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Abstract

Mitochondrial function is critically dependent on the folding of the
mitochondrial inner membrane into cristae; indeed, numerous
human diseases are associated with aberrant crista morphologies.
With the MICOS complex, OPA1 and the F1Fo-ATP synthase, key
players of cristae biogenesis have been identified, yet their inter-
play is poorly understood. Harnessing super-resolution light and 3D
electron microscopy, we dissect the roles of these proteins in the
formation of cristae in human mitochondria. We individually
disrupted the genes of all seven MICOS subunits in human cells and
re-expressed Mic10 or Mic60 in the respective knockout cell line.
We demonstrate that assembly of the MICOS complex triggers
remodeling of pre-existing unstructured cristae and de novo forma-
tion of crista junctions (CJs) on existing cristae. We show that the
Mic60-subcomplex is sufficient for CJ formation, whereas the
Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabi-
lizes tubular CJs and, along with the F1Fo-ATP synthase, fine-tunes
the positioning of the MICOS complex and CJs. We propose a new
model of cristae formation, involving the coordinated remodeling
of an unstructured crista precursor into multiple lamellar cristae.
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Introduction

Mitochondria are essential organelles of eukaryotic cells that

perform a multitude of functions. Most notably, they are the power-

houses of the cell that generate ATP through oxidative phosphoryla-

tion. Mitochondria feature two membranes, the smooth outer

membrane (OM) and the highly convoluted inner membrane (IM).

The latter is functionally and structurally divided into two domains,

namely the inner boundary membrane (IBM) that parallels the OM

and crista membranes (CMs), infoldings of the IM pointing toward

the interior of the organelle. The CMs are connected to the IBM by

small circular to slit-like openings which are called crista junctions

(CJs). The proper folding of the IM is closely related to the function

of the organelle and numerous devastating diseases, including

cardiomyopathies, neurodegenerative disorders, metabolic diseases,

and cancers are associated with aberrant CM folding (Chan, 2012;

Nunnari & Suomalainen, 2012; Friedman & Nunnari, 2014; Pernas &

Scorrano, 2016; Wai & Langer, 2016).

In mammalian cells, regularly spaced lamellar cristae appear to

be the dominant IM morphology, while also other cristae shapes

exist (Hackenbrock, 1966; Scheffler, 2008; Cogliati et al, 2016).

Although the basic membrane architecture of mitochondria was

discovered almost seven decades ago (Palade, 1952; Sjöstrand,

1953), the molecular mechanisms underlying the formation of

cristae are still poorly understood and several models of cristae

biogenesis and maintenance have been suggested (Rabl et al, 2009;

Zick et al, 2009; Harner et al, 2016; Muhleip et al, 2016). Recent

experimental evidence supports the hypothesis that in budding

yeast, lamellar cristae are generated by the conversion of two IBM

sheets following a mitochondrial fusion event (Harner et al, 2016).
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In this study, we show that in human cells, lamellar cristae genera-

tion does not require mitochondrial fusion, suggesting fundamental

difference in the cristae biogenesis pathways of budding yeast and

higher eukaryotes.

Three membrane-shaping factors, namely the dimeric F1Fo-ATP

synthase, the MItochondrial contact site and Cristae Organizing

System (MICOS), and the large GTPase optic atrophy 1 (OPA1),

exhibit crucial, yet different roles in cristae biogenesis and mainte-

nance. The F1Fo-ATP synthase associates into elongated rows of

dimers that introduce positive curvature into membranes and stabi-

lize the rims of cristae. Thereby, these dimer rows are important

determinants of cristae morphology (Strauss et al, 2008; Davies

et al, 2012; Muhleip et al, 2016; Blum et al, 2019). In addition,

remodeling of the IM is critically influenced by OPA1 (Mgm1 in

yeast) (Alexander et al, 2000; Delettre et al, 2000; Zanna et al,

2008; Varanita et al, 2015; MacVicar & Langer, 2016). OPA1 has a

role in IM fusion (Cipolat et al, 2004; Ishihara et al, 2006) and is

presumably also involved in fission (Anand et al, 2014). It also

influences the overall cristae architecture and controls the CJ diame-

ter in apoptosis (Frezza et al, 2006; Meeusen et al, 2006). Recently,

it was shown that Mgm1 from Chaetomium thermophilum can

assemble into a helical filament on positively and negatively curved

membranes, leading to the proposal that Mgm1 might form a helical

filament inside of CJs (Faelber et al, 2019). MICOS is a large,

hetero-oligomeric protein complex that is primarily located at CJs

(Harner et al, 2011; Hoppins et al, 2011; von der Malsburg et al,

2011; Alkhaja et al, 2012; Rampelt et al, 2017b). In humans, seven

MICOS subunits have been identified so far, namely Mic60 (Mito-

filin), Mic27 (APOOL), Mic26 (APOO), Mic25 (CHCHD6), Mic19

(CHCHD3), Mic13 (QIL1), and Mic10 (MINOS1) (Pfanner et al,

2014; van der Laan et al, 2016). The holo-MICOS complex consists

of two distinct subcomplexes (Mic10/13/26/27 and Mic60/19/25)

that were named according to the core components Mic10 and

Mic60, respectively (Friedman et al, 2015; Guarani et al, 2015;

Anand et al, 2016). Both, Mic10 and Mic60 show membrane-

shaping activity (Barbot et al, 2015; Bohnert et al, 2015; Hessen-

berger et al, 2017; Tarasenko et al, 2017). Nevertheless, the exact

functions of the two MICOS subcomplexes are unknown. The deple-

tion of several MICOS subunits causes a depletion of CJs and the

formation of detached CMs in mitochondria (Harner et al, 2011;

Hoppins et al, 2011; von der Malsburg et al, 2011).

Genetic and physical interactions between the F1Fo-ATP

synthase, OPA1, and MICOS have been demonstrated (Rabl et al,

2009; Darshi et al, 2011; Janer et al, 2016; Eydt et al, 2017; Rampelt

et al, 2017a; Quintana-Cabrera et al, 2018), but the functional inter-

play of these three major players involved in cristae development

remained largely elusive.

In this study, we used CRISPR/Cas9 genome editing to individu-

ally disrupt the genes of all seven MICOS subunits. We demonstrate

that the Mic60-subcomplex controls the formation of CJs, whereas

the Mic10-subcomplex is crucial for the formation of lamellar

cristae. Inducible stable cell lines allowed us to follow the restora-

tion of lamellar cristae upon re-expression of MICOS proteins. We

found that re-formation of the holo-MICOS complex caused exten-

sive remodeling of pre-existing aberrant cristae, including also the

formation of secondary CJs. We further demonstrate that OPA1,

next to stabilizing tubular CJs, influences along with the F1Fo-ATP

synthase the positioning of the MICOS complex. Our findings

suggest a new model of cristae formation, based on coordinated

membrane remodeling of unstructured CMs into highly ordered

cristae.

Results

HeLa cells feature primarily lamellar cristae

Live-cell 2D STED nanoscopy of HeLa cells stably expressing cyto-

chrome c oxidase subunit 8A (COX8A) C-terminally fused with a

SNAP-tag revealed that these cells predominantly exhibit groups of

lamellar cristae spaced by voids that are occupied by mitochondrial

nucleoids (Fig 1A and C) (Stephan et al, 2019). To further investi-

gate the fold of the IM in three dimensions, we performed focused

ion beam milling combined with scanning electron microscopy (FIB-

SEM; Fig 1B; Appendix Fig S1, Movie EV1). Reconstructions of FIB-

SEM data revealed a substantial level of structural heterogeneity of

the architecture of the IM. Groups of stacked cristae were often

rotated with respect to each other. Occasionally, we observed single

cristae oriented perpendicular to the longitudinal axis of the mito-

chondrion and also a twisted arrangement of the cristae as previ-

ously described in mitochondria from yeast (Stoldt et al, 2019) and

flies (Jiang et al, 2017) (Movie EV1). Mic60 has been demonstrated

to form clusters that are enriched at CJs (Harner et al, 2011; Alkhaja

et al, 2012; Jans et al, 2013). In HeLa cells, these clusters often

resembled a stripe pattern perpendicular to the longitudinal axis of

the mitochondria (Fig EV1A). Live-cell STED nanoscopy recordings

of HeLa cells expressing Mic10-SNAP further verified an arrange-

ment of Mic10 clusters in a perpendicular stripe pattern, suggesting

that single lamellar cristae can exhibit multiple CJs around a mito-

chondrion (Movie EV2). Unexpectedly, Mic60 clusters also appeared

at sites marked by the mitochondrial nucleoids that are usually free

of cristae lamellae (Figs 1C and D, and EV1A) (Stephan et al, 2019).

In order to verify the occurrence of Mic60 clusters in the absences of

properly developed lamellar cristae, we first labeled cells for

COX8A-SNAP and subsequently chemically fixed and immunola-

beled them for Mic60. Dual-color STED recordings confirmed that

while the majority of Mic60 is present at the cristae lamellae, Mic60

clusters also appear in areas devoid of lamellar cristae (Figs 1E and

EV1B).

Characterization of MICOS-KO cell lines

Depletion of Mic60, but not of Mic10, results in the absence of all
MICOS subunits
To dissect the role of the individual MICOS subunits, we disrupted

the genes of the seven MICOS proteins (MIC10, MIC13, MIC19,

MIC25, MIC26, MIC27, and MIC60) in HeLa cells utilizing CRISPR/

Cas9 genome editing (for details on the experimental strategy, see

Appendix Table S1). We analyzed the protein levels of all MICOS

subunits in cell lysates and isolated mitochondria from the MICOS-

knockout (KO) cell lines (Figs 2A and EV1C). Deletion of Mic60 was

associated with an almost complete loss of Mic10, Mic13, Mic19,

and Mic26 and a strong reduction of the Mic25 and Mic27 protein

levels (Fig 2A). In Mic19-KO cells, we observed a similar reduction

of all MICOS subunits. In contrast, the depletion of Mic10 was asso-

ciated with a strong reduction of Mic13 and Mic26, whereas the
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levels of Mic19, Mic25, Mic27, and Mic60 were unaltered. Similarly,

the depletion of Mic13 was associated with a decrease in Mic10 and

Mic26 levels (Fig 2A). In cell lysates, the levels of other mitochon-

drial proteins including TOM20 suggested a slightly reduced amount

of mitochondria in Mic60-KO and Mic19-KO cells (Fig EV1C),

whereas the other KO cell lines were unaffected.

As Mic60 controlled the abundance of all other MICOS proteins

(Figs 2A and EV1C), we next performed complex immunoprecipi-

tation (Co-IP) experiments from isolated mitochondria using

Mic60 antibodies to investigate whether Mic60 interacts with the

remaining MICOS subunits when specific subunits are depleted.

In wild-type (WT) cells, we isolated Mic10, Mic13, Mic19, Mic25,

Mic26, and Mic27, demonstrating a fully assembled holo-MICOS

complex (Fig 2A). For the different KO cell lines, the amounts of

isolated proteins largely coincided with the steady-state levels,

suggesting that none of the subunits is essential for the binding

of the remaining subunits to Mic60 (Fig 2A). As an exception, we

found that in the absence of Mic10, little Mic27 was co-isolated

with Mic60, although Mic27 was still present at relatively high

levels in these cells.

In line with sequencing data, immunoblotting did not reveal any

Mic60 either in whole-cell extracts or in isolated mitochondria from

Mic60-KO cells (Figs 2A and EV1C, Appendix Table S1). Unexpect-

edly, after immunoprecipitation with Mic60 antiserum, we detected

on Western blots a faint signal for Mic60 and Mic19 in the Mic60-

KO cells (Fig 2A). Possibly, an unknown isoform or alternative

splicing might account for the residual amount of Mic60 in these

cells. As we could not identify any cell line without this residual

expression of Mic60, it is currently unclear, if these trace amounts

of Mic60 are functionally relevant.

Altogether, we conclude that the depletion of Mic60 leads to an

almost entire loss of MICOS. In contrast, the lack of Mic10 causes

specifically a depletion of the Mic10-subcomplex in human cells.

Assembly of OXPHOS is largely unaffected in MICOS-KO cells
In order to analyze the influence of the loss of MICOS subunits on

the assembly of the supercomplexes of the oxidative phosphoryla-

tion (OXPHOS) system, we performed blue native polyacrylamide

gel electrophoresis (BN–PAGE) of mitochondria isolated from the

MICOS-KO cells (Fig EV1D). BN–PAGE showed only slight

A

C D E

B

Figure 1. Inner membrane architecture and MICOS distribution in HeLa cells.

A Live-cell nanoscopy of HeLa cells. COX8A-SNAP was labeled with SNAP-cell SiR and imaged with STED nanoscopy.
B 3D architecture of cristae in HeLa cells visualized by FIB-SEM. The OM and the IBM are together shown as a transparent surface. Cristae of two mitochondria are

depicted in light and dark blue. A twisted crista is shown in gray.
C Live-cell recording as in (A). In addition, mitochondrial DNA was stained with PicoGreen and imaged by confocal laser scanning microscopy. Arrows mark sites where

nucleoids but no lamellar cristae are present.
D STED nanoscopy of mitochondria immunolabeled for Mic60 and dsDNA. Arrows mark sites where nucleoids are present.
E Dual-color STED nanoscopy of cells labeled for COX8A-SNAP and immunolabeled for Mic60. Arrows mark Mic60 clusters in the absence of fully developed lamellar

cristae.

Data information: Scale bars: 1 lm.
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differences between the individual MICOS-KO cells and the WT.

