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I. REAL SPACE FORMULATION OF THE
MODEL

The lattice version of the Hamiltonian of Eq. (1) of the
main text is given by

H0 =

(
h(k) + gMσz 0

0 h∗(k)− gMσz

)
(S.1)

h(k) = d(k) · σ (S.2)

d(k) = [vFa
−1 sin(kya),−vFa−1 sin(kxa),m(k)] (S.3)

m(k) = m0 + 2Ba−2[2− cos(kxa) + cos(kya)], (S.4)

where a is the lattice constant and we take a = 2 nm
for all of our calculations. Obviously, Eq. (S.1) reduces
to Eq. (1) of the main text if expanded to second order
around kx = ky = 0, i.e. around the Γ-point. In the
momentum space, We define the respective dispersions

Eu/l = ±
√

(vF k)2 +mu/l(k)2, where mu/l(k) = m(k)±
gM .

Furthermore, in order to model disorder effects, we
transform Eq. (S.1) to real space obtaining a square lat-
tice with:

H0 = Σii′jj′Hii′jj′c
†
i′j′cij (S.5)

Hii′jj′ = Mδii′δjj′ + Pxδi+1i′δjj′ + P †xδii′+1δjj′

+ Pyδii′δj+1j′ + P †y δii′δjj′+1 (S.6)

M = (m0 + 4B)Γ1 + gMΓ2 (S.7)

Px = −BΓ1 −
vF
2i

Γ4 (S.8)

Py = −BΓ1 +
vF
2i

Γ3 (S.9)

where i and j are the sites’ x and y coordinates, respec-
tively. Γ1,2,3,4 are defined as follows:

Γ1 =

(
σz 0
0 σz

)
(S.10)

Γ2 =

(
σz 0
0 −σz

)
(S.11)

Γ3 =

(
σx 0
0 σx

)
(S.12)

Γ4 =

(
σy 0
0 −σy

)
(S.13)

The impurities are modeled as randomly distributed on-
site potentials drawn from a uniform distribution be-
tween [−W/2,W/2]. The term to be added to Hii′jj′

is explicitly given as:

Wii′jj′ = δii′δjj′Wij (S.14)

Wij =

Wij,+↑ 0 0 0
0 Wij,−↓ 0 0
0 0 Wij,+↓ 0
0 0 0 Wij,−↑.

 (S.15)

In our work, since non-magnetic impurity are considered,
Wij,+↑ = Wij,+↓ and Wij,−↑ = Wij,−↓ are used. Adding
the disorder amounts to substituting M → M + Wij in
Eq. (S.5) and we employ this Hamiltonian for the central
region described in the main text with the number of
lattice sites being Nx = Lx/a and Ny = Ly/a. For the
left and right leads, the clean Hamiltonian of Eq. (S.5)
without any disorder is used.

II. SELF-CONSISTENT BORN
APPROXIMATION

First, we calculate the static self-energy Σu/l defined

by (EF − H
u/l
0 − Σu/l)−1 =

〈
(EF −Hu/l)−1

〉
, where

〈· · · 〉 and H
u/l
0 (Hu/l) denote the disorder average and

the upper/lower Block of (S.1) without(with) disorder
potential, respectively. Like the Hamiltonian, the self-

energy can be decomposed into blocks Σu/l = Σ
u/l
0 σ0 +

Σ
u/l
x σx + Σ

u/l
y σy + Σ

u/l
z σz, from which the renormalized

mass and chemical potential can be defined as m
u/l
0 =

m
u/l
0 +Σ

u/l
z and µu/l = EF −Σ

u/l
0 ,where m

u/l
0 = m0±gM

for the upper/lower block. For systems with a finite ex-
change field the time reversal symmetry is broken and
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the renormalization is different for the upper/lower block
Σu 6= Σl. The self-consistent Born approximation, yields

Σu/l =
W 2a2

48π2
lim
η→0+

∫
FBZ

dk[EF + iη −Hu/l
0 − Σu/l]−1,

(S.16)

with FBZ denoting the first Brillouin zone. Within the
Born approximation, a sign change of the effective mass

term m
u/l
0 signals a topological phase transition (TPT)

induced by the disorder, however, to observe the topo-
logically protected quantized conductance, the effective
chemical potential renormalized by disorder must addi-
tionally be located in the bulk gap, such that the cur-
rent is carried exclusively by the edge states. Conse-
quently the phase boundary, reflecting the conductive
behavior of the system, is defined by the additional con-

dition |µu/l| = −mu/l
0 for m

u/l
0 < 0 and |µu/l| = m

u/l
0 for

m
u/l
0 > 0.

