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ABSTRACT

The ability to describe electromagnetic properties of nuclei is fundamental to our understand-
ing of nuclear structure and dynamics. Experimental methods that measure these properties
enable a clean way to isolate the nuclear physics content, because the relatively weak and
well understood electromagnetic interaction is perturbative in nature and thus appropriately
described.

In this thesis we study electromagnetic properties of light nuclei within the framework
of chiral effective field theory (EFT). The modern approach to low-energy nuclear physics is
formulated by chiral EFT which describes the nucleus in terms of nucleon and pion degrees of
freedom based on the symmetries of the underlying fundamental theory of quantum chromo-
dynamics. It provides a systematically improvable calculation scheme and permits a unified
description of the strong-interaction dynamics between nucleons and the interaction with an
external probe. The nuclear component of such an interaction is described by nuclear currents.
Both nuclear interactions and currents are consistently derived within chiral EFT and exhibit
a naturally emerging many-body operator structure. Recent progress on the development of
nuclear interactions and nuclear currents have set the stage for high-precision calculations
complemented with systematic truncation uncertainty estimates.

We study the deuteron, the triton, and the helion electromagnetic form factors with two-
and three-nucleon chiral interactions developed in an order-by-order manner which allows
us to compute the associated truncation uncertainty estimates. We find good agreement
at low momentum transfers for the charge form factors and a consistent description of the
experimental first minimum once the uncertainty estimates are incorporated. For the tri-
nucleon magnetic form factors we find that leading two-body currents (2BCs), which arise
from the exchange of a pion between a pair of nucleons, lead to better agreement with data
over the entire momentum-transfer region. To obtain insights into the effect of various chiral
interactions with and without three-nucleon forces and to quantify the impact of 2BCs on the
zero-momentum-transfer region, we analyze the magnetic moments and the electromagnetic
radii of these light nuclei. We observe that three-nucleon forces reduce the radii slightly and
have a negligible effect on the magnetic moment, while 2BCs significantly modify both the
magnetic radius and magnetic moment indicating that the exchange dynamics between the
nucleons are essential for magnetic observables.

As a first step towards a consistent study of other light nuclei, we examine the magnetic
moment and a magnetic transition of 6Li which is the next light nucleus after the three-
nucleon nuclei with nonvanishing magnetic ground-state properties. To achieve this, we
include contributions to the magnetic dipole operator beyond leading order which arise from
the leading 2BCs and we employ similarity renormalization group evolved chiral interactions
to enhance the many-body convergence. Our results are in remarkable agreement with
a new precision experiment after consistently evolving and including 2BCs to the magnetic
dipole operator, thus advancing our understanding of nuclear interactions and electromagnetic
currents in many-nucleon systems.
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ZUSAMMENFASSUNG

Die Fähigkeit, elektromagnetische Eigenschaften zu beschreiben, ist grundlegend für unser
Verständnis von Kernstruktur und Kerndynamik. Experimentelle Methoden zum Messen
dieser Eigenschaften ermöglichen es, den kernphysikalischen Inhalt zu isolieren, da die relativ
schwache und gut verstandene stattfindende elektromagnetische Wechselwirkung perturbativer
Natur ist und daher angemessen beschrieben wird.

In der vorliegenden Dissertation untersuchen wir die elektromagnetischen Eigenschaften
leichter Kerne im Rahmen der chiralen effektiven Feldtheorie (EFT). Der moderne Ansatz
der Niederenergie-Kernphysik wird durch die chirale EFT formuliert, die den Kern in Form
von Nukleonen und Pionen als Freiheitsgrade beschreibt, basierend auf den Symmetrien
der zugrunde liegenden fundamentalen Theorie der Quantenchromodynamik. Sie ermöglicht
ein systematisch verbesserbares Berechnungsschema und erlaubt eine einheitliche Beschrei-
bung der Dynamik der starken Wechselwirkung zwischen Nukleonen und der Ankopplung
externer Felder. Die Kernkomponente einer solchen Wechselwirkung wird durch Kernströme
beschrieben. Sowohl die Kernkräfte als auch Ströme werden konsistent in der chiralen EFT
hergeleitet und weisen eine natürlich entstehende Vielteilchen-Operatorstruktur auf. Jüngste
Fortschritte bei der Entwicklung von Kernkräften und Kernströmen haben die Voraussetzun-
gen für hochpräzise Berechnungen geschaffen, welche durch systematische Abschätzungen der
Trunkierungsunsicherheit ergänzt werden.

Wir untersuchen die elektromagnetischen Formfaktoren des Deuterons, Tritons und des He-
lions mit Zweinukleonen und Dreinukleonen chiralen Wechselwirkungen. Die systematische En-
twicklung dieser Kräfte erlaubt es uns, die zugehörigen Trunkierungsunsicherheitsabschätzun-
gen zu berechnen. Wir finden gute Übereinstimmung der Ladungsformfaktoren bei niedrigen
Impulsüberträgen und eine konsistente Beschreibung des experimentellen ersten Minimums,
sobald die Unsicherheitsabschätzungen miteinbezogen sind. Für die magnetischen Trinukleon-
Formfaktoren finden wir, dass führende Zweikörperströme (2BCs), die aus dem Austausch
eines Pions zwischen einem Nukleonenpaar entstehen, für eine bessere Übereinstimmung mit
den Daten über den gesamten Bereich des Impulsübertrags notwendig sind. Um Einblicke in
die Wirkung verschiedener chiraler Wechselwirkungen mit und ohne Dreinukleonen-Kräfte zu
erhalten und den Einfluss der 2BCs auf die Region mit null Impulstransfer zu quantifizieren,
analysieren wir die magnetischen Momente und die elektromagnetischen Radien dieser leichten
Kerne. Wir beobachten, dass Dreinukleon-Kräfte die Radien geringfügig reduzieren und einen
vernachlässigbaren Einfluss auf das magnetische Moment haben, während 2BCs sowohl den
magnetischen Radius als auch das magnetische Moment signifikant modifizieren, was darauf
hinweist, dass die Austauschdynamik zwischen den Nukleonen einen wesentlichen Beitrag für
magnetische Eigenschaften darstellt.

Als ersten Schritt zu einer konsistenten Untersuchung anderer leichter Kerne untersuchen
wir das magnetische Moment und einen magnetischen Übergang von 6Li, welcher der nächste
leichte Kern mit nicht verschwindenden magnetischen Grundzustands-Eigenschaften ist. Um
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dies zu erreichen, beziehen wir Beiträge zum magnetischen Dipol-Operator jenseits der führen-
den Ordnung mit ein, die sich aus den führenden 2BCs ergeben, und verwenden Similarity
Renormalization Group (SRG) transformierte chirale Wechselwirkungen, um die Vielteilchen-
Konvergenz zu verbessern. Unsere Ergebnisse stimmen in bemerkenswerter Weise mit einem
neuen Präzisionsexperiment überein, nachdem wir die 2BCs konsistent SRG transformiert und
in den magnetischen Dipol-Operator einbezogen haben und fördern somit unser Verständnis
der nuklearen Wechselwirkungen und der elektromagnetischen Ströme in Vielteilchensyste-
men.
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1
INTRODUCTION

1.1 Advances in low-energy nuclear theory

Our understanding of atomic nuclei is essential for a broad and diverse scope of physical
phenomena, ranging from fundamental symmetries to astronomical processes. For example,
neutrinoless double beta decay investigations attempt to elucidate the nature of neutrinos,
while precise knowledge about nuclear reactions is important for, e.g., nucleosynthesis and
stellar evolution. Nuclear structure theory’s goal is to develop a framework that describes and
makes predictions about the properties of atomic nuclei, nuclear reactions and decays, and
nuclear matter, which is a hypothetical system composed of an infinite number of nucleons in
an infinite volume. One of the major hurdles yet to clear is the construction of a consistent
theory beginning with a formulation in terms of the fundamental microscopic degrees of
freedom. During the last decades, substantial efforts have been made in this direction
leading to new insights that broadened our basic understanding of the dynamics between
the building blocks of atomic nuclei, protons and neutrons, which in turn are composite
structures consisting of elementary quarks. In particular, an important observation is that
one can restrict to study nuclear phenomena at the relevant energy scale, such that a hierarchy
of models appears which could all be connected to each other. There are approximately 3000
known nuclei, among which only 288 stable ones [1]. These, as well as hypothesized nuclei are
classified in the nuclear chart according to their number of neutrons and protons, see Fig. 1.1.
In the emerging nuclear landscape, stable nuclei establish the so-called valley of stability and
the limits of nuclear existence are indicated by the drip lines. These drip lines are defined as
the boundary beyond which nuclei decay by emitting protons or neutrons. Atomic nuclei are
subject to all known fundamental interactions: the electromagnetic, the weak, the strong, and
the gravitational interaction. They are shaped by the strong interaction, binding together
protons and neutrons, and their structure can be precisely studied through electroweak probes,
as the interaction has a weaker strength and well-understood properties. Low-energy nuclear
structure theory has experienced a lot of advances in recent years, especially starting to
connect to the fundamental strong interaction.

The strong interaction between quarks is described by quantum chromodynamics (QCD).
Quarks are spin-1/2 particles that carry fractional elementary electromagnetic charge and
the so-called color charge as an additional degree of freedom. The color charge comes in
three different values, red, green, and blue and has similar properties to the electromagnetic
charge. Interactions between quarks are mediated by so-called gluons, which have color charge
themselves. Bound states of three quarks and quark-antiquark pairs are labeled as baryons
and mesons, respectively. Together they make up a class of subatomic particles called hadrons.
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2 CHAPTER 1 – INTRODUCTION

Figure 1.1: The nuclear chart of even-even nuclei as a function of proton number (Z) and neutron
number (N), status of 2012. Known stable nuclei are shown as black squares, while known unstable
nuclei as green squares. Red lines and red shaded areas represent calculated two-nucleon drip lines,
i.e., emission of two nucleons, and their uncertainties. The line where the two-neutron separation
energy equals 2 MeV is shown in brown. The blue line shows the results for a specific model and the
inset focuses on the region near Z = 100. Figure taken from [1].

Examples of baryons are neutrons and protons, while pions are examples of mesons. Matter
that is governed by QCD is usually referred to as strong-interaction matter. Two closely related
and important properties of QCD are color confinement and asymptotic freedom. The former
expresses that quarks are confined to color-singlet bound states at low-energies, i.e., they are
trapped inside hadrons, while the latter describes the decreasing interaction strength with
increasing momentum transfer. As a result, at low energies QCD is highly nonperturbative in
terms of its fundamental degrees of freedom, and baryons and mesons emerge as new effective
degrees of freedom. In fact, this low-energy regime is where atomic nuclei and nuclear matter
exist. The nuclear interaction between nucleons can be understood as a residual interaction of
the fundamental interaction between quarks inside the nucleons. Due to its nonperturbative
nature a direct analytical or computational calculation of the nuclear interaction from QCD is
extremely challenging or even impossible. Nevertheless, nonperturbative methods like lattice
QCD [2, 3] tackle the challenge by performing calculations on a grid of discretized points in
spacetime. Still, these calculations require enormous computational resources so that accurate
and realistic calculations of few-nucleon systems remain out of reach, at least for the time
being [4–7].

Clearly, in order to obtain a better understanding of the complex nuclear dynamics and
to make valuable predictions about atomic nuclei as well as nuclear matter, alternative
approaches have to be considered. While nuclear phenomenological models have experienced
great successes [8], they possess inherent limitations, e.g., no (trivial) connection to the
underlying theory of QCD, no systematic way of obtaining consistent many-body forces and
currents, or no reliable method to estimate the theoretical uncertainty. This is why, during
the last three decades, a paradigm shift from phenomenological models to effective field
theories (EFTs) occurred. The conceptual foundations of EFTs are traced back to the work
of Weinberg in the beginning of the 1960’s, with modern formulations dating back to the late
1960’s [9, 10] and the 1970’s [11–13]. In general, they are based on the principle of separation
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Figure 1.2: Hierarchy of energy scales and degrees of freedom of hadronic and nuclear physics. Figure
adapted from [17].

of scales. This principle dictates that a specific physical phenomenon is associated with a
certain energy scale, which in turn can be isolated and studied on its own. Constructing an
EFT involves three main components: determining the degrees of freedom relevant to the
process of interest, identifying the symmetries which constrain the process, and introducing
an expansion parameter, e.g., a ratio of momenta p/Λ, where p represents the typical energy of
the process and Λ is the energy scale of the omitted physics. A power-counting scheme for the
expansion parameter is used to establish an importance hierarchy regarding the potentially
infinite number of terms satisfying the symmetries. The unresolved high-energy physics gives
rise to so-called low-energy constants (LECs). These constants could in principle be obtained
from calculations of the higher-energy (effective) field theory, but are typically determined
from fits to experimental data. This formulation then allows the computation of observables
by means of a perturbative expansion in these small parameters. The main advantages of
EFTs are that they simplify the calculation while keeping a connection to the underlying
theory, they provide results to a given accuracy by truncating the perturbative expansion
at some order while simultaneously giving an estimation of the theoretical uncertainty, and
they predict their own breakdown as the perturbative approach becomes unreliable when the
expansion parameter reaches O(1). If the fundamental theory is not known or when exact
or even approximate predictions from the fundamental theory are difficult to obtain, then
EFTs are necessary in order to make progress. Their conceptual simplicity and practical
feasibility explains the onmipresence of EFTs nowadays, not only in nuclear physics but also
in various other fields, e.g., beyond Standard Model physics [14], gravitational dynamics and
cosmological large-scale structures [15], as well as superconductor physics [16].

The most widely employed EFT in nuclear physics today is chiral EFT, which was intro-
duced in the seminal works of Weinberg in the beginning of the 1990’s [18–20]. It is based on
two main components: the separation of the nucleon and pion mass, and the symmetries of
QCD, most importantly, the approximate chiral symmetry. These components allow one to
construct an effective Lagrangian with nucleon and pion fields as the degrees of freedom, which
contains all possible terms consistent with the symmetries of QCD, and omit the fundamental
degrees of freedom. The associated expansion parameter consists of the ratio of the pion mass
mπ to approximately the mass of the ρ-mesons Λb∼ 500 MeV < mρ, with Λb the breakdown
scale. Figure 1.2 displays the hierarchy of energy scales exploited by chiral EFT: at high
energies, strong-interaction matter is best described in terms of quarks and gluons, whereas
lowering the energy to scales relevant for nuclear physics reveals that protons, neutrons, and
pions are the ideal degrees of freedom to describe nuclei. The ideas presented by Weinberg
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Figure 1.3: Diagrammatic representation of NN and 3N interactions up to third order (Q3) and
electromagnetic one- and two-body current operators up to fourth order (Q1) relative to the first order
(Q−2). Nucleons, pions, and photons are displayed by solid, dashed, and wiggly lines, respectively.
Chiral EFT provides a framework that allows for a consistent derivation of nuclear interactions and
nuclear current operators.

established a new era in nuclear physics research by unlocking a systematic approach to derive
nuclear interactions directly based on the symmetries of the underlying fundamental strong
interaction. Chiral EFT describes the interaction between nucleons in terms of contact inter-
actions that parametrize short-distance physics and one-or multiple-pion-exchange terms that
account for intermediate- and long-range physics. This gives rise to nucleon-nucleon (NN),
three-nucleon (3N), and many-nucleon interactions ordered according to their importance
based on the Weinberg power-counting scheme, see the left section of Fig. 1.3. In fact, the
resulting hierarchy of many-nucleon forces provides a natural explanation for the dominance
of the NN interaction. Chiral EFT thus allows to show that nuclear phenomenological models
constitute the correct first step in an approximation scheme to nuclear forces [21]. At present,
chiral EFT is believed to provide the best answer to a practical and microscopic theory to
describe nucleon interactions at low energies.

The last two decades have seen tremendous progress in the development of chiral EFT
resulting in high-precision chiral NN potentials [22, 23]. Recently, for the first time, they
matched and even outperformed the most accurate phenomenological potentials, albeit with
fewer adjustable parameters [24]. For example, the left four panels of Fig. 1.4 illustrate the
excellent agreement between neutron-proton scattering phase shifts and chiral NN potentials
at fifth order. Even though the NN sector seems to be under control, 3N interactions are
still less understood, both on a conceptual and quantitative level. Three-nucleon as well as
higher-body interactions arise naturally due to the composite structure of nucleons and are
well-known to have a substantial impact on nuclear systems [25, 26]. Chiral EFT explains
their importance relative to the NN counterparts and provides a framework to systematically
include and study their contributions in calculations, note the left part of Fig. 1.3. During the
last decade, NN and 3N chiral potentials have been successfully applied in the few- and many-
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Figure 1.4: Left: Neutron-proton scattering phase shifts (in degrees) as a function of laboratory
energy (in MeV) for S and P waves obtained from chiral NN interactions. Results are shown for five
orders of the chiral expansion as denoted. Open and filled circles represent results from the Nijmegen
analysis [36] and the George-Washington-University analysis [37]. Figure taken from Ref. [23]. Right:
Differential cross section dσ/dΩ (in mb/sr), nucleon and deuteron analyzing powers An

y and Ad
y , and

deuteron tensor analyzing power Ayy as a function of center-of-mass angle (in degrees) for elastic
nucleon-deuteron scattering at a laboratory energy of Elab = 135 MeV. Results from calculations
with consistent NN and 3N chiral interactions at second (yellow) and third (green) order are shown
together with their truncation uncertainty estimation. Dotted and dashed lines show result based on
phenomenological interactions and open circles are proton-deuteron data. Figure taken from Ref. [34].

nucleon sector [27–30] as well as in calculations of infinite nuclear matter [31, 32]. Nevertheless,
ongoing efforts seek to improve the conceptual development and practical implementation
of 3N interactions, currently making it a very active field of research [33–35]. For example,
the four panels on the right half of Fig. 1.4 present recent results of elastic nucleon-deuteron
scattering observables obtained with consistent NN and 3N interactions up to third order
in the chiral expansion. The agreement with data is worse compared to the NN scattering
observables which implies the possibility for improvements by, e.g., consistently including
higher-order 3N interactions.

In the last few years, considerable attention has been devoted to the issue of quantifying
uncertainties in theoretical calculations [38, 39]. The systematic expansion of the chiral La-
grangian, and successively the chiral interaction in principle permits to systematically quantify
the truncation uncertainty, i.e., the uncertainty caused by truncating a calculation at finite
order. This uncertainty is often the dominant error in EFT calculations. If the power count-
ing is implemented correctly and systematically, uncertainties of observables should decrease
for increasing order of the calculations. This property is exploited by Bayesian methods for
EFTs to quantify the systematic uncertainties arising from truncating the expansion, and
consequently to provide a statistically solid interpretation of truncation uncertainties [40–43].
An example of these truncation uncertainties obtained with a Bayesian model can be observed
in the four panels on the right half of Fig. 1.4, where dark and light shades provide a 68%
and 95% degree of belief interval, respectively. Note the decrease in the width of the confi-
dence intervals in going from second to third order results. Efforts to quantify uncertainties
are important, not only, to carry out meaningful comparisons to experimental and other
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theoretical results, but also to provide reliable predictive capabilities and extrapolations to
unknown territories of the nuclear chart. In addition, they shed light on more fundamental
questions about the EFT, e.g., the nature of the convergence pattern, the validity of the
breakdown scale, and the naturalness assumption [41, 42]. Bayesian methods have already
been applied in various studies [34, 44, 45], while current efforts attempt to quantify all EFT
related uncertainties [46–48].

Another advantage of the chiral EFT framework is the possibility to consistently include
external sources. These sources describe nucleus-probe interactions and are incorporated by
extending the chiral Lagrangian with, e.g., vector and axial-vector terms which are associated
with electromagnetic and weak interactions, respectively. The resulting nuclear current
operator, generally denoted by Jµ, is then used to calculate the nuclear current by evaluating
its expectation value with respect to initial |i〉 and final |f〉 wave functions of the nucleus
of interest, i.e., 〈f | Jµ |i〉. This prediction of the current serves as a test for nuclear models,
in particular, for chiral EFT. Nuclear currents and interactions are tightly connected by the
gauge invariance of the framework. In fact, similar to nuclear interactions, a systematic
expansion arises for nuclear currents, see the right half of Fig. 1.3. They can also be organized
based on their importance according to a power-counting scheme. Many-body currents are
naturally generated in the expansion. The one-body current is the dominant part of the
nuclear current operator: at lowest order, the interaction with the nucleus is well described
by summing up the contribution of the interaction with each nucleon inside the nucleus.
At the simplest level, many-body currents manifest themselves as two-body currents (2BCs)
arising from the exchange of a pion between two nucleons. These 2BCs are small, however
necessary for precision calculations, where they often provide the missing part to bring theory
in better agreement with experiment. Although their necessity was confirmed more than 40
years ago [49], only now, with the arrival of chiral EFT, they are embedded in a consistent
framework such that they can be consistently computed and implemented in calculations.
In addition, the power-counting scheme provides a natural explanation for the importance
and hierarchy of two- and many-body currents. The connection between current operators
and interactions becomes more apparent by observing the LECs: the same LEC appears in a
leading contribution to the 3N interaction and in the so-called contact 2BC. It was then realized
that this relation allows to study and constrain this LEC not only by bound-state observables,
but also by electroweak observables [50]. Remarkably, chiral EFT allows to study these strong
interaction dynamics and electroweak processes in the low-energy regime of nuclear physics
in a single theoretical framework. All these aspects suggest that nuclear current operators
offer a unique tool to test chiral EFT and vice versa. Despite great efforts, much is still
to be understood about the conceptual development of 2BCs, e.g., consistently regularized
interactions and currents [35], and their effect on electroweak observables. Therefore, one of
the frontiers in nuclear theory is to include and study these two- and higher-body currents in
calculations of few- and many-nucleon systems.