Even in the absence of Mic60, virtually resulting in the absence of

MICOS, the assembly of complexes I, II, and V was only somewhat

impaired and the assembly of complexes III and IV was slightly

decreased. This was also apparent for the corresponding supercom-

plexes (Fig EV1D). In Mic60-KO cells, the oxygen consumption rate

was reduced, but not abolished; all other MICOS-KO cell lines exhib-

ited oxygen consumption rates close to the WT (Fig 2B). We

conclude that the deletion of MICOS subunits has only modest influ-

ence on OXPHOS assembly.

Morphology of the mitochondrial network primarily depends on
the Mic60-subcomplex
Next, we analyzed the effects of the depletion of the MICOS subunits

on the overall morphology of the mitochondrial network (Fig 2C

and D). Mic19-KO and Mic60-KO cells showed the most severe

phenotype with strongly fragmented mitochondrial networks and

large spherical mitochondria. Cells lacking Mic10, Mic13, Mic25,

and Mic26 displayed on average only moderately fragmented mito-

chondrial networks, whereas the Mic27-KO cells exhibited slightly

hyperfused mitochondrial networks (Fig 2C and D). These findings

demonstrate that the Mic60 subcomplex, but not the Mic10 subcom-

plex, is crucial to maintain the mitochondrial network structure.

Loss of Mic10, Mic13, Mic19, and Mic60 disturbs cristae
architecture
To analyze the cristae morphology of the seven MICOS-KO cell

lines, we first performed transmission electron microscopy (TEM;

Fig 3A, Appendix Fig S2A). For an initial evaluation, we classified

the structures of the cristae as “wild type” (ordered, lamellar

A

B D

C

Figure 2. Characterization of MICOS knockout cell lines.

A Composition of MICOS in WT cells and MICOS mutants. Mic60-specific antibodies were used to pull-down Mic60 and interacting proteins from insolated
mitochondria. ** Unspecific band, due to the cross reaction of the anti-Mic25 antibody with Mic19.

B Oxygen consumption rate (OCR) of WT cells and MICOS mutants as analyzed by Seahorse Analyzer. Basal and maximal OCR are shown relative to the WT. Error bars:
SEM, n = 6.

C Mitochondrial networks of WT and MICOS mutant cells. Cells were immunolabeled for TOM20 and visualized by confocal microscopy. The inset shows a
magnification of the respective overview image. Scale bar: 10 lm.

D Quantification of the mitochondrial networks as shown in (C). The evaluation was performed manually in a blinded approach based on pre-defined morphology
criteria. Average and SD of three independent biological replicates are shown (> 170 cells per sample and replicate).

Source data are available online for this figure.
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cristae) or “aberrant” (disordered cristae; Fig 3A and B). In Mic60-

KO cells, virtually all mitochondria had an aberrant cristae morphol-

ogy. Similarly, the Mic10-, 13-, and Mic19-KO cells showed a strong

phenotype, as more than 75% of the mitochondria had aberrant

cristae. The mitochondria of the Mic25-, Mic26-, and Mic27-KO cells

exhibited only mild phenotypes with more than 75% of the mito-

chondria showing ordered lamellar cristae (Fig 3A and B). Addition-

ally, RNA interference (RNAi) experiments independently confirmed

these phenotypes (Appendix Fig S2B and C).

To further characterize the cristae shapes in the Mic10-,

Mic13-, Mic19-, and Mic60-KO cells, we assigned the cristae

phenotypes to more detailed categories. In Mic10 and Mic13-KO

cells, we mostly observed a large single CM that paralleled the

IBM (Fig 3A and C). This phenotype was less frequent in mito-

chondria from Mic60- or Mic19-KO cells, which instead regularly

showed multiple layers of CMs arranged in stacks or onion-like

arrangements (Fig 3A and C, Appendix Fig S2A).

Tubular CJs exist in Mic10-KO cells but not in Mic60-KO cells
We estimated the number of CJs in each of the seven KO strains on

several hundred TEM cross sections through mitochondrial tubules.

For a comparison of the different cell lines, the number of CJs was

normalized to the length of the OM (Fig 3D). Compared to WT cells,

the occurrence of CJs was reduced by about 25% in Mic26-KO cells

and by more than 70% in Mic10-, Mic13-, and Mic19-KO cells. In

Mic60-KO cells, the number of CJs was close to zero. We note,

however, that in Mic60-KO cells, we occasionally observed connec-

tions of the IBM with the CM (Fig 3D). WT cells, as well as Mic13-,

Mic19-, Mic25-, Mic26-, and Mic27-KO cells, had CJs with an aver-

age diameter of about 20 nm (Fig 3E). In Mic10-KO cells, the aver-

age diameter was enlarged to about 28 nm (n = 96), and for the few

unusually shaped connections found in Mic60-KO cells (n = 26), the

average diameter was about 32 nm (Fig 3E).

Compared to previous findings in yeast (Harner et al, 2011;

Barbot et al, 2015; Bohnert et al, 2015), the presence of a substan-

tial number of CJs (about 20% of the WT) in Mic10-KO cells was

unexpected. To further analyze this finding, we performed electron

tomography (ET) of WT, Mic10-KO, and Mic60-KO cells (Fig 3F).

Recordings of tilt series thereby allowed us to analyze and recon-

struct the CMs and CJs within mitochondrial sections of approxi-

mately 200 nm thickness.

Tomograms of Mic60-KO mitochondria confirmed that the CMs

frequently formed multilayered, very long sheets, resulting in an

onion-like architecture. As expected from the TEM recordings, we

found only very few CJs in the tomograms (Fig 3F, Movies EV3 and

EV4). Vesicular structures in the Mic60-KO mitochondria usually

proved to be tubular extensions of large sheet-like cristae (Fig 3F,

Movie EV3).

The tomograms also confirmed that the lamellar cristae of WT

cells exhibited numerous circular or slit-like CJs (Fig 3F; Movie

EV5). CJs connected to the same single crista were often in close

proximity and thereby they formed a line pattern perpendicular to

the longitudinal axis of the mitochondrial tubule (Fig 3F; Movie

EV5). As Mic60 is enriched at CJs (Jans et al, 2013), the distribution

of the CJs explains the perpendicular stripe pattern seen in STED

images of Mic60 in these cells (Figs 1D and EV1A).

The tomograms showed that in mitochondria of Mic10-KO

cells, the cristae usually formed single-layered large sheets with

circular, stalk-like tubular CJs (Fig 3F, Movie EV6). In the rare

Mic10-KO mitochondria with onion-shaped IM morphology

(Movie EV7), these CJs connected the outermost CM with the

IBM (Fig 3F, Movie EV7). The stalk-like CJs found in Mic10-KO

cells were structurally different to those observed in WT cells,

which were circular or slit-like and immediately continuous with

the lamellar cristae. Furthermore, in Mic10-KO cells, the CJs

appeared to be irregularly distributed and, compared to the WT,

often confined to small areas.

Taken together, Mic10-, Mic13-, Mic19-, and Mic60-KO cells

show a strongly altered cristae architecture. Remarkably, human

mitochondria depleted of Mic10 still exhibit numerous tubular,

stalk-like, slightly enlarged CJs, whereas CJs are nearly absent in

Mic60-KO cells. As Mic10-KO cells accommodate the Mic60-subcom-

plex, we conclude that the Mic60-subcomplex, but not the Mic10-

subcomplex, is necessary for the formation of CJs.

Mic10 controls the spatial distribution of Mic60 and the
formation of Mic60 assemblies

The irregular distribution of CJs in Mic10-KO cells suggested that

in these cells also the Mic60-subcomplexes exhibit an aberrant

distribution. To test this, we performed 2D STED nanoscopy. In

WT cells, the Mic60 clusters were seemingly distributed across

the mitochondria, often resembling a stripe pattern perpendicular

to the longitudinal axis of the mitochondria (Figs 4A and EV1A).

In mitochondria of Mic10-KO cells, we found that Mic60 and

Mic19 clusters localized in clearly discernible opposite distribution

bands, i.e., they exhibited a two-sided distribution on the mito-

chondrial tubules (Figs 4A and EV2A). This opposite distribution

of Mic60 clusters was also observed in Mic13-KO cells

(Fig EV2B), showing that the absence of the Mic10-subcomplex

influences the distribution of the Mic60-subcomplexes. Unexpect-

edly, also the F1Fo-ATP synthase subunit b (ATPB) exhibited a

similar two-sided distribution in Mic10-KO cells as visualized by

2D and 3D STED nanoscopy (Fig 4A and B). To further analyze

the detailed localization of Mic60 in Mic10-KO cells, we visual-

ized Mic60 with 3D MINFLUX nanoscopy (Gwosch et al, 2020).

Thereby, we were able to localize immunolabeled Mic60 with an

isotropic localization precision of about 5 nm in a ~ 300 nm thick

volume. MINFLUX recordings confirmed the distribution of Mic60

clusters in two narrow opposite bands along the mitochondrion

of a Mic10-KO cell (Fig 4C), which is entirely different to their

stripe-like distribution in WT cells (Fig EV2C).

These observations raised the question, if the highly ordered

distribution of the Mic60-subcomplex and of the F1Fo-ATP

synthase in Mic10-KO cells is just a consequence of the aberrant

cristae morphology. Our ET data strongly suggested that the CMs

form a hollow tube in the absence of Mic10. However, the ET

data do not provide an ultimate proof for such a hollow tube, as

the tomograms do not encompass a full mitochondrial tubule

(Fig 3F). Therefore, we aimed to visualize the fold of the IM in

the entire mitochondrial volume using live-cell fluorescence

microscopy as well as FIB-SEM. We labeled the cells with Mito-

tracker Green and imaged the IM using linear 3D structured illu-

mination microscopy (3D SIM). 3D SIM of Mic10-KO cells fully

supported the view that mitochondria devoid of Mic10 contained

tube-like cristae that line the interior of the mitochondrion
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(Figs 4D and EV2D). Live-cell STED recordings of Mic10-KO cells

expressing COX8A-SNAP further confirmed that the mitochondria

in Mic10-KO cells contain mobile, large tube-like cristae (Movies

EV8 and EV9). Finally, FIB-SEM of Mic10-KO cells unequivocally

demonstrated the presence of tube-like cristae, which were perfo-

rated (Fig 4E). Because the edges of the perforations have a posi-

tive membrane curvature, we speculate that the F1FO-ATP

synthases might decorate the perforations and therefore is loca-

lized at the rims of the mitochondria (Fig 4A and B).

The ET, FIB-SEM, and super-resolution data conclusively demon-

strated that in Mic10-KO cells, the CMs form generally single-layered

hollow tubes. It is difficult to reconcile the formation of the opposite

Mic60 distribution bands with a large tube-like CM that evenly lines

the mitochondrial tubule. We concluded that the distribution of the

F1Fo-ATP synthase and of the Mic60 clusters in opposite bands is

not primarily determined by the shape of the tube-like CM. We

assumed that the abundance of Mic10 controls the distribution of

Mic60. To test this idea we analyzed the Mic60 distribution in

Mic19-KO cells which exhibit reduced Mic60 levels and a strongly

aberrant cristae architecture (Fig 3A and B), but remain residual

levels of the Mic10 subcomplex (Fig 2A). In these cells, Mic60 was

often found in randomly scattered clusters instead of opposite bands

(Fig EV2E). In addition, we occasionally observed mitochondria that

exhibited continuous ring- or arc-like Mic60 structures (Fig EV2E).

The formation of such continuous Mic60 assemblies was strongly

increased when we overexpressed Mic10-FLAG in Mic19-KO cells

(Figs 4F and EV2F). In addition, Mic10-FLAG overexpression also

raised the expression level of Mic60 in Mic19-KOs (Fig EV2F).

Altogether, these data demonstrate that the expression level of

Mic10 influences the distribution of Mic60 and also of the F1Fo-ATP

synthase. In the absence of Mic10, Mic60 is found in clusters orga-

nized in opposite distribution bands, whereas at elevated Mic10

levels, Mic60 forms extended assemblies.

Re-expression of Mic60 in Mic60-KO cells stabilizes MICOS and
induces the formation of secondary CJs

To better understand the role of MICOS in cristae formation, we

next analyzed how Mic60-deficient mitochondria respond to a

rescue of the cellular Mic60 levels. To this end, we inserted the

coding sequence of Mic60 under the transcriptional control of a

tetracycline-/doxycycline-inducible (TetOn) promoter into the

genome of Mic60-KO cells, thereby generating a Mic60-TO cell line.

After induction of the re-expression of Mic60 by adding doxy-

cycline, we investigated the effects of increasing Mic60 levels

over time (Fig 5). We titrated the concentration of doxycycline

to reach approximately endogenous Mic60 expression levels after

48 h. After this time, virtually all cells expressed Mic60 (Fig 5A

and B, Appendix Fig S3A). Mic60 re-expression rescued the

cellular protein levels of all MICOS subunits (Fig 5B) and caused

the re-formation of tubular mitochondrial networks (Fig 5C,

Appendix Fig S3B).

Next, we asked whether the aberrant cristae in the Mic60-KO

cells are converted to the WT morphology, or whether they are

replaced by newly formed cristae. To address this question, we

analyzed the morphology changes upon MICOS re-expression over

time by analysis of numerous TEM recordings and classified the

CM morphologies (Fig 5D and E). We observed a considerable

number of mitochondria with intermediately shaped cristae; i.e.,

IM segments that partly showed a lamellar morphology and partly

had an aberrant appearance (Fig 5D and E). These contiguous IM

segments strongly point to a conversion of the aberrant cristae.

Furthermore, we did not observe an increased number of small

cristae that would hint to a strong increase of cristae biogenesis.

With rising Mic60 levels, the number of CJs increased steadily

over time and reached WT levels after about 48 h (Fig 5F).

