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Abstract

In this paper, we investigate the partition functions of the conformal field
theories (CFTs) with the T T̄ deformation on torus in terms of perturbative
QFT approach. In path integral formalism, the first and second order defor-
mations to the partition functions of the 2D free boson, free Dirac fermion
and free Majornana fermion on torus are obtained. In the free fermion, we
find that the first two orders of the deformed partition functions are consistent
with results obtained by the operator formalism. In the free boson, the first
order of the deformation to the partition function is the same as the deformed
partition function given by the operator formalism, however, the second order
correction to the partition function contains additional contribution from the
T T̄−flow effect in the path integral formalism.
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1 Introduction

The T T̄ deformation of field theory has attracted many research interest in recent

years both from view point of field theory and in the context of holographic duality.

The T T̄ deformation of 2D field theory is typically defined on plane or cylinder

by [1, 2]

dLλ

dλ
=

1

2
εµνερσT λµρT

λ
νσ, (1)
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where T λ depending on λ is the stress tensor corresponding the lagrangian Lλ.
Though the RHS is a composite operator, it is well-defined quantum mechanically

[3]. Remarkably, the T T̄ deformation keeps the integrability of the un-deformed

theory and the deformed theory is solvable in some sense [1, 2, 4–8]. In addition,

being an irrelevant deformation, the energy density of deformed theory in the UV

exhibits Hagedorn growth behavior, which implies T T̄ deformation is non-local in

the UV [2, 9, 10]. With many intriguing properties discovered, the T T̄ deformation

was subsequently generalized to many directions, for instances, to other integrable

deformations such as JT̄ deformation [11–13], to supersymmetric cases [14–17], to

various dimensions [18–21] and spin chain models [22–24]. For other most recent

developments of T T̄ deformation, please refer to [25–32].

Among these progresses, the partition function as well as correlation function

in the deformed CFT is of particular interest in our present study. The partition

function of deformed CFT have been computed in [6] by using the known deformed

spectrum. The result in [6] is nonperturbative, therefore, the modular properties

can also be discussed, and it was shown that the partition function is modular

covariant. From other perspective, the deformed partition function of S2 was also

discussed holographically in [33], and also the deformed partition was discussed from

random metric point of view [26]. As for correlation function, the deformed 1-point

function of KdV charge operator was also considered nonperturbatively based on

the deformed spectrum [34]. Also the general deformed correlation functions in the

UV was considered by J. Cardy in [35].

On the other hand, one can study the T T̄ deformation in a perturbative way.

More concretely, one can expand the lagrangain in power of small λ

Lλ = L(0) + λL(1) +
λ2

2!
L(2) + ..., (2)

where the first term L(0) corresponds to the un-deformed theory, the second term is

the T T̄ operator of un-deformed theory as appeared in the RHS of (4) with λ = 0,

the third term and the terms omitted are presented due to the fact that the stress

tensor T λ is not fixed but also flow under the deformation. In other words, the stress

tensor depends on λ.

A number of works were done in the framework of perturbation method, for ex-

ample, in [1] the renormalization of free theory under T T̄ deformation is investigated

by matching the S-matrix. Meanwhile, other physical quantities were also computed
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perturbatively, such as entanglement entropies, wilson loop and correlation func-

tions [36–38]. In this work, we will continue to study the partition function (which

can be treated as zero-point function) of deformed CFT in a perturbative manner.

The correlation function of deformed theory was considered earlier in [39–41], where

2-point function and 3-point function were calculated, as well as the correlation

functions of stress tensors. Later, these results were generalized to higher point

function cases [42,43], as well as including supersymmetry [44], torus CFT [45], and

especially the holographic dual of stress tensor correlation function in large c limit

is considered in [46].

In these studies of correlation functions, it is worthwhile to note that the com-

putation is mainly performed in the first order perturbation of CFT or in the case

where the CFT is defined on plane. Naturally, to make progress, a next step is that

can we go beyond the first order perturbation. However, this is a nontrivial question

as can be seen as follow. As discussed above, in the first order perturbation, the

T T̄ operator is known which is just constructed from the stress tensor of the un-

deformed CFT, while in higher order perturbations, one must take the corrections of

T T̄ operator into consideration, namely, T T̄ -flow effect. Unfortunately, in a general

CFT, we do not have such a explicit expression on such kind of corrections. Never-

theless, as a first step towards higher order perturbations, we can start within free

theory, where the corrections of stress tensor and lagrangian under T T̄ deformation

can be constructed explicitly order by order. Based on this setup, we will study the

deformed partition function up to second order in coupling constant by employing

the conformal perturbation theory. This also generalized our previous work [45],

where the first order partition function of deformed CFT on torus was computed.

Moreover, since we work in free theories, we will use Wick contraction rather than

the Ward identity obtained in [45] to figure out the deformed correlation functions.

Finally, the two methods will lead to the same results.

The organization of this paper is as follows. In Section 2, we review the general

method to obtained the deformed lagrangian and stress tensor order by order, which

can used to expand the partition function upto second order that we are interested

in. In Section 3, Section 4 and Section 5, we computed the first and second order

corrections to the partition function of free boson, Dirac fermion and Majorana

fermion respectively. Basically, we use Wick contraction to computed the deformed

partition function, also some proper regularization methods are chosen. We end in
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Section 6 with a summary and prospect. Our conventions, useful formulae and some

calculation details are presented in the appendices.

2 T T̄ deformed partition function for generic 2d

theory

In this section, we would like to obtain the perturbation expansion of T T̄ deformed

partition function beyond the first order. The procedure is based on the method

first introduced in [2] (also see [47]), where the deformed Lagrangian is obtained

order by order. Let us first review this method below.

Consider a T T̄ deformed QFT living in a two-dimensional Euclidean spacetime

(M, gab) whose dynamics is governed by the local action

Sλ =

∫
M

√
gd2xLλ(φ,∇aφ, gab). (3)

Here Lλ denotes the deformed Lagrangian parameterized by λ. The T T̄ deformation

can then be defined by the following flow equation

dLλ

dλ
=

1

2
εµνερσT λµρT

λ
νσ, (4)

where εµν = gµρgνσε
ρσ is the volume element of the spacetime, and T λµν is the stress

tensor of the deformed theory, which is defined as

T λµν =
2
√
g

δSλ

δgµν
= 2

∂Lλ

∂gµν
− gµνLλ. (5)

Now we expand of Lagrangian and stress tensor in power of λ

Lλ =
∞∑
n=0

λn

n!
L(n), T λµν =

∞∑
n=0

λn

n!
T (n)
µν . (6)

In order to figure out L(n), one can plugging (6) into both (4) and (5). By comparing

each order in the resulting expressions, eventually, we obtain the following recursion

relations4

L(n+1) =
1

2

n∑
i=0

Ci
n

(
T µ(i)

µ T
ν(n−i)
ν − T µ(i)

ν T
ν(n−i)
µ

)
, (7)

T (n)
µν =2

∂L(n)

∂gµν
− gµνL(n), (8)

4The identity gµνgρσ − gρνgµσ = εµρενσ is used.
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where Ci
n ≡ n!

i!(n−i)! . Note this recursion relations allow us to obtain L(n) and T
(n)
µν

for arbitrary n, once L(0), i.e. the un-deformed theory, is given.

With perturbations of Lλ acquired, we continue to derive the corrections of the

partition function to higher order in perturbation theory in path integral language,

which is

Zλ =

∫
Dφ e−

∫
M L

λ[φ]

= Z(0) − λZ(0)

∫
M
〈L(1)〉+

λ2

2
Z(0)

( ∫
M

∫
M′
〈L(1)(x)L(1)(x′)〉 −

∫
M
〈L(2)〉

)
+O(λ3)

≡ Z(0) + λZ(1) +
λ2

2
Z(2) +O(λ3), (9)

where

Z(0) =

∫
Dφ e−

∫
M L

(0)[φ], (10)

Z(1) =− Z(0)

∫
M
〈L(1)〉, (11)

Z(2) =Z(0)
( ∫
M

∫
M′
〈L(1)(x)L(1)(x′)〉 −

∫
M
〈L(2)〉

)
. (12)

In what follows, we will focus on the T T̄ deformed free theories on torus, including

free boson, Dirac fermion and Majorana fermion, where deformed partition function

upto to second order (11–12) can be worked out analytically.