In nuclear theory, few-nucleon systems are well suited to study nuclear models. As they
consist of only a few interacting particles, solutions can be obtained with high accuracy at
a relatively moderate computational cost. In comparison, approaches attempting to solve
many-nucleon systems have to resort to approximations in order to reduce the complexity of
the problem. Therefore, the computations might suffer from systematic effects that do not
reflect genuine physical differences of the system under investigation. In addition, few-nucleon
systems provide the advantage to study two- and three-body effects in isolation without
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Figure 1.5: Left panel: Magnetic moments of light nuclei with A 6 9 obtained with the Green’s
function Monte Carlo (GFMC) many-body method. Black stars, blue dots, and red diamonds represent
experimental values, one-body operator (IA) calculations, and two-body operator (MEC) results,
respectively. The two-body operator results include current operators up to fourth order in the chiral
expansion. Right panel: Electromagnetic transition widths for light nuclei up to 9Be shown as the
ratio to experiment. Figures taken from Ref. [51].

contamination of higher-body interactions or currents. In that sense, a clear connection to
the microscopic physics is preserved. A first exploratory step towards other nuclei is achieved
by calculating observables of light nuclei, i.e., A∼ 10, with A the number of nucleons. Their
relatively low number of nucleons implies that many-body approximations can be kept under
control. A variety of methods exist to solve the nuclear many-body problem, such that
possible cross checks of results can be made. Taking all these aspects into account, few-
nucleon and light nuclei make ideal testing grounds to assess our understanding of nuclei. The
possibility to obtain accurate results for light nuclei and the advances made in deriving nuclear
current operators have resulted in high-precision calculations of electromagnetic observables in
light nuclei. For example, Fig. 1.5 shows magnetic moments and electromagnetic transitions
including chiral 2BC operators. The important impact of 2BCs demonstrates the importance
of including consistent electromagnetic operators in calculations of light nuclei.

1.2 Electromagnetic probes of nuclei

Electron-scattering experiments provide the best known evidence of the internal structure of
nuclei and nucleons. The detection of high-energy electrons scattered off nuclei or nucleons
provides information on the target, e.g., its shape, much in the same way as the detection
of light scattered off and object in a microscope. Similarly, experiments where only the final
state of the electron is observed, obtain information about the size and shape of the nucleus
in terms of its static charge and current density. In other words, they provide knowledge
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on the charge and current spatial distributions inside the nucleus. Electron scattering is an
intensely studied field with a long and rich history of experimental and theoretical work, and
exciting new developments at every frontier.

In the beginning of the 1950’s, electron scattering experiments were performed to test the
current understanding of the electromagnetic interaction with nuclei and nucleons. The first
experiments on, e.g., copper and gold, observed a finite nuclear size and were performed by
Lyman et al. [52]. At the High Energy Physics Laboratory at Stanford university, Hofstadter
and his team performed systematic measurements with high-energy electron beams up to
Ee∼ 550 MeV on a range of nuclei, uncovering their charge distributions [53]. During the
same period, they also performed experiments on nucleons for the first time, resulting in
the first determination of the proton charge radius which was determined to have a nonzero
size of 0.77(10) fm [54]. For this discovery and his pioneering work on electron-nucleus
scattering, Hofstadter received the Nobel prize in 1961 [55]. In general, electron scattering
played a dominant role in the progress of theories describing strong-interaction matter. For
example, the influential experiments carried out at the Stanford Linear Accelerator Center
at much higher electron energies and momentum transfers revealed that electrons scatter off
approximately free pointlike particles, showing that nucleons have a substructure as well [56,
57]. This observation, in turn, led to the search for asymptotically free theories [58]. For
nuclear structure theory, on the other hand, an important achievement attributed to electron-
nucleus scattering is the demonstration of the existence of exchange currents [58, 59]. These
additional currents can be described as arising from the exchange of charged mesons between
nucleons. They are essential to explain the observed charge and current distributions of nuclei
and other electromagnetic processes, e.g., the thermal neutron radiative capture on the proton.
Still today, efforts on both the experimental and theoretical side continue to contribute to
our understanding of the internal structure of nuclei and nucleons.

In the last decade, the study of the electromagnetic structure of nucleons, especially of the
proton, with elastic electron scattering has been in the focus of great attention. The proton
radius extracted from atomic hydrogen experiments and from muonic hydrogen experiments
revealed a statistically significant discrepancy.1 The former type of experiments found a value
of 0.8751(61) fm [60], according to the Committee on Data (CODATA) 2014 update, while
the latter a value of 0.84087(39) fm [61]. This discrepancy is better known as the so-called
proton-radius puzzle and led to intense investigations. However, recent electron-proton (e-p)
scattering measurements at momentum transfers one order of magnitude lower than previous
measurements [62], and two spectroscopy measurements in atomic hydrogen [63, 64], found
radii in agreement with values from muonic hydrogen experiments. Therefore, the recom-
mended proton radius in the updated CODATA-2018 release is changed to 0.8414(19) fm [65].
Nonetheless, the new data is unable to explain the difference observed in the pre-2010 data,
still leaving the proton-radius puzzle not fully solved. The near future will point out if the
proton-radius puzzle is completely resolved or needs further investigation.

The proton-radius puzzle triggered searches for similar discrepancies in light nuclei, mainly
to help clarify the puzzle. For example, a similar observation of the deuteron radius resulted
in a deuteron-radius puzzle. This puzzle indicates the disagreement between radius measure-
ments from muonic deuterium spectroscopy and atomic deuterium experiments, i.e., atomic

1Atomic hydrogen data includes results from two different types of experiments. The first type is e-p
scattering from which the radius can be extracted by calculating the slope at zero momentum transfer, while
the second type measures energy-level shifts of transitions in hydrogen atoms with spectroscopy. These shifts
in the energy levels are related to finite nuclear size effects, such that the radius can be inferred from them.
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spectroscopy or electron-deuteron (e-d) scattering. Despite taking into account the corrected
proton radius, the recommended CODATA-2018 deuteron radius is 2.12799(74) fm [65], which
is 1.9σ larger than the muonic experiment result [66] and still 2.9σ smaller than the value from
atomic deuterium spectroscopy [67]. These observations set off a renewed interest to perform
e-d scattering experiments at low momentum transfers for which results are expected in the
near future [68, 69]. Because the radius is sensitive to the zero-momentum-transfer region,
precise data at low momentum transfers ensures that fewer assumptions have to be made in
extrapolating experimental results to zero momentum transfer. For now, nuclear structure
calculations of the deuteron radius are not precise enough [70–72] to offer any help in resolving
the deuteron-radius puzzle, as the experimental uncertainty is still one order of magnitude
smaller. Experimental results from atomic and muonic spectroscopy of three-nucleon systems
are expected in the near future [73, 74] and will greatly advance nuclear structure theory.
Electromagnetic radii extracted from scattering experiments have a low precision of the order
of ∼ 5% [75], which is too large to study nuclear structure effects arising from 3N interactions
and isospin effects which show variations of 6 1%. Even though these experimental efforts
are mainly undertaken to help clarify the proton-radius puzzle, they will provide valuable
results for advanced nuclear structure calculations in the future.

To interpret experimental data, a theoretical description of the scattering event and the
target itself is required. Because an electron probe is used, only an electromagnetic interaction
occurs between the incident electron and the target under investigation. The electromagnetic
interaction is simple, well understood, and described by quantum electrodynamics (QED).
This theory prescribes how to compute the elastic differential cross section in the so-called
Born approximation. This approximation provides a perturbative description of the scattering
event which, to lowest order, is given by the exchange of a single photon between the scatterer
and the target. The resulting differential cross section takes into account the finite target size
by means of a so-called form factor. This function is related to specific current operator matrix
elements of the target and represents the nuclear structure input to the calculation. The
prediction of form factors by using specific nuclear models can be well assessed in experimental
studies.

In the lowest order Born approximation, a single virtual photon is exchanged between
the electron and the target, transferring energy ω and momentum q. This process is well
understood, as the interaction strictly happens with the charge and current density of the
target. The electromagnetic interaction is weak compared to the strong interaction as the fine-
structure constant α, which characterizes the interaction strength between charged particles,
is considerably smaller than the strong coupling constant, i.e., α ≈ 1/137� αs. This provides
two main advantages: first, the structure of the target stays undisturbed during the scattering
process. Second, it allows a perturbative description of the event, in form of a simple one-
photon exchange. This results in accessible expressions for the scattering cross section from
which the nuclear structure contribution can be straightforwardly isolated. The scattering
cross section is proportional to Fourier transforms of the electromagnetic densities of the
target. These functions depend on the momentum transfer and are related to specific matrix
elements. In experiments, the momentum transfer to the target can be varied while the energy
loss of the electron is kept fixed. The only required constraint is that the four-momentum
transfer has to stay spacelike, i.e., q2 = qµq

µ = ω2−q2 < 0. This allows to access the Fourier
transforms of the charge and current densities, gaining access to the internal electromagnetic
structure of the nucleus. These Fourier transforms are exactly the form factors introduced
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Figure 1.6: Charge form factor of 3He (left) and 3H (right) as a function of momentum transfer Q
(in fm−1) obtained from calculations using the SNPA. Thin and thick solid lines correspond to results
with one- and many-body operators, respectively. Crosses represent experimental data. Figure taken
from [76].

above, see Fig. 1.6 for an example of a charge form factor. They are the quantities providing
information about the internal electromagnetic structure of the target and they depend the
magnitude of the momentum transfer q = |q|. Events that do not transfer energy to the
nucleus, i.e., ω = 0, are classified as elastic electron scattering.

The resolution of the electron probe is inversely proportional to the momentum transfered,
i.e., ∝ 1/|q|. Typical nuclear scales of interest range from 0.1 fm to 10 fm, such that
electron beams must have relativistic energies ranging from around 12 MeV to 1250 MeV.
Low momentum transfers probe long-range dynamics of the target, e.g., nuclear radii and
moments, while high momentum transfers explore short-distance details within the nucleus.
Going to even higher energies, i.e., Ee > 1250 MeV, and hence to higher momentum transfers,
the substructure of nucleons themselves is resolved. The exploration of these much shorter
distances belongs to the realm of particle physics. However, accounting for the substructure of
nucleons in nuclear form factor calculations provides an important correction and is achieved
by including the nucleon form factor. Often, these nucleon form factors are given in terms of
a parametrization of experimental data.

There exists a rich history of theoretical work that describes elastic electron scattering and
nuclear electromagnetic structure in great detail [76–81]. Until recently, what is often referred
to in the literature as the standard nuclear physics approach (SNPA), was the dominant
method to study the nucleus and electromagnetic reactions with it. The SNPA provides a
theoretical description of few-nucleon electromagnetic structure and corresponding dynamics
by regarding the nucleus as pointlike nucleons interacting through two-body potentials. These
potentials are then fit to two-body scattering and bound-state data. The resulting potentials
from this approach are called realistic. Electromagnetic charge and current operators are then
constructed from a nonrelativistic expansion of the covariant single-nucleon current [81].2
These single-nucleon charge and current operators constitute the well-known nonrelativistic
Impulse Approximation (IA) and provide the dominant contribution to the nuclear current.
Improving upon this description is done by considering effects of NN (and even 3N) interactions

2One can also employ a fully relativistic treatment of the nuclear dynamics as described in the covariant
spectator theory [76]. We will, however, leave out the relativistic treatment from our discussion.
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through the application of the continuity equation, which is derived from the gauge invariance
of the theory. This results in the construction of many-body currents, establishing the so-
called meson-exchange currents (MECs). Currents constructed from the continuity equation
are called model independent as they are completely constrained by the gauge invariance of
the theory. On the other hand, the continuity equation does not constrain components of the
current orthogonal to the virtual photon momentum, leaving the possibility to construct model
dependent currents. Most realistic potentials include a one-pion exchange (OPE) process to
describe the long-range behavior of the nuclear interaction. In turn, this generates a two-body
OPE current which describes the interaction of the virtual photon with a nucleon pair that
interacts through the exchange of a virtual pion. Meson-exchange currents are often the
missing contribution that bring observables in agreement with experimental observations, as
was first suggested by Villars [82] and Miyazawa [83], and quantitatively demonstrated by
Riska and Brown [49]. Because MECs contribute essential corrections to observables their
effect has been studied very carefully, especially in the case of light nuclei [80]. As an example,
Fig. 1.6 displays charge form factors of A = 3 nuclei which are obtained with the SNPA and
include MECs.

1.3 Focus of this thesis

Electron scattering promises to be a great instrument to study nuclear models: given that
the electromagnetic interaction is well known, the nuclear structure component is readily
isolated from the external structureless probe content. The nuclear structure information then
provides an excellent way to test the nuclear models, as both nuclear forces and nuclear current
operators required to compute the observables are derived from the model. Even though the
SNPA approach has led to many successes, it is unsatisfactory to understand electromagnetic
properties of nuclei from a microscopic perspective. As previously mentioned, chiral EFT
describes the interaction among nucleons themselves and with external probes in terms of
hadronic degrees of freedom, while making a direct connection with QCD and providing a
systematic improvable calculation scheme. Indeed, leading electromagnetic current operators
and their corrections are naturally derived within the framework of chiral EFT, in line with
nuclear forces. This way, chiral EFT provides a practical calculation scheme for nuclear
interactions and nuclear currents to consistently study nuclear electromagnetic processes in
terms of relevant degrees of freedom. In addition, the promise of a systematic expansion
allows one to devise methods that reliably quantify the neglected terms in a statistically
sound fashion. Doing so, provides a way to test the applicability and predictive power of the
electromagnetic observables and to make meaningful comparisons to experimental data. We
remark that literature results which combine currents derived within chiral EFT with wave
functions obtained from realistic potentials are called hybrid calculations. Such calculations
are inherently inconsistent as there is no connection between the currents and the interaction,
and therefore can lead to results with an unclear interpretation.

This thesis contributes to the understanding of the nucleus by calculating electromagnetic
observables of few-nucleon systems in light of the new developments in chiral EFT we intro-
duced above. We mainly focus on calculating electromagnetic form factors of the deuteron,
the triton, and the helion. Commonly, the two A = 3 systems are denoted by trinucleons.
The central theme in our investigation is the inclusion of the leading 2BCs in calculations,
as these operators constitute the dominant correction to electromagnetic observables. By
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nature, the leading 2BCs have an isovector operator structure, which implies that they do not
contribute to the isoscalar deuteron. Accordingly, their effect has to be studied by analyzing
the trinucleon electromagnetic properties. A calculation of the electromagnetic form factor
allows one to extract two more observables: the static moments of the nucleus correspond to
the normalization of the form factors, i.e., its value at q = 0, while the radius is given by the
slope of the form factor at q = 0. The various existing form factors, static moments or radius
results either adopt a hybrid approach or make use of “first generation” chiral interactions,
which are not available at every order, have a low precision, and moreover display a mismatch
between the order of the NN and 3N interaction. Considering the exciting new developments
in the field of chiral EFT, these results are in need of an update.

The ability to estimate the truncation uncertainty has several benefits. Recall that the
form factor is a function of the momentum transfer between the electron probe and the
target nucleus. The high momentum transfer region is particularly sensitive to the wave
function, and thus the interaction. Indeed, one always aims to reproduce the experimental
first minimum of the form factor exactly. However, the region of the first minimum coincides
with the kinematic domain where the predictive power of chiral EFT starts to decrease due
to a large expansion parameter, leading to poor convergence of the chiral expansion. At the
same time, the truncation uncertainty increases in this region given that it depends on the
momentum scale at which the process happens. This implies that the uncertainty is large in
the region of the first minimum, suggesting that the expectation to reproduce it exactly might
be too strict. Another benefit is the ability to make meaningful comparisons to experimental
data and to quantify the possible disagreement.

A possibility to further study the effect of leading 2BCs, is to extend the analysis to
other light nuclei. As a first step in this direction we examine their effect on the magnetic
properties of 6Li. Magnetic observables are particularly sensitive to the dynamics between
the nucleons, making them suitable candidates to study 2BCs. Specifically, we analyze the
magnetic moment and an isovector magnetic transition between an excited state and the
ground state of 6Li. Such electromagnetic transitions are calculated with the same tools as
we used for the form factors and the static moments, and thus are also sensitive to the 2BC
corrections of the operator. However, because the solution of the system is more involved, it
is beneficial to simplify the operator expression. This simplification is realized by considering
the long-wavelength limit of the current operator, i.e., the operator in the limit of q → 0,
which is connected to the well-known magnetic moment operator. Even though this only
provides long-range physics observables, the full dependence on the 2BCs is still included in
the results.

Figure 1.7 summarizes the focus points of this thesis and shows the connections between
the different topics. Each element of the figure shows what we consider in each chapter. The
starting point of our discussion is chiral EFT, which allows us to construct matrix elements
and calculate observables. In the next section, we give an outline and provide details about
the contents of each chapter.

1.4 Outline

This thesis is constructed as follows: in Chapter 2 we outline the foundational framework of
this thesis, chiral EFT. We begin in Section 2.1 by discussing the QCD Lagrangian and show
how chiral symmetry naturally emerges in the limit of vanishing quark masses. Then, we
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Figure 1.7: Illustration of the topics considered in this thesis. Chiral EFT forms the basis of our
discussion. From this framework, we are able to construct matrix elements that we can connect to
observables. The illustrations inside the box represent the nuclei we examine: the deuteron, the triton,
the helion, and 6Li. The deuteron sketches display scattering events which take into account the two
leading 2BCs and the 6Li graphic represents an electromagnetic (EM) transition which also includes
2BCs. From the general matrix element we can extract EM form factors, magnetic moments, and EM
transitions.

focus on the low-energy regime of QCD, where nucleons are the relevant degrees of freedom,
and introduce the chiral Lagrangian in Section 2.2. Because the derivation of nuclear forces
and nuclear currents from the chiral Lagrangian is nontrivial we highlight the important ideas
in Sections 2.3 and 2.4, with a more elaborate discussion for the latter. Finally in Section 2.5,
we end the chapter by presenting Bayesian methods for the uncertainty estimation of EFTs
and specify the model that we use to estimate the errors of electromagnetic observables.

In Chapter 3 we present the few-nucleon formalisms we employ for two- and three-body
systems. We show the two-body partial-wave basis, expand the general current operator with
respect to this basis, and illustrate how to obtain the deuteron wave functions in Section 3.1.
Then, in Section 3.2 we start by representing a three-body system in momentum space with
Jacobi momenta. Afterwards, we demonstrate the three-body partial-wave basis, we again
expand the general current operator with respect to this basis, and outline the Faddeev
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formalism, which is the few-nucleon method that provides the triton and the helion wave
functions.

Chapter 4 is devoted to the study of elastic electron scattering of two- and three-nucleon
systems. We start by giving a historical overview of the most important experimental and
theoretical developments to date and recapitulate the Born approximation for electron scat-
tering in Section 4.1. Then, in Section 4.2 we discuss nucleon form factors as they are an
important input in calculations. We present several nucleon form factor parametrizations and
justify our particular choice that we use in calculations. Sections 4.3 and 4.4 are dedicated
to present one of the main results of this thesis: deuteron and trinucleon electromagnetic
form factors with truncation uncertainty estimates. We start each section by presenting the
expansion of the form factor expressions with respect to the previously defined two- and
three-body basis, followed by results. For the deuteron we present the charge, quadrupole,
and magnetic deuteron form factors obtained with the one-body charge and current operators.
For the trinucleons, we provide the charge and magnetic form factors, where the magnetic
form factor includes 2BC corrections. We finish the chapter in Section 4.5 by extracting the
deuteron and trinucleon radii, and by investigating the effect of different interactions on the
radius. In the case of the trinucleons, we additionally analyze the impact of 3N interactions
on the radius.

We proceed in Chapter 5 with our investigation of magnetic properties of light nuclei, par-
ticularly, the magnetic moments of A = 2, 3, and 6 nuclei and a magnetic transition strength
of 6Li. In Section 5.1 we give a brief overview of existing calculations for both observables
which, remarkably, only consist of hybrid calculations. To understand the connection between
the magnetic observables and the formalism from Chapter 4, we present the electromagnetic
interaction Hamiltonian in Section 5.2 and provide the long-wavelength-limit derivation of
the current operator. In Section 5.3, we show that the normalization of the electromagnetic
form factors coincides with their static moments. This fact will be used to our advantage to
benchmark results later on. Afterwards in Section 5.4, we continue by specifying the magnetic
moment operator, which is defined in terms of the current operator. This relation implies
that the magnetic moment operator possesses a similar many-body expansion as the current
operator. Consequently, we derive the leading correction to the magnetic moment operator
which originates from the leading 2BCs. In Section 5.5 we present results for the deuteron
and trinucleon magnetic moments obtained from the normalization of the form factor cal-
culations from the previous chapter. The last three sections are devoted to extending the
formalism to calculations of light nuclei. To achieve this, a first step consists of making a
basis transformation, which we show in Section 5.6. In order to validate the transformation,
we benchmark the results from the basis transformation to the magnetic moments from the
form factor normalization we obtained before. Then, in Section 5.7 we briefly describe the
many-body method of choice to solve 6Li and show results of the first-ever calculation with nu-
clear currents, including the leading corrections, and forces from chiral EFT for the magnetic
moment and magnetic transition of 6Li. To close the chapter, we compare the calculations to
a recent precision experiment in Section 5.8.