III. NON-SELF-CONSISTENT SOLUTION OF
THE BORN SELF-ENERGY

Neglecting the feedback of Σu/l on the right hand side
of Eq. (S.16) and keeping only the logarithmically diver-
gent part of the integral,1 we can obtain a closed form

expression of the renormalized mass term m
u/l
0 and chem-

ical potential µu/l:

m
u/l
0 = m

u/l
0 − W 2a2

48π

1

B
ln

∣∣∣∣∣ B2

E2
F − (m

u/l
0 )2

(π
a

)4∣∣∣∣∣
(S.17)

µ̄ = EF . (S.18)

Eq. (S.17) shows that the disorder effects only the
mass and not the chemical potential within the non-

self-consistent approach. The change in mass δm
u/l
0 =

m
u/l
0 −m

u/l
0 is found to always be negative for the param-

eters used in our calculations. This explains the tendency
of disorder to promote topologically non-trivial bands
in our study of magnetically doped topological insulator
(Bi, Sb)2Te3 thin films.

IV. PHASE DIAGRAM OF 4QLS AS A
FUNCTION OF DISORDER STRENGTH AND

FERMI ENERGY

In Fig. 1 we analyze the 4QLs case. Without exchange
field gM = 0, shown in panels (a) and (b) we find a
QSH insulator (the non-disordered case corresponds to
the point D of (f) in Fig. 2 of the main text) with quan-
tized conductance 2e2/h and vanishing standard devia-
tion in the bulk gap window (|EF | < 29 meV). In con-
trast to the 3QLs case, disorder does not induce any

FIG. 1. Left (a), (c), (e) and right (b), (d), (f) panels show
the average conductance G and the corresponding standard
deviation δG as a function of disorder strength W and Fermi
energy EF for 4QLs (Bi, Sb)2Te3 thin film with and without
magnetic doping. The exchange field gM is taken to be (a),
(b): 0 meV, (c), (d): 20 meV, and (e), (f): 40 meV. The color
lines stand for phase boundaries from self-consistent Born ap-
proximation. Details of the colored lines and calculation pa-
rameters are shown in Ref. 2. In all calculations, the system
sizes are set to Lx = 400a and Ly = 100a and averages over
500 random configuration are performed.

TPTs. This can be understood by the disorder amount-
ing to a negative contribution to the topological mass
term within the Born approximation (which is originally
negative for 4QLs case). This can be found by using the
solution of the closed form of Born approximations after
neglecting the self-consistency. The phase boundary be-
tween the QSH and the metallic region is well-described
by the self-consistent Born approximation while the one
between QSH and the Anderson insulator again cannot
be obtained by this approximation. Even though pan-
els (c) and (d) show a result similar at face value, it
demonstrates the existence of a spin-Chern insulator at
finite exchange field gM . This topological state is not al-
tered by weak disorder and slightly widens in the phase
diagram up to around W ≈ 300 meV as disorder is in-
creased. As we discussed in (a), (b), the disorder does not
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change the already negative topological mass term to be
positive, meaning that once a band inversion occurred,
its band does not return to be topologically trivial. The
boundary of the spin-Chern insulator and the metal can
be explained with the self-consistent Born approximation
once more, and when the disorder is increased further, as
above, an Anderson insulator is found. Finally, in the
panels (e) and (f) the non-disordered state corresponds
to a QAH insulator around EF = 0 and we find a similar
behavior as in the 3QLs case (compare panels (e) and (f)
of Fig. 3 of the main text). The only difference here is
the mechanism of how the disorder induces a spin-Chern
insulator. Here, at zero disorder the inverted bands from
the upper block Hamiltonian was first made trivial by
the effects of the exchange field, and upon increasing
disorder one recovers its topological nature (Wc ≈ 210
meV). Since there is no time reversal symmetry due to
the finite exchange field, the spin-Chern insulator is re-
instantiated as is the case for the panels (c), (d) and (e),
(f) of Fig. 3 of the main text. Further increasing the dis-
order drives the system to an Anderson insulator. The
QAH to spin-Chern insulator transition is described well
by the self-consistent Born approximation.