3 Free boson

At first we would like to consider is the T T̄ deformed free scalar on torus T2. The

corresponding action of the un-deformed theory reads

S =
g

2

∫
T2

d2x∂µφ∂
µφ, (13)

where g is a normalization constant. According to the recursion relations (7) and

(8) mentioned above, one could obtain the deformed Lagrangian and stress tensor

starting from L(0), which takes the form 5

L(0) = 2g∂φ∂̄φ. (14)

5Where T ≡ Tzz, T̄ ≡ Tz̄z̄ and Θ ≡ Tzz̄. The complex coordinates z := x1 + ix2, ∂ :=
(∂x1 − i∂x2)/2. The metric gzz̄ = 1

2 .
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Then the un-deformed stress tensor is

T (0) = g(∂φ)2, T̄ (0) = g(∂̄φ)2, Θ(0) = 0, (15)

from which the first order Lagrangian follows

L(1) = −4T (0)T̄ (0) = −4g2(∂φ∂̄φ)2, (16)

and the corresponding the first order stress tensor is

T (1) = −4g2(∂φ)3(∂̄φ), T̄ (1) = −4g2(∂̄φ)3(∂φ), Θ(1) = −2g2(∂φ∂̄φ)2. (17)

Finally we have the second order Lagrangian

L(2) = −4(T (0)T̄ (1) + T̄ (0)T (1)) = 32g3(∂φ∂̄φ)3, (18)

We then could write out the corrections of partition function (11) and (12) for

bosonic field

Z(1) =4Z(0)

∫
T2

〈T (0)T̄ (0)〉 = 4g2Z(0)

∫
T2

〈(∂φ∂̄φ)2〉, (19)

Z(2) =16Z(0)

∫
T2

1

∫
T2

2

〈T T̄ (0)(z1, z̄1)T T̄ (0)(z2, z̄2)〉+ 4Z(0)

∫
T2

〈T (0)T̄ (1) + T (1)T̄ (0)〉

=16g4Z(0)

∫
T2

1

∫
T2

2

〈(∂1φ∂̄1φ)2(∂2φ∂̄2φ)2〉 − 32g3Z(0)

∫
T2

〈(∂φ∂̄φ)3〉. (20)

Note the expectation values in (19) and (20) are defined in free theory, thus it could

be evaluated directly by applying Wick contraction. The propagator of the free

scalar fields on torus is well-known [48]

〈φ(z1, z̄1)φ(z2, z̄2)〉 =(4πg)−1
(

log

∣∣∣∣ϑ(z12)

η(τ)

∣∣∣∣2 + 2π
(Im[z12])2

τ2

)
. (21)

Here the last term is non-holomorphic and comes from the zero mode. Performing

derivatives on the propagator gives

〈∂φ(z1, z̄1)∂φ(z2, z̄2)〉 =(4πg)−1
( π
τ2

− 2η1 − P (z12)
)
, 6 (22)

〈∂̄φ(z1, z̄1)∂̄φ(z2, z̄2)〉 =(4πg)−1
( π
τ2

− 2η̄1 − P̄ (z̄12)
)
, (23)

〈∂φ(z1, z̄1)∂̄φ(z2, z̄2)〉 =
−1

4gτ2

. (24)
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We still need to know the expectation value of
(
∂φ(z1, z̄1)

)2
,
(
∂̄φ(z1, z̄1)

)2
and

|∂φ(z1, z̄1)|2, which could be calculated by point-splitting method

〈∂φ(z1, z̄1)∂φ(z1, z̄1)〉 = lim
z2→z1

(
〈∂φ(z1, z̄1)∂φ(z2, z̄2)〉+

1

z2
12

)
= (4πg)−1

( π
τ2

− 2η1

)
,

(25)

〈∂̄φ(z1, z̄1)∂̄φ(z1, z̄1)〉 = lim
z2→z1

(
〈∂̄φ(z1, z̄1)∂̄φ(z2, z̄2)〉+

1

z̄2
12

)
= (4πg)−1

( π
τ2

− 2η̄1

)
,

(26)

〈∂φ(z1, z̄1)∂̄φ(z1, z̄1)〉 = lim
z2→z1

〈∂φ(z1, z̄1)∂̄φ(z2, z̄2)〉 =
−1

4gτ2

. (27)

With all ingredients in place, we next go on to investigate the corrections to the

partition function of free boson.

3.1 First-order

First we note that the partition function of the free scalar in CFT is

Z(0) =
1

√
τ2|η(τ)|2

. (28)

According to Eq.(19), we shall just compute the value of
∫

T2 d2x〈T T̄ (0)〉, 7∫
T2

1

d2x1〈T (z1, z̄1)T̄ (0)(z1, z̄1)〉 =g2τ2〈∂φ(z1, z̄1)∂φ(z1, z̄1)∂̄φ(z1, z̄1)∂̄φ(z1, z̄1)〉

=g2τ2

(
2〈11̄〉2 + 〈11〉〈1̄1̄〉

)
=

3

16τ2

+
1

4π2
|η1|2τ2 −

1

8π
(η1 + η̄1)

=
1

Z(0)
τ2∂τ∂τ̄Z

(0), (29)

which is consistent with [45]. Then we obtain the first-order correction

Z(1) = 4τ2∂τ∂τ̄Z
(0). (30)

6The details of η1 and P (z) are list in Appendix A.
7Here i ≡ ∂φ(zi, z̄i), ī ≡ ∂̄φ(zi, z̄i), (i = 1, 2, 3...).
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3.2 Second-order

We next go on to consider the second-order correction to the partition function. We

begin with calculating the first term of (20), whose integrand is

〈T T̄ (z1, z̄1)T T̄ (z2, z̄2)〉 = g4〈111̄1̄222̄2̄〉

=g4
[
〈11〉〈1̄1̄〉〈22〉〈2̄2̄〉+ 2×

(
〈11〉〈1̄1̄〉〈22̄〉2 + 〈11〉〈22〉〈1̄2̄〉2 + 〈11〉〈2̄2̄〉〈1̄2〉2 + 〈1̄1̄〉〈22〉〈12̄〉2

+ 〈1̄1̄〉〈2̄2̄〉〈12〉2 + 〈22〉〈2̄2̄〉〈11̄〉2
)

+ 8×
(
〈11〉〈1̄2〉〈22̄〉〈2̄1̄〉+ 〈1̄1̄〉〈12〉〈22̄〉〈2̄1〉

+ 〈22〉〈11̄〉〈1̄2̄〉〈2̄1〉+ 〈2̄2̄〉〈11̄〉〈1̄2〉〈21〉
)

+ 4×
(
〈11̄〉2〈22̄〉2 + 〈12〉2〈1̄2̄〉2 + 〈1̄2〉2〈12̄〉2

)
+ 16×

(
〈11̄〉〈1̄2〉〈22̄〉〈2̄1〉+ 〈11̄〉〈1̄2̄〉〈2̄2〉〈21〉+ 〈12̄〉〈2̄1̄〉〈1̄2〉〈21〉

)]
=(2π)−4

(
|B|4 + 8|B|2A2 + 2B2

(
B̄ − P̄ (z̄12)

)2
+ 2B̄2

(
B − P (z12)

)2
+ 16A2B

(
B̄ − P̄ (z̄12)

)
+16A2B̄

(
B − P (z12)

)
+ 24A4 + 4 |B − P (z12)|4 + 32A2

∣∣B̄ − P̄ (z̄12)
∣∣2 ), (31)

where B ≡ ( π
τ2
− 2η1), B̄ ≡ ( π

τ2
− 2η̄1), A ≡ π

τ2
. Integrating above expression then

amounts to compute the following integrals∫
T2

1

∫
T2

2

(
B − P (z12)

)
= 0, (32)∫

T2
1

∫
T2

2

(
B − P (z12)

)2
=
g2τ

2
2

12
− τ 2

2B
2, (33)∫

T2
1

∫
T2

2

|(B − P (z12)|2 = −π2, (34)∫
T2

1

∫
T2

2

|B − P (z12)|4 = τ 2
2 |B|4 +

|g2|2τ 2
2

122
− 4τ 2

2A
2|B|2 −B2 ḡ2τ

2
2

12
− B̄2 g2τ

2
2

12
, (35)

where g2 is one of the Weierstrass invariants8 and we present the method of regu-

larizing the integrals over the torus in Appendix B.1. For the detailed discussions

of the above integrals please refer to Appendix B.2.