Finally in Chapter 6 we give a conclusion and an outlook. Aspects of the few-body bases,
detailed derivations, and experimental values and measurement techniques are presented in
the Appendix.



2
NUCLEAR FORCES AND CURRENTS

FROM CHIRAL EFFECTIVE FIELD
THEORY

The derivation of nuclear interactions, governing the dynamics between nucleons, is one of
the central objectives in nuclear theory research. We know that QCD is the underlying
theory of the strong interaction from which nuclear forces emerge. However, due to the
nonperturbative nature of the strong interaction in the low-momentum regime of nuclear
physics, a direct construction of nuclear interactions from QCD is extremely hard. In a modern
approach to derive nuclear interactions, additional requirements apart from a connection with
the underlying theory are to be satisfied: there needs to be a physics-driven systematical
improvable scheme which allows for a consistent description of interactions with external
probes and provides access to uncertainty estimation.

Chiral EFT meets these requirements by taking into account only those degrees of freedom
relevant to the scale of interest, i.e., nucleons and pions, and by subsequently constructing
the most general Lagrangian consistent with symmetries from QCD, in particular chiral
symmetry. The resulting infinite amount of terms are systematically organized according
to the Weinberg power-counting scheme, which was introduced by Steven Weinberg in his
pioneering papers [18–20], in terms of powers of Q = p/Λb,1 where p is the typical momentum
inside the nucleus and Λb the chiral breakdown scale. The power-counting scheme creates a
hierarchy of importance depending on the order, where many-body forces naturally appear
at higher orders in the expansion, and each order only has a finite number of terms. The
unresolved high-momentum physics is contained in the expansion parameters denoted by
LECs. Although these LECs could be obtained directly from QCD, in practice they are fit
to nucleon-nucleon scattering data and properties of two- and three-body systems.

The coupling of nucleons and pions to external fields is described by currents, which can
be derived consistently with respect to the interaction from the chiral Lagrangian. Given that
the chiral Lagrangian satisfies gauge invariance, electroweak fields can be coupled to nuclear
currents acquired from the continuity equation with chiral potentials. A first investigation of
chiral EFT currents was performed in Refs. [84, 85] by using covariant perturbation theory.
More recently, two separate derivations were published: the first one employed standard
time-ordered perturbation theory (TOPT), first used in chiral EFT in Refs. [86, 87], combined
with a transfer-matrix inversion and was carried out by the JLab-Pisa group [70, 88–90], while

1We use the symbol Q to denote the expansion parameter instead of the typically used Q, to avoid confusion
with the symbol for the momentum transfer in later chapters.
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the second approach, by the Bochum-Bonn group [91, 92], used the unitary transformation
(UT) [93, 94] which was first introduced for chiral EFT in Ref. [95].

In order to make quantitative comparisons against experiment, reliable predictions, and
extrapolations, it is essential to estimate the inherent model uncertainties. Several different
sources of uncertainty in nuclear Hamiltonians from chiral EFT exist. These include, for
example, uncertainties emerging from experimental data used to fit the LECs, uncertainties
connected to fitting strategies, and systematic uncertainties as a result of truncating the
chiral Lagrangian. During the last few years, great progress has been made to quantify these
uncertainties. These efforts were in part initiated by the “Information and Statistics in Nuclear
Experiment and Theory” (ISNET) workshops [38, 47], which led to two focus issues dedicated
to the subject of uncertainty quantification in theoretical and experimental nuclear physics [39,
46]. Furthermore, an inspection of a recent special issue on nuclear interactions confirms the
importance of uncertainty quantification and the ongoing endeavors in this direction, see, e.g.,
Refs. [35, 48]. Even though there are multiple sources of errors in nuclear Hamiltonians from
chiral EFT, it is assumed that truncation errors are often the dominant ones [40]. Attempts
to estimate these uncertainties are made by variation of the cutoff parameter of the regulator
function. However, this method only measures the effect of higher-order contact terms, i.e.,
short-distance physics, and cannot be interpreted as rigorous statistical errors [96]. In fact,
the EFT framework inherently provides uncertainty-quantification possibilities, based on the
prescription for calculations from the power-counting scheme. Specifically, the expansion
of the Lagrangian is expected to be directly inherited by calculations of observables whose
truncation uncertainties decrease if higher orders of the expansion are included. As a rigorous
approach to address the quantification of truncation uncertainties in chiral EFT, Bayesian
procedures were introduced in Refs. [40, 41]. These methods provide well-founded statistical
error bars for theoretical results such that meaningful comparisons with other theoretical
calculations and experimental data can be made and they are even capable of addressing
other sources of uncertainties arising from, e.g., fitting strategies or experimental data used
to fit the LECs, which we mentioned above.

We start this chapter by discussing the fundamentals of QCD important for the under-
standing of chiral EFT in Section 2.1. Afterwards, in Sections 2.2 and 2.3 we demonstrate
how chiral EFT emerges as a low-energy theory of QCD and, respectively, how nuclear forces
are obtained from the chiral Lagrangian. These three sections follow Refs. [97, 98] which we
refer to for a more detailed introduction to the topic. In Section 2.4 we examine the deriva-
tion of nuclear currents from the chiral Lagrangian, which now includes external sources.
Finally, we finish the chapter by presenting the truncation uncertainty quantification method
in Section 2.5.

2.1 Quantum chromodynamics

The quantum field theory of the strong interaction is QCD. It is a non-Abelian gauge theory
which describes the interaction between its fundamental degrees of freedom: these are spin-
1/2 fermions, called quarks, and the gauge bosons of the theory, gluons, which mediate the
interaction between the quarks. As a consequence of the non-Abelian character, gluons also
interact among themselves. At present, there are six different flavors of quarks (Nf = 6), up,
down, strange, charm, bottom, and top, see Table 2.1 for their electric charge and mass. Each
quark carries an additional degree of freedom of color charge. Three different color charges
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Table 2.1: Electric charge, in units of the elementary charge, and approximate masses [103] of the
six quark flavors.

Flavor up down strange charm bottom top

Charge +2/3 −1/3 −1/3 +2/3 −1/3 +2/3
Mass 2.2 MeV 4.7 MeV 95 MeV 1275 MeV 4.18 GeV 173 GeV

(Nc = 3) exist, red (r), green (g), and blue (b), which create the underlying SU(Nc) color
gauge group. Accordingly, antiquarks carry anticolor. At low temperatures and densities,
quarks are confined in color-neutral hadrons, preventing the observation of individual quarks
under these conditions. Such a color neutral hadron can be composed of a quark-antiquark
pair, called mesons, three quarks each having a unique color, called baryons, combinations of
four quarks and an antiquark bound together which are the so-called pentaquarks [99, 100],
and there are indications for four-quark bound states called tetraquarks [101, 102]. Low-
energy nuclear physics is determined by the three lightest quarks only: up, down, and strange.
Therefore, we leave the remaining quarks out of the discussion below.

The QCD Lagrangian for the lowest mass quarks up, down, and strange, is given by

LQCD =
∑

f=u,d,s
q̄f (i /D −mf )qf −

1
2G

a
µνGaµν , (2.1)

where qf represents the quark fields with mass mf . We used the Feynman slash notation
for the covariant derivative /D ≡ γµDµ = γµ(∂µ + igsAµ), with strong coupling constant gs,
gamma matrices γµ, and gluon field Aµ. The gluon-field-strength tensor is defined by

Gaµν = ∂µAaν − ∂νAaµ − gsfabcAbµAcν , (2.2)

with fabc representing the SU(Nc) structure constants and a, b, c = 1, 2, ..., 8 the color indices,
which are implicitly summed over.

We proceed by examining Eq. (2.1) in the limit of vanishing quark masses, i.e., mf → 0,
such that it becomes

L0
QCD =

∑
f=u,d,s

q̄f i /D qf −
1
2G

a
µνGaµν . (2.3)

By introducing left- and right-handed projection operators

PR = 1
2(1 + γ5) → PRq = qR, (2.4a)

PL = 1
2(1− γ5) → PLq = qL, (2.4b)

we can write the previous equation in terms of left- and right-handed quark fields:

L0
QCD =

∑
f=u,d,s

(
q̄R,f i /D qR,f + q̄L,f i /D qL,f

)
− 1

2G
a
µνGaµν . (2.5)

Note that there are no terms mixing left- and right-handed quark fields, which results from
mf → 0. This Lagrangian is invariant under global U(3)L × U(3)R transformations in flavor
space, in other words, the Lagrangian is invariant under separate rotations of the left- and
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right-handed quark fields by unitary matrices. More generally, the transformation can be
written as U(1)A × U(1)V × SU(3)L × SU(3)R, where U(1)V is connected to baryon number
conservation and U(1)A is not a symmetry of the quantum theory as a result of the axial
anomaly. The remaining SU(3)L × SU(3)R is known as chiral symmetry and leaves the left-
and right-handed quark fields of the Lagrangian in Eq. (2.5) invariant under rotations by
SU(3) matrices. An exact chiral symmetry would appear in nature through parity doublets
in the hadron spectrum: two particles with the same quantum numbers and mass, but
with opposite parity. Given that observed masses of parity partners are very different, e.g.,
the nucleon N

(
Jπ = 1

2
+) with mN ≈ 940 MeV and its chiral opposite N∗

(
Jπ = 1

2
−) with

mN∗ ≈ 1535 MeV, chiral symmetry must be spontaneously broken. To each spontaneously
broken symmetry belongs a massless excitation of the vacuum, called a Goldstone boson [104].
In addition, as quark masses are nonzero, chiral symmetry is explicitly broken because the
mass term couples left- and right-handed quark fields,∑

f

mf q̄f qf =
∑
f

q̄R,f mf qL,f + h.c.. (2.6)

As a result of the explicit symmetry breaking, Goldstone bosons acquire mass and are therefore
called pseudo-Goldstone bosons. In QCD they are the pions, kaons, and the η-meson. The
kaons and the η have a nonzero strange-quark content. Given the stronger symmetry breaking
in the strange sector due to the larger strange-quark mass compared to the up and down
masses, kaons and the η are much heavier compared to pions.

A distinctive property of QCD is its dependence of the coupling constant on the momentum
scale Q [105, 106],

αs(Q) = gs
4π = 4π

b0
log−1

[
Q

ΛQCD

]
, (2.7)

where b0 = (33− 2Nf )/(12π) and where the characteristic scale of QCD is ΛQCD ≈ 200− 400
MeV. At high energies the strong coupling constant becomes small, i.e., αs � 1, causing
quarks to become free and allowing perturbative QCD calculations. This phenomenon is
called asymptotic freedom and is a typical feature of non-Abelian gauge theories. On the
other hand, at low energies Q . 1 GeV the coupling strength becomes large, i.e., αs � 1,
making QCD calculations nonperturbative in this energy regime. Therefore, calculations
at low energies are extremely hard, essentially prohibiting direct determination of nuclear
observables from QCD.

One method that attempts to obtain observables in the low-energy regime is lattice QCD.
For introductory texts on the subject we refer to, e.g., Refs. [107, 108], and for its application to
nuclear physics to Ref. [4]. In this approach, space-time is discretized into a four-dimensional
Euclidean lattice with quarks on the lattice points connected by links where gluons are located.
Additionally, space and time are constrained to finite sizes to reduce computational costs so
that results obtained with different parameters have to be extrapolated to the continuum
limit. As the computational cost increases for decreasing quark mass, calculations are carried
out at large values for the quark masses leading to nonphysical results.2 Despite these

2There are two main reasons for this effect. The first originates from the fact that lattice QCD calculations
compute the inverse of the Dirac operator. Given that the difficulty of inverting an operator depends on
the smallest eigenvalue, it becomes harder to calculate the inverse of the Dirac operator for decreasing quark
mass. The second reason arises from the signal-to-noise ratio for A-nucleon correlation functions, given by
exp[−A(mN − 3mπ/2)t], which becomes unfavorable at large time scales t for low mπ and large A [4].
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challenges, lattice QCD shows a lot of progress: predicted masses of the lightest hadrons were
calculated [3], and nuclear and hypernuclear3 properties of light nuclei at a nonphysical pion
mass of mπ ≈ 800 MeV were calculated as well [5, 109]. For example, isovector magnetic
moments of nuclei up to A = 4 were obtained in Refs. [110, 111].

2.2 Chiral effective field theory

The main principle of any EFT is the existence of a separation of scales in the physical system
of interest. One can then choose relevant degrees of freedom below a breakdown scale Λb and
construct the most general Lagrangian consistent with symmetry properties of the physical
system. The Lagrangian is ordered in terms of powers of an expansion parameter p/Λb, which
consists of a typical low-momentum scale p to a breakdown scale Λb. An illustration of such
a general Lagrangian is given by

L =
∑
ν

(
p

Λb

)ν
Fν(q, gi), (2.8)

where Fν is a function of order one and gi represent the unknown LECs, which contain
the high-energy physics that is integrated out. To ensure a correct convergence pattern of
the EFT, LECs are assumed to be natural, i.e., of O(1), such that individual terms in the
expansion are not enhanced. The power-counting scheme orders the expansion according to
decreasing importance in terms of powers ν of the expansion parameter, so that ν = 0 or
leading order (LO) terms include the dominant contributions, while ν = 1 or next-to-leading
order (NLO) terms, ν = 2 or next-to-next-to-leading order (N2LO), and etc. add smaller
and smaller corrections. This ordering provides a prescription to systematically improve
order-by-order EFT calculations such that a given accuracy is achieved by including a finite
number of terms.

Several EFTs of QCD exist to tackle the low-energy regime of nuclear physics. At very low
energies, the relevant energy scale is provided by neutron-proton S-wave scattering lengths
which are unnaturally large in comparison to the pion Compton wavelength λπ = 1/mπ ≈ 1.4
fm. As a result, one can formulate the so-called pionless EFT [112–114] with a breakdown
scale of the order of the pion mass to describe processes at these low energies. This EFT only
consists of contact interactions to describe the forces between nucleons. Increasing the typical
momentum scale beyond the pion mass implies that pions have to be explicitly included in
the EFT. As mentioned before, chiral EFT includes pions to account for the intermediate-
and long-range part of the nuclear interaction by one-or multiple-pion exchanges between
nucleons. Additionally, pions set the low-momentum scale of the theory. The breakdown scale
is roughly determined by the mass of heavier mesons without strange-quark content that are
not included in the EFT, i.e., Λb ≈ 500 MeV which is somewhat smaller than the mass of
the ρ meson, mρ = 775 MeV. Based on a comparison between the breakdown scale of chiral
EFT and the excitation spectrum of hadrons, inclusion of the delta isobar ∆(1232) as an
explicit degree of freedom might be important to improve convergence properties, given that
it only differs about 300 MeV in mass with the nucleon. An EFT which explicitly includes the
delta isobar is called ∆-full chiral EFT [86, 87] and is currently being further developed [115,
116]. Still other EFTs describe more exotic systems: one example is halo/cluster EFT [117–

3A hypernucleus is a nucleus with nonzero strange-quark content.
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119] which describes weakly bound nuclei with a core surrounded by one or more valence
nucleons or nuclei with a cluster structure. Typical examples of such nuclei are found at
the limits of stability close to the driplines. Other examples of exotic EFTs are found in
extensions of pionless, chiral, and halo/cluster EFTs which accommodate the description of
hypernuclei [120–122]. Developing EFTs for low-energy nuclear physics is a very active field
of research which is well documented in the literature. Because we exclusively use chiral EFT
in this thesis we give a more detailed overview below and refer the reader to Ref. [123] for a
modern and comprehensive review on nuclear EFTs.

As mentioned above, organizing the terms of the Lagrangian is achieved according to the
power of the expansion parameter Q. The order of each term in the chiral Lagrangian is
given by

∆i = di + 1
2ni − 2, (2.9)

with di the number of derivatives or pion masses and ni the number of nucleon fields in vertex
i. To lowest orders of the chiral expansion, ∆i = 0, 1, the effective Lagrangian is given by [124]

L(0) =1
2∂µπ · ∂

µπ − 1
2m

2
ππ

2 +N †
[
i∂0 + gA

2Fπ
τσ ·∇π − 1

4F 2
π

τ · (π × π̇)
]
N

− CS
2 (N †N)(N †N)− CT

2 (N †σN)(N †σN) + ..., (2.10)

L(1) =N †
[
4c1m

2
π −

2c1
F 2
π

m2
ππ

2 + c2
F 2
π

π̇2 + c3
F 2
π

(∂µπ · ∂µπ)− c4
2F 2

π

εijkεabc σiτa(∇jπb)(∇kπc)
]
N

− D

4Fπ
(N †N)(N †στN) ·∇π − 1

2 E (N †N)(N †τN) · (N †τN) + ..., (2.11)

where π represents pion fields, σ and τ the spin and isospin Pauli matrices, mπ the pion mass,
N the nucleon fields, gA the axial coupling, and Fπ the pion-decay constant. The superscripts
denote the vertex dimension ∆i, dots over the symbols represent derivatives, LECs are given
by ci, CS , CT , D, and E, and ellipsis indicate terms with more pion fields and derivatives.

2.3 Nuclear forces from chiral EFT

Nuclear forces are obtained from the chiral Lagrangian by using a diagrammatic representa-
tion. Such diagrams do not correspond to Feynman diagrams originating from the scattering
amplitude, but are best understood to be a schematic visualization of their irreducible com-
ponents. The power counting then assigns an order ν to each diagram and determines its
importance. Weinberg power counting [18, 19] is based on a naive dimensional analysis and
gives the order ν as [125, 126]

ν = −4 + 2N + 2L+
∑
i

Vi∆i, (2.12)

where N is the number of nucleons, L the number of pion loops, Vi the number of vertices
of type i, and ∆i as specified in Eq. (2.9). Figure 2.1 displays the hierarchy of nuclear
forces arising from the power-counting scheme introduced above up to next-to-next-to-next-
to-leading order (N3LO). At LO (ν = 0) and NLO (ν = 2) only two-nucleon forces appear,
while 3N and four-nucleon (4N) forces first emerge at N2LO (ν = 3) and N3LO (ν = 4),
respectively. This natural appearance of many-body forces is inherent to chiral EFT and



2.3 NUCLEAR FORCES FROM CHIRAL EFT 21

Figure 2.1: Hierarchy of NN, 3N, and 4N chiral nuclear forces up to N3LO. Solid and dashed lines
in the diagrams represent nucleons and pions, respectively, while different vertex symbols denote the
vertex order: small dots, large solid dots, solid squares, and empty squares correspond to ∆i = 0, 1, 2,
and 4, respectively. Figure taken from [127].

is one of its main benefits compared to other methods to obtain nuclear interactions. Note
that there is no contribution for ν = 1, as this order is forbidden due to parity and time-
reversal invariance [19]. In general, there are two types of diagrams: contact diagrams that
parametrize the short-distance physics through LECs which are fit to NN scattering data,
and pion-exchange diagrams that account for the intermediate- and long-range parts of the
interaction with LECs obtained from pion-nucleon scattering data. At LO there is only
a one-pion-exchange contribution to these intermediate- and long-range parts, however, at
higher-orders two- and multiple-pion exchange diagrams appear. Another benefit of chiral
EFT is its systematic improvable calculation scheme that is provided by the power counting:
including the next order in calculations systematically increases the accuracy of the result.

The dominant contribution to the NN interaction is given by the LO forces. Their
momentum-space expression, which consists of two contact interactions and a one-pion-
exchange term, is given by

VLO(q) = V
(0)
cont + V

(0)
OPE = CS + CT σ1 · σ2 −

g2
A

4F 2
π

(σ1 · q)(σ2 · q)
q2 +m2

π

τ1 · τ2, (2.13)

where q = p′ − p is the momentum transfer with p and p′ the initial and final relative
momenta of the two nucleons. The two contact interactions describe the allowed S-wave
channels 3S1 and 1S0 of the two nucleons, and CS and CT are correspondingly obtained
from a fit to the phase shift. On the other hand, the one-pion-exchange term is completely
determined by the pion-decay constant Fπ and the axial coupling gA. Higher orders of the
NN interaction introduce many new diagrams including more contact interactions, pion-loop
diagrams, and two- or more-pion exchanges. Two-nucleon interactions have been derived up
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to next-to-next-to-next-to-next-to-leading order (N4LO) [22–24], with first explorations for
NN scattering at sixth order [128, 129].

The leading 3N interactions appear at N2LO and are accompanied by five LECs, three of
which are predicted from the NN sector such that only two new LECs are introduced. These
new LECs are connected to the one-pion-exchange contact and the three-nucleon-contact
term, whose expressions are given by

V
(3)

1π,cont = − gA
8F 2

π

D
∑
i 6=j 6=k

σj · qj
q2
j +m2

π

(τi · τj)(σi · qj), V
(3)
cont = E

2
∑
j 6=k

τj · τk. (2.14)

Here, the LECs D and E are the ones from the chiral Lagrangian at order ∆i = 1. More
commonly, they are given in terms of the constants cD and cE , which are related by

D = cD
F 2
πΛχ

, E = cE
F 4
πΛχ

, (2.15)

with Λχ = 700 MeV. These two new LECs are determined by a fit to uncorrelated few-
nucleon properties. Different strategies exist to perform this fit, to name a few: by using
the binding energies of A = 3 nuclei [130], the binding energy of 3H and the charge radius
of 4He [31], the binding energy of 3H and nuclear matter saturation properties [32], or the
binding energies of A = 3 nuclei and the triton β-decay half-life as an extra constraint [50].
This last approach is possible because cD and cE appear in the the contact two-nucleon weak
current at N2LO, see the next section for a discussion about power counting for currents,
which adds a higher-order correction to the Gamow-Teller matrix element in triton β-decay.
Subleading 3N interactions at N3LO have also been derived, see Refs. [131–133], and only
depend on NN contact couplings CS and CT . Efficiently including interactions at this order
in calculations is done by a specialized partial-wave decomposition [134]. Furthermore, the
derivation of 3N forces at N4LO is also in progress [135, 136], but it is currently not used in
nuclear observable calculations.

