potentially 
provide a link between different computational ’units’ in a dynamical 
sense that satisfy the conditions of natural computations. Defining a 
framework of computation with trajectories that relies on a combination 
of chaotic itinerancy, ghosts and saddles for example, likely has a 

Fig. 4. Cellular responsiveness to changing signals is enabled for organization at criticality. (a) Bifurcation diagram for the EGFR network depicting organization at 
criticality. Notations as in Fig. 2b. (b) Corresponding EGFRp temporal response to a single EGF pulse and respective phase-space trajectory. Inset: quasi-potential 
landscape depicting the geometry of the ghost state. (c) Corresponding quasi-potential landscape changes, showing ”ghost” memory state emergence upon signal 
removal. (d) EGFRp profiles depicting the dependence on the frequency of the EGF signal. (e) Schematic representation of cell migration through disrupted and 
spatially non-uniform growth factor field for the EGFR network organized at criticality. Cell remains responsive and continuously adapts the migration trajectory to 
newly encountered signals. Notations as in Fig. 2e. Details in Ref. [56]. (f) Schematic of a ghost channel consisting of multiple ghosts connected such that the unstable 
direction of the preceding ghost is connected to the stable direction of the following in the sequence. Reproducible trajectories, and thus reliable computing can be 
achieved even in the presence of noise. (g) Hybrid phase-space object consisted of saddles (circles) and ghost, that can be utilized to generate context-dependent 
dynamics. See also [42]. 
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tremendous potential not only for the description of biological compu
tations in neuronal and signaling networks, but also for understanding 
the peripheral nervous system, collective responses at the tissue scale or 
inter-organ communication. 

It thus becomes evident that there is a need to broaden the existing 
definitions of computation, which predominantly revolve around ma
chine operations. Specifically, a framework for natural computation 
must encompass real-time responsiveness, the simultaneous presence of 
flexibility and robustness in responses, the facilitation of anticipatory 
processes that preemptively prepare for actions, adaptability in com
putations, and the enduring capacity for life-long learning. These attri
butes stand as fundamental characteristics of living systems, demanding 
a more comprehensive understanding within the framework of compu
tational theory. To which extent computing with transients can incor
porate learning, and in particular on-the-fly and life-long learning, is 
another exciting open question. Classical frameworks of learning rely on 
mechanisms that change the network topology (e.g. Hebbian learning 
generating a ’hard-wired’ memory or ’memory-as-attractor’ [27]). 
However, a study aimed at understanding the mechanisms how artificial 
neuronal networks (ANNs) learn tasks that depend on time-varying in
puts, for example a memory-demanding, two-point moving average (of 
input pulses given at random times) task, showed that the ANN required 
a set of slow points in a plane (which we interpret as a multi-dimensional 
ghost), rather than a plane-attractor [78], implying that quasi-stable 
states likely aid learning. In another example, using the topology of 
the neuronal network of C. elegans and single neuron Ca2+-dynamics 
recordings, it has been also shown recently that a consistent behavior in 
a response to time-dependent inputs is realized via a ’soft-wired’ 
memory [10] - a memory that does not require structural changes in the 
network connectivity, but relies only on the system dynamics for 
encoding. Such a ’soft-wired’ memory could emerge from a ghost state, 
as we have argued above. These findings therefore suggest that tran
siently stable states, in addition to being utilized by cells, likely also 
enable artificial and natural neuronal networks to learn and compute 
complex tasks. Thus, identifying a mechanism of learning that relies on 
transiently stable states could potentially open the avenue to study both 
theoretically and experimentally learning also on the level of single cells 
and single-cell organisms [15,20,23,25]. We therefore suggest that 
developing an integrated framework of computations relying on tran
sient quasi-stable dynamics can potentially help to understand how or
ganisms with neuronal networks, but also single cells and cellular 
communities actively process information and learn from their contin
uously changing environment to adapt and stabilize their phenotype. 
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