With the help of (31−35) and an identity that relating g2 with η1

g2 = 48
(
iπ∂τη1 + η2

1

)
, (36)

8Please refer to Appendix A for the definition.
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one can find that∫
T2

1

∫
T2

2

〈T T̄ (0)(z1, z̄1)T T̄ (0)(z2, z̄2)〉

=
τ 2

2

24π4
|η1|4 −

1

24π2
|η1|2 +

τ 2
2

22π2
|∂τη1|2 −

1

26π2
(η2

1 + η̄2
1) +

3

26πτ2

(η1 + η̄1) +
τ2

24π3
|η1|2(η1 + η̄1)

+
i

25π
(∂τ̄ η̄1 − ∂τη1) +

iτ2

23π2
(η̄1∂τη1 − η1∂τ̄ η̄1) +

iτ 2
2

23π3
(η̄2

1∂τη1 − η2
1∂τ̄ η̄1)− 15

28τ 2
2

=
1

Z(0)

(
τ 2

2∂
2
τ∂

2
τ̄ + iτ2(∂2

τ∂τ̄ − ∂2
τ̄∂τ )

)
Z(0), (37)

then

16Z(0)

∫
T2

1

∫
T2

2

〈T T̄ (0)(z1, z̄1)T T̄ (0)(z2, z̄2)〉 = 16
(
τ 2

2∂
2
τ∂

2
τ̄ + iτ2(∂2

τ∂τ̄ − ∂2
τ̄∂τ )

)
Z(0).

(38)

We next move to evaluate the second term (20). Using Wick contraction, the

integrand is

〈T (0)(z1, z̄1)T̄ (1)(z1, z̄1)〉+ 〈T (1)(z1, z̄1)T̄ (0)(z1, z̄1)〉

=− 8g3〈1111̄1̄1̄〉

=− 72g3 × 〈11̄〉〈11〉〈1̄1̄〉 − 48g3 × 〈11̄〉3

=
9

2π2τ2

|η1|2 −
9

4πτ 2
2

(η1 + η̄1) +
15

8τ 3
2

=
18

τ2Z(0)
∂τ∂τ̄Z

(0) − 3

2τ 3
2

, (39)

after integration, one have

4Z(0)

∫
T2

〈T (0)T̄ (1) + T (1)T̄ (0)〉 =
(
72∂τ∂τ̄ − 6τ−2

2

)
Z(0). (40)

Putting together (38) and (40), we obtain the second-order correction of the partition

function under the T T̄ deformation

Z(2) = 16
(
τ 2

2∂
2
τ∂

2
τ̄ + iτ2(∂2

τ∂τ̄ − ∂2
τ̄∂τ )

)
Z(0) +

(
72∂τ∂τ̄ − 6τ−2

2

)
Z(0). (41)

Note that our result of the second-order correction for free boson is different with

the result shown in [6] calculated in operator formalism. In contrast, we have the

extra part, which comes from the contribution of L(2).
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4 Free Dirac fermion

For the rest of examples, we turn our attention to the theories defined on the torus

with fermionic fields. We first focus on a single free massless Dirac fermion that the

un-deformed action is given by

S =
g

2

∫
T2

(Ψ†γ0γa∂aΨ− ∂aΨ†γ0γaΨ) (42)

with

Ψ = [ψ ψ̄]T , Ψ† = [ψ∗ ψ̄∗]. (43)

Our convention for the gamma matrices is {γ0, γ1} = {σ1, σ2}, i.e., the first two

Pauli matrices.

By following the derivation presented in [47], we obtain the full expression of Lλ

and T λµν , written in complex coordinates9

Lλ =L(0) + λL(1), T λµν = T (0)
µν + λT (1)

µν , (44)

where

L(0) =g
(
ψ∗
←→̄
∂ ψ + ψ̄∗

←→
∂ ψ̄
)
, (45)

L(1) =4
(
Θ(0) − T (0)T̄ (0)

)
=
g2

2

((
ψ∗
←→̄
∂ ψ
)(
ψ̄∗
←→
∂ ψ̄
)

+
(
ψ∗ψ∂̄ψ∗∂̄ψ + ψ̄∗ψ̄∂ψ̄∗∂ψ̄

))
− g2(ψ∗

←→
∂ ψ)(ψ̄∗

←→̄
∂ ψ̄),

(46)

and

T (0) =
g

2
ψ∗
←→
∂ ψ, T̄ (0) =

g

2
ψ̄∗
←→̄
∂ ψ̄, Θ(0) = −g

4

(
ψ∗
←→̄
∂ ψ + ψ̄∗

←→
∂ ψ̄
)
, (47)

T (1) =
g2

4

(
ψ∗ψ

(
∂̄ψ∗∂ψ + ∂ψ∗∂̄ψ

)
−
(
ψ∗
←→
∂ ψ
)(
ψ̄∗
←→
∂ ψ̄
))
, (48)

T̄ (1) =
g2

4

(
ψ̄∗ψ̄

(
∂ψ̄∗∂̄ψ̄ + ∂̄ψ̄∗∂ψ̄

)
−
(
ψ̄∗
←→̄
∂ ψ̄
)(
ψ∗
←→̄
∂ ψ
))
, Θ(1) = 0. (49)

Note that the higher order terms of Lλ completely vanish due to the Grassmann

nature of the fermionic fields.

It is well-known that the un-deformed partition function for Dirac fermions is

given by

Z(0)
ν = (dν d̄ν)

2, dν(τ) =

(
ϑ(τ)

η(τ)

)1/2

. (50)

9For the derivation, one can be refer to Appendix C.
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A new subscript ν is added to Z(0) since there exist four kinds of spin structures,

denoted as ν = (1, 2, 3, 4), for free fermions with different boundary conditions10.

The non-vanishing two-point functions for Dirac fermion with spin structure ν are

〈ψ∗(z1)ψ(z2)〉ν =(2πg)−1Pν(z12), (51)

〈ψ̄∗(z̄1)ψ̄(z̄2)〉ν =(2πg)−1P̄ν(z̄12), ν = 2, 3, 4. (52)

Pν(z) =
√
P (z)− eν−1 =

ϑν(z)∂zϑ1(0)

2w1ϑν(0)ϑ1(z)
. (53)

Performing derivatives on the propagators give various correlation functions as

〈∂ψ∗(z1)ψ(z2)〉ν =(2πg)−1∂Pν(z12), (54)

〈∂ψ∗(z1)∂ψ(z2)〉ν =− (2πg)−1∂2Pν(z12), (55)

〈∂̄ψ∗(z1)ψ(z2)〉ν =(2g)−1δ(2)(z12), (56)

〈ψ∗(z1)∂̄ψ(z2)〉ν =− (2g)−1δ(2)(z12), (57)

Here we have used the formula ∂̄(z−1) = ∂(z̄−1) = πδ(2)(~x) ≡ πδ(2)(z). We need

further regularize these correlation functions when two points coincide with each

other, in parallel with bosonic case, we use point-splitting method

〈ψ∗(z1)ψ(z1)〉ν ≡ lim
z2→z1

(
〈ψ∗(z1)ψ(z2)〉ν − (2πgz12)−1

)
= 0, (58)

〈∂ψ∗(z1)ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂ψ∗(z1)ψ(z2)〉ν + (2πgz2

12)−1
)

= −(4πg)−1eν−1, (59)

〈∂ψ∗(z1)∂ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂ψ∗(z1)∂ψ(z2)〉ν + (πgz3

12)−1
)

= 0, (60)

〈∂̄ψ∗(z1)ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂̄ψ∗(z1)ψ(z2)〉ν − (2g)−1δ(2)(z12)

)
= 0, (61)

〈∂̄ψ∗(z1)∂ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂̄ψ∗(z1)∂ψ(z2)〉ν + (2g)−1∂δ(2)(z12)

)
= 0, (62)

〈∂̄ψ∗(z1)∂̄ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂̄ψ∗(z1)∂̄ψ(z2)〉ν + (2g)−1∂̄δ(2)(z12)

)
= 0. (63)

Now we have all the required ingredients to calculate the corrections to the partition

function.