Importantly, we found that after 16 h of induction of Mic60

expression, only a fraction of the new CJs were connected to

cristae with WT morphology (Fig 5G, Appendix Fig S4). Instead,

a substantial part of the CJs induced by Mic60 expression was

found on aberrant or intermediately shaped cristae. We conclude

that these CJs are formed on already existing cristae and denote

them as secondary CJs.

Formation of the holo-MICOS complex results in crista
membrane remodeling and a redistribution of the CJs

The conversion of the cristae in the Mic60-TO cells is difficult to

analyze because multiple layers of CM are involved. In comparison,

the Mic10-KO has a less complex IM architecture, as the mitochon-

dria usually exhibit only one layer of a tube-like CM that is already

connected to the IBM by CJs (Fig 3A and F). Therefore, we next

aimed to analyze the cristae conversion process upon re-expression

of Mic10 in a Mic10-deficient cell line. To this end, we integrated a

TetOn version of Mic10 C-terminally fused with a FLAG-T2A-EGFP

tag into Mic10-KO cells. The self-cleaving T2A-peptide (Ryan et al,

1991) causes the release of cytosolic EGFP as an expression

reporter, whereas the FLAG-tagged Mic10 is transported into the

mitochondria (Figs 6A and EV3A). To test whether the re-expres-

sion of Mic10-FLAG induces the formation of the holo-MICOS

complex, we performed Co-IPs from cell lysates using anti-FLAG

and anti-Mic60 antibodies (Fig EV3B, Appendix Fig S5A). Using

Mic10-FLAG as a bait, we pulled down Mic60, Mic26, Mic19, and

Mic13 at levels mirroring the increasing Mic10 levels. When we

◀ Figure 3. Depletion of MICOS subunits affects the formation of lamellar cristae.

A Representative TEM recordings of WT cells and MICOS-KO mutants, as indicated. Ultra-thin sections were taken in parallel to the growth surface of the cells.
B Quantification of the overall cristae morphology on TEM recordings.
C Quantification of detailed morphology of CMs in MICOS mutants (left). TEM recordings were assigned to eight classes (right).
D CJ frequency on TEM recordings. The number of CJs was manually determined and normalized to the length of the OM. Samples were compared to WT by a one-way

ANOVA test. Error bars: SEM.
E Diameter of CJs. CJs were manually measured on TEM recordings. Red line: Average. Error bars: SD. Samples were compared to WT by a one-way ANOVA test.
F Representative ET reconstructions of mitochondria from a WT cell (left), a Mic10-KO cell (center), and a Mic60-KO cell (right). The OM is displayed in clear gray; the

side of the IM that faces the matrix is shown in dark blue. The IM side that faces the IMS is shown in light blue.

Data information: n: number of mitochondrial sections (B, C, E) or number of CJs (D). ***P ≤ 0.001. Scale bars: 500 nm (A), 250 nm (F).
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used Mic60 as a bait, we isolated Mic10, Mic13, and Mic26 at levels

corresponding to the expression levels of Mic10, whereas Mic19

was isolated irrespective from the Mic10 expression levels

(Fig EV3B). These findings demonstrate that re-expression of

Mic10-Flag rescues the expression levels of Mic13 and Mic26 and

that newly synthesized subunits of the Mic10-subcomplex bind to

the pre-existing Mic60-subcomplex to form the fully assembled

MICOS complex.

A

B

C

E

F

D

Figure 4.
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After 48 h of induction, the majority of cells expressed Mic10-

FLAG and showed mitochondrial networks comparable to WT cells

(Appendix Fig S5B and C). Moreover, the cristae morphology was

rescued in the majority of these cells as demonstrated by live-cell

STED recordings (Fig 6A and B). As the expression levels of Mic10

did not raise simultaneously in all cells, few cells still exhibited a

low Mic10 expression level after 24 h of induction, whereas most

cells already featured an elevated Mic10 expression level. In cells

exhibiting low Mic10 expression levels, the faint Mic10-FLAG

signals largely co-localized with Mic60 in narrow opposite distribu-

tion bands, comparable to the Mic60 distributions bands observed

in Mic10-KO cells (Fig 6C). In accordance with the co-immunopreci-

pitation experiments (Fig EV3B), these observations suggest that

Mic10-FLAG is recruited to the existing Mic60-subcomplexes. In

cells showing higher Mic10-FLAG expression, Mic10 and Mic60 also

largely co-localized, but their distribution in opposite bands was no

longer obvious, as the protein clusters spread over the mitochondria

(Fig 6C). Together, these data suggest that Mic10, after being

recruited to the Mic60-subcomplex, changes the distribution of the

holo-MICOS complex in the IM.

Next, we recorded 2D TEM images of mitochondria at different

time points after re-expression of Mic10-FLAG in Mic10-TO cells

and analyzed the progress of the structural rescue of the cristae

(Fig 6D and E). After 24 h of induction, the cristae morphology,

the number of CJs (Fig 6F), as well as the average CJ diameter

(Fig 6G) resembled the situation in WT cells. The TEM recordings

also revealed that the rescue of the crista phenotype seemed to

involve an “intermediate” phenotype, i.e., contiguous cristae that

were partly lamellar and partly tube-like (Fig 6D, inset,

Appendix Fig S5D). These observations suggest a continuous

remodeling of the aberrant tube-like cristae into lamellar cristae

controlled by the assembly of the holo-MICOS complex. To test

the idea of a continuous IM remodeling, we next analyzed the

distribution of Mic10, Mic60, and ATPB in Mic10-TO cells induced

for 16 h using STED nanoscopy (Fig EV3C–E). In line with the EM

data, we observed intermediate phenotypes for the distribution of

Mic10, Mic60, and ATPB, further supporting extensive IM remodel-

ing induced by Mic10 re-expression.

To further investigate the reshaping of the cristae upon expres-

sion of Mic10-FLAG in 3D, we performed FIB-SEM that allows visu-

alizing whole mitochondria in 3D, but lacks the resolution to

discern individual CJs (Fig 7A, Appendix Fig S6). The FIB-SEM data

verified the existence of intermediate cristae which are presumably

developing from a tube-like structure into a lamellar shape (Fig 7A;

Movies EV10–EV12). Representative reconstructions based on FIB-

SEM data display cristae morphologies of a noninduced (0 h), an

intermediate (16 h), and a largely rescued mitochondrion (24 h)

from Mic10-TO cells (Fig 7A, Movies EV10–EV12). The 3D structure

of the intermediate mitochondrion is suggestive of an arching of the

large unfolded CMs (Fig 7A, lower panel, Movie EV11). We propose

that these wavy CMs are subsequently converted into individual

lamellar cristae.

Next, we analyzed Mic10-TO cells re-expressing Mic10 using

ET. In contrast to FIB-SEM, the ET recordings allowed us to

analyze the CJs, although the analyzed volume did not encompass

an entire mitochondrial tubule. The representative reconstructions

based on ET data demonstrate that the cristae in mitochondria of

noninduced and rescued Mic10-TO cells are similar to the ones

from Mic10-KO and WT cells, respectively (Fig 7B, Movies EV13

and EV14). Like Mic10-KO cells, noninduced cells showed irregu-

larly distributed CJs that connected the tube-like cristae with the

IBM (Fig 7B, Movie EV13). In induced cells, we observed mito-

chondria exhibiting separated lamellar cristae, representing the

final stage of recovery, contiguous with interconnected, ragged

cristae structures, corresponding to an intermediate stage (Fig 7B,

Movie EV14). At lamellar cristae, the CJs were again arranged in

line patterns perpendicular to the longitudinal axis of the mito-

chondrion (Fig 7B).

Taken together, we conclude that upon re-expression of

Mic10-FLAG in Mic10-TO cells, the Mic10-subcomplex is stabi-

lized and interacts with the Mic60-subcomplex. The formation of

the holo-MICOS complex is accompanied by a redistribution of

MICOS around the mitochondria and a recovery of the lamellar

cristae. Our data suggest that during this process, the large tube-

like cristae of the noninduced Mic10-TO mitochondria furrow,

fragment, and are thereby converted into separated lamellar

cristae.

Outer membrane fission or fusion is not essential for lamellar
cristae formation

In yeast, the generation of lamellar cristae depends on the mito-

chondrial fusion machinery (Harner et al, 2016; Kojima et al,

2019). Because mitochondrial fission and fusion are balanced

processes, fission defective mitochondria also exhibit a reduced

number of fusion events. Indeed, mitochondria of Ddnm1 yeast

cells, which have strongly reduced mitochondrial fission rates,

exhibit a substantially reduced number of lamellar cristae, but a

high number of branched, tubular cristae (Harner et al, 2016). In

order to test if also in higher eukaryotes the formation of lamellar

cristae is dependent on mitochondrial fission, we depleted WT

cells of DRP1 (also known as DNM1L, dynamin-1-like protein),

◀ Figure 4. Depletion of Mic10 causes formation of large tube-like cristae and opposite distribution bands of Mic60 and ATPB.

A, B Nanoscopy of mitochondria of WT and Mic10-KO cells, as indicated. (A) Mitochondria were immunolabeled for Mic60 and ATPB and visualized by 2D STED
nanoscopy. (B) Mitochondria were immunolabeled for TOM20 and ATPB and recorded with 3D STED nanoscopy. Image data were deconvolved. Depicted are cross
sections of a mitochondrion (side view).

C 3D MINFLUX nanoscopy. Mic10-KO cells were immunolabeled for Mic60 using a directly labeled antibody. Colors encode depth information.
D 3D SIM of living WT and Mic10-KO cells. Cells were labeled with Mitotracker Green. Images show maximum intensity projections.
E FIB-SEM of Mic10-KO cells. Shown is a representative reconstructed mitochondrion. Dashed box: Orthoslice view on the smaller mitochondrion. The OM and IBM

are displayed together in clear gray, the CM in is shown in blue.
F 2D STED nanoscopy of mitochondria. Mic19-KO cells were transfected with a plasmid for Mic10-FLAG expression under the control of a tetracycline-inducible

promoter. Left panel: Mitochondria from noninduced cell. Right: Mitochondria from induced cell expressing Mic10-FLAG.

Data information: Scale bars: 1 lm (A, C, D, F), 500 nm (B, E).
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which is essential for the fission of mitochondrial tubules in

higher eukaryotes (Bleazard et al, 1999; Lee et al, 2004; Cere-

ghetti et al, 2008). Corroborating previous reports (Ban-Ishihara

et al, 2013), WT cells depleted of DRP1 by RNAi for 7 days

exhibited hyperfused mitochondrial networks and numerous

lamellar cristae (Fig EV4A and B). This observation suggests that

in HeLa cells, fission of mitochondrial tubules is not essential for

the generation of lamellar cristae.

In mammalian cells, the fusion of the mitochondrial OM is regu-

lated by the two mitofusins MFN1 and MFN2, two highly conserved

dynamin-related GTPases, which exhibit distinguishable functions

(Ishihara et al, 2004; Giacomello et al, 2020). To investigate

A

D

E F G

B C

Figure 5. Mic60 controls MICOS protein levels, CJ frequency, and inner membrane morphology.

Rescue of Mic60 expression in Mic60-TO cells upon induction with doxycycline hyclate.

A Cells were immunolabeled for Mic60 and DNA and visualized by confocal fluorescence microscopy before and after induction of Mic60 expression for 48 h.
B Protein levels of MICOS proteins after Mic60 induction. Cell lysates were analyzed by Western blotting at the indicated time points.
C Recovery of mitochondrial networks upon Mic60 re-expression. Cells were induced with doxycycline hyclate for 72 h, immunolabeled for TOM20, and visualized by

confocal microscopy.
D–G TEM of Mic60-TO cells before and after induction. (D) TEM recordings of Mic60-TO cells at the indicated time points. (E) Quantification of the cristae morphology.

(F) CJ frequency. The number of CJs on TEM recordings was normalized to the length of the OM. At least 90 mitochondrial sections were analyzed for each sample.
(G) Quantification of the cristae morphology of Mic60-TO cells. Only mitochondria exhibiting at least one CJ were analyzed.

Data information: n: Number of mitochondrial sections. Scale bars: 20 lm (A), 10 lm (C), 500 nm (D).
Source data are available online for this figure.
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Figure 6. The Mic10-subcomplex is essential for coordination of lamellar cristae formation.

A, B Live-cell nanoscopy of Mic10-TO cells. Cells expressing COX8A-SNAP were labeled with SNAP-cell SiR and recorded with STED nanoscopy. (A) Cristae architecture in
noninduced cells. (B) Cristae architecture after Mic10 re-expression (24 h induction with doxycycline). STED image data were deconvolved.

C STED nanoscopy of fixed Mic10-TO cells. Cells were induced for 24 h and immunolabeled for Mic60 and Mic10-FLAG. Upper row: Cell with weak Mic10 expression
level. Lower row: Cell with strong Mic10 expression level.

D–G TEM of Mic10-TO cells. (D) Cells induced for the indicated period of time were recorded with TEM. Arrow indicates an intermediately shaped crista.
(E) Quantification of the cristae morphology. n: Number of mitochondrial sections. (F) CJ frequency in Mic10-TO cells. Number of CJs was normalized to the length
of the OM. The same sections were analyzed as in (E). (G) Diameter of CJs estimated on TEM recordings.

Data information: n: number of analyzed mitochondrial sections (E) or CJs (G). Error bars: SD. Scale bars: 10 lm (A, B, conf), 1 lm (A, B, C), 0.5 lm (D).
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whether OM fusion is essential for lamellar crista formation, we

depleted HeLa cells of MFN1 or MFN 2 or MFN1 together with

MFN2. Depletion of these proteins resulted in a mild cristae pheno-

type, but lamellar cristae were still observed (Fig EV4C and D).

We conclude that in mammalian cells OM fission or fusion is not

essential for the development of lamellar cristae.