An inherent property of chiral EFT are ultraviolet (UV) divergences which arise from the
nonperturbative summations of the interactions in the Lippmann-Schwinger (LS) equation
[96]. To circumvent this issue, a finite UV cutoff Λ of the order of the breakdown scale is
introduced to the integrals in the form of regulating functions fΛ

NN. These functions are
multiplied to potential expressions and have the effect to suppress the high-momentum parts
of the interactions:

V (p,p′)→ fΛ
NN(p)V (p,p′)fΛ

NN(p′) = Vreg(p,p′). (2.16)

Given that different few- and many-body methods require different formulations of the in-
teractions, three different classes of regulator functions exist: local, semilocal, and nonlocal,
where each class has its specific properties. In a momentum-space formulation, local regulator
functions only depend on differences between momenta, i.e., fΛ

local = fΛ(p′−p), while nonlocal
regulator functions typically depend on combinations of p′ and p. Semilocal regularization
schemes combine both local and nonlocal regulator functions: short-range parts of the inter-
action are nonlocally regularized, whereas the long-range pion exchanges are regularized with
local regulator functions. The interactions used in this thesis are all nonlocal. In that case,
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the regulator function for NN interactions is generically given by

fΛ
NN(p) = exp

[
−
(
p

Λ

)2n ]
, (2.17)

with n an integer and p = |p|. The generalization to a three-body nonlocal regulator function
is introduced by

fΛ3N
3N (p, q) = exp

[
−
(
p2 + 3

4q
2

Λ3N

)n ]
, (2.18)

where p = p and q = q now represent the more general Jacobi momenta (see Section 3.2.1)
and Λ3N is the 3N cutoff parameter. As a side effect of regulating the interactions, finite-cutoff
effects are induced which appear as a dependence of observables on the cutoff parameter Λ.
If the convergence of the chiral expansion works as expected, then this cutoff dependence
should reduce with increasing order.

2.4 Nuclear currents from chiral EFT

Nuclear currents are, similar to nuclear forces, derived from a chiral Lagrangian except now
with external sources. Once again, we begin with the QCD Lagrangian and demonstrate the
addition of external sources before we consider two methods to obtain nuclear currents and
discuss their properties. This section is largely based on a recent review provided in Ref. [137],
which we refer to for an in-depth discussion about the topic of nuclear currents from chiral
EFT.

2.4.1 External sources in QCD

External sources form the basis to derive nuclear current operators. Let us start by observing
the interaction of quarks with external probes in QCD. We introduce vector, axial-vector,
scalar, and pseudoscalar sources by extending Eq. (2.3) to

LextQCD = L0
QCD +

∑
f

[
q̄fγ

µ(vµ + γ5aµ)qf − q̄f (s− iγ5p)qf
]
, (2.19)

where vµ(x), aµ(x), s(x), and p(x) represent the external vector, axial-vector, scalar, and
pseudoscalar fields, which are hermitian and color-neutral matrices in flavor space. In addition,
the scalar field includes the quark mass matrix. The QCD Lagrangian is invariant under local
chiral transformations if the external fields transform as

v′µ + a′µ = PR(vµ + aµ)P †R + iPR ∂µ P
†
R, (2.20a)

v′µ − a′µ = PL(vµ − aµ)P †L + iPL ∂µ P
†
L, (2.20b)

s′ + ip′ = PR(s+ ip)P †L, (2.20c)

where the projection operators were introduced in Eqs. (2.4a) and (2.4b). By accounting for
all possible external sources, the interaction with different probes can be studied.
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2.4.2 Unitary transformation and time-ordered perturbation theory

It is possible to construct an effective Lagrangian with nucleons, pions, and external fields
that is invariant under local chiral transformations given in (2.20a)-(2.20c). From the effective
Lagrangian one can derive an effective Hamiltonian, which then also depends on the external
fields s, p, a, and v, see Refs. [91, 138, 139] for explicit expressions. We denote this Hamiltonian
by

Heff[s, p, a, v]. (2.21)

There are two different methods to find the nuclear current from this Hamiltonian: the first
one uses the UT [93–95] and the second one uses TOPT [86, 87] with a transfer-matrix
inversion. The former is the method of choice employed by the Bochum-Bonn group [91,
92], while the latter technique is employed by the JLab-Pisa group [70, 88–90]. Below, we
highlight the important conceptual steps of both methods.

In the UT approach, to ensure renormalizability, the effective Hamiltonian is trans-
formed by a time-dependent unitary transformation that explicitly depends on the external
sources [137]:

H ′eff[s, p, a, v] = U(t)†Heff[s, p, a, v]U(t) +
(
i
∂

∂t
U(t)†

)
U(t), (2.22)

with U(t) the time-dependent unitary transformation. Then, the current operator is ob-
tained by taking a functional derivative of the time-dependent unitary transformed effective
Hamiltonian with respect to one of the external sources:

JX = δ

δX
H ′eff[s, p, a, v]

∣∣∣∣
s=mq ,p=a=v=0

, (2.23)

where H ′eff denotes the time-dependent unitary transformed effective Hamiltonian, X repre-
sents s, p, a, or v, depending on the nuclear current of interest, and where the scalar source
is set to the quark-mass matrix. We refer to Refs. [137, 139] for an in-depth introduction to
the UT method for chiral nuclear currents.

The TOPT method starts from the transition amplitude, i.e., T -matrix, given by [88, 90]

〈f |T |i〉 = 〈f |H1

∞∑
n=1

( 1
Ei −H0 + iη

H1

)n−1
|i〉 , (2.24)

where |i〉 (|f〉) is the initial (final) state with eigenvalue Ei and the total Hamiltonian Heff =
H0 + H1 is split into a free part H0 and an interaction part H1. In the following, we only
assume an electromagnetic interaction, however, the same general arguments hold for any
other type of interaction. The T -matrix can be expanded in chiral orders using first-order
perturbation theory as follows

Tγ = T (−3)
γ + T (−2)

γ + T (−1)
γ + ..., (2.25)

where T (n)
γ is of chiral order eQn, with e the elementary charge, and the ellipsis denote higher

orders in the expansion. Based on the power counting for nuclear currents the LO charge
operator is given by ν = −3, while the LO current operator has order ν = −2. Higher-order
operators are classified relative to the LO contributions. In Section 2.4.3 we will explain



2.4 NUCLEAR CURRENTS FROM CHIRAL EFT 25

the power-counting scheme in more detail. Nuclear currents are found by inverting the
LS equation and matching each T -matrix component, order by order, to each LS equation
component. We introduce vγ = Aµ · jµ, with Aµ the electromagnetic field vector and jµ the
nuclear current, and we iteratively derive the current order by order [90]:

v(−3)
γ = T (−3)

γ , (2.26)

v(−2)
γ = T (−2)

γ −
[
v(−3)
γ G0v

(0)
γ + v(0)

γ G0v
(−3)
γ

]
, (2.27)

..., (2.28)

where G0 = (Ei−EI + iη)−1, with EI the intermediate energy which also includes the photon
energy, and where the ellipsis denotes higher orders. A comprehensive introduction to the
TOPT method is given in Refs. [88, 90].

Nuclear vector currents derived from both methods agree up to order Q0, with differences
occurring at order Q. One apparent difference comes from the fact that the JLab-Pisa
group have unrenormalized expressions, while the Bochum-Bonn group provides renormalized
results. Furthermore, the Bochum-Bonn group claims that they are unable to renormalize
the JLab-Pisa results [137]. In addition, there are differences in the one-pion and two-pion
exchange contributions to the current and charge operators. Differences in the one-pion
exchange contributions to the current operator imply a difference in the resulting magnetic
moment operator (in Section 5.4 we show the connection between the current operator and
the magnetic moment operator). The calculation of two-pion exchange contributions in both
approaches leads to differences in the charge operator, which are claimed to be unitarily
equivalent according to the JLab-Pisa group. However, in Ref. [137] it is shown that the
argument of unitary equivalence is based on wrong assumptions, making the claim invalid.
We refer the reader to Refs. [90–92, 137] for extensive discussions about these differences.

Up until now the analysis was kept general and any possible probe-nucleus interaction was
allowed. In this thesis however, we exclusively consider electromagnetic interactions which
correspond to vector sources. Therefore, we only mention the relevance of the other sources
briefly. Axial-vector currents are used to describe weak processes like β-decay. There are
two primary motivations to develop these currents. First, the lowest-order two-nucleon axial-
vector current depends on LECs which also contribute to the leading 3N force [140] and other
processes like radiative capture reactions in two-nucleon systems [141]. Hence, chiral EFT
offers a framework to study these distinct phenomena in a unified approach. Second, there is
an interest from the neutrino-scattering and astrophysics community for more reliable and
accurate predictions of low-energy nuclear reactions involving neutrinos. A first set of chiral
EFT expressions up to fourth order was provided in Ref. [84, 142] by Park et al. using covariant
perturbation theory. These derivations, however, were not complete as pion-pole terms and
contributions from reducible-like diagrams were omitted. Nevertheless, these expressions
have been used in several nuclear structure calculations see, e.g., Refs. [50, 142–144]. More
recently, axial-vector currents have been developed in the TOPT framework [138] and the UT
framework [139]. These currents have been used in calculations of tritium β-decay [145–147],
QMC studies of weak decays in A 6 10 [148], and β-decay studies of medium-mass nuclei up
to 100Sn where the inclusion of 2BCs suggested a solution to the well-known quenching of the
axial coupling constant [149].

Scalar currents are important in beyond-standard-model physics searches, because they
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arise in a variety of dark matter models. For example, weakly-interacting massive particles
(WIMPs) are a prominent class of hypothetical particles that could be searched for by direct-
detection experiments, where the recoil energy of a WIMP-nucleus scattering event is measured.
To interpret future signals and to derive constraints from experiments on the parameter space
of these hypothetical particles, it is important to systematically incorporate knowledge about
the nuclear system. Pioneering derivations of nuclear scalar currents from chiral EFT were
provided in Refs. [150, 151]. Several applications using these scalar currents have appeared
in recent years, see, e.g., Refs. [152–154]. Recently, nuclear scalar currents including leading
one-loop corrections to the two-nucleon scalar current were derived within chiral EFT using
the UT method [155].

Vector and axial-vector currents have to satisfy certain relations that are rooted in their
symmetry properties. Therefore, verifications of these relations amount to important and
convenient checks of the obtained expressions. For example, given that currents are four-
vectors, they have to behave correctly under boost transformations. That is, a general
(axial-)vector current Jµ has to meet the following requirement [137]:

e−ie·Kθ Jµ(x) eie·Kθ = Λ(θ)νµJµ(Λ(θ)−1x), (2.29)

with K the boost generator, e the boost direction, θ the boost angle, and Λ(θ) a 4× 4 boost
matrix. This relation can be generalized by applying a time-dependent unitary transformation
to the (axial-)vector current operator. Considering the more general transformation property
of the vector operator provides a prescription to derive the charge operator from the current
operator [137]. Hence, calculating boost transformation properties not only assure a successful
derivation of the (axial-)vector current, but also, in the case of a vector current operator,
provides a relation between the charge and current operators. More importantly, (axial-)vector
currents have to satisfy the continuity equation, which emerges from the gauge invariance of
chiral EFT. Because we exclusively work with vector currents in this thesis, we only present
the continuity equation with respect to vector currents and refer to Ref. [137] for an expression
of the continuity equation for the axial-vector current. The continuity equation connects the
current operator with the nuclear potential and is given by

q · j = [Heff, ρ], (2.30)

where [..., ...] denotes a commutator. Here, the charge and current operator correspond to the
temporal and spatial component, respectively, of the vector current operator, i.e., Jµ = (ρ, j).
Equation (2.30) has to be satisfied at each order of the chiral expansion in order for the
currents to be correct.

2.4.3 Power counting and electromagnetic nuclear currents

Nuclear currents from chiral EFT are, similar to nuclear forces, arranged in hierarchical
classes of importance based on a power counting. Again, following Weinberg’s analysis [18,
19], we adjust the power counting introduced in Eq. (2.12) to account for external fields [137]:

ν = −3 +
∑
i

Vi(di + 3
2ni + pi + si − 4), (2.31)
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Table 2.2: Power counting of the charge, ρ, and current operator, j, up to ν = 1, for which the LO is
given by ν = −3 and ν = −2, respectively. Note that there is no contribution at NLO for the charge
operator. Fourth order current operator expressions have been recently derived in Ref. [157].

Operator LO NLO N2LO N3LO N4LO

ρ −3 −2 −1 0 1
j −2 −1 0 1 2

with pi the number of pion fields and si the number of external sources, which can only be
0 or 1 for current operators, in the vertex i. For the leading charge and current operator
this results in an order Q−3 and Q−2, respectively. The scaling in Qν of both operators
up to ν = 1 is given in Table 2.2 which also shows the corresponding order. Although this
power counting is generally accepted, a study of the power counting of 2BCs showed that
short-range contributions to the current operator are in fact enhanced and should appear at
a lower order compared to counting presented here [156]. Further studies along these lines as
well as more quantitative investigations have not been published until now.

In this thesis, we will only consider vector operators up to NLO to calculate electromagnetic
observables. As there is no NLO contribution for the charge operator, we only consider its LO
contribution. On the other hand, for the current operator both contributions are nonvanishing,
where the NLO contribution introduces the leading 2BC.

The momentum-space LO one-body charge operator is given by [70]

ρ(−3) = e eN,1(Q2) δ(k′2 − k2) + 1� 2, (2.32)

where e represents the elementary charge, ki (k′i) the initial (final) momentum of nucleon i,
and eN,1(Q2) is given by,

eN,i = GSE(Q2) +GVE (Q2)τi,z
2 , (2.33)

with Q the momentum transfer, GS/VE the isoscalar (S) or isovector (V ) nucleon electric form
factor, normalized to GSE(0) = GVE (0) = 1 [158]. Note that, in the limit of Q→ 0, Eq. (2.33)
becomes the proton-projection operator. At N2LO there is a relativistic correction to the
one-body charge operator and the leading two-body charge operator first appears at N3LO.

The momentum-space LO one-body current operator is specified by [70]

j(−2) = e

2mN

(
2 eN,1(Q2)K1 + i µN,1(Q2)σ1 × q

)
δ(k′2 − k2) + 1� 2, (2.34)

where mN expresses the nucleon mass, K1 is given by Ki = (k′i + ki)/2, σi the Pauli spin
matrix operating on nucleon i, and

µN,i = GSM(Q2) +GVM(Q2)τi,z
2 , (2.35)

with G
S/V
M the isoscalar (S) or isovector (V ) nucleon magnetic form factor, normalized to

GSM(0) = 0.880 µN and GVM(0) = 4.706 µN [158].
At NLO, the leading 2BC operators appear. They are connected to the one-pion exchange
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eQ−2

(a)

eQ−1

(b) (c)

Figure 2.2: Diagrams for the LO (top row) and NLO (bottom row) contributions to the current
operator, indicated by their scaling according to eQν . Solid lines represent nucleons, while dashed and
wiggly lines represent pions and virtual photons. Diagram (a) is the one-body current, while diagrams
(b) and (c) are the leading 2BCs and depict the seagull and pion-in-flight contribution, respectively.
Note that the one-body charge operator can be represented by diagram (a) as well, but then with
order eQ−3. Figure taken from [81].

potential, see Eq. (2.13), and their momentum-space expressions are given by [70]

j(−1) = −i e g
2
A

4F 2
π

GVE (Q2)(τ1 × τ2)z
(
σ1 − q1

σ1 · q1
q2

1 +m2
π

)
σ2 · q2
q2

2 +m2
π

+ 1� 2, (2.36)

with qi = k′i−ki. Figure 2.2 shows the LO and NLO diagrams for the current operator. The
first and second term between brackets in Eq. (2.36) corresponds to diagram (b) and to diagram
(c) which are the so-called seagull and pion-in-flight term, respectively. Equations (2.32),
(2.34), and (2.36) are the main operators used to calculate electromagnetic observables in this
thesis. For a complete set of expressions of the electromagnetic charge and current operators
up to N3LO we refer to Refs. [70, 137, 157].

2.4.4 Consistent description of nuclear forces and currents

Expectation values of currents at fourth order in the chiral expansion no longer preserve
chiral symmetry as a result of the different regularization schemes used to obtain nuclear
currents and nuclear forces [137]. In a specific example, the cutoff regularization used for
the forces introduces a linear cutoff singularity which could only be canceled by the current
if it were derived using cutoff regularization instead of dimensional regularization. A naive
approach to circumvent this issue by simply multiplying the current operator with a cutoff
regulator function does not mitigate the problem. To resolve this issue, both currents and
nuclear forces have to be derived using the same cutoff regulator. In addition, this regulator
has to respect chiral symmetry itself. Examples of preliminary studies with first steps in that
direction were performed in Ref. [159] and more recently in Ref. [72]. In the latter study,
the authors calculated the deuteron charge form factor up to N4LO in the chiral expansion.
The deuteron was specifically chosen because its isoscalar nature ensures that complicated
isovector contributions vanish. Only a relativistic correction to the leading one-pion-exchange
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charge operator remains for the deuteron, which can be straightforwardly regularized [137].

2.5 Effective field theory uncertainty quantification

Any EFT promises a systematic expansion and, therefore intrinsically allows to estimate
theoretical uncertainties arising from truncating the expansion. In particular, information
about the EFT convergence pattern for any given observable can be used to determine the
size of neglected higher-order terms. Let X(p) be an observable of interest which depends on
a given momentum scale p, then we represent its chiral expansion in orders of ν as

X(p) = X(0) + ∆X(2) + ∆X(3) + ..., (2.37)

where the corrections are defined by ∆X(2) ≡ X(2) −X(0) and ∆X(n) ≡ X(n) −X(n−1) for
n > 2, with X(n) a prediction at order Qn. These corrections are expected to be of the order
of O(QνX(0)), where the expansion parameter is given by Q = max(mπ/Λb, p/Λb), with mπ

the pion mass, Λb the breakdown scale, and p a given momentum scale. In other words, the
correction for each successive order is smaller by a factor of Q compared to the previous order.
If corrections for the observable are known explicitly up to order n = k, then the goal is to
estimate the size of

δX(k) ≡
∞∑

n=k+1
∆X(n). (2.38)

In recent years, there have been two approaches to estimate the size of δX(k): the first
approach by Epelbaum, Krebs, and Meißner (EKM) [96] provides a simple and straightforward
implementation, while the second one by Furnstahl et al. [40, 41] introduces a general Bayesian
framework that permits a well-defined statistical interpretation of the estimated uncertainties.

The EKM algorithm assumes that the dominant error comes from the first omitted term
∆X(k+1). The prescription to find the truncation uncertainty at orders Qi for 0 6 i 6 k, is
given by [35]

δX(0) = Q2|X(0)|,

δX(i) = max
26j6i

(
Qi+1|X(0)|,Qi+1−j |∆X(j)|

)
for i > 2. (2.39)

To ensure that estimated uncertainties are larger than known higher-order contributions, an
extra constraint is imposed:

δX(i) = max
j,m=i,...,k

(
|X(j) −X(m)|

)
. (2.40)

Calculating the truncation uncertainties according to this scheme, guarantees overlapping
uncertainties at different orders. The clear disadvantage of the EKM method is that estimated
uncertainties do not have a meaningful statistical interpretation. Nevertheless, its convenient
implementation and improvement upon standard cutoff variation have made it a valuable tool
that is implemented in single-baryon low-energy reactions, e.g., Refs. [160, 161], as well as
calculations of few- and many-nucleon systems, e.g., Refs. [22, 162, 163]. A discussion about
the robustness of this method is given in Ref. [164].

A Bayesian model, on the other hand, provides a more general and complete method to
quantify truncation uncertainties by calculating probability distribution functions (pdfs) for
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the truncation uncertainties. Furnstahl et al. [40] introduced such a framework for EFTs
by adapting a Bayesian model developed for perturbative expansions in QCD, with further
refinements made in Ref. [42]. In Chapter 4 we will use a modification of a particular model
presented in Ref. [42], which we outline below.

Instead of examining the observable in terms of its corrections, as in Eq. (2.37), the
observable can be expanded in terms of the dimensionless EFT expansion parameter Q:

X = Xref(c0 + c2Q2 + c3Q3 + ...) = Xref

∞∑
n=0

cnQn, (2.41)

whereXref is a reference scale for the observable and cn are dimensionless expansion coefficients
assumed to be roughly of the same size. Particularly, we make the choice Xref = |X(0)|.
However, other alternatives are possible, for example, a reference scale which does not only
depend on the LO contribution but also on higher-order corrections has been shown to be more
robust for observables that depend on continuous parameters [34]. To achieve the naturalness
assumption, the coefficients are considered as random variables distributed according to
a common pdf with an upper bound c̄. Such a pdf for the coefficients is called a prior
distribtuion.