4.1 First-order

Using Wick contraction and the propagators and their derivatives, we can compute

the expectation value of the T (0)T̄ (0) and (Θ(0))2

〈T (0)T̄ (0)〉ν =
1

42π2
|eν−1|2 =

1

Z
(0)
ν

∂τ∂τ̄Z
(0)
ν , 〈(Θ(0))2〉ν = 0. (64)

10The Z
(0)
1 for fermion with the double periodic boundary condition is vanishing [48].

10Here the function Pν(z) is defined by [49].
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Therefore the first-order correction of the partition function is

Z(1)
ν = 4Z(0)

∫
T2

〈T (0)T̄ (0)〉ν = 4τ2∂τ∂τ̄Z
(0)
ν . (65)

Note that the first-order correction of the free Dirac fermion share the same structure

with the free boson (30), which matchs the conclusion in [6] obtained by the operator

formalism.

4.2 Second-order

We now proceed to compute the second-order correction. Since there are no higher

order terms of Lλ for free massless Dirac fermion (44), Eq.(12) is reduced to

Z(2)
ν =Z(0)

ν

∫
T2

1

∫
T2

2

〈L(1)(x1)L(1)(x2)〉ν

=Z(0)
ν

∫
T2

1

∫
T2

2

〈ΘΘ(0)(x1)ΘΘ(0)(x2)〉ν − 8Z(0)
ν

∫
T2

1

∫
T2

2

〈T T̄ (0)(x1)ΘΘ(0)(x2)〉ν

+16Z(0)
ν

∫
T2

1

∫
T2

2

〈T T̄ (0)(x1)T T̄ (0)(x2)〉ν . (66)

After discarding the divergent parts, we find that the only nonzero contribution is

16Z(0)
ν

∫
T2

1

∫
T2

2

〈T T̄ (0)(x1)T T̄ (0)(x2)〉ν

=16Z(0)
ν

∫
T2

1

∫
T2

2

(2π)−4

{
1

4
|eν−1|4 +

1

4
|∂Pν(z12)|4 +

1

4

∣∣Pν(z12)∂2Pν(z12)
∣∣2

−1

4

((
∂̄P̄ν(z̄12)

)2
Pν(z12)∂2Pν(z12) +

(
∂Pν(z12)

)2
P̄ν(z̄12)∂̄2P̄ν(z̄12)

)
+

1

8

(
e2
ν−1P̄ν(z̄12)∂̄2P̄ν(z̄12) + ē2

ν−1Pν(z12)∂2Pν(z12)
)
− 1

8

(
e2
ν−1

(
∂̄P̄ν(z̄12)

)2
+ ē2

ν−1

(
∂Pν(z12)

)2
)}

.

(67)
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The integrals of the nontrivial integrands showed above are listed as below∫
T2

1

∫
T2

2

(
∂Pν(z12)

)2
= τ2eν−1

(
π − 2τ2η1

)
+ τ 2

2

(
e2
ν−1 −

g2

6

)
, (68)∫

T2
1

∫
T2

2

Pν(z12)∂2Pν(z12) = −
∫

T2
1

∫
T2

2

(
∂Pν(z12)

)2
, (69)∫

T2
1

∫
T2

2

|∂Pν(z12)|4

=τ 2
2

∣∣∣e2
ν−1 −

g2

6

∣∣∣2 + |eν−1|2
(
4τ 2

2 |η1|2 − 2πτ2(η1 + η̄1)
)

+
(
τ2eν−1

(
ē2
ν−1 −

ḡ2

6

)
(π − 2τ2η1) + τ2ēν−1

(
e2
ν−1 −

g2

6

)
(π − 2τ2η̄1)

)
, (70)∫

T2
1

∫
T2

2

∣∣Pν(z12)∂2Pν(z12)
∣∣2 =

∫
T2

1

∫
T2

2

|∂Pν(z12)|4 , (71)∫
T2

1

∫
T2

2

(
∂̄P̄ν(z̄12)

)2
Pν(z12)∂2Pν(z12) = −

∫
T2

1

∫
T2

2

|(∂Pν(z12)|4 . (72)

For the detailed discussions of the above integrals please refer to Appendix B.3.

With the help of above nontrivial integrals and an identity that we find about

g2, eν−1 and η1

g2 = 6
(
e2
ν−1 − iπ∂τeν−1 − 2η1eν−1

)
, (73)

one can find that (67) equals∫
T2

1

∫
T2

2

〈T T̄ (x1)T T̄ (x2)〉ν

=
τ 2

2

44π4
|eν−1|4 +

τ 2
2

42π2
τ 2

2 |∂τeν−1|2 +
iτ 2

2

43π3

(
e2
ν−1∂τ̄ ēν−1 − ē2

ν−1∂τeν−1

)
+
iτ2

42π2

(
ēν−1∂τeν−1 − eν−1∂τ̄ ēν−1

)
− τ2

43π3

(
e2
ν−1ēν−1 + ē2

ν−1eν−1

)
=

1

Z
(0)
ν

(
τ 2

2∂
2
τ∂

2
τ̄ + iτ2(∂2

τ∂τ̄ − ∂2
τ̄∂τ )

)
Z(0)
ν . (74)

Therefore the second-order correction of the partition function with spin structure

ν is

Z(2)
ν =16Z(0)

ν

∫
T2

1

∫
T2

2

〈T T̄ (0)(x1)T T̄ (0)(x2)〉ν

=16
(
τ 2

2∂
2
τ∂

2
τ̄ + iτ2(∂2

τ∂τ̄ − ∂2
τ̄∂τ )

)
Z(0)
ν , (75)

which is consistent with [6].

13



5 Free Majorana fermion

As a last example, We will consider the deformation of the free massless Majorana

fermion, whose un-deformed action is given by

S =
g

2

∫
T2

(ΨTγ0γa∂aΨ− ∂aΨTγ0γaΨ), (76)

where Ψ=[ψ ψ̄]T , the gamma matrices are defined in last section.

Similar with the case of complex fermion, the full expression of the deformed

Lagrangian has no higher-order corrections

Lλ =L(0) + λL(1), T λµν = T (0)
µν + λT (1)

µν , (77)

where

L(0) = 2g
(
ψ∂̄ψ + ψ̄∂ψ̄

)
, L(1) =4

(
Θ(0) − T (0)T̄ (0)

)
= g2(2ψ∂̄ψψ̄∂ψ̄ − 4ψ∂ψψ̄∂̄ψ̄),

(78)

and

T (0) =gψ∂ψ, Θ(0) = −g
2

(
ψ∂̄ψ + ψ̄∂ψ̄

)
, T̄ (0) = gψ̄∂̄ψ̄, (79)

T (1) =− g2ψ∂ψψ̄∂ψ̄, Θ(1) = 0, T̄ (1) = −g2ψ̄∂̄ψ̄ψ∂̄ψ. (80)

Note that we could obtain Eq.(78–80) straightforwardly by removing the ” ∗ ” in

Eq.(45–49)

The un-deformed partition function with spin structure ν is [48]

Z(0)
ν = dν d̄ν , dν(τ) =

(
ϑ(τ)

η(τ)

)1/2

, (81)

The two-point functions for Majorana fermion with spin structure ν are [48]

〈ψ(z1)ψ(z2)〉ν =(4πg)−1Pν(z12), (82)

〈ψ̄(z̄1)ψ̄(z̄2)〉 =(4πg)−1P̄ν(z̄12), (83)

others =0, ν = 2, 3, 4. (84)

Performing derivatives on the propagators give

〈∂ψ(z1)ψ(z2)〉ν = (4πg)−1∂Pν(z12), 〈∂̄ψ(z1)ψ(z2)〉ν = (4g)−1δ(2)(z12). (85)
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The regularized expectation value of the propagators and their derivatives when two

points coincide are

〈ψ(z1)ψ(z1)〉ν ≡ lim
z2→z1

(
〈ψ(z1)ψ(z2)〉ν − (4πgz12)−1

)
= 0, (86)

〈∂ψ(z1)ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂ψ(z1)ψ(z2)〉ν + (4πgz2

12)−1
)

= −(8πg)−1eν−1. (87)

〈∂̄ψ(z1)ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂̄ψ(z1)ψ(z2)〉ν − (4g)−1δ(z12)

)
= 0, (88)

〈∂̄ψ(z1)∂ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂̄ψ(z1)∂ψ(z2)〉ν + (4g)−1∂δ(z12)

)
= 0, (89)

〈∂̄ψ(z1)∂̄ψ(z1)〉ν ≡ lim
z2→z1

(
〈∂̄ψ(z1)∂̄ψ(z2)〉ν + (4g)−1∂̄δ(z12)

)
= 0. (90)

With all the ingredients in place, we next go on to the corrections to the partition

function for Majorana fermion.