V. INFLUENCE OF THE CHOICE OF LEADS

Here, we explicitly discuss the influence of choosing dif-
ferent leads on the calculated transport properties shown
in the main text, where the lead was chosen in the QSH
phase. The main reason why we use the QSH lead is
to probe the disorder-induced TPT in the central region
most clearly. Using a lead with a trivial bulk gap (such
as the clean TI thin film with the thickness of 3QLs), the
system is blind to probe the conductance inside the en-
ergy window of the band gap, which is the most interest-
ing region to observe the new physics. This is trivial as,
since without doping, the Fermi energy EF = 0 is firmly
inside of the leads bulk gap and therefore we would not
be able to detect the new disorder induced topological
phases in the central region. Alternatively, we need to
dope the lead to be metallic. Therefore, we also compare
the transport properties calculated for QSH lead with
those for such a metallic lead. The latter might be con-
nected closer to the current experimental setup routinely
realized. In the metallic case, we can probe the transport
signal inside the band gap of the TI thin films and the
same physics as shown in the case of the QSH lead can be
found. However, due to residual hybridization between
the lead and central region, the physics shows up even
more clearly with the QSH lead, which we preferred to
choose.

In the following part, we compare the transport prop-
erties probed by using these three different kinds of leads:
(1) lead of the same nature as the central region but
in the clean limit, (2) metallic lead, and (3) QSH lead.
Type (1) is defined as using the disorder-free magnet-
ically doped TI thin films which is the same material

FIG. 2. Left (a), (c), (e) and right (b), (d), (f) panels show
the average conductance G and the corresponding standard
deviation δG as a function of disorder strength W and Fermi
Energy EF for 3QLs TI thin film without magnetic doping.
Lead types are (a), (b) lead of same type as in the central
region, but in the clean limit, (c), (d) metallic lead and (e),
(f) QSH lead.The exchange fields gM are taken to be 0 meV.
The other parameters and the meaning of the solid and dashed
lines are shown in Ref. 2. In all calculations, the system sizes
are set to Lx = 400a and Ly = 100a and averages over 50
random configuration are performed.

used for the central region (without disorder, namely
W = 0). The mass of the left and right lead region

m
u/l
0,L/R is set equal to the the central one m

u/l
0,C . Such

setups have been used in many previous works.3,4 In the
cases of type (2) and (3), we do not consider any dis-
order and magnetic doping in the leads. We define the

type (2) lead by setting m
u/l
0,L/R = 0, where the lead is

a semi-metal. For a type (3) lead, we keep all param-
eters in the intrinsic TI thin film unchanged except the
mass term. In order for the lead to be a QSH insulator
with the same bulk gap as the original material used in
the central region (without disorder, namely W = 0),
we always define the sign of the mass term to be nega-
tive, namely m0,L/R=−|mu

0,C | for |mu
0,C | < |ml

0,C | and
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FIG. 3. Left (a), (c), (e) and right (b), (d), (f) panels show
the average conductance G and the corresponding standard
deviation δG as a function of disorder strength W and Fermi
Energy EF for 3QLs TI thin films with doping. Lead types
are (a), (b) lead of same type as in the central region, but in
the clean limit, (c), (d) metallic lead and (e), (f) QSH lead.
The exchange fields gM are taken to be 30 meV. The other
parameters and the meaning of the solid and dashed lines are
shown in Ref. 2. In all calculations, the system sizes are set
to Lx = 400a and Ly = 100a and averages over 50 random
configuration are performed.

m0,L/R=−|ml
0,C | for |ml

0,C | < |mu
0,C |. The bulk gap

value of the QSH leads in the above two cases depends
on the magnitudes of |mu

0,C | and |ml
0,C |. So in this case

within the lead, the helical edge channel always exist
(G = 2e2/h), which can connect to edge states and bulk
metallic states in the central regions.