If we truncate Eq. (2.41) at order k, then the error is given by Xref∆k where

∆k ≡
∞∑

n=k+1
cnQn, (2.42)

is the dimensionless residual that determines the truncation error. For practical estimations of
the error, however, only the first h higher-order terms in the expansion are considered which is
denoted by ∆k ≈ ∆(h)

k ≡
∑k+h
n=k+1 cnQn. The objective is then to find a posterior distribution

prh(∆(h)
k |{cn6k}),4 that is, a probability distribution for the residual ∆(h)

k given specific values
for the first k coefficients, based on the assumption that only the first h higher-order terms
significantly contribute to the error. The resulting posterior pdf for the residual which equals
∆(h)
k = ∆ is given by [42]

prh(∆|{ci6k}) =
∫∞
0 dc̄prh(∆|c̄) pr(c̄)

∏k
n=2 pr(cn|c̄)∫∞

0 dc̄pr(c̄)
∏k
n=2 pr(cn|c̄)

, (2.43)

with

prh(∆|c̄) =
[

k+h∏
i=k+1

∫ ∞
−∞

dci pr(ci|c̄)
]
δ

(
∆−∆(h)

k

)
. (2.44)

The result in Eq. (2.43) is assumed to include all the information about the dimensionless
residual.

In order to obtain quantitative results for the posterior, specific choices for the prior
distributions pr(cn|c̄) and pr(c̄) have to be made. Furnstahl et al. [40] introduced three
different sets denoted by “Set A”, “Set B”, and “Set C”, where each set has a different
combination of priors.5 In particular, set C consists of a log-uniform prior for c̄ and a

4In this thesis we denote a conditional probability distribution by pr(x|A), which means the probability
distribution of x given information A.

5See Table I in Ref. [40].
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Figure 2.3: Left panel: Prior distribution for c̄2 as a function of c̄2. The red line corresponds to the
log-uniform distribution with c̄< = 0.25 and c̄> = 10, while the blue line corresponds to the scaled
inverse chi-squared distribution whose parameters are given by ν = 0.6 and τ = 0.8. Right panel:
Expansion parameter as a function of the momentum scale p normalized by mπ. The red and the blue
line represent the conventional and the interpolated expansion parameter, respectively, with Λb = 650
MeV.

Gaussian prior for pr(cn|c̄), which are given by

pr(cn|c̄) = 1√
2πc̄

e−c
2
n/(2c̄2), (2.45)

pr(c̄) = 1
ln(c̄>/c̄<)

1
c̄
θ(c̄− c̄<) θ(c̄> − c̄). (2.46)

To denote this specific set we use the notation CΛb
c̄<−c̄> . However, here and in what follows, we

will employ a slightly modified prior for c̄, namely a scaled inverse chi-squared distribution:

Scale-inv-χ2(c̄; ν, τ2) = (τ2ν/2)ν/2

Γ(ν/2) c̄−ν/2−1 exp
[−ντ2

2 c̄

]
, (2.47)

where ν represents the degree of freedom of the distribution and τ2 the scaling parameter.
Figure 2.3 displays the log-uniform distribution with values c̄< = 0.25 and c̄> = 10 and the
scaled inverse chi-squared distribution with hyperparameters ν = 0.6 and τ = 0.8.6 These
hyperparameter values were chosen given that a scaled inverse chi-squared distribution with
these parameters reproduces the results presented in Ref. [42]. Furthermore, we use an
interpolation for the expansion parameter Q to smooth out the transition at p = mπ, given
by

Q = mn
π + pn

mn−1
π + pn−1 Λ−1

b (2.48)

6These specific lower and upper bounds for the parameter c̄ were shown in Refs. [35, 42] to give robust
results for the truncation uncertainty.
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with n = 8. We choose a rather high breakdown scale of Λb = 650 Mev, which was also
employed in a recent study of the deuteron charge form factor, see Ref. [72]. Values of
Λb ∼ 650 − 700 MeV were found to be statistically consistent upon empirical analysis in
Refs. [42] for potentials from Refs. [96]. Still, a similar analysis for other potentials has
not yet been performed. The momentum scale p depends on the system under investigation
such that we will specify its form later on when we discuss the particular system. The right
panel of Fig. 2.3 illustrates the smooth function of Q and compares it to the conventional
form. To express set C with the adapted prior distribution we use the following notation:
CΛb
χ−2,c̄<−c̄> , where the subscript is understood as the scaled inverse chi-squared distribution

that best approximates the log-uniform distribution with c̄< and c̄>. For our particular choice
of parameters this becomes C650

χ−2,0.25−10.
The information about the residual ∆k is contained in degree-of-belief (DoB) intervals.

Having obtained the posterior pdf in Eq. (2.43), the DoBs are calculated by inverting the
following integral for d(p)

k

p =
∫ d

(p)
k

−d(p)
k

d∆ prh(∆|{cn6k}). (2.49)

Typically, 68% and 95% DoBs are given for the observable by ±Xrefd
(p)
k for p = 0.68× 100%

and p = 0.95× 100%, respectively.
As part of the “Bayesian Uncertainty Quantification: Errors in Your EFT” (BUQEYE)

program [40, 165], whose goal is to quantify all uncertainties for EFT applications by devel-
oping statistical tools, the software package gsum [43, 166] was made public to analyze the
convergence pattern of EFTs and quantify truncation uncertainties. Throughout this work
we use this tool to calculate truncation uncertainties for our results with the model specified
above.
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FEW-BODY FORMALISM

As we introduced in Chapter 1, low-energy nuclear structure calculations of few-body systems
are perfect to test our understanding of microscopic interactions. Few-body systems can
be solved exactly with relatively low computational effort. For example, basic properties
about the NN interaction can be inferred from the deuteron and the importance of including
3N interactions becomes clear in 3N systems. To evaluate interactions and operators an
appropriate basis is necessary, which represents the particular system including its internal
degrees of freedom. This evaluation is carried out within few-body frameworks which, in this
work, are formulated in a momentum-space partial-wave basis representation. Therefore, in
this chapter we discuss the details of such a basis and give a short description of the few-body
frameworks.

Below, we specify for both two- and three-body systems their respective basis represen-
tations by starting to represent them in terms of relative and center-of-mass coordinates in
momentum space. These momenta are subsequently projected onto partial waves, resulting
in a separation of radial and angular dependence. We then examine the expansion of general
current operators with respect to the obtained two- and three-body bases.

In particular, in Section 3.1 we discuss the well known partial-wave basis for a two-body
system, expand the current operator and obtain the wave functions before we continue in
Section 3.2 with describing the three-body basis and, again, expanding the current operator.
We end this chapter with a short description of the Faddeev framework, which solves the
three-body problem exactly.

3.1 Two-body system

3.1.1 Definition of coordinates and two-body momentum basis

To describe a two-body system in coordinate or momentum space in terms of its center-of-mass
and relative coordinates we transform the lab frame coordinates. The spatial coordinates
x1 and x2 describe the position of two particles with mass m1 and m2, respectively. We
construct the center-of-mass frame coordinates in terms of lab coordinates by

r = x1 − x2, RNN = m1x1 +m2x2
m1 +m2

. (3.1)

Here, r represents the relative position of the two particles and RNN the center-of-mass
coordinate. In momentum space the individual momenta k1 and k2 characterize the two-body

33
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system, which in the center-of-mass frame become

p = m2k1 −m1k2
m1 +m2

, PNN = k1 + k2, (3.2)

where p describes the relative momentum between the two particles and PNN the center-
of-mass momentum. We note that the subscript NN indicates we consider a two-nucleon
system.

This approach separates the motion and simplifies the description of the system because
the interaction between nucleons only depends on the relative coordinate of the particles. As
a result the Hamiltonian separates into two parts, the relative and the center-of-mass part.

As we discussed in the previous chapter, current operators as well as nuclear interactions
admit straightforward momentum-space implementations. Accordingly, evaluating these
operators and interactions requires a suitable momentum-space basis. A convenient choice for
a momentum-space basis representing two noninteracting particles consists of a plane-wave
basis, i.e., {|k1 k2〉}, with |k1 k2〉 = |k1〉 |k2〉. Such a plane-wave basis is normalized and
complete:

〈k′1 k′2|k1 k2〉 = (2π)6δ(k1 − k′1) δ(k2 − k′2),
∫ dk1

(2π)3

∫ dk2
(2π)3 |k1 k2〉 〈k1 k2| = 1, (3.3)

providing a full description of two particles in momentum space in terms of the individual
momenta.

The final result of an observable is independent of the basis choice. Accordingly, we
transform Eq. (3.3) to center-of-mass momentum states. Again, we choose a plane-wave basis
to represent the center-of-mass momentum-space states, i.e., {|p PNN〉}. For two particles
with equal mass, i.e., m1 = m2, the overlap

〈k1 k2|p PNN〉 =(2π)6 δ(p− 1
2[k1 − k2]) δ(PNN − k1 − k2), (3.4)

connects the states with the single-particle momentum basis. The center-of-mass momentum-
space states are normalized and complete

〈p′P′NN|p PNN〉 = (2π)6 δ(p− p′) δ(PNN −P′NN),
∫ dp

(2π)3
dPNN
(2π)3 |pPNN〉 〈pPNN| = 1.

(3.5)
These momentum states establish the starting point to construct appropriate basis states to
evaluate current operators and to express the deuteron wave function.

3.1.2 Momentum-space partial-wave basis

In addition to the momentum dependence, current operators and nuclear forces also depend
on internal degrees of freedom like spin S and isospin T .1 Hence, the basis states need to
incorporate these internal degrees of freedom as well. We construct such a basis by expanding
the momentum states in partial waves and, subsequently, making linear combinations with
spin and isospin states. A partial-wave expansion expresses plane waves in terms of linear
combinations of spherical waves. These are characterized by |p `m〉, with p the relative

1Throughout this work, we denote two-body quantum numbers with a capital, e.g., the two-body spin is
given by S = s1 + s2, where s1 and s2 are single-particle spin quantum numbers.
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momentum, ` the orbital angular momentum, and m its projection. They form a complete
set of states:

〈p′`′m′|p`m〉 = δ(p− p′)
p p′

δ``′δmm′ ,
∑
`m

∫
dp p2 |p`m〉 〈p`m| = 1. (3.6)

Consequently, we define the partial-wave state for a two-body system with orbital angular
momentum L by

〈p′|pLML〉 ≡
√

(2π)3 δ(p− p
′)

p p′
YLML

(p̂′) , (3.7)

where p′ = |p′| represents the magnitude of the relative momentum, p̂′ the azimuthal angle
θp′ and polar angle φp′ of p′, and YLML

(p̂′) the spherical harmonic, which is defined by

Y`m(â) ≡ 〈â|`m〉 . (3.8)

Note that the factor
√

(2π)3 in Eq. (3.7) sets a normalization for the two-body partial-
wave state. Adopting this factor results in clean calculations with partial waves later on.
Particularly, it minimizes the number of π factors in partial-wave expanded matrix elements.
Additionally, it allows one to generalize relations for matrix elements with respect to a three-
body basis. Besides the partial-wave states, we express the total spin state |SMS〉 in terms
of its single-nucleon spins through

|SMS〉 =
∑
m1m2

CSMS
s1m1s2m2 |s1m1 s2m2〉 , (3.9)

where CSMS
s1m1s2m2 ≡ 〈s1m1s2m2|SMS〉 defines the standard Clebsch-Gordan coefficient [167]

coupling s1 and s2 to S. The same holds for the total isospin state |TMT 〉. Coupling total
spin and orbital angular momentum to the total angular momentum J = S + L and adding
isospin degrees of freedom yields the complete two-body state:

|p (LS)JMJ TMT 〉 ≡
∑

MLMS

CJMJ
LMLSMS

|pLML SMS TMT 〉 . (3.10)

The normalization and completeness of these states is given by

〈p′ (L′S′)J ′M ′J T ′M ′T |p (LS)JMJ TMT 〉 = δ(p− p′)
p p′

δLL′ δSS′ δJJ ′ δMJM
′
J
δTT ′ δMTM

′
T
,

(3.11a)∑
LS

∑
JMJ
TMT

∫
dp p2 |p (LS)JMJ TMT 〉 〈p(LS)JMJ TMT | = 1. (3.11b)

Note that the total angular momentum restricts the values for L and S by |L−S| 6 J 6 L+S.
We denote the states defined in Eqs. (3.11a) and (3.11b) by two-body partial-wave basis states.
They describe the system in momentum space, including all relevant degrees of freedom.
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3.1.3 General current operator expansion

In the following, we examine the expansion of a general current operator with respect to
a partial-wave basis. For this purpose we need to develop the partial-wave expansion of a
general current operator, where a general current operator in our case consists of a one- or
two-body current for either the scalar or vector component of the four-current Jµ. In line
with our previous development, we treat the matrix elements in momentum space.

These two-body matrix elements serve mostly as a toy problem, since the analytical and
the computational evaluations turn out to be instructive. In fact, they provide a valuable
sketch for numerical calculations as well as some first insights to better approach the extension
to three particles later on in Section 3.2.2.

We obtain an analytic expression for the matrix element with respect to a specific config-
uration, i.e., a set of quantum numbers, by evaluating the operator between an initial and a
final state of the form given in Eq. (3.11a). Such a configuration specifies the relative momen-
tum, isospin, and orbital angular momentum and spin coupled to a total angular momentum.
First, we evaluate the current operator between center-of-mass momentum states [168]:

〈p′P′NN|Jµ|p PNN〉 = 〈p′|Jµ(Q)|p〉 , (3.12)

with Q = P′NN−PNN the momentum transfer. The partial-wave-expanded matrix element is
then given by substituting the complete two-body state, Eq. (3.10), and using the definition
of the partial wave, Eq. (3.7):

〈p′ (L′S′)J ′M ′J T ′M ′T |Jµ(Q) |p (LS)JMJ TMT 〉

= 1
(2π)3

∫
dp1

∫
dp′1

∑
M ′LM

′
S

∑
MLMS

CJ
′M ′J

L′M ′LS
′M ′S
CJMJ
LMLSMS

× δ(p′1 − p′)
p′1 p

′ Y ∗L′M ′L
(p̂′1) 〈p′1 S′M ′S T ′M ′T |Jµ(Q)|p1 SMS TMT 〉

× δ(p− p1)
p p1

YLML
(p̂1) . (3.13)

Note that without further information about the operator, obtaining the matrix element
amounts to calculating a six-dimensional integral while summing over several projection
quantum numbers. Two general implications follow for the matrix element evaluation based
on our knowledge about the general current operator structure. First, the current operator
introduces a preferred direction in the system defined by the momentum transfer Q. This
prohibits the use of spherical harmonic properties to resolve one of the angular integrals. As
a result, the angular integrals are typically solved numerically by discretizing the integral and
introducing an appropriate angular mesh. Second, the current operator acts on isospin, spin,
and orbital angular momentum variables. The resulting isospin matrix elements are always
diagonal. Spin and orbital angular momentum matrix elements, on the other hand, are most
of the time off-diagonal because of the operator action.

In summary, the detailed structure of the partial-wave expanded matrix element in
Eq. (3.13) depends on specific properties of the current operators. In Chapter 4, we will
investigate matrix elements of the current operators defined in Chapter 2 and we will obtain
their detailed structure. These matrix elements then allow one to calculate electromagnetic
observables of the deuteron.
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In the next section, we state some experimental results for the deuteron from which we
infer the deuteron wave function in terms of partial waves and we present basic expressions
for electromagnetic properties based upon these wave functions.

3.1.4 Deuteron wave function and electromagnetic observables

To express the deuteron wave function, we employ partial-wave basis states previously defined
in Eqs. (3.11a) and (3.11b). These states are practical because they include S and J as good
quantum numbers, which are conserved by nuclear interactions. Only few partial-wave states
contribute to the deuteron wave function and the ones that contribute can be determined
from experimental observations.

We know that the deuteron is a weakly bound system without excited states. Therefore,
we expect the system to be in an S-state because higher orbital angular momentum states are
at higher energy. Experiments show that the deuteron has an integer total angular momentum
of J = 1 with positive parity, a magnetic moment µd = 0.857438µN [60], and an electric
quadrupole moment Qd = 0.2859(3) fm2 [169, 170].2 These results imply a triplet state for
the total spin, i.e., S = 1, along with a non-S-wave component, i.e., L 6= 0, causing the
quadrupole deformation. Given that P = (−1)L, the positive parity of the nucleus only allows
states with even orbital angular momentum, resulting in an L = 2 or D-wave component in
addition to the S-wave component. This mixing of S- and D-wave components reveals the
noncentral character of the nuclear force which emerges from the tensor part of the interaction.
Additionally, the wave function has to be antisymmetric, i.e., (−1)L+S+T has to equal −1
such that with L = 0, 2 and S = 1 it follows that T = 0. Combining these facts to describe
the deuteron wave function in terms of partial-waves yields:

φd(p) =
∑
L=0,2

〈p|φd (LS)JMJ〉

=
∑
L=0,2

∑
MLMS

CJMJ
LMLSMS

ũL(p)YLML
(p̂) |SMS〉 . (3.14)

The wave function is a linear combination of spatial and spin wave functions, where ũL(p)
represents the radial part of the wave function. Note that we left out the trivial isospin
dependence and that the spherical harmonics completely encode the angular information.
This wave function illustrates an example how partial-waves describe a nuclear system and
how experimental facts determine which configurations to include.

So far, the radial part of the wave function ũL(p) remains unspecified. Conventionally,
the radial functions are denoted by

ũ(p) ≡ ũ0(p) and w̃(p) ≡ ũ2(p), (3.15)

representing the S- and D-wave components, respectively. The momentum-space wave func-
tions relate to the coordinate-space radial wave functions through a spherical Bessel transfor-
mation:

ũL(p) = iL4π
∫

drjL(pr) r uL(r), (3.16)

with jL(pr) the L-th spherical Bessel function. Furthermore, they define probability densities,

2A list with experimental results for deuteron observables can be found in Appendix E. Together with
these results, a short comment explains how each quantity was obtained.
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i.e., ρS ≡ ũ(p)2 and ρD ≡ w̃(p)2, and corresponding S- and D-state probabilities:

PS =
∫

dr ρS(r), PD =
∫

dr ρD(r), (3.17)

which fulfill the normalization
PS + PD = 1. (3.18)

The radial wave functions are obtained by solving the time-independent Schrödinger
equation in momentum space. In particular, this corresponds to solving3

p2

2µ ũL(p) +
∫

dp′ p′2
∑
L′

VLL′(p, p′) ũL′(p′) = Ed ũL(p), (3.19)

where µ represents the reduced mass, VLL′(p, p′) ≡ 〈p′ L′|V̂ |pL〉 the partial-wave expanded
potential matrix element of the noncentral and nonlocal two-body nuclear interaction, and
Ed the deuteron binding energy. A solution can be found by recasting the expression into
a matrix equation and diagonalizing the resulting Hamiltonian. Remember, the interaction
mixes states with different orbital angular momentum generating off-diagonal potential matrix
elements. Therefore, to construct the Hamiltonian we require partial-wave expanded two-
body potential matrix elements. In particular, they consist of V00(p, p′), V22(p, p′), V02(p, p′),
and V20(p, p′), where V20(p, p′) is provided by transposing V02(p, p′) because the hermiticity
of the Hamiltonian. These partial-wave expanded matrix elements depend on which potential
is used.4 After constructing the Hamiltonian we solve Eq. (3.19) by diagonalization which
provides the eigenstates ũ(p) and w̃(p) defined in Eq. (3.15) corresponding to the lowest
eigenvalue.

Using radial wave functions we can calculate the deuteron magnetic and quadrupole
moment to a first approximation. As a first example, we present the magnetic moment which
can be defined in terms of the D-wave probability [171]

µd = µs −
3
2

(
µs −

1
2

)
PD, (3.20)

with µs = µn +µp the sum of the neutron and proton magnetic moment. Because the neutron
and proton magnetic moments are known, a measurement of the deuteron magnetic moment
suggests one can determine PD. However, we remark that the D-wave probability is not an
observable, demonstrating that two-body current effects in Eq. (3.20) are neglected. The
second example is the deuteron quadrupole moment in terms of the radial wave functions in
momentum space and their derivatives [172]:

Qd = − 1
20

∫
dp
{√

8
[
p2 dũ(p)

dp
dw̃(p)

dp + 3 p w̃(p) dũ(p)
dp

]
+ p2

(dw̃(p)
dp

)2
+ 6 w̃(p)2

}
. (3.21)

Equations (3.20) and (3.21) provide informative examples for the magnetic and quadrupole
moment, however, they are only approximations. As a result, calculations fail to agree with
measured electromagnetic quantities.

3Throughout this thesis we work in natural units, i.e., ~ = c = 1 and e2/(4π) = α = 1/137, such that
length and energy are related through 1 fm ≈ 1/200 MeV−1.

4In the next chapter, we will specify different NN interactions used in this work to obtain the wave
functions.
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To summarize, the deuteron constitutes a fundamental system for nuclear physics. It
provides a perfect example to test our understanding of the NN interaction. Describing the
deuteron in terms of partial-wave states, defined in Eq. (3.10), guarantees a practical descrip-
tion of observed properties. This is because the representation offers particularly efficient
calculations since they only need to include two relevant states. The details of the radial wave
functions ũL(p), solutions of Eq. (3.19), are determined by the NN interaction VLL′(p, p′). As
stated above, simplified calculations of the magnetic, Eq. (3.20), and quadrupole moment,
Eq. (3.21), neglect important contributions. However, by using current operators we can
extend the evaluation of Eq. (3.20) and Eq. (3.21) beyond these approximations and study
the effects of two-body currents on electromagnetic observables.