5.1 First-order

According to (78), the first-order correction of the partition function is

Z(1)
ν = 4Z(0)

ν

∫
T2

(
T T̄ (0) − (Θ(0))2

)
=4g2τ2Z

(0)
ν 〈ψ∂ψψ̄∂̄ψ̄〉 − gτ2Z

(0)
ν 〈ψ∂̄ψψ̄∂ψ̄〉

=
τ2

(4π)2
Z(0)
ν |eν−1|2

=4τ2∂τ∂τ̄Z
(0)
ν , (91)

which is same with the results of free massless boson and free massless Dirac fermion.

5.2 Second-order

For the second-order correction, in full analogy with the case of Dirac fermion, there

are no contributions come from 〈(Θ(0))2(z1)(Θ(0))2(z2)〉 and 〈T T̄ (0)(z1)(Θ(0))2(z2)〉,
hence we go on to compute 〈T T̄ (0)(z1)T T̄ (0)(z2)〉 and its integral

〈T T̄ (0)(z1)T T̄ (0)(z2)〉

=g4〈ψ(z1)∂ψ(z1)ψ̄(z1)∂̄ψ̄(z1)ψ(z2)∂ψ(z2)ψ̄(z2)∂̄ψ̄(z2)〉

=(4π)−4

{
1

16
|eν−1|4 + |∂Pν(z12)|4 +

∣∣Pν(z12)∂2Pν(z12)
∣∣2

−
((
∂̄P̄ν(z̄12)

)2
Pν(z12)∂2Pν(z12) +

(
∂Pν(z12)

)2
P̄ν(z̄12)∂̄2P̄ν(z̄12)

)
+

1

4

(
e2
ν−1P̄ν(z̄12)∂̄2P̄ν(z̄12) + ē2

ν−1Pν(z12)∂2Pν(z12)
)
− 1

4

(
e2
ν−1

(
∂̄P̄ν(z̄12)

)2
+ ē2

ν−1

(
∂Pν(z12)

)2
)}

.

(92)
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Utilizing the nontrivial integrals and the identity (68–73) mentioned before, the

integral of Eq.(92) equals∫
T2

1

∫
T2

2

〈T T̄ (0)(z1)T T̄ (0)(z2)〉

=
τ 2

2

84π4
|eν−1|4 +

τ 2
2

82π2
|∂τeν−1|2 +

iτ 2
2

83π3

(
e2
ν−1∂τ̄ ēν−1 − ē2

ν−1∂τeν−1

)
− τ2

83π3

(
e2
ν−1ēν−1 + ē2

ν−1eν−1

)
− iτ2

82π2

(
eν−1∂τ̄ ēν−1 − ēν−1∂τeν−1

)
=

1

Z
(0)
ν

(
τ 2

2∂
2
τ∂

2
τ̄ + iτ2

(
∂2
τ∂τ̄ − ∂2

τ̄∂τ
))
Z(0)
ν . (93)

Note that the structure of
∫

T2
1

∫
T2

2
〈T T̄ (0)(z1)T T̄ (0)(z2)〉 shared by free massless boson,

free massless Dirac fermion and free massless Majorana fermion.

According to (93), we can obtain that the second-order correction of the partition

function for Majorana fermion is

Z(2)
ν =16Z(0)

ν

∫
T2

1

∫
T2

2

〈T T̄ (0)(x1)T T̄ (0)(x2)〉ν

=16
(
τ 2

2∂
2
τ∂

2
τ̄ + iτ2(∂2

τ∂τ̄ − ∂2
τ̄∂τ )

)
Z(0)
ν , (94)

which is consistent with [6].

6 Summary and prospect

In this work, we perturbatively calculate the second order deformation to partition

functions of the CFTs on torus under the T T̄ deformation, in the framework of

path integral formalism. In previous cases [42, 44, 45], the authors have studied the

correlation function perturbatively up to the first order deformation. Since it is not

necessary to consider the renormalization flow effects of the T T̄ in the first order

deformation of the CFTs, the conformal symmetry can be approximately hold in

this sense and the CFT Wald identities associated with T and T̄ can be applied

to obtain the first order correction to the correlation function in the deformed the-

ory. However, in the second order deformation to the correlation function, since

the conformal symmetry is broken obviously, the CFTs Wald identities can not be

applied. One has to develop a perturbative approach to investigate the higher order

deformation to the correlation function. In the T T̄ deformed theory, the effective

actions with the renormalization flow can be solvable in the literature. As a pre-

liminary study, we start with the full deformed actions [47] of the 2 dimensional
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free boson and free fermion (Dirac and Majorana fermion) to construct the T and T̄

with the flow effects up to the second order. In terms of the path integral formalism,

we calculate the first order (30,65,91) and the second order deformations (75,94) to

the partition function in terms of perturbative field theory approach. In particular,

the first two orders of the T T̄ deformations to the partition functions in the free

fermion theories are the same as the ones existed in the literature which are obtained

by the counting the deformed spectrum, called the operator formalism approach. In

2 dimensional free boson, the second order correction (41) to the partition function

contains additional contribution, which is induced by the T T̄−flow effects, compar-

ing with the one obtained by the operator formalism. The possible reason to explain

the difference of the second order deformation of the partition function presented in

the free boson comes from the higher derivative terms presented in the 2 dimensional

free boson. One can trust that the partition functions of the theory defined by path

integral formalism and operator formalism are equivalent when the dynamic term

in the Lagrangian of the theory is quadratic form. Due the higher derivatives terms

presented, the equivalence of the partition function in path integral formalism and

operator formalism can not be true. It will be very interesting future problem. As a

by-product, we also find two interesting mathematical identities in the free bosons

and free fermions respectively (36, 73).

Further, it will be interesting to study the second order deformation to the par-

tition function in the interacting theories, e.g. massive fermion and boson, Liouville

field theory [50], and so on. The generic correlation functions with the T T̄ -flow

effect will be also interesting future direction with following [44].
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A Details of the Weierstrass functions

In this Appendix, we give the definitions and properties of Weierstrass functions

that appear in the calculations.

We first note that, in our convention, the torus (T2) is defined by the identifica-

tion on complex plane z ∼ z+ 2w and z ∼ z+ 2w′ with 2w = 1, 2w′ = τ = τ1 + iτ2.

The first Weierstrass function P (z), called Weierstrass P-function, is defined as

P (z) =
1

z2
+

∑
{m,n}6={0,0}

( 1

(z − w̃)2
− 1

w̃2

)
, w̃ = 2mw + 2nw′. (95)

The Laurent series expansion of P (z) in the neighborhood of z = 0 is

P (z) ∼ 1

z2
+
g2

20
z2 +

g3

28
z4 +O(z6), (96)

hence we have

∂P (z) ∼− 2

z3
+
g2

10
z +

g3

7
z3 +O(z5), ∂2P (z) ∼ 6

z4
+
g2

10
+

3g3

7
z2 +O(z4), (97)

where g2 and g3 are called Weierstrass Invariants

g2 :=
∑

{m,n}6={0,0}

60

w̃4
, g3 :=

∑
{m,n}6={0,0}

140

w̃6
. (98)

The second Weierstrass function ζ(z), called Weierstrass zeta-function, is a primitive

function of −P (z)

ζ(z) =
1

z
+

∑
{m,n}6={0,0}

( 1

z − w̃
+

1

w̃
+

z

w̃2

)
, ∂ζ(z) = −P (z). (99)

We then define

η1 := ζ(w), η2 := ζ(w′), (100)

which are functions of the modular parmameter τ . Note that there is an identity

about η1(τ) and Dedekind eta function η(τ),

∂τη

η
=

i

2π
η1. (101)

which has been used in the bosonic calculations (29).