In Figs. 2 and 3, we show the phase diagram of 3QLs
with a choice of several different leads. Figures 2 (a), (b)
and 3 (a), (b) clearly show that the conductance vanishes
in the energy window of bulk gap and we cannot observe
TPTs with the choice of type (1) as a lead. This is be-
cause there is no charge transport from the left lead to
the right within the gap energy window even if the central
region is metallic. This effect has already been mentioned
briefly in Ref. 1, where highly doped leads were used to

FIG. 4. Left (a), (c), (e) and right (b), (d), (f) panels show
the average conductance G and the corresponding standard
deviation δG as a function of disorder strength W and Fermi
Energy EF for 4QL TI thin film without magnetic doping.
Lead types are (a), (b) normal sample lead (c), (d) metallic
lead (e), (f) QSH lead. The exchange fields gM are taken
to be 0 meV. The other parameters and the meaning of the
solid and dashed lines are shown in Ref. 2. In all calculations,
the system sizes are set to Lx = 400a and Ly = 100a and
averages over 50 random configuration are performed.

avoid suffering from this blind spot (compare to Fig. 1
in Ref. 1 and Fig. 2(f) in Ref. 3).

Although with the choice of metallic lead, we can ob-
serve the disorder induced TPTs inside the band gap of
TI thin films shown in Figs. 2 (c), (d) and 3 (c), (d),
their edge state conductance obtained with metallic leads
is not as clear as QSH leads. In Figs. 2 (e), (f) and 3 (e),
(f), where a QSH lead is employed, clear signatures of
edge state transport (G = 2e2/h or e2/h, and vanishing
standard deviation δG as discussed in the main text) can
be observed. The reason may lie in interface effect be-
tween the semi-metallic lead and the central region. The
work about this interface effect and choice of leads will be
systematically studied in a future paper. Even though in
Fig. 3 (f), the standard deviation corresponding to the
spin-Chern insulator is not exactly vanishing, this is a



5

FIG. 5. Left (a), (c), (e) and right (b), (d), (f) panels show
the average conductance G and the corresponding standard
deviation δG as a function of disorder strength W and Fermi
Energy EF for 4QLs TI thin film with magnetic doping. Lead
types are (a), (b) lead of same type as in the central region,
but in the clean limit, (c), (d) metallic lead and (e), (f) QSH
lead. The exchange fields gM are taken to be 40 meV. The
other parameters and the meaning of the solid and dashed
lines are shown in Ref. 2. In all calculations, the system sizes
are set to Lx = 400a and Ly = 100a and averages over 50
random configuration are performed.

finite size effect. This can be clearly seen by comparing
Fig. 3 (f) with Fig. 3 (d) in the main text, where the
former uses Ny = 100 whereas the latter uses Ny = 200.

In Fig. 4, we show the transport properties of 4QLs
thin films comparing the influence of choosing different
leads. Because, by definition, case (1) is also a QSH lead,
cases (1) and (3) as choices of leads are equivalent and
consequently the same results are observed in Figs. 4 (a),
(b) and (e), (f). In the case of a metallic lead, shown in
Figs. 4 (c), (d), the QSH phase clearly detected inside
the bulk gap for QSH leads (see Figs. 4 (a), (b) and (e),
(f)), cannot be clearly obtained due to the interface effect
using metallic leads.

In the case of finite exchange field as shown in Fig. 5,
corresponding to QAH phase without disorder, we can
see the same phenomena discussed in Figs. 2 and 3.
With the choice (1) for a lead, we cannot clearly de-
tect the TPTs from the QAH to the spin-Chern insula-
tor because the largest current of the lead (G = e2/h)
is smaller than the edge conductance of spin-Chern insu-
lator (G = 2e2/h). However, since the QSH lead hosts
the edge current of G = 2e2/h, we can observe the TPT
induced by disorder from a QAH to spin-Chern insulator
in the central region when using a QSH lead. Although,
for metallic leads similar trait can be seen in Figs. 5 (c),
(d) as in (e), (f), the signature of edge state conductance
is not as clear as in the case of QSH leads again due to
interface effect.
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m0 = 44/− 29 meV, B = 37.3/12.9 eV Å2 for (Bi, Sb)2Te3
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