Deletion of OPA1 induces a moderate cristae phenotype in
WT cells

A substantial body of evidence demonstrates that the dynamin-

like GTPase OPA1 (Mgm1 in yeast) influences cristae architecture

(Ramonet et al, 2013; Patten et al, 2014; Cogliati et al, 2016;

A

B

Figure 7. holo-MICOS complex assembly induces remodeling of the mitochondrial inner membrane.

A FIB-SEM of Mic10-TO cells. Cells were induced for 0, 16, and 24 h. The representative reconstructions show mitochondria from noninduced, rescued, and
intermediate cells, as indicated. The OM is shown together with the IBM in clear gray, the CM in blue.

B ET of Mic10-TO cells. Mic10 expression was induced for 0 and 16 h. Shown are reconstructions of representative noninduced and almost completely rescued
mitochondria. The OM is displayed in clear gray; the side of the IM that faces the matrix is shown in dark blue. The IM side that faces the IMS is shown in light blue.

Data information: Scale bars: 500 nm.
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Glytsou et al, 2016; MacVicar & Langer, 2016; Kondadi et al,

2019). To further investigate the role of OPA1 in cristae develop-

ment, we first efficiently depleted OPA1 by RNAi in WT and

Mic60-KO cells (Fig 8A). Compared to Mic10-KO and Mic60-KO

cells, OPA1-depleted WT cells had a moderate cristae phenotype,

as the portion of mitochondrial TEM sections showing cristae

lamellae was reduced by only about 10%; still the cristae often

appeared shorter, disordered, or partly swollen (Fig 8B and C),

fully in line with previous studies (Olichon et al, 2003; Barrera

et al, 2016; Glytsou et al, 2016).

Yeast Dmgm1 cells have been reported to contain septa, i.e.,

IM structures that divide the mitochondrial matrix in two physi-

cally separated compartments (Sesaki et al, 2003; Harner et al,

2016; Kojima et al, 2019). Such septa are the result of a lack of

IM fusion after tubule fusion (Harner et al, 2016). In WT HeLa

cells, a single crista is often connected to the IBM by CJs on

both sides of the mitochondrion (Fig 3A). Thus, septa could be

mistaken by cristae on TEM recordings. However, in Mic60-KO

cells, septa junctions should be unequivocally recognized as

almost no CJs are formed in the absence of Mic60. Indeed, we

observed in ~ 15% of the mitochondria from OPA1-deficient

Mic60-KO cells such septa (Fig 8B and D). Otherwise, the mito-

chondria were phenotypically similar to the scrambled RNAi

Mic60-KO control (Fig 8B and D). The observation of septa in

OPA1-depleted Mic60-KO cells suggested that such septa also

exist in OPA1 depleted WT cells. Therefore, a fraction of CJs in

these cells (Fig 8C) might actually represent septa junctions. To

determine if in WT cells depleted of OPA1 the majority of the

A C D

E

F

B

A C D

E

F

B

Figure 8. OPA1 influences the inner membrane morphology.

Knockdown (KD) of OPA1 in HeLa cells. WT and Mic60-KO cells were transfected with a scrambled control (Ctrl.) or siRNA pools against OPA1 (OPA1-KD) for 5 days.

A Cell lysates were analyzed by Western blotting.
B TEM recordings from OPA1-depleted WT and Mic60-KO cells. Arrows point to a septum.
C, D Quantification of the cristae morphology of OPA1 deficient WT (C) and Mic60-KO (D) cells. The number of CJs was normalized to the length of the OM (C). The

number of septate mitochondria in Mic60-KO cells was estimated (D).
E, F ET of mitochondria from OPA1-KD cells. WT cells were transfected with a scrambled control (E) or siRNA pools against OPA1 (F) for 48 h. Reconstructions of

representative mitochondria are displayed. The OM is displayed in clear gray; the side of the IM that faces the matrix is shown in dark blue. The IM side that faces
the IMS is shown in light blue.

Data information: Scale bars: 500 nm (B), 250 nm (E, F).
Source data are available online for this figure.
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IM structures are septa or cristae, we performed ET (Fig 8E and

F, Movies EV15 and EV16). Reconstructions revealed that most

of the IM structures did not continuously cross the entire mito-

chondrion within the ~ 200 nm thick sections and therefore

represent disordered lamellar cristae, not septa (Fig 8F, Movie

EV16).

OPA1 influences the formation of MICOS assemblies and
stabilizes tubular CJs

OPA1 and Mic10 antagonistically influence the size and the
distribution of Mic60 assemblies
We next investigated the influence of OPA1 on the distribution of

Mic60. To this end, we immunolabeled cells for Mic60 and the

ATPB subunit of the F1Fo-ATP synthase and performed STED nano-

scopy (Fig 9A). In OPA1-deficient mitochondria, we found conspic-

uous ring- and rib-like Mic60 assemblies that were significantly

larger than the rod-shaped Mic60 clusters in the WT control

(Fig 9A). Because in Mic19-deficient cells the occurrence of elon-

gated Mic60 assemblies was Mic10-dependent (Figs 4F and EV2F),

we next asked if Mic10 also controls the formation of the Mic60

assemblies in OPA1-depleted cells. We found that in Mic10-KO cells

devoid of OPA1, Mic60 did not form extended assemblies but local-

ized in small clusters (Figs 9B and EV4E). In these cells, also the

distribution of Mic60 in opposite distribution bands had disap-

peared, as the clusters were scattered across the mitochondria

(Fig 9B). To test if the formation of large Mic60 assemblies in cells

depleted of Mic10 and OPA1 can be induced by re-expression of

Mic10, we depleted Mic10-TO cells of OPA1 for 48 h and subse-

quently induced Mic10 expression for 24 h (Fig EV4F). STED

images showed that Mic10-FLAG expression resulted in the redistri-

bution of Mic60 clusters into larger Mic60 assemblies (Fig EV4F). In

addition, TEM demonstrated that OPA1-depleted Mic10-TO cells

expressing Mic10-FLAG for 24 h developed disordered cristae lamel-

lae, comparable to OPA1-depleted WT cells (Fig EV4G). This

demonstrates that Mic10 induces cristae remodeling also in OPA1-

A

C D E

B

Figure 9. OPA1 affects the Mic60 distribution and stabilizes tubular CJs.

A–C WT and Mic10-KO cells were transfected with a scrambled control (Ctrl.) or siRNA pools against OPA1 (OPA1-KD) for 72 h. (A, B) STED nanoscopy of OPA1-depleted
WT (A) and Mic10-KO (B) cells. Cells were immunolabeled for Mic60 and ATPB. (C) TEM of OPA1-depleted Mic10-KO cells. Left: Representative TEM recordings
showing CJs marked by arrows in a control cell and a similar view for an OPA1-KD cell. The CMs are colored in green and the OM and IBM together in magenta.
Right: Quantification of mitochondria containing CJs or septa junctions. Sections that contained CJ-like structures were analyzed. Of these, the number of sections
exhibiting septa or cristae structures (other) was quantified.

D, E Depletion of ATP5ME in HeLa cells. Cells were transfected with a scrambled control or siRNA pools against ATP5ME for 4 days. (D) TEM recording (left) and
quantification of the number of cristae per mitochondrial section (right). (E) Cells depleted of ATP5ME were immunolabeled for Mic60 and recorded with STED. The
arrows point to crossing points of the opposite Mic60 distribution bands.

Data information: n: Number of mitochondrial sections analyzed. Boxes indicate 25th to 75th percentile. Horizontal lines indicate median. Whiskers indicate SD.
Mann–Whitney test was used to compare samples. ***P ≤ 0.001. Scale bars: 500 nm (A, B, D), 100 nm (C), 1 lm (E).
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deficient cells. We conclude that OPA1 is not essential for the forma-

tion of cristae lamellae but controls, together with Mic10, the forma-

tion and distribution of Mic60 assemblies.

OPA1 stabilizes tubular CJs in Mic10-KO cells
Since the simultaneous depletion of both Mic10 and OPA1 led to

scattered Mic60 clusters, we next investigated if these cells still

contained CJs. TEM of OPA1-depleted Mic10-KO cells revealed,

except for a strong fragmentation of the mitochondrial tubules, a

similar cristae phenotype as seen in Mic10-KO cells (Fig EV4H).

However, we observed a reduction of CJs in Mic10-KO cells devoid

of OPA1 (Fig 9C). In Mic10-KO cells transfected with scrambled

siRNAs about 60% of the TEM sections of mitochondria showed at

least one CJ, whereas after depletion of OPA1, only 36% of the

mitochondria showed at least one CJ (Fig 9C). About 50% (about

15% in controls) of these junctions were associated with septa and

thus are likely to represent septa junctions (Figs 9C and EV4I).

Hence, in non-septate mitochondria devoid of Mic10 and OPA1, the

number of CJs was decreased by 66%. These observations suggest

an important role of OPA1 for the stability of tubular CJs in the

absence of Mic10.

Taken together, OPA1 is required for proper cristae architecture,

although its depletion results only in a mild phenotype compared to

Mic10 or Mic60 knockouts. A simultaneous depletion of both OPA1

and Mic10 further reduced the number of CJs suggesting that OPA1

works in concert with the Mic10-subcomplex to stabilize tubular

CJs. Additionally, OPA1 and Mic10 antagonistically determine the

distribution and size of Mic60 assemblies.

The dimeric F1Fo-ATP synthase affects the cristae architecture
and the Mic60 distribution

Next to MICOS and OPA1, the F1Fo-ATP synthase is a key player for

shaping the IM (Kuhlbrandt, 2019). Mitochondrial F1Fo-ATP

synthases generally form dimers, which can assemble into long

ribbons that contribute to the shape of the cristae (Dudkina et al,

2006; Strauss et al, 2008; Blum et al, 2019). The F1Fo-ATP synthase

subunit ATP5ME (also known as ATP synthase subunit e, ATP5K or

ATP5I) is involved in F1Fo-ATP synthase dimerization (Arnold et al,

1998; Habersetzer et al, 2013; Quintana-Cabrera et al, 2018). To

disturb dimer formation, we used RNAi to deplete ATP5ME in HeLa

cells (Fig EV5A). Cells devoid of ATP5ME contained mostly large

spherical mitochondria, but also some elongated tubular mitochon-

dria (Figs 9D and EV5A and B). Compared to the depletion of

MICOS or of the Mic10-subcomplex, the IM generally exhibited a

mild phenotype. As reported previously, the mitochondria of cells

depleted of ATP5ME contained fewer, often slightly disordered

lamellar cristae (Figs 9D and EV5B) (Arnold et al, 1998; Paumard

et al, 2002; Rabl et al, 2009; Habersetzer et al, 2013; Quintana-

Cabrera et al, 2018).

As the F1Fo-ATP synthase has been shown to interact with the

MICOS complex in yeast (Eydt et al, 2017; Rampelt & van der Laan,

2017; Rampelt et al, 2017a), we next investigated the distribution of

Mic60 in cells depleted of ATP5ME. In the spherical, more aberrant

mitochondria, Mic60 seemed to be arranged in long stripes encir-

cling the organelles (Fig EV5B). In tubular mitochondria, Mic60

primarily formed clusters that were localized on opposite sides of

the mitochondrial tubules (Fig 9E). Between these bands, we

occasionally observed a stripe-like arrangement of Mic60 clusters

perpendicular to the tube longitudinal axis (Fig 9E). This overall

distribution of Mic60 in ATP5ME-depleted cells (Fig 9E) was remi-

niscent of the Mic60 distribution in Mic10-KO cells (Fig 4A), or in

cell types that exhibit fewer or smaller cristae (Stoldt et al, 2019).

Similar to the situation in these cell types, the narrow Mic60 bands

were also often twisted, resulting in a helical arrangement of the

Mic60 clusters (Fig 9E). The ATP5ME-dependent re-localization of

MICOS suggests that the F1Fo-ATP synthase dimers support an even

distribution of MICOS, and consequently of the CJs, around the

mitochondrial tubules. Indeed, when using Mic10-FLAG as a bait in

co-IP experiments, we co-isolated also ATP5B, suggesting a physical

interaction of the F1Fo-ATP synthase with the Mic10 subcomplex in

human cells (Appendix Fig S5A).

Taken all together, we conclude that in human cells, the two

MICOS subcomplexes have different functions. The Mic60-subcom-

plex, which is stable in the absence of the Mic10-subcomplex, is

essential for the maintenance of CJs and the stability of the holo-

MICOS complex. The Mic10-subcomplex is essential for lamellar

cristae formation. Formation of the holo-MICOS complex mediates

extensive remodeling of pre-existing unstructured cristae into indi-

vidual lamellae and also the formation of secondary CJs. We found

that both OPA1 and Mic10 differently influence the distribution and

size of MICOS assemblies. Finally, our data show that dimers of the

F1Fo-ATP synthase influence the cristae shape as well as the distri-

bution of the MICOS complex, together demonstrating multiple

functional interactions of the membrane-shaping proteins involved

in cristae formation. Thereby, as detailed below, our findings

support a new model for the formation of cristae in higher

eukaryotes.

Discussion

In this work, we investigated the interplay of the major determi-

nants of cristae formation in higher eukaryotes, namely the Mic10

and the Mic60 subcomplexes of MICOS, OPA1, and the F1Fo-ATP

synthase. Our data suggest significant differences in cristae forma-

tion of higher and lower eukaryotes. We demonstrate that cristae

development in human mitochondria is largely independent from

mitochondrial fusion–fission dynamics, whereas fusion of mito-

chondria is essential for lamellar cristae formation in the yeast

Saccharomyces cerevisiae (Harner et al, 2016). Another significant

difference exists in the stability of the Mic10-subcomplex that

depends on the Mic60-subcomplex in human cells, whereas it

assembles in a Mic60-independent manner in yeast (von der Mals-

burg et al, 2011; Bohnert et al, 2015; Friedman et al, 2015; Guarani

et al, 2015; Anand et al, 2016).