3.2 Three-body system

In this section we present the three-body partial-wave basis, the expansion of a general current
operator in this basis and an exact method to obtain three-body wave functions for bound
systems. Again, it is useful to start by specifying the momentum coordinates before we
continue to develop the basis.

3.2.1 Jacobi momenta and three-body momentum basis

A three-particle system with individual masses m1, m2 and m3 can be represented by their
positions in coordinate space, x1, x2 and x3, respectively, or their individual momenta k1, k2
and k3 in momentum space. If we examine the relative and center-of-mass momenta of the
three particles, we can introduce three equivalent sets of Jacobi momenta. One such set is
defined by [173]:

p{12} = m2k1 −m1k2
m1 +m2

, (3.22a)

q{12} = 1
M

[
(m1 +m2)k3 −m3(k1 + k2)

]
, (3.22b)

P3N = k1 + k2 + k3, (3.22c)

where M = m1 +m2 +m3 is the total mass. We observe that p{12} is the relative momentum
between particle 1 and 2, defining the subsystem and the subscript naming convention. The
second relative momentum, i.e., q{12}, is given by the momentum of the third particle relative
to the center-of-mass momentum of the two-body subsystem. We will denote this third
particle as spectator particle in what follows. Finally, P3N defines the three-body center-
of-mass momentum. We obtain the two other sets by constructing pairs from the leftover
combinations, i.e., {12} → {23}, {31}. Figure 3.1 shows the three equivalent sets of Jacobi
momenta for particles with equal masses m1 = m2 = m3, and depicts very well that the
center-of-mass momentum is the same for all sets.

The separation of P3N is possible due to expressing the system in terms of its relative
momenta and is very useful for three-body systems exhibiting translational invariance. A
complete description of such systems only needs the relative momenta without the center-of-
mass momentum, reducing the complexity for practical calculations.

Each set of Jacobi momenta {12}, {23}, and {31} describes the relative motion completely
and, thus, forms a complete basis. Therefore, linear combinations of one set give a description
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k1

k2

k3

2p{12}

3
2q{12}

1
3P3N

2p{23}3
2q{23}

1
3P3N 2p{31}

3
2q{31}

1
3P3N

Figure 3.1: Transformation of the individual momenta to the Jacobi momenta. The individual
momenta k1, k2 and k3 are shown on the left. The Jacobi momenta p{ab} and q{ab} for equal mass
are shown for the three equivalent sets {ab} = {12}, {23} and {31} as well as a fraction of the
center-of-mass momentum, i.e., 1/3P3N, from left to right. Figure adapted from [33].

of the other two, e.g., p{23} = −1/2 p{12} − 3/4 q{12} and q{23} = p{12} − 1/2 q{12}. This is
equivalent to performing a cyclic permutation of the single-particle momenta

k1 → k2, k2 → k3, k3 → k1, (3.23)

which transforms representation {12} into {23}. For more details on the transformation
properties of Jacobi momenta see, e.g., Refs. [33, 173].

The momentum-space representation of a three-particle system can be realized in terms
of its single-particle momenta in a plane-wave basis {|k1 k2 k3〉} which forms a complete set
of states and extends Eq. (3.3) to three nucleons. Alternatively, we can choose to represent
the system in terms of its relative momenta and its center-of-mass momentum, i.e., |p q P3N〉,
such that (3.22a)-(3.22c) define the overlap

〈k1 k2 k3|p q P3N〉{12} =(2π)9δ(p{12} −
1
2[k1 − k2]) δ(q{12} −

2
3[k3 −

1
2(k1 + k2)])

× δ(P3N − k1 − k2 − k3), (3.24)

where it is assumed that particles have equal masses, i.e., m1 = m2 = m3. Note that
we establish a normalization convention. The current operators under investigation are
independent of the center-of-mass momentum, hence we will leave out the notation of P3N in
the states. From the definition of the overlap we can verify that the Jacobi momenta basis
states are orthogonal and complete

{12}〈p
′ q′|p q〉{12} = (2π)6δ(p− p′) δ(q − q′),

∫ dp
(2π)3

∫ dq
(2π)3 |p q〉{12} {12}〈p q| = 1,

(3.25)
where the normalization factors follow from Eq. (3.24). The current operator acts on the
spectator particle or on the two-body subsystem, depending on its one- or two-body structure.
We choose that the one-body current always acts on the third spectator particle and the
two-body current on subsystem {12}. This freedom arises because the wave function is
antisymmetrized. Therefore we suppress the subscript, {12}, from now on. In fact, if
necessary, the specific Jacobi set can always be transformed into another one by making linear
combinations of the Jacobi momenta as mentioned before.

Now that we have established the Jacobi momenta and their basis states, we want to
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examine how to express the current matrix elements. The next section introduces how the
evaluation of a general current operator matrix element benefits from the transformation from
a single-particle basis to a Jacobi momentum basis, before we explore the actual basis states
used in numerical calculations.

3.2.2 Momentum-basis representation of a general current operator

In general, current operators depend explicitly on the single-particle momenta. Thus, naively
we would determine the matrix elements in a single-particle basis representation. Without
taking into account internal degrees of freedom, the expectation value between single-particle
momentum states is described by

〈k′1 k′2 k′3|Jµ|k1 k2 k3〉 . (3.26)

Here, Jµ represents a general current operator. This matrix element depends on six vector
variables, which makes the numerical evaluation extremely difficult. As stated before, the
electromagnetic current operators presented in Section 2.4.3 shift the center-of-mass momen-
tum P3N and depend on the difference between the final and initial momentum. Therefore,
making a transformation to momentum states represented in a Jacobi basis, which describes
the three-particle center-of-mass momentum, simplifies the matrix element determination.
Evaluating the current operator between Jacobi basis states, we find

〈p′ q′P′3N|Jµ|p q P3N〉 = 〈p′ q′|Jµ(Q)|p q〉 , (3.27)

where Q = P′3N −P3N. Only four vector variables are left after separating out the center-of-
mass momentum such that calculations of the matrix elements become more feasible. In the
next chapter, we will analytically evaluate one- and two-body current operators. There we
will observe a further simplification of matrix elements because one-body currents leave the
two-body subsystem invariant while two-body currents do not act on the spectator particle.

Numerical calculations of the matrix elements are more naturally evaluated in a partial-
wave representation, meaning that the angular dependence of the Jacobi momenta is repre-
sented in terms of spherical harmonics. In turn, this representation allows one to separate
the radial and angular integrals.

In what follows, we specify the partial-wave expansion of the Jacobi states. On top of
this expansion spin and isospin internal degrees of freedom will be included to allow for a
complete description of the system and the action of the operator.

3.2.3 Partial-wave expansion of a general current operator

Before we present the partial-wave expansion of a general current operator, we define the
partial-wave representation of the momentum states and introduce how to add the spin and
isospin degrees of freedom. As a first step, we define the partial-wave states

〈p′ q′|p q (L`)LML〉 ≡ (2π)3 δ(p− p′)
p p′

δ(q − q′)
q q′

YLMLL` (p̂′, q̂′). (3.28)

Here L describes the orbital angular momentum of the two-body subsystem, ` that of the
spectator particle, and L represents the total orbital angular momentum of the system. The
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coupled spherical harmonic is defined by

Y`m`a`b(â, b̂) ≡
∑
mamb

C`m`ama`bmb Y`ama(â)Y`bmb(b̂) . (3.29)

Note that the normalization for the three-body partial waves naturally extends the one for
the two-body states defined in Eq. (3.7). Remember, we chose this normalization to minimize
factors of π in partial-wave expanded matrix elements and to easily generalize expressions
including two-body states to three-body states. The expansion in terms of spherical harmonics
sets the angular dependence of the Jacobi momenta p and q. Determining the normalization
of the partial-wave states is accomplished by adopting the conventions from Eqs. (3.25)
and (3.28):

〈p′ q′ (L′`′)L′M′L|p q (L`)LML〉 = δ(p− p′)
p p′

δ(q − q′)
q q′

δLL′ δ``′ δLL′ δMLM′L . (3.30)

Given that current operators act on spin as well as isospin quantum numbers, it is necessary
to include these degrees of freedom into the basis states. An extension of the partial-wave
basis defined in Eqs. (3.28) and (3.30), which incorporates spin and isospin, is given by a
Jj-coupled basis [173]:

|p q α〉 ≡ |p q [(LS)J (`s)j]JMJ (Tt)TMT 〉 . (3.31)

Here S represents the two-body spin associated with particles in the subsystem and s the
spin of the spectator particle, and the isospin quantum numbers T and t are analogous. The
total three-body isospin is represented by T and the total three-body angular momentum
J is obtained by coupling the two-body angular momentum J with the spectator angular
momentum j, hence the label Jj-coupled basis.5 An explicit decoupling of the total three-body
state into two- and one-body (spectator particle) quantum numbers is given by

|p q α〉 =
∑

MLMSMJ
m`msmj

CJMJJMJ jmj
CJMJ
LMLSMS

Cjmj`m`sms
|p q LML SMS `m` sms〉

×
∑
MTmt

CTMTTMT tmt
|TMT tmt〉 . (3.32)

This decoupling prescription will be useful later on when we evaluate the partial-wave expan-
sion of a general current operator.

5The reader might be more familiar with the LS-coupled basis for a three-body system, defined by [173]:

|p q β〉 ≡ |p q [(L`)L (Ss)S]JMJ (Tt)TMT 〉 ,

where S represents the total three-body spin. Although these basis states describe the system completely, they
are not practical for evaluating current matrix elements because the current operator acts on quantum numbers
of the spectator particle or of the two-body subsystem. As a result, the total orbital angular momentum
and the total spin have to be decoupled, adding undesirable sums over Clebsch-Gordan coefficients. A better
approach consists of grouping the quantum numbers according to the subsystems involved, as done in the
Jj-coupled basis. The two bases are coupled to each other through a standard recoupling relation [167]:

|p q α〉 =
∑
LS

√
L̂ Ŝ Ĵ ̂

{
L S J
` s j
L S J

}
|p q β〉 ,

where we introduced the abbreviation â ≡ 2a+ 1 and the 9j-symbol {...} [167].
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The normalization and completeness of the Jj-coupled basis are given by

〈p′ q′ α′|p q α〉 = δ(p− p′)
p p′

δ(q − q′)
q q′

δαα′ ,
∑
α

∫
dp p2

∫
dq q2 |p q α〉 〈p q α| = 1, (3.33)

where δαα′ imposes all quantum numbers to be diagonal and the sum runs over the allowed
values for the quantum numbers.

The discrete quantum numbers in the Jj-coupled basis are collected by the index α =
{L, S, J, T, `, j}, leaving out the trivial quantum numbers s = t = 1

2 which represent the spin
and isospin of the spectator proton or neutron. We call a specific set of values for the quantum
numbers in α a configuration or a channel. Such a set is given for the three-body partial wave
described by {J , T ,P}, with the three-body parity P = (−1)L+`. To build the configurations
that make up the basis some requirements have to be met. First of all, the two-body subsystem
has to be antisymmetric, in other words, it has to fulfill (−1)L+S+T = −1. Furthermore, as
we only study the triton and the helion, we have J = T = 1

2 , positive parity P = +1, and
an isospin projectionMT = −1

2 and +1
2 for the triton and helion, respectively. A complete

list of all configurations of the partial-wave basis states up to a maximum two-body angular
momentum of Jmax = 8 can be found in Appendix A. Truncating the channels with respect
to Jmax proves to be sufficient to reach converged results for observables of finite nuclei and
infinite matter including NN and 3N matrix elements [33, 174].

We started out by specifying the relative momenta and their corresponding basis states in
Eqs. (3.22a), (3.22b), and (3.25) to arrive at a suitable partial-wave expanded basis established
in Eqs. (3.31) and (3.33) including the relevant internal degrees of freedom. We are now in a
position to address the partial-wave expansion of a general current operator using this basis.
Combining Eqs. (3.28), (3.31), and (3.33) we obtain the expression for a matrix element of a
general current operator in partial-wave basis states:

〈p′ q′ α′| Jµ |p q α〉 =
∑

MJM
′
J

mjm
′
j

CJ
′M′J

J ′M ′J j
′m′j
CJMJJMJ jmj

∑
MTM

′
T

mtm′t

CT
′M′T

T ′M ′T t
′m′t
CTMTTMT tmt

× PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (p, p′)Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(q, q
′), (3.34)

where we will specify the functions P and Q below. Note that we grouped the quantum
numbers and the relative momentum of the two-body subsystem as well as the quantum
numbers and momentum of the spectator particle. Depending on the one- or two-body
character of the operator, it only acts on the spectator particle or the two-body subsystem.
Accordingly, we parametrize the parts of the partial-wave matrix elements into two suitable
functions:

PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (p, p′) ≡ 1
(2π)3

∫
dp1

∫
dp′1

δ(p′1 − p′)
p′1 p

′ Y∗J
′M ′J

L′S′ (p̂′1)

× 〈p′1 T ′M ′T |Jµ|p1 TMT 〉
δ(p− p1)
p p1

YJMJ
LS (p̂1) , (3.35)

Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(q, q
′) ≡ 1

(2π)3

∫
dq1

∫
dq′1

δ(q′1 − q′)
q′1 q
′ Y

∗j′m′j
`′s′ (q̂′1)

× 〈q′1 t′m′t|Jµ|q1 tmt〉
δ(q − q1)
q q1

Yjmj`s (q̂1). (3.36)
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These two parametrizations are the starting point to evaluate the current operator matrix
elements for general spin and isospin. In the next chapter, we will obtain detailed partial-wave
expanded expressions for the operators defined in Section 2.4.3. Note that, without further
information about the operator structure, we have to evaluate a twelve-dimensional integral.
Unfortunately, current operators introduce a preferred direction in the system defined by
the momentum transfer, breaking rotational invariance and prohibiting the simplification of
angular integrals.

The matrix elements specified in Eq. (3.34) are the ingredients for subsequent calculations.
First of all, they are used to calculate observables of three-body systems for which we evaluate
the expectation value of the current operator with wave functions and current operator matrix
elements given in a partial-wave basis. This is done explicitly in Chapter 4. Secondly, the
calculation of observables in light- and medium-mass nuclei using basis-expansion methods
like, e.g., Hartree-Fock (HF) theory, Coupled Cluster (CC) theory or the In-Medium Similarity
Renormalization Group (IMSRG), is conveniently performed using operator representations
with respect to a single-particle basis used for computations. In the past a variety of different
formulations have been employed, e.g., harmonic oscillator (HO) basis, natural orbitals or
HF basis, each of which having specific advantages. Therefore, we have to perform a transfor-
mation of the partial-wave expanded matrix elements. Fortunately, partial-wave basis states
as introduced in Eq. (3.31) can be directly transformed to a three-body HO basis, with an
equivalent two-body subsystem and spectator particle structure. In turn, these can then
be transformed to a single-particle HO basis. Other single-particle bases are conveniently
obtained by a single-particle transformation starting from the initial HO basis. We will carry
out this basis transformation of the matrix elements later (see Section 5.6).

Before we continue with calculating observables, we present a method that solves the
three-body problem exactly. The next section clarifies, without going into too much detail,
how we obtain these three-body solutions from the Faddeev equations.

3.2.4 Faddeev equations for three-nucleon bound states

In general, observables are obtained by calculating the expectation value of an operator:

〈Φ|Ô|Φ〉 . (3.37)

This requires one to have an expression for the operator and a wave function describing the
system under investigation. Obtaining an expression for the current and representing it in a
specific basis has been discussed in Section 3.2.3. For 3N systems, the Faddeev equations solve
the quantum-mechanical three-body problem exactly in a nonperturbative way for scattering
and bound states by iteration. This exactness implies that a numerical solution can be
obtained with any desired accuracy, where the uncertainties originate from using a finite basis
size.

We start by stating the Schrödinger equation for a bound state of a 3N system including
a three-body force

|Φ〉 = 1
E −H0

( 3∑
i=1

V i
NN + V3N

)
|Φ〉 , (3.38)

with |Φ〉 the total 3N state, V i
NN ≡ V

{jk}
NN the NN potential where we use the same notation

as in Eqs. (3.22a) and (3.22b) to denote the two-body subsystem, and V3N the three-body
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interaction which is required to be totally symmetric. Here, the kinetic energy, H0, is given
in terms of the Jacobi momenta

H0 =
3∑
i=1

k2
i

2mi
= P2

3N
2M +

p2
{12}

2µ1
+

q2
{12}
2µ2

, (3.39)

where the reduced masses µ1 and µ2 are specified by µ−1
1 = m−1

1 + m−1
2 and µ−1

2 = (m1 +
m2)−1 +m−1

3 .

The three-body interaction in Eq. (3.38) decomposes into three parts

V3N =
3∑
i=1

V
(i)
3N , (3.40)

such that each individual part V (i)
3N is symmetric under the exchange of j and k. Cyclic

permutations of V (i)
3N then result in V

(j)
3N and V

(k)
3N . In fact, this shows that V (i)

3N is not
uniquely defined and one just has to make a particular choice to determine Eq. (3.40). The
decomposition of the three-body interaction suggests to group V i

NN and V (i)
3N together, since

both behave symmetric under the exchange of j and k. This leads us to decompose the 3N
wave function and to define the Faddeev components [173]

|φi〉 = G0

(
V i
NN + V

(i)
3N

)
|Φ〉 . (3.41)

Note that we defined the resolvent operator G0 ≡ (E −H0)−1. Obviously, the single Faddeev
components sum up to the total 3N wave function |Φ〉 =

∑3
i=1 |φi〉.

Considering that the particles are identical and that the 3N state has to be totally
antisymmetric, the Faddeev components have to fulfill the following permutations

|φ2〉 = P12P23 |φ1〉 , |φ3〉 = P13P23 |φ1〉 , (3.42)

with Pij the two-body permutation operator which exchanges the labels of particles i and j,
e.g., P12 |a b c〉 = |b a c〉. As a result, the three-body wave function is obtained by permutations
of a single Faddeev component

|Φ〉 = (1 + P12P23 + P13P23) |φ1〉 = (1 + P ) |φ1〉 , (3.43)

with P ≡ P12P23 + P13P23. Substituting this result in Eq. (3.41) yields

|φi〉 = G0

(
V i
NN + V

(i)
3N

)
(1 + P ) |φi〉 . (3.44)

We rewrite this equation to

|φi〉 =
[
1−G0V

i
NN
]−1

G0
[
V i
NNP + V

(i)
3N (1 + P )

]
|φi〉 . (3.45)

We recognize the factor
[
1 − G0V

i
NN
]−1

G0 to be the Green’s function of channel i, i.e.,
Gi = (E −H0 − V i

NN)−1, which can also be written as Gi = G0 + G0TiG0. Here, Ti is the
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two-body transition matrix which is given by the LS equation

Ti = V i
NN + V i

NNG0Ti. (3.46)

Substituting the definition of the Green’s function and using the relation GiVi = G0Ti
eliminates the two-body potential from Eq. (3.45) such that we find [175]:

|φi〉 = G0
[
TiP + (1 + TiG0)V (i)

3N (1 + P )
]
|φi〉 . (3.47)

This result provides a set of three iterative equations including three-body forces determining
the Faddeev components |φi〉. As we have stated, they transform into each other by cyclic
permutations, thus, it is sufficient to calculate one component and subsequently perform
permutations to find the total three-body wave function |Φ〉.

Practical implementations of these Faddeev equations need to represent them in a specific
basis. A widely-used implementation of the equations is to express them in a momentum-space
partial-wave basis, i.e., the same basis as specified in the previous section. For more informa-
tion on solving the Faddeev equations in a practical way including three-body interactions
see, e.g., Refs. [175–177].

After obtaining a solution, the momentum-space representation of the wave function in a
partial-wave basis is given by

〈p q α|Φ〉 ≡ Φα(p, q). (3.48)

Here also, α indicates the quantum numbers of the partial-wave state for which possible
configurations are listed in Appendix A. Note that the angular momentum quantum numbers
in α account for the angular dependence, while p and q provide the dependence on the
magnitude. These wave functions can now be used in order to calculate observables.
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FEW-NUCLEON ELECTROMAGNETIC

FORM FACTORS

Using high-energy electrons to investigate nuclei offers a clean method to reveal the inter-
nal structure of nuclei and the dynamics between nucleons. The relatively weak and well-
understood electromagnetic interaction that happens between the electron and the nucleus
is perturbative in nature, ensuring the nuclear structure content to be cleanly isolated. This
nuclear structure information is contained in the measured cross sections and is given by the
so-called form factors. A calculation of these form factors involves both strong-interaction
dynamics and electromagnetic nuclear currents, such that a comparison against experimental
data provide a good test of our nuclear models. In that sense, electromagnetic reactions are
fundamental to our understanding and progress of nuclear models.

This chapter presents a brief theoretical description of the electron-scattering process and
a more in-depth analysis of the calculation of two- and three-nucleon form factors. Performed
within the framework of chiral EFT. We show the relation between matrix elements and
form factors before analyzing the form factors for different NN and 3N interactions. We
further extract results for the charge and magnetic radii. Finally, we compare the obtained
information on the electromagnetic structure of two- and three-nucleon nuclei to experimental
results.