18



B Details of some integrations

B.1 Prescription for regularization

Since the integrands over the torus we are interested in may contain singularities,

in this Appendix we will discuss the how to deal with these singularities based on

the prescription given in [51].

Let us consider an integrand f(z, z̄) defined on a torus, which contains N number

of singularities (r1, r2...rN). Following the prescription in [51], to integrate f(z, z̄),

we integrate over the regularized parallelogram—the parallelogram with small disk

around the singularities removed (see Fig.1 for example). In the following, we denote

the regularized torus by T′2. Suppose we find that

Figure 1: The regularized cell for f(z, z̄) contains three singularities (red points). The grey part
bounded by the solid lines is the regularized integral region.

f(z, z̄) = ∂µF
µ(z, z̄), (102)

then with the Stoke’s theorem in 2D space 11∫
Σ

f(z, z̄)d2x =
i

2

∮
∂Σ

(
F zdz̄ − F z̄dz

)
, (103)

which can applied to regularized torus , leading to∫
T′2
f(z, z̄)d2x =

i

2

[ ∮
∂T2

−
∮
∂D(poles)

](
F zdz̄ − F z̄dz

)
, (104)

where the contour integrals are anticlockwise. In this paper, we focus further on the

case that F µ(z, z̄) can be written as F µ(z, z̄) = F µ
1 (z)F µ

2 (z̄), where F µ
1 is holomorphic

11Since z = x1 + ix2,
∫

Σ
d2x ≡

∫
Σ

dx1 ∧ dx2 = i
2

∫
Σ

dz ∧ dz̄ ≡ i
2

∫
Σ

d2z.
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function and F µ
2 is anti–holomorphic. For the j-th pole (rj, r̄j) of f(z, z̄) in T2,

F µ(z, z̄) could be expanded around it as follows

F µ(z, z̄) =
∑
m

∑
n

C1,µ
j,mC

2,µ
j,n (z − rj)m(z̄ − r̄j)n, (105)

then∮
|z−rj |=r

(
F zdz̄ − F z̄dz

)
=

∫ 2π

0

∑
m

∑
n

C1,z
j,mC

2,z
j,n(reiθ)m(re−iθ)n(−ir)e−iθdθ

−
∫ 2π

0

∑
m

∑
n

C1,z̄
j,mC

2,z̄
j,n(reiθ)m(re−iθ)n(ir)eiθdθ

=− 2πi
∑
n

r2(n+1)
(
C1,z̄
j,nC

2,z̄
j,n+1 + C1,z

j,n+1C
2,z
j,n

)
. (106)

Therefore, on the grounds of the prescription in [51], we have∫
T2

f(z, z̄)d2x :=

∫
T′2
f(z, z̄)d2x

= lim
r→0

G(r) +
i

2

∮
∂T2

(
F zdz̄ − F z̄dz

)
, (107)

where

G(r) := −π
∑
j,n

r2(n+1)
(
C1,z̄
j,nC

2,z̄
j,n+1 + C1,z

j,n+1C
2,z
j,n

)
. (108)

It is worth noting that for the case of F z holomorphic, meanwhile, F z̄ anti-holomorphic,

it must have lim
r→0

G(r) = 0.

B.2 Integrals for bosonic fields

In this Appendix we record the details of integrals appearing in the calculations of

free boson part (32–35).

Since all the integrands are double periodic, we can shift the variable of the

integration to make life easier without changing the value of the integrals, i.e.,∫
T2

1

∫
T2

2
f(z12, z̄12) = τ2

∫
T2 f(z, z̄) for double periodic function f .

We start with the integration of the P -function in the cell. Since P (z) = −∂ζ(z)
∂z

,
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with the integral strategy shown in Appendix B.1, we have 12∫
T2

d2xP (z) = −
∫

T2

d2x
∂ζ(z)

∂z
=
−i
2

∮
∂T′2

ζ(z)dz̄

= − i
2

(∫ z0+2w

z0

+

∫ z0+2w+2w′

z0+2w

+

∫ z0+2w′

z0+2w+2w′
+

∫ z0

z0+2w′

)
ζ(z)dz̄

= − i
2

∫ z0+2w

z0

(
ζ(z)− ζ(z + 2w′)

)
+
i

2

∫ z0+2w′

z0

dz̄
(
ζ(z)− ζ(z + 2w)

)
= 2iw̄ζ(w′)− 2iw̄′ζ(w) = π − 2τ2η1, (109)

where we have used the identity

w′ζ(w)− wζ(w′) =
iπ

2
(110)

to eliminate ζ(w′).

Next Let us consider
∫

T2 d2xP (z)2. Since P (z)2 is still a double periodic mero-

morphic function, we can expand P (z)2 in terms of ζ(z) and its derivatives [49],

P (z)2 =
g2

12
− 1

6
ζ(3)(z), (111)

where the constant g2
12

is fixed by comparing the constant terms of Laurent expansion

of two functions, P (z)2 and ζ(3)(z), at zero. Then∫
T2

d2xP (z)2 =
g2

12
τ2 −

1

6

∫
T2

d2xζ(3)(z)

=
g2

12
τ2 −

1

6

∫
T2

d2x
∂ζ(2)(z)

∂z
=
g2τ2

12
. (112)

We next turn to the integrand |P (z)|2. Since |P (z)|2 is no longer analytic, we can

not expand it in terms of ζ(z) as what we did for P (z)2. Instead, we will adopt the

following approach13∫
T2

d2xP (z)P̄ (z̄) =−
∫

T′2
d2x∂(ζ(z)P̄ (z̄))

=− lim
r→0

G(r)− i

2

∮
∂T2

dz̄ζ(z)P̄ (z̄)

= lim
r→0

πr−2 − i

2

(∫ z0+2w

z0

+

∫ z0+2w+2w′

z0+2w

+

∫ z0+2w′

z0+2w+2w′
+

∫ z0

z0+2w′

)
ζ(z)P̄ (z̄)dz̄

=2i(η1η̄2 − η2η̄1) + lim
r→0

πr−2 = 4τ2|η1|2 − 2π(η1 + η̄1) + lim
r→0

πr−2.

(113)

12In this case lim
r→0

G(r) = 0.
13Here we have omitted the term

∫
T2 d2xζ(z)∂P̄ (z̄), since ζ(z)∂P̄ (z̄) ≡ 0 when z is in the

regularized integral region T′2. We have discarded the similar terms in later integrals.
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Note that the integration is divergent, which is consistent with the intuitive expecta-

tion to the integral process, since |P (z)|2 ∼ 1
|z|4 when z close to zero. We regularize

it by simply subtracting the divergent part, that is, we set 14∫
T2

d2x |P (z)|2 = 4τ2|η1|2 − 2π(η1 + η̄1). (114)

Next consider the integrand P (z)2P̄ (z̄) = g2
12
P̄ (z̄)− 1

6
ζ(3)(z)P̄ (z̄), where we can use

(111) to rewrite it as follows∫
T2

d2xP (z)2P̄ (z̄) =
g2

12

∫
T2

d2xP̄ (z̄)− 1

6

∫
T2

d2xζ(3)(z)P̄ (z̄)

=
g2

12
(π − 2η̄1τ2)− 1

6

∫
T2

d2x∂
(
ζ(2)(z)P̄ (z̄)

)
=
g2

12
(π − 2η̄1τ2)− i

12

∮
∂T2

ζ(2)(z)P̄ (z̄)dz̄ − 1

6
lim
r→0

G(r)

=
g2

12
(π − 2η̄1τ2). (115)

At last let us consider integration of |P (z)|4 =
(
g2
12
− 1

6
ζ(3)(z)

)(
ḡ2
12
− 1

6
ζ̄(3)(z̄)

)
,∫

T2

d2xP (z)2P̄ (z̄)2

=

∫
T2

d2x
( g2

12
− 1

6
ζ(3)(z)

)( ḡ2

12
− 1

6
ζ̄(3)(z̄)

)
=
∣∣∣ g2

12

∣∣∣2 τ2 −
g2

72

∫
T2

d2xζ̄(3)(z̄)− ḡ2

72

∫
T2

d2xζ(3)(z) +
1

36

∫
T2

d2xζ(3)(z)ζ̄(3)(z̄)

=
|g2|2τ2

122
+

1

36

∫
T2

d2x∂
(
ζ(2)(z)ζ̄(3)(z̄)