This study shows that the aberrant IM structures of Mic10-KO

and Mic60-KO cells are converted into WT cristae upon re-forma-

tion of MICOS, rather than being replaced by new normally

shaped CMs. The observed repair mechanisms allow us to draw

conclusions on the mechanisms that are involved in de novo

cristae biogenesis (Fig 10A). Furthermore, the fact that human

Mic10-KO cells still form CJs, but exhibit an aberrant cristae

architecture, allowed us to disentangle CJ formation from lamellar

cristae formation and to investigate the distinct functions of the

two MICOS subcomplexes.
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Opposite distribution bands

Our STED and 3D MINFLUX data show that in mitochondria of

Mic10-KO cells, the Mic60 clusters are distributed along two

narrow opposite distribution bands. As our FIB-SEM, ET, and 3D

SIM data consistently show that in the absence of the Mic10-

subcomplex, the cristae are large rotationally symmetric tube-like

structures that line the IBM, the distribution of Mic60 in

A

B D

C

Figure 10. Summary of findings and model of MICOS-controlled lamellar crista formation.

A Model for the formation of crista membranes (CMs) in WT, Mic10-KO, and Mic60-KO cells. Shown are cartoons of longitudinal cross sections of mitochondria. For
details, see main text. Right lower corner: Model for the localizations of the key membrane-shaping proteins involved in lamellar cristae formation at a lamellar crista
in WT cells. Shown is a transversal cross section through a mitochondrial tubule (view on a single crista). The CM is displayed in blue.

B Illustration of the Mic60 redistribution upon re-expression of Mic10 in Mic10-depleted mitochondria.
C Model of the Mic10- and OPA1-dependent formation of MICOS assemblies at CJs.
D Table summarizing the phenotypes that were observed in this study upon the depletion of key players in cristae formation.
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opposite distribution bands is presumably not a consequence of

the cristae morphology. In fact, such Mic60-distribution bands,

which can adopt different width, have been previously reported

in several WT cell types (Jans et al, 2013; Stoldt et al, 2019).

However, this enrichment of Mic60 clusters on opposite sides of

the mitochondrial tubules was almost invisible in the WT cells

we used in this study. Different to the situation in, e.g., yeast

cells or primary fibroblasts, these WT HeLa cells exhibit large

well-developed lamellar cristae, each featuring several adjacent

CJs, which almost encircle a mitochondrion. Therefore, in these

cells the visibility of the Mic60 distribution bands, which reflect

the CJ distribution, might be concealed because they are much

wider or highly twisted. We show in this study that the redistri-

bution of Mic60 in such opposite distribution bands can be

induced by several means, including the depletion of ATP5ME,

of Mic13, or of Mic10. The prevalence of this phenomenon

suggests that these opposite distribution bands are an important

structure providing element of mitochondria (Jans et al, 2013;

Stoldt et al, 2019).

Distribution of CJs

This study also demonstrates that the Mic60-subcomplex is neces-

sary for the formation of CJs, whereas the Mic10 subcomplex is

required for lamellar cristae formation. The remodeling of the IM

and the generation of secondary CJs during re-expression of Mic10

in Mic10-TO cells are accompanied by a redistribution of MICOS

and of the CJs (Figs 6C, 10B and EV3C–E). Next to the Mic10-

subcomplex, the dimeric F1Fo-ATP synthase, as well as OPA1, influ-

ences the distribution of the Mic60-subcomplex. Specifically, in the

absence of OPA1, Mic10 induces the formation of extended Mic60

structures, suggesting that OPA1 restricts the size of MICOS assem-

blies. These findings point to antagonistic functions of OPA1 and

Mic10 in the regulation of the distribution and size of the Mic60

subcomplexes (Fig 10C and D).

Recovery of the Mic10 phenotype provides hints for
cristae biogenesis

Remarkably, in yeast the detached IM structures of MICOS-defi-

cient cells feature a similar protein composition as CMs in WT

cells (Harner et al, 2014, 2016), suggesting that not CM formation,

but the shaping of the IM is defective in MICOS-deficient cells.

Upon re-expression of Mic10 in Mic10-TO cells, unstructured large

CMs form an undulating pattern and develop into multiple lamel-

lar cristae (Figs 7A and 10A). Concurrently, MICOS assembly

triggers a redistribution of the CJs and the formation of new,

secondary CJs, as observed in Mic10-TO and Mic60-TO cells

(Figs 5F and G, 6C, and 10A and B). Therefore, the assembly of

the holo-MICOS complex can be regarded as a switch controlling

the efficient conversion of unstructured cristae into lamellar

cristae (Fig 10A). We postulate that the unstructured cristae found

in Mic10-KO cells represent a trapped intermediate structure that

also occurs during normal cristae formation. We propose that in

WT mitochondria, these intermediates are smaller and short lived

and are rapidly re-shaped into lamellar cristae following the same

principle as observed in rescued Mic10-TO cells (Figs 6D, 7A, 10A

and B).

A new model of cristae biogenesis

Our findings suggest that lamellar cristae biogenesis in higher

eukaryotes starts in a MICOS independent way by an unstructured

infolding of the IM, followed by MICOS-controlled restructuring of

this infolding, including secondary CJ formation (Fig 10A). The

positioning and shape of the CJs are fine-tuned by an interplay

between the Mic10-subcomplex, OPA1, and the F1Fo-ATP synthase.

As lamellar cristae usually occur in densely stacked groups (Stephan

et al, 2019), it is tempting to assume that the cristae of one group

originate from a single precursor CM (Fig 10A). In mitochondria

with a different cristae architecture, this cristae biogenesis pathway

might also prove to be prevalent, as the reshaping of a larger cristae

precursor into several individual cristae could principally lead to

any cristae shape.

Materials and Methods

Materials availability

Further information and requests for resources and reagents should

be directed to the corresponding author, Stefan Jakobs

(sjakobs@gwdg.de).

Cell culture and transfection

HeLa cells (Gruber et al, 2005) were grown in Dulbecco’s modified

Eagle’s medium (DMEM) with glutaMAX and 4.5 g/l glucose

(Thermo Fisher Scientific, Waltham, MA, USA) supplemented with

100 U/ml penicillin and 100 lg/ml streptomycin (Merk Millipore,

Burlington, MA, USA), 1 mM sodium pyruvate (Sigma-Aldrich,

Munich, Germany), and 10% (v/v) fetal bovine serum (Merck Milli-

pore) at 37°C and 5% CO2. For gene silencing by RNA interference

(RNAi), cells were transfected with siRNA pools (siTOOLs Biotech,

Planegg, Germany) according to the manufacturer0s instruction

using the Lipofectamine RNAiMAX transfection reagent (Thermo

Fisher Scientific). Plasmid transfections were carried out using

jetPRIME (Polyplus-transfection SA, Illkirch-Graffenstaden, France)

or FuGENE HD (Promega, Fitchburg, WI, USA).

Generation of knockout cell lines by CRISPR/Cas9

Sequence information about each target gene was collected from the

gene database of the National Center for Biotechnology Information

(NCBI). Each gRNA was designed using the CRISPR design tool from

Benchling based on the scoring models from (Hsu et al, 2013;

Doench et al, 2016). For the cloning of the nuclease plasmids, the

expression vector PX458 was digested with the BbSI restriction

endonuclease (New England Biolabs, Ipswich, MA, USA) and puri-

fied. Oligonucleotides were hybridized and ligated into PX458.

pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang

(Addgene plasmid #48138; http://n2t.net/addgene:48138; RRID:

Addgene_48138). HeLa cells were transfected with the respective

nuclease plasmid and cells expressing Cas9-EGFP were sorted using

a BD Influx cell sorter (BD Biosciences, Flanklin Lakes, NJ, USA)

4 days after transfection. After clonal expansion, the single-cell

clones were analyzed by SDS–PAGE and Western blotting. Gene
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disruption was verified by PCR of the target gene, sub-cloning, and

sequencing. For primers, see Table 1.

Generation of stable Mic10 and Mic60 TetOn (TO) cell lines by
CRISPR/Cas9

Cloning of donor plasmids
pTRE-Tight-Mic60

The plasmid pTRE-Tight-EGFP-donor fw copy was linearized by

PCR. Mic60 was amplified by PCR and both fragments were ligated

by Gibson Assembly (New England Biolabs). pTRE-Tight-EGFP-

donor fw copy was a gift from Rudolf Jaenisch (Addgene plasmid #

22074; http://n2t.net/addgene:22074; RRID:Addgene_22074).

AAVS1-TRE3G-Mic10-FLAG-T2A-EGFP

The plasmid AAVS1-TRE3G-EGFP was linearized by the restriction

endonuclease SalI. Mic10-FLAG was amplified by PCR, thereby also

introducing a C-terminal T2A self-cleavage site. Fragments were

ligated by Gibson Assembly (New England Biolabs). AAVS1-TRE3G-

EGFP was a gift from Su-Chun Zhang (Addgene plasmid #52343;

http://n2t.net/addgene:52343; RRID:Addgene_52343).

PX-330-AAVS1
The nuclease plasmid PX330-AAVS1 was derived from PX330. In

brief, oligonucleotides were annealed by primer annealing and inte-

grated into PX330 after linearization with the BbSI restriction

endonuclease. pX330-U6-Chimeric_BB-CBh-hSpCas9 was a gift from

Feng Zhang (Addgene plasmid #42230; http://n2t.net/addgene:

42230; RRID:Addgene_42230). For primers, see Table 2.

Integration into the AAVS1 safe harbor locus
For generation of Mic60-TO cells, the donor plasmids pTRE-Tight-

Mic60 and AAVS1-SA-2A-NEO-CAG-RTTA3 were co-transfected

with the plasmid PX330-AAVS1 into Mic60-KO HeLa cells. Starting

2 days after transfection, cells were selected with 1.25–1.5 lg/ml

puromycin (InvivoGen, San Diego, CA, USA) for 3 days. Cells were

cultivated without antibiotics for 1 day and afterward selected with

DMEM containing 800 lg/ml G418 (Carl Roth, Karlsruhe, Germany)

for 8 days. After a recovery period of 10 days, single-cell clones

were obtained using a BD Influx cell sorter (BD Biosciences). After

clonal expansion, positive clones were detected by PCR and

analyzed for Mic60 expression by Western blotting and immunoflu-

orescence staining using a specific antiserum against Mic60

(Proteintech, Rosemont, IL, USA). The plasmid AAVS1-SA-2A-NEO-

CAG-RTTA3 was a gift from Paul Gadue (Addgene plasmid #6043;

http://n2t.net/addgene:60431; RRID:Addgene_60431). For primers,

see Table 3.

To generate Mic10-TO cells, AAVS1-TRE3G-Mic10-FLAG-T2A-

EGFP and PX330-AAVS1 were co-transfected into Mic10-KO HeLa

cells. Two days after transfection, cells were selected with 1.25–

1.5 lg/ml puromycin (Invivogen) for 3 days. After 10 days, cells

were induced with 1 lg/ml doxycycline hyclate (Sigma-Aldrich) for

24 h and cells expressing EGFP were sorted using a BD Influx cell

sorter (BD Biosciences). After clonal expansion, Mic10-FLAG

expression was verified by Western blotting and immunofluores-

cence staining using specific antisera against the FLAG-tag (Sigma-

Aldrich) and Mic10 (Abcam, Cambridge, UK).

Induction of Mic10-FLAG or Mic60 expression in Mic10-TO and
Mic60-TO cells
To avoid unintended induction, Mic10-TO and Mic60-TO cells

were generally cultivated in DMEM containing tetracycline-free

FBS (TAKARA BIO INC., Kusatsu, Japan). To induce expression

of Mic10-FLAG or Mic60, the medium was supplemented with

doxycycline hyclate (Sigma-Aldrich) at a concentration of

0.025 lg/ml (Mic10-TO cells) or 0.25 lg/ml (Mic60-TO cells) for

up to 72 h.

Transient knockdowns
Knockdowns of Mic10, Mic13, Mic19, Mic25, Mic26, Mic27, Mic60,

OPA1, or ATP5ME were achieved by transfection with the respective

siRNA pool (siTOOLs Biotech). Cells were cultivated for 2–5 days

after transfection.

Knockdown of DRP1 was achieved by transfection with the

shRNA expression plasmid pREP4 (Lee et al, 2004). After transfec-

tion, cells were selected with DMEM supplemented with 250 lM

Table 1. Oligonucleotides for generation and verification of MICOS-
KO cells.