In Section 4.1 we provide a review about elastic electron scattering. First we present a
short overview of the experimental and theoretical status of the different few-nucleon form
factors. We then continue with a comprehensible classical example of electron scattering from
a uniform charge distribution before introducing the Born approximation.

In Section 4.2 we show different nucleon form factor parametrizations and explain the
particular choice we make. We employ parametrizations for the proton and the neutron electric
and magnetic form factors, which are fit to world electron-nucleon scattering data [178–180].
Chiral expansions of the nucleon form factors exist as well. However, they have been shown
to lead to deviations from experiment, even at low momentum transfers, as a result of their
slow convergence [181, 182].

Afterwards we discuss the deuteron in detail in Section 4.3, where we begin by stating
the the deuteron form factors, characterizing its electromagnetic structure. Then, we relate
deuteron matrix elements to these form factors by calculating the relativistic deuteron current.
This then leaves us in a position to express the form factors in terms of two-body partial-wave
states, defined in Section 3.1.2, and deuteron wave functions. We end the section by showing
and discussing results for the form factors.

47
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Three-nucleon systems and their form factors are discussed in Section 4.4, which has the
same structure as the deuteron section. The results for the triton and helion include an
important addition: they take into account the NLO 2BC. This addition is crucial to achieve
a better agreement with experiment for magnetic observables.

We finish the chapter with extracting the radius by calculating the slope of the form factor
at zero momentum transfers and present results for the deuteron, the triton, and the helion
in Section 4.5.

4.1 Elastic electron scattering

Elastic-electron scattering is a field with a rich history that shaped much of our understanding
about the electromagnetic structure of nuclei. It provides us information about long-range
physics from low momentum transfer reactions, e.g., the electromagnetic radii and moments,
while short-distance parts are investigated by high momentum transfer reactions. Advances in
both experiment and theory are necessary to progress our understanding of nuclear structure.

4.1.1 Current experimental and theoretical status

In the introduction, we mentioned the current efforts to measure the proton, the deuteron,
and the trinucleon form factors at low momentum transfers to extract precise electromag-
netic radii, and hence to gain insights into the proton- and deuteron-radius puzzles. One
immediate consequence of an updated proton radius is the influcence on the nucleon form
factor paramtetrization, which is an important input in form factor calculations. Such a
parametrization should be able to support the updated proton radius. In Section 4.2 we
discuss different parametrizations typically employed in nuclear calculations and argue for
our particular choice based on these new developments.

Charge and magnetic radii provide information about the zero-momentum-transfer region
only, while experimental observations capturing the form factor structure at finite momentum
transfers provide additional information on the electromagnetic structure for the deuteron and
trinucleons. The majority of experimental work on scattering off few-nucleon nuclei consists
of rather old data as there have been almost no new cross section measurements in the last
two decades. Despite this scarcity of new data, the quality of the existing data is sufficient
to check against theoretical calculations.

There exists an extensive amount of e-d scattering data covering a large range of mo-
mentum transfers. The information on e-d scattering is extensive because it is also used to
extract neutron form factors, as free neutron targets are nonexistent. Data points at low and
intermediate momentum transfers are most accurate and reach an accuracy of the order of
1% [76]. The charge and quadrupole form factor are determined up to a momentum transfer
of ∼ 7 fm−1 [76], extending the data beyond the first minimum of the charge form factor.1
On the other hand, the magnetic form factor is known to a much larger momentum transfer
of ∼ 9 fm−1 [183]. We will compare our results against deuteron form factor data up to a
momentum transfer of 6 fm−1.

As the triton is radioactive, data for it is fairly limited because safety regulations com-
plicate experiments. Therefore, only a small range of data up to a momentum transfer of

1A form factor is displayed as a function of the momentum transfer in terms of its absolute value on a
logarithmic scale. The minimum is the region where the form factor approaches zero and eventually flips sign.
This results in a characteristic ‘dip’ or minimium.
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∼ 5.7 fm−1 [59] is available for the charge and magnetic form factor. Nonetheless, the first
minimum is covered in both cases. Experiments on 3He are less challenging, resulting in data
points reaching higher momentum transfers. The charge form factor is known up to ∼ 10
fm−1 and the magnetic form factor up to ∼ 6 fm−1 [59], again extending beyond the first
minimum for both. To present the available scattering data and compare to theory results,
we will use a parametrization for the three-nucleon form factors given by Ref. [75]. The
authors perform a global fit to the world data and emphasize that the fit contains the full
experimental information for the three-body system. One exception to the parametrization is
a new measurement for the helion form factors at high momentum transfers of 5 fm−1 ≤ q ≤
7.8 fm−1 [184]. For a detailed review on elastic electron scattering on light nuclei and an
analysis of the world data see, e.g., Refs. [59, 76].

As we mentioned in the introduction, the SNPA has been very successful in describing
electromagnetic form factors and properties, but fails to provide a satisfacotry microscopic
understanding. Therefore, we will only focus on developments from chiral EFT. An extensive
overview of conventianl applications to examine the electromagnetic structure of light nuclei,
and specifically the electromagnetic form factors, is given in Ref. [80].

The tremendous progress of chiral EFT over the last two decades resulted in several consis-
tent electromagnetic form factor calculations for few-nucleon nuclei. Pioneering investigations
of charge and current operators to calculate electromagnetic form factors of the deuteron up to
N2LO were introduced Phillips and Cohen [168] , Walzl and Meißner [185], and Phillips [186,
187]. They used a chiral description for the single-nucleon form factors which limited the
agreement with experiment to a momentum transfer up to ∼ 2 fm−1. This limited range of
agreement could be circumvented by examining form factor ratios, effectively factoring out
the single-nucleon dependence. Instead of accounting for single-nucleon form factors by means
of a chiral description, a parametrization which is fit to electron-nucleon scattering data can
be used [71]. Employing such a parametrization shows good agreement with experiment for
deuteron form factors up to a momentum transfer of ∼ 3 fm−1 [70, 182, 188, 189]. For example,
the most recent precision calculation of the deuteron charge form factor performs a calcula-
tion at fifth order in the chiral expansion including state-of-the-art nucleon form factors, to
subsequently extract a value of the neutron charge radius [72]. This example shows again the
interdependence of the nucleon and nuclear electromagnetic structure. Most 2BC operators
up to N3LO are mainly of isovector type, i.e., they only have a nonvanishing contribution for
nuclei with nonzero isospin T 6= 0. As a result, they do not provide corrections to deuteron
electromagnetic observables, given that the deuteron is isoscalar, i.e., T = 0. Therefore, to
study their impact in more detail it is necessary to investigate nuclei with three or more
nucleons. In this regard, Piarulli et al. [70] provide a comprehensive set of results for the
electromagnetic form factors of three-nucleon nuclei with charge and current operator at the
N3LO level, and with NN [126, 190] interactions at N3LO and 3N interactions [130] at N2LO.
Their results show a satisfactory description of the form factors at low momentum transfers
with crucial contributions from 2BCs. Recent new results for the magnetic form factor of
two- and three-nucleon systems can be found in [191], where the authors explicitly include ∆
intermediate states in the interaction and at the OPE level for the current operators, pushing
the development of chiral EFT further. This short overview sums up most of the present
work in the new and active field of electromagnetic structure investigations within the chiral
EFT framework. We refer the reader to the reviews [71] and [81] which focusses only on
few-nucleon nuclei and light nuclei, respectively.
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4.1.2 Classical electron scattering

To obtain a first elementary description of electron scattering we make an analogy with
light scattered off an object. Optics determines the amplitude of light scattered off a solid
cylindrically or spherically shaped object by calculating the interference of the outgoing waves.
The resulting interference pattern, far away from the scattering event, contains information
about the shape of the object. Similarly, electrons detected far away from the scattering event
carry information about the magnetic and electric charge distribution of the target.

According to the particle-wave duality postulated by de Broglie, every particle has a
wave-like structure with wavelength [192]

λ = h

p
, (4.1)

where h is the Planck constant and p = |p| the particles momentum. Hence, an electron
could be described by a plane wave with momentum p. As a crude simplification, we consider
the nucleus as a solid sphere with a spherical charge distribution. An electron scattered
off a nucleus then has an analog interpretation as light scattered off a spherical object.
The outgoing electron plane waves interfere and determine the resulting net outgoing wave.
This outgoing wave consists of adding the contributions from each infinitesimal element of
the sphere weighted by an exponential factor. The scattering amplitude will, therefore, be
proportional to the total charge present. We determine the amplitude of the detected electron
wave, far away from the scattering event, by summing each element of the sphere weighted
with a factor exp

(
iq · x

)
,

Ael =
∫
nucleus

dx ρch(x) eiq·x, (4.2)

where q = p1 − p2 represents the momentum transfer with p1 and p2 the incoming and
outgoing particle momentum, respectively. The expression for the amplitude demonstrates
that measured electrons provide the Fourier transform of the target charge distribution,
denoted by ρch(x). The left panel of Fig. 4.1 sketches elastic electron scattering from a
spherical charge distribution in the classical Coulomb picture.

We can make some basic observations about the Fourier transform of the target charge
distribution from this simple model of the nucleus. Let a be the radius of the sphere, the
solution of Eq. (4.2) is then given by

Ael =
∫ a

0
dr r2

∫
dr̂ eiqr cos θr

= 4πa3

3

[3j1(qa)
qa

]
, (4.3)

where jn(x) is the spherical Bessel function. The factor between brackets is the so-called
form factor, it represents the Fourier transform of the target’s charge distribution. From the
result we see that the first zero of the Bessel function, occuring around 1.22π, is related to
the radius of the uniform sphere, i.e., qa ∼ 1.22π. Therefore, one can extract an estimate
for the radius from scattering experiments by adopting this simple model of the nucleus. A
quantum mechanical analysis consists of replacing the charge density in Eq. (4.2) with the
appropriate expectation value of the charge operator or transition density of the target. The
right panel of Fig. 4.1 shows a sketch of the absolute form factor squared for two different
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Figure 4.1: Left panel: Sketch of elastic electron scattering off a uniform spherical charge distribution
in the classical Coulomb picture. Electrons are denoted by plane waves, where k1 represents the
incoming wave, k2 the outgoing wave, and θ the angle between them. An arbitrary element on the
sphere is shown by x. Right panel: The absolute value squared of the form factor as a function of the
magnitude of the momentum transfer. The blue and red lines correspond to form factors with different
values for the radius a, in this case a1 > a2. Note the characteristic minima of the form factor as well
as the orders-of-magnitude over which it runs.

radii. Even though we only consider a simple model, the result displays important qualitative
features, like the minima, that are also found for more complex systems like nuclei.

From Eq. (4.1) follows that high-energy electrons are needed to obtain a small enough
wavelength to probe nuclei. To resolve charge densities of the order of the typical nuclear
dimension, i.e.,

1 fm . λ . 10 fm, (4.4)

relativistic electrons are needed,

125 MeV . Ee . 1240 MeV, (4.5)

where the electron energy is given by Ee = p.
In the next section, we formalize the scattering event and present a quantum field descrip-

tion, relating form factors to nuclear matrix elements, which we can subsequently calculate
and compare to experiment.

4.1.3 Born approximation

Describing the scattering of an electron off a nucleus to lowest order, in a perturbative
description of scattering, is done by the so-called Born or one-photon-exchange approximation.
Because of the small magnitude of the electromagnetic coupling constant, we expect this to
be a good approximation of the scattering event. Figure 4.2 illustrates the general electron
scattering process in the one-photon-exchange picture. The incoming and scattered electron
have four-momentum kµ = (ε,k) and k′µ = (ε′,k′), respectively, where ε is the energy and
k the momentum. Both incoming and outgoing electrons are accurately described by plane
waves, this assumption is valid for the outgoing wave because the proton number, Z, in two-
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kµ

k′µ

|Φi〉

|Φf 〉

γ

qµ = (ω,q)

Figure 4.2: Electron scattering diagram of the Born or one-photon-exchange approximation. An
incident electron (thin solid line) with initial four-momentum kµ = (ε,k) is scattered to four-momentum
k′µ = (ε′,k′). In the process a single virtual photon γ (oscillating line) with four-momentum qµ = (ω,q)
is exchanged with the nucleus (thick solid line) represented by |Φi〉 and |Φf 〉 for the initial and final
state, respectively. The hatched circle represents the nuclear current.

and three-nucleon systems is small such that Zα � 1.2 Therefore, this approximation is
also called the plane-wave Born approximation (PWBA). The exchange of the virtual photon
transfers a four-momentum qµ = (ω,q) to the nucleus, changing its initial state |Φi〉 with
momentum pµ = (E,p) to a final state |Φf 〉 with p′µ = (E′,p′). The virtual photon couples
with charge and current densities of the target particle. The scattering amplitude of this
process is given by multiplying the electron and nuclear current:

M = ie2

q2
µ

[
ū(k′, τ ′)γµu(k, τ)

]
〈Φf (p′µ)|Jµ|Φi(pµ)〉 , (4.6)

where u(k, τ) (ū(k′, τ ′)) represents the state of the incoming (outgoing) electron with mo-
mentum k (k′) and helicity τ (τ ’), |Φi〉 (|Φf 〉) the initial (final) state of the nucleus with
four-momentum pµ (p′µ), and γν Dirac matrices.

According to momentum conservation we have qµ = kµ − k′µ = pµ − p′µ, resulting in an
energy transfer ω = ε − ε′ and a three-momentum transfer q, with its magnitude given by
|q| =

√
k2 + k′2 − 2kk′ cos θe, where θe is the angle between the initial and final electron.

Because of the high electron-beam energies, the electrons are relativistic such that the four-
momentum transfer squared is given by qµqµ = q2

µ = 4εε′ sin2 θe/2, i.e., the electron mass
becomes negligible. The only restriction on the transfer momentum is that it has to be
space-like, i.e., q2

µ = ω2 − q2 < 0. This has the advantage that both the energy transfer ω
and the momentum transfer q of the virtual photon can be varied independently, mapping
out the entire electromagnetic response of the target. Experiments with real photons, on the
other hand, only allow a single momentum transfer since the mass of the real photon is zero,
leading to qµqµ = q2

µ = ω2−q2 = 0. In elastic scattering there is no energy transferred during
the process, i.e., ω = ε− ε′ = 0, which implies that the nuclear state remains unexcited. In
this thesis we only study elastic processes, such that we can leave out the ω dependence in
the following.

The differential cross section for the process (e, e’) in the one-photon-exchange approxi-
mation for an unpolarized and unobserved target in the lab frame is obtained by squaring

2Nuclei with higher proton numbers have a large effect on the scattered particle. Taking into account this
influence is done by the distorted-wave Born approximation (DWBA).
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Eq. (4.6), averaging over initial spins and summing over final spins [77, 78]:

dσ
dΩe

= 4πσMf−1
rec

[
Q4
µ

q4 F
2
L(Q) +

(
Q2
µ

2q2 + tan2 θe
2

)
F 2
T(Q)

]
, (4.7)

where q = |q| and we defined the negative of the momentum transfer as Q2
µ = −q2

µ for
convenient notation. The Mott cross section σM and the recoil term frec are given by

σM =
[
α cos θe/2

2ε sin2 θe/2

]2
, (4.8)

and
frec = 1 + 2ε

MA
sin2 θe/2, (4.9)

respectively. Here, MA is the mass of the target nucleus with mass number A. Note that the
cross section presented this way is general, i.e., it does not yet depend on internal degrees of
freedom of the target nucleus.

The functions F 2
L(Q) and F 2

T(Q) are the longitudinal and transverse form factors, some-
times called structure functions, and contain all the information on the distribution of the
nuclear electromagnetic current density. As they only depend on the transfer momentum and
not on the angle of the scattering event, they can be extracted by plotting the cross section
as a function of tan2 θe

2 for a fixed value of Q. This method of obtaining the form factors
is called the Rosenbluth separation, and has been the standard method to extract the form
factor. However, as mentioned, modern evaluations of cross sections use a parametrization to
extract form factors from scattering data.

4.2 Nucleon form factors

As discussed before, performing calculations without any nucleon substructure, hence regard-
ing the proton and neutron as pointlike, would require to factor out the nucleon structure from
experimental results before any meaningful comparison can be made. Therefore, including
nucleon form factors in the charge and current operator provides important corrections to
the operator.

To express the amplitude of electron-nucleon scattering, we replace the nuclear current in
Eq. (4.6) by the nucleonic current:

〈Φf |Jµ|Φi〉 → ie v̄(p′, s′)Γµv(p, s), (4.10)

with v (v̄) a Dirac spinor representing the initial (final) nucleon, p (p′) the initial (final)
momentum, and s (s′) the initial (final) spin four-vector. The vertex function, Γµ, in its most
general form for particles with spin 1/2, satisfying Lorentz invariance and current conservation
is given by

Γµ = γµF1(Q2) + κj
iσµνqν
2mN

F2(Q2), (4.11)

wheremN represents the nucleon mass, κj , with j = proton, neutron,3 the anomalous magnetic
moment, γµ and σµν = i/2[γµ, γν ] the Dirac matrices. The Dirac and Pauli form factors

3From now on we denote the proton and neutron with a subscript p and n, respectively. For example, the
anomalous magnetic moment for the proton then becomes κp.
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F1 and F2, respectively, parametrize the electromagnetic nucleon structure information in
invariant functions which depend on the momentum transfer and are linear combinations of
the longitudinal and transverse form factors given in Eq. (4.7). In the limit of zero momentum
transfer these form factors equal F1p = 1, F2p = κp and F1n = 0, F2n = κn and coincide with
the total charge an anomalous magnetic moment of the nucleons (where we have used the
notation κjF2 ≡ F2j).

In e-p or electron-neutron (e-n) scattering it is conventional to then express the differential
cross section for an unpolarized and unobserved target in terms of the Dirac and Pauli form
factors:

dσ
dΩe

= σMf
−1
rec

[
F 2

1 (Q2) + τ

(
F 2

2 (Q2) + 2[F1(Q2) + F2(Q2)]2 tan2 θe
2

)]
. (4.12)

Note that this expression represents a specific case of Eq. (4.7). More commonly the nucleon
structure is given in terms of the electric (E) and magnetic (M) Sachs form factors G, which
are linear combinations of F1 and F2:

GE(p,n)(Q2) = F1(p,n)(Q2)− τF2(p,n)(Q2), (4.13a)
GM(p,n)(Q2) = F1(p,n)(Q2) + F2(p,n)(Q2), (4.13b)

with τ = Q2

4m2
N
. They are normalized such that GEp(0) = Z, GEn(0) = 0, and GM(p,n)(0) =

µ(p,n), in units of µN . The Sachs form factors are used because they simplify the scattering
cross section expression such that it is more straightforward to analyze experimental data as
it cancels the interference term in Eq. (4.12):

dσ
dΩe

= σM f−1
rec

1
1 + τ

[
G2

E(Q2) + τ

ε
G2

M(Q2)
]
, (4.14)

with the polarization of the virtual photon defined as ε =
[
1 + 2(1 + τ) tan2 (θe/2)

]−1. These
form factors are then extracted from electron scattering data with the Rosenbluth separation.

Another combination of nucleon form factors often used in this work are the isoscalar and
isovector, electric and magnetic Sachs form factors. They consist of the sum and difference
of the proton and neutron form factors, and are given by

GSE/M = GE/Mp +GE/Mn, (4.15a)

GVE/M = GE/Mp −GE/Mn, (4.15b)

where the Q2 dependence is left out for readability. Their normalization follows from the form
factors in Eq. (4.13a), i.e., GSE(0) = GVE (0) = 1, GSM(0) = 0.880µN , and GVM(0) = 4.706µN in
units of the nuclear magneton µN .

Many experiments have been performed to measure nucleon cross sections and deduce
from them the internal structure of the neutron and the proton in terms of Sachs form factors,
for a review see Ref.[193]. The measurement of the proton form factors can be performed on
free protons. For neutrons, however, experiments with light nuclei have to be carried out, e.g.,
2H or 3He, to extract electromagnetic form factors. Experiments with deuteron targets require
theoretical knowledge about the deuteron wave function, leading to sizable uncertainties in
the neutron form factor [193]. Besides, neutron form factors are almost zero and much smaller



4.2 NUCLEON FORM FACTORS 55

0 10 20 30 40 50

Q2 [fm−2]

0.0 0.5 1.0 1.5 2.0

Q2 [GeV2]

0.0

0.2

0.4

0.6

0.8

1.0

G
E

n
/p
/
G

D

0 10 20 30 40 50

Q2 [fm−2]

0.0 0.5 1.0 1.5 2.0

Q2 [GeV2]

0.90

0.95

1.00

1.05

1.10

1.15

G
M

n
/p
/

(µ
n

/p
G

D
)

neutron
proton
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Figure 4.3: Parametrizations of the Sachs nucleon form factors normalized by the dipole form factor
as a function of Q in GeV2 (bottom x-axis) and fm−2 (top x-axis). Red always represents the neutron
form factor (n), while blue shows the proton form factor (p). Left panel: The neutron and proton
electric Sachs form factor GEn/p(Q2). Right panel: The neutron and proton magnetic Sachs form
factor GMn/p(Q2). The three parametrizations are given by Höhler et al. [178] (solid line), Kelly [179]
(dashed line), and Ye et al. [180] (dotted line).

than the proton contribution to the cross section, such that they are more difficult to obtain.
However, the low Q region, relevant for chiral EFT, is known with sufficient accuracy for all
form factors to be used in calculations.