)
=
|g2|2τ2

122
+

i

72

∮
∂T2

ζ(2)(z)ζ̄(3)(z̄)dz̄ +
1

36
lim
r→0

G(r)

=
|g2|2τ2

122
+ lim

r→0

π

3r6
. (116)

Similar with the case (114), we regularize the integral by simply discarding the

divergent part, which gives ∫
T2

d2x |P (z)|4 =
|g2|2 τ2

122
. (117)

14In plane case, there is a similar divergence, which is moved out by dimensional regularization
[44].
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According to the results of (109), (112), (114), (115) and (117), we have∫
T2

1

∫
T2

2

(
B − P (z12)

)
=τ 2

2

( π
τ2

− 2η1

)
− τ2

(
π − 2τ2η1

)
= 0, (118)∫

T2
1

∫
T2

2

(
B − P (z12)

)2
=τ2

∫
T2

d2x
(
B2 + P (z)2 − 2BP (z)

)
=
g2τ

2
2

12
− τ 2

2B
2, (119)∫

T2
1

∫
T2

2

|B − P (z12)|2 =τ2

∫
T2

d2x
(
|B|2 −BP̄ (z̄)− B̄P (z) + |P (z)|2

)
= −π2,

(120)

and ∫
T2

1

∫
T2

2

|B − P (z12)|4

=τ2

∫
T2

d2x
(
|B|4 + |P (z)|4 + 4 |B|2 |P (z)|2 +

(
B2P̄ (z̄)2 + B̄2P (z)2

)
− 2 |B|2

(
BP̄ (z̄) + B̄P (z)

))
− 2
(
BP (z)P̄ (z̄)2 + B̄P̄ (z)P (z)2

))
=τ 2

2 |B|4 +
|g2|2τ 2

2

122
− 4τ 2

2A
2|B|2 −B2 ḡ2τ

2
2

12
− B̄2 g2τ

2
2

12
. (121)

B.3 Integrals for fermionic fields

In this Appendix we record the details of integrals appearing in the calculations of

free fermion part (68–72).

We first note that both
(
∂Pν(z)

)2
and Pν(z)∂2Pν(z) are elliptic functions with

the modular parameter τ , since

(
∂Pν(z)

)2
=

(
∂P (z)

)2

4
(
P (z)− eν−1

) , Pν(z)∂2Pν(z) =
1

2
∂2P (z)−

(
∂P (z)

)2

4
(
P (z)− eν−1

) ,
(122)

where e1 := P (w), e2 := P (w + w′), e3 := P (w′). Hence we can expand
(
∂Pν(z)

)2

and Pν(z)∂2Pν(z) in terms of ζ(z) and its derivatives, the results are(
∂Pν(z)

)2
=

1

6
∂2P (z) + eν−1P (z) + e2

ν−1 −
g2

6
, (123)

Pν(z)∂2Pν(z) =
1

3
∂2P (z)− eν−1P (z)− e2

ν−1 +
g2

6
. (124)

Consequently, with the integral strategy shown in Appendix B.1, the first two inte-
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grals ∫
T2

1

∫
T2

2

(
∂Pν(z12)

)2
=τ2

∫
T2

d2x
(1

6
∂2P (z) + eν−1P (z) + e2

ν−1 −
g2

6

)
=τ2eν−1

(
π − 2τ2η1

)
+ τ 2

2

(
e2
ν−1 −

g2

6

)
, (125)∫

T2
1

∫
T2

2

Pν(z12)∂2Pν(z12) =
τ2

2

∫
T2

d2x∂2P (z)−
∫

T2
1

∫
T2

2

(
∂Pν(z12)

)2

=− τ2eν−1

(
π − 2τ2η1

)
− τ 2

2

(
e2
ν−1 −

g2

6

)
, (126)

where we have utilized the integral15∫
T2

d2x∂2P (z) = lim
r→0

G(r) +
i

2

∮
∂T2

∂P (z)dz̄ = 0 (127)

To compute the remaining three integrations, we need to work out the following

integrals first ∫
T2

d2x
∣∣∂2P (z)

∣∣2 =

∫
T2

d2x∂
(
∂P (z)∂̄2P̄ (z̄)

)
=
i

2

∮
∂T2

∂P (z)∂̄2P̄ (z̄)dz̄ + lim
r→0

G(r)

= lim
r→0

G(r) = lim
r→0

12πr−6. (128)

In analogy with the bosonic case, in our regularization scheme we simply drop out

the divergent part to obtain the finite answer, that is,∫
T2

d2x
∣∣∂2P (z)

∣∣2 = 0. (129)

Next consider the integrand P̄ (z̄)∂2P (z)∫
T2

d2xP̄ (z̄)∂2P (z) =

∫
T2

d2x∂
(
P̄ (z̄)∂P (z)

)
=
i

2

∮
∂T2

P̄ (z̄)∂P (z)dz̄ + lim
r→0

G(r)

=
i

2

(∫ z0+2w

z0

+

∫ z0+2w+2w′

z0+2w

+

∫ z0+2w′

z0+2w+2w′
+

∫ z0

z0+2w′

)
P̄ (z̄)∂P (z)dz̄

=0. (130)

According to the results of (114), (125), (126), (129) and (130), we can evaluate the

15For the definition of G(r), please refer to Appendix B.1.
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last three integrals now, which are listed in the following∫
T2

1

∫
T2

2

|∂Pν(z12)|4

=τ2

∫
T2

d2x

∣∣∣∣16∂2P (z) + eν−1P (z) + e2
ν−1 −

g2

6

∣∣∣∣2
=τ2

∫
T2

d2x
( 1

36

∣∣∂2P (z)
∣∣2 + |eν−1|2 |P (z)|2 +

1

6

(
ēν−1P̄ (z̄)∂2P (z) + eν−1P (z)∂̄2P̄ (z̄)

)
+
(
ē2
ν−1 −

ḡ2

6

)(
∂Pν(z)

)2
+
(
e2
ν−1 −

g2

6

)(
∂̄P̄ν(z̄)

)2 −
∣∣∣e2
ν−1 −

g2

6

∣∣∣2 )
=τ 2

2

∣∣∣e2
ν−1 −

g2

6

∣∣∣2 + |eν−1|2
(
4τ 2

2 |η1|2 − 2πτ2(η1 + η̄1)
)

+
(
τ2eν−1

(
ē2
ν−1 −

ḡ2

6

)
(π − 2τ2η1) + τ2ēν−1

(
e2
ν−1 −

g2

6

)
(π − 2τ2η̄1)

)
, (131)

∫
T2

1

∫
T2

2

∣∣Pν(z12)∂2Pν(z12)
∣∣2

=

∫
T2

1

∫
T2

2

(1

2
∂2P (z12)− (∂Pν(z12))2

)(1

2
∂̄2P̄ (z̄12)− (∂̄P̄ν(z̄12))2

)
(132)

=

∫
T2

1

∫
T2

2

(1

4

∣∣∂2P (z12)
∣∣2 − 1

2
∂2P (z12)

(
∂̄P̄ν(z̄12)

)2 − 1

2
∂̄2P̄ (z̄12)

(
∂Pν(z12)

)2

+ |∂Pν(z12)|4
)

=

∫
T2

1

∫
T2

2

|∂Pν(z12)|4 , (133)

∫
T2

1

∫
T2

2

(
∂̄P̄ν(z̄12)

)2
Pν(z12)∂2Pν(z12) =

∫
T2

1

∫
T2

2

(
∂̄P̄ν(z̄12)

)2(1

2
∂2P (z)− (∂Pν(z12))2

)
=−

∫
T2

1

∫
T2

2

|(∂Pν(z12)|4 . (134)

C Derivation of the T T̄ -flow for 2d fermions

In this Appendix, we reproduce the derivation of the T T̄ -flow for 2d fermionic theory,

which first appears in [47].