Oligonucleotides Sequence (50–30)

gRNA for Mic10-KO FW CACCGTGTCTGAGTCGGAGCTCGGC

gRNA for Mic10-KO REV AAACGCCGAGCTCCGACTCAGACAC

gRNA for Mic13-KO FW CACCGGCTGGGGGCGCCGTCTACC

gRNA for Mic13-KO REV AAACGGTAGACGGCGCCCCCAGCC

gRNA for Mic19-KO FW CACCGCGAGAATGAGAACATCACCG

gRNA for Mic19-KO REV AAACCGGTGATGTTCTCATTCTCGC

gRNA for Mic25-KO FW CACCGTCTACCTTTGGCCTTCAAGA

gRNA for Mic25-KO REV AAACTCTTGAAGGCCAAAGGTAGAC

gRNA for Mic26-KO FW CACCGTCACTCTACTCAGTTCCTGA

gRNA for Mic26-KO REV AAACTCAGGAACTGAGTAGAGTGAC

gRNA for Mic27-KO FW CACCGACTGCAACTGGTTGTTACAT

gRNA for Mic27-KO REV AAACATGTAACAACCAGTTGCAGTC

gRNA for Mic60-KO FW CACCGCTGCGGGCCTGTCAGTTAT

gRNA for Mic60-KO REV AAACATAACTGACAGGCCCGCAGC

Analysis Primer Mic10-KO FW GGTGAGGAGGAAAGGCCTGGTCACG

Analysis Primer Mic10-KO REV TTCCACTCAAGAGCTCTGCGACTC

Analysis Primer Mic13-KO FW CAGTTCATCAGTTCAAGTGGCGTCCAGCC

Analysis Primer Mic13-KO REV TTACCTGCATTCCAGGAGTCACGGATGG

Analysis Primer Mic19-KO FW GAAAAGAATCCAGGCCCTTCCACGCGC

Analysis Primer Mic19-KO REV CAGTGCCTAGCACTTGGCACAACCAGGAA

Analysis Primer Mic25-KO FW CTCAGCATGGACCTGGTAGGCACTGGGC

Analysis Primer Mic25-KO REV GCCTCAATTCCCACATGGAGAAAGTGGC

Analysis Primer Mic26-KO FW TAAAGTTCAGGTTGCTTGTAACCCTTAGAGTCA

Analysis Primer Mic26-KO REV TATCAAATAGGTTTTATTCATTCTTGCTACTTGC

Analysis Primer Mic27-KO FW CCCCAAAGGATCCATTTTACTGTGGATGGAC

Analysis Primer Mic27-KO REV TCCCAGCTGAACCCAGTCATCCAGCCATCC

Analysis Primer Mic60-KO FW CCTCCGGCAGTGTTCACCTAGTAACCCCTT

Analysis Primer Mic60 KO REV TCGCCCGTCGACCTTCAGCACTGAAAACCTAT
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hygromycin B (Life Technologies, Carlsbad, USA) for 2 days. After-

ward, cells were selected for 5 days with 50 lM hygromycin B (Life

technologies). All knockdowns were verified by Western blotting

and immunofluorescence microscopy.

Transient expression of Mic10-SNAP
The Mic10-SNAP expression plasmid pH-MINOS1-SNAP was

produced by Gateway reaction of pSEMS-GATEWAY-26 m (Covalys

Biosciences, Witterswil, Switzerland) and pCR8-MINOS1 (Human

ORFeome cDNA clone collection V5.1, Open BioSystems Inc, Hunts-

ville, AL, USA).

Transient expression of COX8A-SNAP
Transient expression of COX8-SNAP was achieved by transfection

with the plasmid AAVS1-Blasticidin-CAG-COX8A-SNAP (Stephan

et al, 2019).

Real-time respirometry
Oxygen consumption rate (OCR) experiments were performed in an

XF Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, MA,

USA) as previously described (Pacheu-Grau et al, 2020). Briefly,

HeLa cells were seeded at 25,000 cells/well and grown on the

Seahorse plate overnight. Baseline respiration was measured in XF

DMEM supplemented with 1 mM pyruvate and 10 mM glucose and

2 mM glutamine after incubation at 37°C in an incubator without

CO2 for 1 h. Periodic oxygen consumption measurements were

performed, and OCR was calculated from the slope of change in

oxygen concentration over time. Metabolic states were measured

after subsequent addition of 3 lM oligomycin, 1 lM carbonyl

cyanide 4 (trifluoromethoxy)phenylhydrazone (FCCP), 1 lM anti-

mycin A, and 2 lM rotenone. For normalization, cell density was

calculated using CyQUANT� after OCR measurements, according to

manufacturer’s instructions by measuring fluorescence intensity (Ex

480 nm, Em 520 nm). OCR values (N = 6) were normalized to cell

density (ratio of WT) and presented as % of WT.

Isolation of mitochondria from cultured human cells
Mitochondria were isolated after cell homogenization by differential

centrifugation, essentially as previously described (Callegari et al,

2016).

BN–PAGE
Mitochondria were solubilized in 1% digitonin, 20 mM Tris–HCl,

pH 7.4, 0.1 mM EDTA, 50 mM NaCl, 10% (w/v) glycerol, 1 mM

phenylmethylsulfonyl fluoride for 30 min at 4°C. Unsoluble mate-

rial was removed by centrifugation at 20,000 g and 4°C for

15 min. After addition of 10× loading dye (5% Coomassie brilliant

blue G-250, 500 mM e-amino n-capronic acid, 100 mM Bis–Tris,

pH 7.0), the supernatant was loaded on 4–13% polyacrylamide

gradient gels and separated as described before (Wittig et al,

2006).

Affinity purification of protein complexes
For immunoprecipitation of Mic60, the corresponding antibody

was coupled to protein A sepharose (GE Healthcare, Chicago, IL,

USA) using dimethyl pimelimidate according to the manufactory

protocol. WT and MICOS mutant mitochondria were solubilized

in a buffer containing 1% digitonin, 20 mM Tris–HCl, pH 7.4,

1 mM EDTA, 100 mM NaCl, 10% (w/v) glycerol, 1 mM phenyl-

methylsulfonyl fluoride for 1 h at 4°C. Nonsolubilized material

was removed by centrifugation at 20,000 g and 4°C for 15 min

and the supernatant was mixed with beads. After 1 h binding at

4°C, the beads were washed with 0.3% digitonin buffer contain-

ing 20 mM Tris–HCl, pH 7.4, 1 mM EDTA, 100 mM NaCl, 10%

(w/v) glycerol, 1 mM phenylmethylsulfonyl fluoride. Bound mate-

rial was eluted with 100 mM glycine pH 2.8 at room temperature

(RT) for 5 min.

For analysis of Mic10-TO cells, whole cells induced with

doxycycline hyclate for 8, 16, or 24 h as well as noninduced

cells were solubilized in a buffer containing 1% digitonin,

20 mM Tris–HCl, pH 7.4, 1 mM EDTA, 100 mM NaCl, 10% (w/

v) glycerol, 1 mM phenylmethylsulfonyl fluoride for 1 h at 4°C.

Nonsolubilized material was removed by centrifugation at

20,000 g and 4°C for 15 min. The supernatant was either incu-

bated with FLAG-beads (Sigma-Aldrich) or Mic60-Beads for 1 h

at 4°C. The beads were washed with 0.3% digitonin buffer

containing 20 mM Tris–HCl, pH 7.4, 1 mM EDTA, 100 mM NaCl,

10% (w/v) glycerol, 1 mM phenylmethylsulfonyl fluoride. Bound

material was eluted with 100 mM glycine, pH 2.8 at RT for

5 min.

For an overview on antibodies used, see Table 4.

Table 2. Oligonucleotides for generation of plasmids.

pTRE-Tight FW CCAGAGTGAGATATCTCTAGAGGATCATAATCAGC

pTRE-Tight REV CCGCAGCATGGTGGCGGCGGAATTCTCCAGGCGATCTG

Mic60 FW GCCGCCACCATGCTGCGGGCCTGTCAGTT

Mic60 REV AGAGATATCTCACTCTGGCTGCACCTGAG

Mic10-FLAG FW TCCTACCCTCGTAAAGATATCGCCGCCACCATGTCTGAGTCGGAGCTC

Mic10-FLAG REV CCCTTGCTCACCATGTCGACTGGGCCGGGATTCTCCTCCACGTCACCGCATGTTAGAAGACTTCCTCTGCCCTCACCGGTCTTGTCATCGTCATCCTTG

AAVS1-gRNA FW CACCGTGTCCCTAGTGGCCCCACTG

AAVS1-gRNA REV AAACCAGTGGGGCCACTAGGGACAC

Table 3. Oligonucleotides for verification of Mic60-TO cells.

Analyze AAVS1 WT FW CCCCTATGTCCACTTCAGGA

Analyze AAVS1 WT REV CAGCTCAGGTTCTGGGAGAG

Analyze TRE FW CATTTTTTTCACTGCCTCGACAGTACTAAGC

Analyze TRE REV GAAGGATGCAGGACGAGAAA

Analyze CAG FW TGAATTCACTCCTCAGGTGCAGGCTGCCTAT

Analyze CAG REV GAAGGATGCAGGACGAGAAA
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Sample preparation for fluorescence microscopy
For immunolabeling, cells were cultured on coverslips for 1–2 days

at 37°C with 5% CO2 and fixed with prewarmed (37°C) 4 or 8%

formaldehyde in PBS (137 mM NaCl, 2.68 mM KCl, and 10 mM

Na2HPO4, pH 7.4) for 5–10 min at RT. Fixed cells were extracted

with 0.5% (v/v) Triton X-100 in PBS, blocked with 5% (w/v) BSA

in PBS, and incubated with diluted primary antibodies against

Mic60 (Proteintech), Mic19 (Atlas Antibodies), TOM20 (Santa Cruz

Biotechnology, Dallas, TX, USA), ATPB (Abcam, Cambridge, UK),

FLAG (Sigma-Aldrich), or dsDNA (Abcam) in 5% (w/v) BSA in PBS

for 1 h at RT. After washing in PBS, the primary antibodies were

detected with secondary goat anti-rabbit or sheep anti-mouse anti-

bodies labeled with Alexa Fluor 594 (Thermo Fisher Scientific) or

custom-labeled with Abberior STAR RED (Dye: Abberior, Goettin-

gen, Germany; antibody: Jackson Immuno Research Laboratories,

West Grove, PA, USA) in 5% (w/v) BSA in PBS for 1 h at RT. After

washing with PBS, the cells were mounted in Mowiol with 0.1%

1,4-Diazabicyclo[2.2.2]octan (DABCO) and 2.5 lg/ml 40,6-Diamidin-

2-phenylindol (DAPI) (Sigma-Aldrich). For MINFLUX nanoscopy, the

fixed and extracted cells were incubated with Mic60 antibodies

directly labelled with Alexa Fluor 647 (Thermo Fisher Scientific).

For live-cell imaging of COX8A-SNAP or Mic10-SNAP fusion

proteins, cells were seeded in glass-bottom dishes (Ibidi GmbH,

Martinsried, Germany) before the measurements. Cells were stained

with DMEM containing 1 lM SNAP-Cell SiR (New England Biolabs)

and 0.1% (v/v) Quant-IT PicoGreen dsDNA reagent (Thermo Fisher

Scientific) for 15–20 min. The staining solution was removed, and

the cells were washed with DMEM twice. Cells were left in the incu-

bator for about 20 min to remove unbound dye. For imaging, the

DMEM was replaced with live-cell imaging solution (Thermo Fisher

Scientific). Cells were recorded by stimulated emission depletion

(STED) microscopy. For live-cell imaging of mitochondrial

membranes, cells were seeded in glass-bottom dishes (Ibidi GmbH,

Martinsried, Germany) and stained with DMEM containing 125 nM

Mitotracker Green (Thermo Fisher Scientific) for 15–20 min. Cells

were washed twice with DMEM and incubated for about 15 min to

remove unbound dye. Medium was replaced by live-cell imaging

solution (Thermo Fisher Scientific), and cells were recorded with 3D

linear structured illumination microscopy (3D SIM). For STED nano-

scopy of Mic60 together with COX8A-SNAP, cells expressing

COX8A-SNAP were stained with SNAP-cell SiR as described above

and subsequently fixed by adding 2xPHEM buffer supplemented

with 4.8% formaldehyde and 0.2% glutaraldehyde in equal

amounts to the culture medium for 25 min at room temperature.

Samples were permeabilized with 0.05% (v/v) Triton X-100 in

PHEM buffer for 5 min. To remove free glutaraldehyde, the samples

were incubated in 0.1 M ammonium chloride in PHEM for 1 min

and afterward were blocked with PHEM containing 1% BSA and

0.2% saponin for 10 min. For immunolabeling, the primary anti-

body was diluted in blocking solution and incubated overnight at

4°C. Washing was performed five times with blocking solution.

Secondary antibodies were diluted in blocking solution and applied

for 2 h at room temperature. The sample was washed with blocking

solution five times and imaged in PHEM buffer.

Light microscopy
Confocal microscopy was performed with a TCS SP8 microscope

(Leica, Wetzlar, Germany).

STED nanoscopy was performed using dual-color STED 775

QUAD scanning microscopes (Abberior Instruments, Göttingen,

Germany) with either a 775 nm Katana-08 HP laser (Onefive GmbH,

Regensdorf, Switzerland) or a 775 nm STED-Laser from Abberior

Instruments. In brief, for immunolabeled samples the fluorophore

Alexa Fluor 594 was exited at 561 or 594 nm and Abberior STAR

RED was exited at 640 nm. STED was performed at 775 nm. Images

were recorded with a pixel size of 15–20 nm in the 2D STED mode

and with a voxel size of 50 nm in the 3D STED mode. For live-cell

STED nanoscopy, SNAP-cell SiR was excited at 640 nm and deple-

tion was performed at 775 nm. Images were recorded with a pixel

size of 20–25 nm. EGFP or PicoGreen was exited at 488 nm and

recorded in the confocal mode. The used objective was an UPlan-

SApo 100×/1.40 Oil [infinity]/0.17/FN26.5 objective (Olympus,

Tokyo, Japan).

3D structured illumination microscopy of living HeLa cells was

performed with a Deltavision OMXv4.0 BLAZE microscope (GE Health-

care, Amersham, UK) using a 60×, 1.42 NA oil immersion PlanApoN

objective lens (Olympus) and sCMOS cameras. MitoTracker Green was

excited at 488 nm and the emission recorded at 504–552 nm. The

intensities and exposure times were set to obtain satisfactory signal

strength. A sequence of 15 images for each axial plane, obtained at

three different angles with five phases each, was acquired. Multiple

axial planes encompassing the entire cell from top to bottom were

recorded at a separation of the individual axial planes of 125 nm.

3D MINFLUX nanoscopy was performed with a custom-built

MINFLUX nanoscope that was described previously (Gwosch et al,

Table 4. Antibodies used for Western blot analysis.

Epitope Source

Mic10 Abcam (Cambridge, UK) and (Callegari et al, 2019)

Mic13 Sigma-Aldrich and (Callegari et al, 2019)

Mic19 Atlas Antibodies (Bromma, Sweden) and (Callegari et al,
2019)

Mic25 Proteintech (Rosemont, IL, USA) and (Callegari et al,
2019)

Mic26 Thermo Fisher Scientific and (Callegari et al, 2019)

Mic27 Atlas Antibodies and (Callegari et al, 2019)

Mic60 Proteintech and (Callegari et al, 2019)

ATPB Molecular Probes (Eugene, OR, USA)

ATP5B Callegari et al (2019)

ATP5A Abcam

ATP5ME Proteintech

OPA1 (D7C1A) Cell Signaling Technology (Danvers, MA, USA)

DRP1 BD Biosciences (San Jose, CA, USA)

MFN1 (D6E2S) Cell Signaling Technology

MFN2 (D2D10) Cell Signaling Technology

RIESKE Callegari et al (2019)

COX1 Callegari et al (2019)

LETM1 Callegari et al (2019)

SDHA Callegari et al (2019)

NDUFA10 Callegari et al (2019)
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2020). For active stabilization of the sample, coverslips were covered

with gold nanorods (Nanopartz Inc., Loveland, CO, USA). Nanorods

were diluted 1:3 in single molecule clean PBS buffer (Sigma-Aldrich)

and sonicated for 5–10 min. The samples were incubated with the

nanorod solution for 5–10 min at RT. The sample was washed three

times with PBS. For MINFLUX imaging, a standard enzyme-based (d)

STORM blinking buffer containing 50 nM Tris/HCl pH 8.0, 10 mM

NaCl, 10% (w/v) glucose, supplemented with 0.4 mg/ml glucose

oxidase (Sigma-Aldrich) and 90 mM cysteamine hydrochloride

(Sigma-Aldrich), was used. Samples were sealed using Picodent

Twinsil speed 22 (Picodent Dental-Produktions- und Vertriebs-GmbH,

Wipperfürth, Germany). The imaging was performed with parame-

ters and imaging schemes as reported previously (Gwosch et al,

2020). Briefly, before MINFLUX measurements, the fluorophore

Alexa Fluor 647 was transferred into a long-lived nonfluorescent state

by excitation at 642 nm wavelength. Conditional photo-activation of

single molecules in the MINFLUX region was performed by illumina-

tion at 405 nm wavelength. For localization, molecules were excited

with displaced Gaussian or 3D doughnut-shaped excitation beams at

642 nm wavelength. Fluorescence photons were collected in a confo-

cal detection. Scanning of the activation laser and the MINFLUX

targeted coordinate pattern was performed in steps of 250 nm in a

custom-shaped region selected based on fluorescence widefield

images.

Image processing and analysis

Image processing for confocal and STED microscopy
Unless stated in the figure legend, image raw data were not decon-

volved, but smoothed with a low-pass filter using the Imspector

Software (Abberior Instruments). When deconvolution was applied,

we relied on the Richardson-Lucy algorithm and the Imspector soft-

ware (Abberior Instruments).

In all images, the color tables were adapted for optimal contrast.

Background subtraction was usually below 5% of the maximum

signal intensity.

Image processing for 3D SIM
Super-resolved fluorescence images were reconstructed with the

corresponding recorded optical transfer function (OTF) in the soft-

WoRx 7.0.0 software (GE Healthcare, Amersham, UK) at a Wiener

filter setting of 0.006.

Image processing for MINFLUX nanoscopy
Data analysis and evaluation were performed as described previ-

ously (Gwosch et al, 2020). False-positive localizations due to

reaction to background or molecular emission events far outside

the MINFLUX region were removed based on p0 < 0.11 and

rrelative < 32 nm. To take into account only events from single

molecules (i.e., not from groups of simultaneously activated mole-

cules) localizations with high photon count rates (> 100 kHz) were

discarded. Localizations with photon numbers above 1,000 and an

estimated signal-to-background value larger than 0.6 were selected

to guarantee high localization precisions.

Cluster analysis on STED images of OPA1-depleted cells
Analysis of the clustered fraction of Mic60 was performed by a

custom-written MATLAB script. Every image was filtered with a

Laplacian of Gaussian (80 nm FWHM) filter and segmented with a

threshold of 4% of the brightest value. Segments with an area

smaller than 0.0225 lm2 were defined as single clusters. The clus-

tered fraction is the ratio of the area of all single cluster segments

relative to the total segmented area.

Sample preparation for electron microscopy
Aclar disks were punched with 18 mm diameter using 0.198 mm

thick aclar film (Plano, Wetzlar, Germany) and sterilized with 70%

ethanol before usage. Cells were grown on aclar disks to a conflu-

ency of � 70% and fixed by immersion using 2% glutaraldehyde in

0.1 M cacodylate buffer at pH 7.4 for 1 h at RT. Fixation was

completed overnight at 4°C. After post-fixation in 1% osmium

tetroxide and pre-embedding staining with 1% uranyl acetate,

samples were dehydrated and embedded in Agar 100 resin (Plano,

Wetzlar, Germany). For FIB-SEM, cells were grown on 6 × 0.16 mm

sapphire disks (Wohlwend GmbH, Sennwald CH) and vitrified using

a Leica EM HPM100 high-pressure freezer (Leica Mikrosysteme

Vertrieb GmbH, Wetzlar, Germany). The frozen samples were trans-

ferred to an automatic freeze substitution unit Leica EM AFS2 (Leica

Mikrosysteme Vertrieb GmbH) and substituted at �90°C for 4 h in a

solution containing anhydrous acetone, 2% osmium tetroxide (EMS

Electron Microscopical Science, Ft. Washington, USA), 0.1% uranyl

acetate in acetone and 5% dest. H2O. After gradually warm up to

0°C, samples were washed with acetone and embedded using

Durcupan resin (Science Services GmbH, München, Germany).

Transmission electron microscopy and electron tomography
Ultrathin sections of ~ 70 nm thickness were recorded on a Philips

CM 120 BioTwin transmission electron microscope (Philips Inc.,

Eindhoven, the Netherlands) without counterstaining. Sections were

taken in parallel to the growth surface of the cells. Usually, 2D

images of at least 100 mitochondria from at least 10 different cells

were randomly taken for each sample, using a TemCam 224A slow

scan CCD camera (TVIPS, Gauting, Germany).

For ET, tilt series from 210-nm-thick sections from Agar100

embedded cells were recorded on a Talos L120C transmission

microscope (Thermo Fischer Scientific/FEI company, Hilsboro,

Oregon, USA) at 17,500× magnification using a Ceta 4k × 4k CMOS

camera in unbinning mode. Orthogonal series were recorded from

�64.5° to 64.5° using 3° saxton angular increase. The series were

calculated using Etomo (David Mastronade, http://bio3d.colorad

o.edu/). Tomograms were processed using the nonlinear anisotropic

diffusion (NAD) filter in IMOD (David Mastronade, http://bio3d.

colorado.edu/imod/). Recordings of thin sections were processed in

Fiji using the median filter.

Focused ion beam scanning electron microscopy
Polymerized samples were trimmed with a razor blade, removing

empty resin. The sapphire disks were removed, and the tip of the

block containing the cells was sawed off with a jigsaw (Villinger et al,

2012). The blocks were attached to the SEM stub (Science Services

GmbH, Pin 12.7 mm × 3.1 mm) by a silver filled epoxy (Epoxy

Conductive Adhesive, EPO-TEK EE 129-4; EMS) and polymerized at

60° overnight. The samples were coated with a 10 nm gold, platinum,

or platinum/palladium layer using the sputter coating machine EM

ACE600 (Leica Mikrosysteme Vertrieb GmbH) at 35 mA current. The

samples were placed into the Crossbeam 540 focused ion beam
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scanning electron microscope (Carl Zeiss Microscopy GmbH, Oberko-

chen, Germany). The SmartSEM software (Carl Zeiss Microscopy

GmbH) was used to deposit a 400 nm platinum layer on top of the

region of interest using a 3 nA current, to ensure even milling, and to

protect the surface. Then, a trench was milled to expose a cross

section through the cell of interest using 15 nA current. The cross

section was polished using a 7 nA current. The Atlas 3D (Atlas 5.1,

Fibics, Canada) software was used to collect the 3D data. The images

were acquired at 1.5 kV (analytic mode) with the ESB detector

(450 V ESB grid, pixel size x/y 5 nm) in a continuous mill and

acquire mode. A 700 pA current was applied to remove 5 nm in

between every image. Data post-processing steps were performed in

Fiji (Schindelin et al, 2012). Image alignments were done using the

“Linear Stack Alignment SIFT”. The dataset was cropped, inverted, a

Gaussian blur (1), and a local contrast enhancement (CLAHE; block-

size 127, histogram bins 100, maximum slope 1.5) was applied.

Segmentation and 3D animation of FIB-SEM and ET data
FIB-SEM and ET data sets were segmented using the software pack-

age IMOD. 3D reconstructions of ET data were animated using

Amira for Life Sciences (Thermo Fisher Scientific). Reconstructions

of FIB-SEM data were animated using Blender (Blender Foundation,

Amsterdam, the Netherlands).

Visualization of MINFLUX data
Data were visualized using Imaris (Bitplane, Belfast, UK).

Data availability

The authors declare that there are no primary datasets and

computer codes associated with this study.

Expanded View for this article is available online.

Acknowledgements
We thank Jan Keller-Findeisen for support with data analysis, Rita Schmitz-

Salue for excellent technical assistance, and Jaydev Jethwa for a careful read-

ing of the manuscript. This work was supported by the Deutsche Forschungs-

gemeinschaft (DFG, German Research Foundation) under Germany’s

Excellence Strategy—EXC 2067/1-390729940 and by the European Research

Council (ERCAdG No. 835102) (to SJ). It was funded by the DFG-funded

FOR2848 (project P08 to WM and Z01 to DR) and SFB1190 (project P01 to SJ

and P13 to PR).

Author contributions
SJ and TS conceived the project. TS, CB, MD, PR, DR, and SJ designed research.

TS, CB, MD, AMS, MB, TSB, GH, WH, FL, DP-G, and SS performed research. TS,

CB, MD, AMS, FB, TSB, PI, JP, TH, SWH, WM, PR, DR, and SJ analyzed data. TS

and SJ wrote the paper with comments from all authors.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez

M, Kellner U, Leo-Kottler B, Auburger G et al (2000) OPA1, encoding a

dynamin-related GTPase, is mutated in autosomal dominant optic atrophy

linked to chromosome 3q28. Nat Genet 26: 211 – 215

Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F,

Schliebs W, Riedel D, Urlaub H, Jakobs S et al (2012) MINOS1 is a

conserved component of mitofilin complexes and required for

mitochondrial function and cristae organization. Mol Biol Cell 23: 247 – 257

Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T (2014)

The i-AAA protease YME1L and OMA1 cleave OPA1 to balance

mitochondrial fusion and fission. J Cell Biol 204: 919 – 929

Anand R, Strecker V, Urbach J, Wittig I, Reichert AS (2016) Mic13 is essential

for formation of crista junctions in mammalian cells. PLoS ONE 11:

e0160258

Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schagger H (1998) Yeast

mitochondrial F1F0-ATP synthase exists as a dimer: identification of three

dimer-specific subunits. EMBO J 17: 7170 – 7178

Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K, Ishihara N (2013) Dynamics of

nucleoid structure regulated by mitochondrial fission contributes to

cristae reformation and release of cytochrome c. Proc Natl Acad Sci USA

110: 11863 – 11868

Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, Hoppert M, Jakobs S,

Meinecke M (2015) Mic10 oligomerizes to bend mitochondrial inner

membranes at cristae junctions. Cell Metab 21: 756 – 763

Barrera M, Koob S, Dikov D, Vogel F, Reichert AS (2016) OPA1 functionally

interacts with MIC60 but is dispensable for crista junction formation. FEBS

Lett 590: 3309 – 3322

Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw

JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial

fission in yeast. Nat Cell Biol 1: 298 – 304

Blum TB, Hahn A, Meier T, Davies KM, Kuhlbrandt W (2019) Dimers of

mitochondrial ATP synthase induce membrane curvature and self-

assemble into rows. Proc Natl Acad Sci USA 116: 4250 – 4255

Bohnert M, Zerbes RM, Davies KM, Muhleip AW, Rampelt H, Horvath SE,

Boenke T, Kram A, Perschil I, Veenhuis M et al (2015) Central role of Mic10

in the mitochondrial contact site and cristae organizing system. Cell

Metab 21: 747 – 755

Callegari S, Richter F, Chojnacka K, Jans DC, Lorenzi I, Pacheu-Grau D, Jakobs

S, Lenz C, Urlaub H, Dudek J et al (2016) TIM29 is a subunit of the human

carrier translocase required for protein transport. FEBS Lett 590:

4147 – 4158

Callegari S, Muller T, Schulz C, Lenz C, Jans DC, Wissel M, Opazo F, Rizzoli

SO, Jakobs S, Urlaub H et al (2019) A MICOS-TIM22 association

promotes carrier import into human mitochondria. J Mol Biol 431:

2835 – 2851

Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C,

Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates

translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105:

15803 – 15808

Chan DC (2012) Fusion and fission: interlinked processes critical for

mitochondrial health. Annu Rev Genet 46: 265 – 287

Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires

mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101:

15927 – 15932

Cogliati S, Enriquez JA, Scorrano L (2016) Mitochondrial cristae: where beauty

meets functionality. Trends Biochem Sci 41: 261 – 273

Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA,

Ellisman MH, Taylor SS (2011) ChChd3, an inner mitochondrial membrane

protein, is essential for maintaining crista integrity and mitochondrial

function. J Biol Chem 286: 2918 – 2932

22 of 24 The EMBO Journal 39: e104105 | 2020 ª 2020 The Authors

The EMBO Journal Till Stephan et al

https://doi.org/10.15252/embj.2019104105


Davies KM, Anselmi C, Wittig I, Faraldo-Gomez JD, Kuhlbrandt W (2012)

Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping

the mitochondrial cristae. Proc Natl Acad Sci USA 109: 13602 – 13607

Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P,

Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E et al (2000) Nuclear gene

OPA1, encoding a mitochondrial dynamin-related protein, is mutated in

dominant optic atrophy. Nat Genet 26: 207 – 210

Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith

I, Tothova Z, Wilen C, Orchard R et al (2016) Optimized sgRNA design to

maximize activity and minimize off-target effects of CRISPR-Cas9. Nat

Biotechnol 34: 184 – 191

Dudkina NV, Sunderhaus S, Braun HP, Boekema EJ (2006) Characterization of

dimeric ATP synthase and cristae membrane ultrastructure from

Saccharomyces and Polytomella mitochondria. FEBS Lett 580: 3427 – 3432

Eydt K, Davies KM, Behrendt C, Wittig I, Reichert AS (2017) Cristae

architecture is determined by an interplay of the MICOS complex and the

F1FO ATP synthase via Mic27 and Mic10. Microb Cell 4: 259 – 272

Faelber K, Dietrich L, Noel JK, Wollweber F, Pfitzner AK, Muhleip A, Sanchez R,

Kudryashev M, Chiaruttini N, Lilie H et al (2019) Structure and assembly

of the mitochondrial membrane remodelling GTPase Mgm1. Nature 571:

429 – 433

Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka

T, Bartoli D, Polishuck RS, Danial NN, De Strooper B et al (2006) OPA1

controls apoptotic cristae remodeling independently from mitochondrial

fusion. Cell 126: 177 – 189

Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:

335 – 343

Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J (2015) MICOS

coordinates with respiratory complexes and lipids to establish

mitochondrial inner membrane architecture. Elife 4: e07739

Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of

mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21: 204 – 224

Glytsou C, Calvo E, Cogliati S, Mehrotra A, Anastasia I, Rigoni G, Raimondi A,

Shintani N, Loureiro M, Vazquez J et al (2016) Optic atrophy 1 is epistatic

to the core MICOS component MIC60 in mitochondrial cristae shape

control. Cell Rep 17: 3024 – 3034

Gruber J, Lampe T, Osborn M, Weber K (2005) RNAi of FACE1 protease results

in growth inhibition of human cells expressing lamin A: implications for

Hutchinson-Gilford progeria syndrome. J Cell Sci 118: 689 – 696

Guarani V, McNeill EM, Paulo JA, Huttlin EL, Frohlich F, Gygi SP, Van Vactor

D, Harper JW (2015) QIL1 is a novel mitochondrial protein required for

MICOS complex stability and cristae morphology. Elife 4: e06265

Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, Hell SW (2020)

MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells.

Nat Methods 17: 217 – 224

Habersetzer J, Larrieu I, Priault M, Salin B, Rossignol R, Brethes D, Paumard P

(2013) Human F1F0 ATP synthase, mitochondrial ultrastructure and

OXPHOS impairment: a (super-)complex matter? PLoS ONE 8: e75429

Hackenbrock CR (1966) Ultrastructural bases for metabolically linked

mechanical activity in mitochondria. I. Reversible ultrastructural changes

with change in metabolic steady state in isolated liver mitochondria. J Cell

Biol 30: 269 – 297

Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U,

Griffith J, Mann M, Reggiori F, Neupert W (2011) The mitochondrial

contact site complex, a determinant of mitochondrial architecture. EMBO J

30: 4356 – 4370

Harner ME, Unger AK, Izawa T, Walther DM, Ozbalci C, Geimer S, Reggiori F,

Brugger B, Mann M, Westermann B et al (2014) Aim24 and MICOS

modulate respiratory function, tafazzin-related cardiolipin modification

and mitochondrial architecture. Elife 3: e01684

Harner ME, Unger AK, Geerts WJ, Mari M, Izawa T, Stenger M, Geimer S,

Reggiori F, Westermann B, Neupert W (2016) An evidence based

hypothesis on the existence of two pathways of mitochondrial crista

formation. Elife 5: e18853

Hessenberger M, Zerbes RM, Rampelt H, Kunz S, Xavier AH, Purfurst B, Lilie

H, Pfanner N, van der Laan M, Daumke O (2017) Regulated membrane

remodeling by Mic60 controls formation of mitochondrial crista junctions.

Nat Commun 8: 15258

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL,

Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A

mitochondrial-focused genetic interaction map reveals a scaffold-like

complex required for inner membrane organization in mitochondria. J Cell

Biol 195: 323 – 340

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine

EJ, Wu X, Shalem O et al (2013) DNA targeting specificity of RNA-guided

Cas9 nucleases. Nat Biotechnol 31: 827 – 832

Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in

mitochondrial fusion reactions via GTPase activity. J Cell Sci 117:

6535 – 6546

Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial

morphology through proteolytic cleavage of OPA1. EMBO J 25:

2966 – 2977

Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers

C, Forest A, Lin ZY, Gingras AC et al (2016) SLC25A46 is required for

mitochondrial lipid homeostasis and cristae maintenance and is

responsible for Leigh syndrome. EMBO Mol Med 8: 1019 – 1038

Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F, Deckers M, Rehling P,

Jakobs S (2013) STED super-resolution microscopy reveals an array of

MINOS clusters along human mitochondria. Proc Natl Acad Sci USA 110:

8936 – 8941

Jiang YF, Lin SS, Chen JM, Tsai HZ, Hsieh TS, Fu CY (2017) Electron

tomographic analysis reveals ultrastructural features of mitochondrial

cristae architecture which reflect energetic state and aging. Sci Rep 7:

45474

Kojima R, Kakimoto Y, Furuta S, Itoh K, Sesaki H, Endo T, Tamura Y (2019)

Maintenance of cardiolipin and crista structure requires cooperative

functions of mitochondrial dynamics and phospholipid transport. Cell Rep

26: 518 – 528

Kondadi AK, Anand R, Reichert AS (2019) Functional interplay between cristae

biogenesis, mitochondrial dynamics and mitochondrial DNA integrity. Int J

Mol Sci 20: 4311

Kuhlbrandt W (2019) Structure and mechanisms of F-type ATP synthases.

Annu Rev Biochem 88: 515 – 549

van der Laan M, Horvath SE, Pfanner N (2016) Mitochondrial contact site

and cristae organizing system. Curr Opin Cell Biol 41: 33 – 42

Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the

mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and

Opa1 in apoptosis. Mol Biol Cell 15: 5001 – 5011

MacVicar T, Langer T (2016) OPA1 processing in cell death and disease - the

long and short of it. J Cell Sci 129: 2297 – 2306

von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P,

Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D et al (2011)

Dual role of mitofilin in mitochondrial membrane organization and

protein biogenesis. Dev Cell 21: 694 – 707

Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM,

Nunnari J (2006) Mitochondrial inner-membrane fusion and crista

ª 2020 The Authors The EMBO Journal 39: e104105 | 2020 23 of 24

Till Stephan et al The EMBO Journal



maintenance requires the dynamin-related GTPase Mgm1. Cell 127:

383 – 395

Muhleip AW, Joos F, Wigge C, Frangakis AS, Kuhlbrandt W, Davies KM (2016)

Helical arrays of U-shaped ATP synthase dimers form tubular cristae in

ciliate mitochondria. Proc Natl Acad Sci USA 113: 8442 – 8447

Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell

148: 1145 – 1159

Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G

(2003) Loss of OPA1 perturbates the mitochondrial inner membrane

structure and integrity, leading to cytochrome c release and apoptosis. J

Biol Chem 278: 7743 – 7746

Pacheu-Grau D, Wasilewski M, Oeljeklaus S, Gibhardt CS, Aich A, Chudenkova

M, Dennerlein S, Deckers M, Bogeski I, Warscheid B et al (2020) COA6

facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper

metallochaperones in mitochondria. J Mol Biol 432: 2067 – 2079

Palade GE (1952) The fine structure of mitochondria. Anat Rec 114: 427 – 451

Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K,

MacLaurin JG, Park DS, McBride HM, Trinkle-Mulcahy L et al (2014) OPA1-

dependent cristae modulation is essential for cellular adaptation to

metabolic demand. EMBO J 33: 2676 – 2691

Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM,

Brethes D, di Rago JP, Velours J (2002) The ATP synthase is involved in

generating mitochondrial cristae morphology. EMBO J 21: 221 – 230

Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission,

and cristae remodeling as key mediators of cellular function. Annu Rev

Physiol 78: 505 – 531

Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A,

Darshi M, Deckers M, Hoppins S, Icho T et al (2014) Uniform

nomenclature for the mitochondrial contact site and cristae organizing

system. J Cell Biol 204: 1083 – 1086

Quintana-Cabrera R, Quirin C, Glytsou C, Corrado M, Urbani A, Pellattiero A,

Calvo E, Vazquez J, Enriquez JA, Gerle C et al (2018) The cristae modulator

Optic atrophy 1 requires mitochondrial ATP synthase oligomers to

safeguard mitochondrial function. Nat Commun 9: 3399

Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N, Vasiljev-Neumeyer A,

Korner C, Jagasia R, Keil T, Baumeister W et al (2009) Formation of cristae

and crista junctions in mitochondria depends on antagonism between

Fcj1 and Su e/g. J Cell Biol 185: 1047 – 1063

Ramonet D, Perier C, Recasens A, Dehay B, Bove J, Costa V, Scorrano L, Vila M

(2013) Optic atrophy 1 mediates mitochondria remodeling and

dopaminergic neurodegeneration linked to complex I deficiency. Cell Death

Differ 20: 77 – 85

Rampelt H, Bohnert M, Zerbes RM, Horvath SE, Warscheid B, Pfanner N, van

der Laan M (2017a) Mic10, a core subunit of the mitochondrial contact

site and cristae organizing system, interacts with the dimeric F1Fo-ATP

synthase. J Mol Biol 429: 1162 – 1170

Rampelt H, van der Laan M (2017) The Yin & Yang of mitochondrial

architecture - interplay of MICOS and F1Fo-ATP synthase in cristae

formation. Microb Cell 4: 236 – 239

Rampelt H, Zerbes RM, van der Laan M, Pfanner N (2017b) Role of the

mitochondrial contact site and cristae organizing system in membrane

architecture and dynamics. Biochim Biophys Acta 1864: 737 – 746

Ryan MD, King AM, Thomas GP (1991) Cleavage of foot-and-mouth disease

virus polyprotein is mediated by residues located within a 19 amino acid

sequence. J Gen Virol 72(Pt 11): 2727 – 2732

Scheffler IE (2008) Mitochondria, 2nd edn. Inc Hoboken, NJ: John Wiley & Sons

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,

Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an

open-source platform for biological-image analysis. Nat Methods 9:

676 – 682

Sesaki H, Southard SM, Yaffe MP, Jensen RE (2003) Mgm1p, a dynamin-

related GTPase, is essential for fusion of the mitochondrial outer

membrane. Mol Biol Cell 14: 2342 – 2356

Sjöstrand FS (1953) Electron microscopy of mitochondria and cytoplasmic

double membranes. Nature 171: 30 – 32

Stephan T, Roesch A, Riedel D, Jakobs S (2019) Live-cell STED nanoscopy of

mitochondrial cristae. Sci Rep 9: 12419

Stoldt S, Stephan T, Jans DC, Bruser C, Lange F, Keller-Findeisen J, Riedel D,

Hell SW, Jakobs S (2019) Mic60 exhibits a coordinated clustered

distribution along and across yeast and mammalian mitochondria. Proc

Natl Acad Sci USA 116: 9853 – 9858

Strauss M, Hofhaus G, Schroder RR, Kuhlbrandt W (2008) Dimer ribbons of

ATP synthase shape the inner mitochondrial membrane. EMBO J 27:

1154 – 1160

Tarasenko D, Barbot M, Jans DC, Kroppen B, Sadowski B, Heim G, Mobius W,

Jakobs S, Meinecke M (2017) The MICOS component Mic60 displays a

conserved membrane-bending activity that is necessary for normal cristae

morphology. J Cell Biol 216: 889 – 899

Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R,

Semenzato M, Menabo R, Costa V, Civiletto G, Pesce P et al (2015) The

OPA1-dependent mitochondrial cristae remodeling pathway controls

atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21:

834 – 844

Villinger C, Gregorius H, Kranz C, Hohn K, Munzberg C, von Wichert G,

Mizaikoff B, Wanner G, Walther P (2012) FIB/SEM tomography with TEM-

like resolution for 3D imaging of high-pressure frozen cells. Histochem Cell

Biol 138: 549 – 556

Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation.

Trends Endocrinol Metab 27: 105 – 117

Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1:

418 – 428

Zanna C, Ghelli A, Porcelli AM, Karbowski M, Youle RJ, Schimpf S, Wissinger B,

Pinti M, Cossarizza A, Vidoni S et al (2008) OPA1 mutations associated

with dominant optic atrophy impair oxidative phosphorylation and

mitochondrial fusion. Brain 131: 352 – 367

Zick M, Rabl R, Reichert AS (2009) Cristae formation-linking

ultrastructure and function of mitochondria. Biochim Biophys Acta 1793:

5 – 19

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

24 of 24 The EMBO Journal 39: e104105 | 2020 ª 2020 The Authors

The EMBO Journal Till Stephan et al