Consider an un-deformed fermionic theory living in the 2d Euclidean flat space-

time, whose action is given by

L(0) =
g

2

(
Ψ̄γa∂aΨ− ∂aΨ̄γaΨ

)
+ V [Ψ]. (135)

One can rewrite it in a more general form, i.e., the form in curved spacetime, which

is

L(0) =
g

2

(
Ψ̄γµ∇µΨ−∇µΨ̄γµΨ

)
+ V = eµaX

a
µ + V, (136)

25



where

Xa
µ :=

g

2

(
Ψ̄γa∂µψ − ∂µΨ̄γaΨ

)
. (137)

It is clear that Xa
µ is independent of the metric. We then utilize the recursion

relation (7–8) to derive the expansion of Lλ. First of all, the stress tensor of the

un-deformed theory is

T
(0)
ab =eµae

ν
b

(
2
∂L(0)

∂gµν
− gµνL(0)

)
= 2eµae

ν
b

∂eλc
∂gµν

Xc
λ − δabL(0) = X(ab) − δabL(0).

(138)

It is useful to introduce a new notation to mark the symmetrized tensor X̂ab :=

X(ab). Then according to (7)

L(1) =
1

2

(
T a(0)

a

)2 − 1

2
T
a(0)
b T

b(0)
a =

1

2

(
Tr[X̂]2 − Tr[X̂2] + 2V Tr[X̂] + 2V 2

)
, (139)

from which we can derive T
(1)
ab , the resulting expression is

T
(1)
ab =2eµae

ν
b

∂L(1)

∂gµν
− δabL(1) = eµae

ν
b

(∂Tr[X̂]2

∂gµν
− ∂Tr[X̂2]

∂gµν
+ 2V

∂Tr[X̂]

∂gµν

)
− δabL(1),

(140)

where

∂Tr[X̂]2

∂gµν
=2Tr[X̂]

∂eλc
∂gµν

Xc
λ = Tr[X̂]X̂µν , (141)

∂Tr[X̂2]

∂gµν
=X̂a

b

∂(eλbXaλ + eλaX
b
λ)

∂gµν
=
(
X̂ ·X

)
(µν)

. (142)

Hence

T
(1)
ab =

(
Tr[X̂] + V

)
X̂ab −

(
X̂ ·X

)
(ab)
− δabL(1). (143)

We continue to evaluate L(2)

L(2) =T a(0)
a T

b(1)
b − T

a(0)
b T

b(1)
a = Tr[X̂3]− 3

2
Tr[X̂]Tr[X̂2] +

1

2
Tr[X̂]3 + V (Tr[X̂]2 − Tr[X̂2]),

(144)

from which we finally obtain T
(2)
ab as follows

T
(2)
ab =2eµae

ν
b

∂

∂gµν
(
Tr[X̂3]− 3

2
Tr[X̂]Tr[X̂2] +

1

2
Tr[X̂]3 + V (Tr[X̂]2 − Tr[X̂2])

)
− δabL(2),

(145)

15The formula
∂eλc
∂gµν = 1

4

(
eµcδ

λ
ν + eνcδ

λ
µ

)
is used.
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where

∂Tr[X̂3]

∂gµν
=3

∂X̂ab

∂gµν
X̂bcX̂ca =

3

2

(
X̂2 ·X

)
(µν)

, (146)

∂Tr[X̂]3

∂gµν
=3Tr[X̂]2

∂Tr[X̂]

∂gµν
=

3

2
Tr[X̂]2X̂µν . (147)

Therefore T
(2)
ab is

T
(2)
ab =3

(
X̂2 ·X

)
(ab)
− (3Tr[X̂] + 2V )

(
X̂ ·X

)
(ab)

+
(3

2
Tr[X̂]2 − 3

2
Tr[X̂2] + 2V Tr[X̂]

)
X̂ab − δabL(2). (148)

According to the nature of Grassmann variables, one actually could find two iden-

tities to reduce (144) and (148), that is

Tr[X̂3]− 3

2
Tr[X̂]Tr[X̂2] +

1

2
Tr[X̂]3 ≡ 0, (149)

3
(
X̂2 ·X

)
(ab)
− 3Tr[X̂]

(
X̂ ·X

)
(ab)

+
3

2

(
Tr[X̂]2 − Tr[X̂2]

)
X̂ab ≡ 0ab, (150)

where 0 is the 2× 2 null matrix. We present all reduced results as follows

L(0) =Tr[X̂] + V, (151)

L(1) =
1

2
Tr[X̂]2 − 1

2
Tr[X̂2] + V Tr[X̂] + V 2, (152)

L(2) =V
(

Tr[X̂]2 − Tr[X̂2]
)
, (153)

T
(0)
ab =X̂ab − δabL(0), (154)

T
(1)
ab =(Tr[X̂] + V )X̂ab −

(
X̂ ·X

)
(ab)
− δabL(1), (155)

T
(2)
ab =2V Tr[X̂]X̂ab − 2V

(
X̂ ·X

)
(ab)
− δabL(2), (156)

where X̂ab is

X̂ab =
g

2

(
Ψ̄γ(a∂b)Ψ− ∂(aΨ̄γb)Ψ

)
. (157)

Although we can continue to calculate the higher-order corrections, as mentioned in

[47], for the free massive fermions (i.e., V [Ψ] = mΨ̄Ψ), the T T̄ -flow of Lλ terminates

at order two.

The explicit forms of (151)– (156), for the massive Dirac fermions, in complex

27



coordinates are

T (0)
zz =

g

2
ψ∗
←→
∂ ψ, T

(0)
zz̄ = −g

4

(
ψ∗
←→̄
∂ ψ + ψ̄∗

←→
∂ ψ̄
)
− m

2

(
ψ∗ψ̄ + ψ̄∗ψ

)
, T

(0)
z̄z̄ =

g

2
ψ̄∗
←→̄
∂ ψ̄,

(158)

T (1)
zz =

g2

4

(
ψ∗ψ

(
∂̄ψ∗∂ψ + ∂ψ∗∂̄ψ

)
− (ψ∗

←→
∂ ψ) · (ψ̄∗

←→
∂ ψ̄)

)
− gm

2
ψ∗ψ(ψ̄∗∂ψ − ∂ψ∗ψ̄),

(159)

T
(1)
zz̄ =

gm

4

(
ψψ̄
(
ψ∗∂̄ψ∗ − ψ̄∗∂ψ̄∗

)
− ψ∗ψ̄∗

(
ψ∂̄ψ − ψ̄∂ψ̄

))
+m2ψ∗ψψ̄∗ψ̄, (160)

T
(1)
z̄z̄ =

g2

4

(
ψ̄∗ψ̄

(
∂ψ̄∗∂̄ψ̄ + ∂̄ψ̄∗∂ψ̄

)
− (ψ̄∗

←→̄
∂ ψ̄) · (ψ∗

←→̄
∂ ψ)

)
− gm

2
ψ̄∗ψ̄(ψ∗∂̄ψ̄ − ∂̄ψ̄∗ψ),

(161)

T (2)
zz =

g2m

2
ψ∗ψψ̄∗ψ̄

(
∂ψ∗∂ψ̄ + ∂ψ̄∗∂ψ

)
, T

(2)
zz̄ = 0, T

(2)
z̄z̄ =

g2m

2
ψ̄∗ψ̄ψ∗ψ

(
∂̄ψ̄∗∂̄ψ + ∂̄ψ∗∂̄ψ̄

)
.

(162)

L(0) =g
(
ψ∗
←→̄
∂ ψ + ψ̄∗

←→
∂ ψ̄
)

+m
(
ψ∗ψ̄ + ψ̄∗ψ

)
, (163)

L(1) =
g2

2

(
(ψ∗
←→̄
∂ ψ)(ψ̄∗

←→
∂ ψ̄) +

(
ψ∗ψ∂̄ψ∗∂̄ψ + ψ̄∗ψ̄∂ψ̄∗∂ψ̄

))
− g2(ψ∗

←→
∂ ψ)(ψ̄∗

←→̄
∂ ψ̄)

− gm
(
ψψ̄
(
ψ∗∂̄ψ∗ − ψ̄∗∂ψ̄∗

)
− ψ∗ψ̄∗

(
ψ∂̄ψ − ψ̄∂ψ̄

))
− 2m2ψ∗ψψ̄∗ψ̄, (164)

L(2) =g2mψ∗ψψ̄∗ψ̄
(

2∂ψ∗∂̄ψ̄ + 2∂̄ψ̄∗∂ψ − ∂ψ̄∗∂̄ψ − ∂̄ψ∗∂ψ̄
)
. (165)

Let m = 0, the above results degenerate to the results in Section 4.
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