By constructing parametrizations of the Sachs form factors, all scattering information is
incorporated into practical objects. Commonly, nuclear theory analysis use two well-known
nucleon form factor parametrizations, one from Höhler et al. [178] from 1976 which uses
a dispersion theory analysis, and the second one from Kelly [179] from 2004 which uses a
fraction with a polynomial in Q2 in both numerator and denominator. Since the publication
of these parametrizations, there has been much experimental as well as theoretical progress
over the last two decades. For example, recently experiments with double-polarization are
realized where beam or target or both can be polarized to make precise measurements [193].
This allows to skip the traditional Rosenbluth separation to extract the independent form
factors, making the analysis less prone to errors and improving the precision. In addition,
theoretical investigations understood the importance of the two-photon exchange process to
have a significant impact [180, 193].

These new developments are not yet taken into account in the two analysis mentioned
above. As the nucleon form factors represent important corrections to the charge and current
operator, we would like to include these improvements. In order to have an up-to-date result
with a recent analysis of electron-nucleon scattering data we include the recent parametrization
performed by Ye et al. [180] in the nuclear form-factor calculations.4 The authors in that
work include two-photon exchange corrections as well as new high-precision measurements
in their bounded polynomial z-expansion fit of the global data. Furthermore, they constrain

4This parametrization does not yet include the elastic electron scattering results from Ref. [62]
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the fit to reproduce universally accepted nucleon radii, as such allowing to insert the newly
recommended proton radius, and they provide reliable uncertainty estimates. The nucleon
radii values they adopt are specified by: (rnE)2 = −0.1161(22) fm2 [194], rpE = 0.879 fm [60],
rnM = 0.864 fm [194], rpM = 0.851 fm [194]. As an additional benefit, the fitting parameters
and the uncertainty parametrization are made available in the additional information to their
publication [180].

A comparison of the three-nucleon form-factor parametrizations we discussed, can be seen
in Fig. 4.3. In order to amplify the differences between them, they are normalized by the
dipole form factor:

GD(Q2) = (1 +Q2/Λ)−2, (4.16)

with Λ = 0.71 GeV2. The solid line represents the Höhler et al. parametrization [178],
while the dashed and dotted lines show the Kelly [179] and Ye et al. [180] parametrization,
respectively. The left panel shows GEx for the neutron (red), x = n, and the proton (blue), x =
p, and the right panel shows GMx for both. In the region of interest to this work, 0 6 Q2 6 36
fm−2, the different parametrizations for electric Sachs form factors show similar behavior,
except for the neutron form factor Höhler et al. parametrization. For GMx, the three form
factors show more variation, where the Höhler et al. parametrization for the neutron form
factor (red solid line) deviates most compared to the other.

4.3 Deuteron form factors

We now address the calculation of nuclear form factors and discuss them in detail. The
electromagnetic structure functions of the deuteron, that enter the cross-section expression,
are parametrized into three form factors. The charge, quadrupole and magnetic form factors
and are related to the two-body partial-wave expansion of the charge and current operator
matrix elements, presented in Chapter 3. We show this relation in Section 4.3.1, by expressing
the current in terms of a spherical basis and by considering a relativistic treatment of the
deuteron current. In Section 4.3.2 we present the final form factor expressions used in
numerical calculations, and in Section 4.3.3 we briefly outline the computational methods.
We end this section by showing and discussing results for the deuteron form factors in
Sections 4.3.4 and 4.3.5.

The Born approximation provides a general expression for the cross section of an unpolar-
ized and unobserved target, as defined in Eq. (4.7). Since the deuteron has S = 1, it is more
convenient to rewrite the general scattering cross section as:

dσ
dΩe

= 4πσMf−1
rec

[
A(Q) +B(Q) tan2 θe

2

]
, (4.17)

whereA(Q) andB(Q) define the so-called deuteron structure functions. Because of the integral
spin there are three independent form factors which completely describe the electromagnetic
structure. The deuteron structure functions can be expressed as linear combinations of a
charge (GC), a magnetic (GM) and a quadrupole (GQ) form factor:

A(Q) = G2
C(Q) + 2

3ηdG
2
M(Q) + 8

9η
2
dG

2
Q(Q) (4.18)
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and
B(Q) = 4

3ηd(1 + ηd)G2
M(Q), (4.19)

with ηd = Q2/(4M2
d), where Md represents the deuteron mass. These three form factors offer

a more physical choice than the structure functions. The charge and quadrupole form factors
contain information about the distribution of charge and its shape, while the magnetic form
factor provides information on the magnetization density. As explained before, experimental
determination of the structure functions A(Q) and B(Q) uses the Rosenbluth technique to
separate them. Because A(Q) consists of three form factors, it is very difficult to separate
charge and quadrupole contributions from each other. Such a separation can be done if one
performs polarization experiments where the incoming electron beam, the deuteron target, or
both are polarized. On the other hand, theoretical calculations can easily obtain the linear
combination defined in Eq. (4.18) and compare these results to experiment, as done in, e.g.,
Ref. [70]. However, we only consider GC(Q) and GQ(Q) separately.

4.3.1 From matrix elements to form factors

In this section we connect the form factors, which appear in the expression of the cross
section, to matrix elements of the charge and current operator. Conventionally, this is done
by making a multipole expansion of the operators to then obtain reduced matrix elements
by applying the Wigner-Eckart theorem, see, e.g., Refs. [77, 78, 81]. This approach is mainly
carried out to exploit nuclear angular momentum and parity selection rules. However, we
proceed without calculating the multipole expansion of the charge and current operator and
directly evaluate the current operators between deuteron wave functions. Of course, multipole
expanded reduced matrix elements can be related back to common matrix elements of current
operators [77, 80].

To express the charge, quadrupole, and magnetic form factors as matrix elements of the
current operator Jµ, we start by expressing the current in a spherical basis:

Jλγ = Jµε
µ
λγ
, (4.20)

with the spherical four-vector states given by

εµλγ =

(0,±1,−i, 0)/
√

2 λγ = ±1
(0, 0, 0, 1) λγ = 0

. (4.21)

Calculations are carried out in the Breit frame,5 where the initial and final deuteron momen-
tum are given by

P = (P0,−
1
2Q), P ′ = (P0,

1
2Q), P0 =

√
M2

d + 1
4Q

2, (4.22)

with Q the momentum transfer. In addition, we choose Q along the positive z-direction.
We define the matrix elements of the current operator in the spherical basis as

G
λγ
λ′λ(P ′, P ) ≡ gµνGµλ′λ(P ′, P )ενλγ = 〈P ′λ′|Jλγ |Pλ〉 , (4.23)

5For elastic reactions, A+ B → A+ B, there is an inertial frame in which A recoils with its momentum
reversed, i.e., pA = −p′A. This frame is called the Breit frame. Often, the scattering process kinematics are
best understood in this reference frame.
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where |Pλ〉 and |P ′λ′〉 are the initial and final deuteron states with helicities λ and λ′,
respectively. The helicities are understood to be the projection of the particle spin on the
direction of the particles momentum. Because there are three form factors, there are only
three independent matrix elements. We choose these matrix elements, which we denote by
g±1,0, to be

g−1 ≡
1

2Md
〈P ′λ′ = −1|J0|Pλ = −1〉= 1

2Md
G0
−1−1(P ′, P ), (4.24a)

g0 ≡
1

2Md
〈P ′λ′ = 0|J0|Pλ = 0〉 = 1

2Md
G0

00(P ′, P ), (4.24b)

g+1 ≡
1

2Md
〈P ′λ′ = 1|J+1|Pλ = 0〉 = 1

2Md
G+1

10 (P ′, P ). (4.24c)

A relativistic treatment of the deuteron current, taking into account Lorentz-invariance,
current conservation, parity and time-reversal invariance, demonstrate that the electromag-
netic deuteron current matrix elements, Gµλ′λ(P ′, P ), are also equal to [195, 196]:

Gµλ′λ(P ′, P ) =−
[
G1(Q)ξ∗λ′ · ξλ −G3(Q)ξ

∗
λ′ · qξλ · q

2M2
d

]
(P µ′ + Pµ)

−G2(Q)
(
ξµλξ
∗
λ · q − ξ

µ∗
λ ξλ · q

)
, (4.25)

where ξλ and ξλ′ are the incoming and outgoing deuteron polarization four-vectors, q the
magnitude of the four-momentum transfer as defined before, and Gi(Q), with i = 1, 2, and 3,
are form factors which are functions of Q only. The deuteron polarization four-vectors in the
Breit frame are defined by

ξλ =

(0,±1,−i, 0)/
√

2 λ = ±1
(−Q/2, 0, 0, P0)/Md λ = 0

, (4.26)

ξ′λ′ =

(0,∓1,−i, 0)/
√

2 λ′ = ±1
(Q/2, 0, 0, P ′0)/Md λ′ = 0

. (4.27)

The scalar functions Gi(Q2) in Eq. (4.25), with i = 1, 3, can be related to the more
physical charge and quadrupole form factors by the following linear combinations:

GC(Q) = G1(Q) + 2
3ηdGQ, (4.28)

GM(Q) = G2(Q), (4.29)
GQ(Q) = G1(Q)−G2(Q) + (1 + ηd)G3(Q). (4.30)

The result in Eq. (4.25) allows us to match the invariant scalar functions to the deuteron
matrix elements defined in Eq. (4.24), such that we find:

g−1 =
√

1 + ηdG1(Q), (4.31a)
g0 =

√
1 + ηd

[
(1 + 2ηd)G1(Q)− 2 ηdGM(Q) + 2 ηd (1 + ηd)G3(Q)

]
, (4.31b)

g+1 =
√
ηd(1 + ηd)GM(Q). (4.31c)

Inverting these relations and using the linear combinations from (4.28)-(4.30) yields expres-
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sions for the electromagnetic form factors in terms of the independent deuteron matrix
elements:

GC(Q) = 1
3
√

1 + ηd
(g0 + 2g−1), (4.32)

GQ(Q) = 1
2ηd
√

1 + ηd
(g0 − g−1), (4.33)

GM(Q) = 1√
ηd(1 + ηd)

g+1. (4.34)

The electromagnetic form factors defined in this way are normalized by the charge, magnetic
and quadrupole moment of the deuteron

GC(0) = 1, GQ(0) = M2
dQd, GM(0) = Md

mN
µd. (4.35)

In this chapter, we focus on the analysis of electromagnetic form factors, while the next
chapter is devoted to study static moments.

To summarize, we discussed the electromagnetic form factors of the deuteron, that make
up the structure functions, Eqs. (4.18) and (4.19), to specific linear combinations of deuteron
matrix elements. We achieved this by expressing the current operator in terms of a spherical
basis to then define three independent matrix elements, Eq. (4.24). A relativistic treatment
of the deuteron current determines three invariant scalar functions Gi(Q) which in turn could
be related to the independent matrix elements in (4.31a)-(4.31c). This finally resulted in
expressing GC(Q), GQ(Q) and GM(Q) in terms of linear combinations of the independent
matrix elements in (4.32)-(4.34). With these expression it is clear how to proceed to calculate
the electromagnetic form factors, which we will present below.

4.3.2 Two-body partial-wave matrix elements

In previous chapters, we defined the two-body partial-wave basis in Section 3.1.2 as well as
showed the expansion of a general current operator in this basis in Section 3.1.3. Now that
we have the relation between the form factors and the matrix elements given in (4.32)-(4.34),
we can use the general expansion as a starting point to find expressions for the form factors
in terms of the partial-wave basis. In the following, we show the result for each form factor,
starting with the charge form factor to then present the expression for the quadrupole form
factor and finish with the magnetic form factor.

Charge form factor

The charge form factor provides information about the distribution of electric charge inside
the nucleus. We present here the analytic result, obtained by using the one-body charge
operator which we presented in Section 2.4.3. Substituting the two-body partial-wave state
and the deuteron wave function into Eq. (4.32) yields

GC(Q) =GSE(Q2)√
1 + ηd

∑
LML

1
2L+ 1

∫
p
φ∗L
(
|pQ|

)
Y ∗LML

(p̂Q) YLML
(p̂) φL

(
p
)
. (4.36)
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θpθpQ

Q/2

p

pQ

p sin θp

z

Figure 4.4: Illustration of the momentum shift to the relative momentum, p, caused by the virtual
photon. The shifted momentum is denoted by pQ and its angle by θpQ

. We choose the momentum
transfer along the positive z-direction.

Here φL represents the radial deuteron wave function (ũ or w̃), pQ defines the momentum
shift in the deuteron state caused by the virtual photon, i.e., pQ ≡ p−Q/2, p̂Q represents
the polar θpQ and the azimuthal ϕpQ angle of pQ, and θp represents the angle between p and
the z-axis. The magnitude of pQ is given by

|pQ| = |p−Q/2| =
(
p2 + Q2

4 − pQ cos θpQ

)1/2
, (4.37)

and the polar angle by
θpQ = arccos pQ,z

|pQ|
. (4.38)

We introduced a shorthand notation for the integral:∫ dp
(2π)3 =

∫
p
, (4.39)

for better readability of the expressions. A detailed derivation of the result in Eq. (4.36) is
given in Appendix B.1.

Since Q is chosen along the positive z-direction, pQ has the same azimuthal angle as p,
while the polar angle is shifted. This shift in the polar angle together with pQ is depicted
in Fig. 4.4. The vectors and angles shown in the figure are the same in each deuteron form
factor expression. Note that the charge form factor is diagonal in L and that the sum over S
vanished as a result of the Clebsch-Gordan orthogonality.

Quadrupole form factor

The quadrupole form factor gives insights into the shape of the nuclear charge distribution
and its normalization provides the deuteron quadrupole moment. Again, we present its final
expression by evaluating the one-body charge operator. Starting from Eq. (4.33) we substitute
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the partial-wave expanded deuteron states to find

GQ(Q) =2M2
d G

S
E(Q2)

Q2√1 + ηd

∑
LML
SMS

∑
L′M ′L

(
C10
L′M ′LSMS

C10
LMLSMS

− C11
L′M ′LSMS

C11
LMLSMS

)

×
∫

p
φ∗L′
(
|pQ|

)
Y ∗L′M ′L

(p̂Q) YLML
(p̂) φL

(
p
)
. (4.40)

For a detailed derivation of this expression, we refer to Appendix B.1. We remark that
different orbital angular momentum states are mixed and that the form factor is diagonal in
the two-body spin.

Magnetic form factor

Compared to the charge and quadrupole form factors, we have to handle the spatial part of
the current, i.e., j, instead of the time-like component to calculate the magnetic form factor.
The current operator has a spin-dependent term, mixing different spin states. Because the
current consists of two terms, the evaluation naturally splits into two parts. For both terms,
a detailed derivation is presented in Appendix B.1.

The first term includes a momentum operator without any spin dependence. Inserting
the deuteron wave function decomposition into Eq. (4.34) yields

GM,1(Q) =
√

2MdG
S
E(Q2)

QmN
√

1 + ηd

∑
LML
SMS

∑
L′M ′L

C11
L′M ′LS

′M ′S
C10
LMLSMS

×
∫

p
φ∗L′
(
|pQ|

)
Y ∗L′M ′L

(p̂Q) (px + i py)YLML
(p̂) φL

(
p
)
. (4.41)

The factor (px + i py) acts as a ladder operator for the angular momentum L, changing its
value. Hence, this term is nondiagonal in angular momentum L. The second term on the
other hand involves a spin operator, which complicates the evaluation. The final expression
is found to be

GM,2(Q) =MdG
S
M(Q2)√

1 + ηd

∑
LML
SMS

∑
L′M ′L
S′M ′S

C11
L′M ′LS

′M ′S
C10
LMLSMS

SS′SM ′SMS

×
∫

p
φ∗L′
(
|pQ|

)
Y ∗L′M ′L

(p̂Q) YLML
(p̂) φL

(
p
)
, (4.42)

with the spin matrix element, SS′SM ′SMS
, given by

SS′SM ′SMS
=
∑
{mi}

[√
3
4 −m1(m1 + 1) CS

′M ′S
1
2 m1+1 1

2 m2
CSMS

1
2 m1

1
2 m2

+
√

3
4 −m2(m2 + 1) CS

′M ′S
1
2 m1

1
2 m2+1 C

SMS
1
2 m1

1
2 m2

]
, (4.43)

where
∑
{mi} indicates the sum over both indices m1 and m2. The total magnetic moment is
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then given by the sum of the two terms:

GM(Q) = GM,1(Q) +GM,2(Q). (4.44)

4.3.3 Numerical evaluation and computational methods

To obtain the form factors defined in Eqs. (4.36) and (4.40) to (4.42), a three-dimensional
integral has to be evaluated. The integral is computed numerically with the well-known
Gauss-Legendre method which approximates the integral as a weighted sum of function values
at specific mesh points inside the integration domain. Such an approximation holds for
functions, f(x), that are well described by a polynomial of degree 2n− 1 inside the interval
[−1, 1]. The n-point Gaussian quadrature rule is given by

∫ 1

−1
dx f(x) ≈

n∑
i=1

wif(xi), (4.45)

where the weights wi are specified by

wi = 2
(1− x2

i )[P ′n(xi)]2
, (4.46)

with Pn(x) the Legendre polynomials. The n points represent a suitable set for the nodes
xi and the weights wi. If we apply this approximation to the spherical coordinates of a
three-dimensional integral, we find:∫

dp f(p) ≈
∑
{pi}

∑
{θi}

∑
{ϕi}

wpiwθiwϕi f(pi, θi, ϕi), (4.47)

where {pi}, {θi} and {ϕi} correspond to sets of suitable nodes for the momentum, the polar
and the azimuthal angle, respectively. As the integration intervals of the spherical coordinates
are not inside [−1, 1], we make an appropriate mapping of the integration interval for each
variable.

The charge and current operator shift the evaluation of the wave function by |Q|/2. This
is in conflict with the choice of the Gaussian quadrature points {pi} for which the wave
function is known. Therefore, we interpolate the wave function for each momentum transfer
to solve the integral. To perform the interpolation, we use a global spline method developed
in Ref. [197]. This methods is based on continuous spline functions, Si(p), for a given mesh,
{pi}. The value at an arbitrary point is then given by a sum over all mesh points

f interp(p) =
Np∑
i=1

f(pi)Si(p), (4.48)

where the spline functions are designed to let the interpolated function agree with the original
function at the mesh points pi. For a possible form of the spline functions and for more
details, we refer to Ref. [197].
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4.3.4 Charge and quadrupole form factors

In this section, we show and discuss results for the charge GC(Q), quadrupole GQ(Q) and
magnetic form factor GM(Q) obtained with the one-body charge operator. This is achieved
by calculating the appropriate momentum space Breit frame matrix elements of the operators,
as outlined in Sections 4.3.1 and 4.3.2.

To evaluate these matrix elements numerically, the integrals are approximated by the
standard Gauss-Legendre method, as outlined above. The numerical stability has been
ensured by choosing a sufficiently fine angular and momentum mesh, such that variations
typically are 6 1% over the entire momentum-transfer range. The wave functions are obtained
by diagonalizing the Hamiltonian, as described in Section 3.1.4. We choose two-body matrix
elements from the nonlocal NN interaction by Entem, Machleidt, and Nosyk (EMN) [23].
This rather new interaction reaches very high precision for nucleon-nucleon scattering data
up to the pion-production threshold among all chiral NN interactions which exist to date.
In addition, these interactions range from LO to N4LO, spanning five orders of the chiral
expansion. This order-by-order development allows to systematically determine the truncation
error at each order, enabling for the construction of meaningful error bars for observables.
We employ deuteron wave functions at each order, up to N3LO, for cutoff values of 420, 450,
500, and 550 MeV. Consequently, we calculate truncation uncertainties at each order with
a Bayesian analysis of the results, from methods developed in Refs. [42, 43], as outlined in
Section 2.5.

We stress that calculations where the order of the operator and the Hamiltonian differ, are
not consistent according to chiral EFT. However, using the one-body operator in combination
with wave functions obtained by including higher orders of the interaction can be regarded
as tests for wave functions themselves. Furthermore, the one-body operator is expected
to provide good results since many higher-order operators are isovector, and thus, do not
contribute to deuteron observables. For example, the first 2BC correction enters at NLO and
has a factor (τ1 × τ2)z, while the first isoscalar two-body charge correction comes only at
N3LO, such that they are expected to produce small corrections.

We summarize the essential elements of the calculation:

• Static electromagnetic deuteron observables are, for the first time, calculated with recent
nonlocal NN interactions from Ref. [23].

• The errors originating from truncating the Hamiltonian are estimated by Bayesian
analysis, with the methods developed in Ref. [42, 43].

• The most recent and up-to-date parametrization for the nucleon form factors from
Ref. [180] is employed to account for nucleon structure.

We begin by showing results for the truncation error of the normalized charge form factor
at NLO, N2LO and N3LO in Fig. 4.5, for a momentum transfer up to Q = 6.0 fm−1. The
convergence of the uncertainty estimate has the same qualitative features for all deuteron form
factors and for all cutoff values. Therefore, we select only this charge form factor example
and describe the most important aspects here, such that we can, from here on, only show the
N3LO result.



64 CHAPTER 4 – FEW-NUCLEON ELECTROMAGNETIC FORM FACTORS

10−4

10−3

10−2

10−1

1

|G
C

(Q
)
/
G

C
(0

)
|

0 1 2 3 4 5 6

Q[fm−1]

Bates (1984)

Bates (1994)

VEPP-2 (1985-86)

VEPP-3 (1990)

VEPP-3 (2003)

Bonn (1991)

NIKHEFF (1996)

NIKHEFF (1999)

JLAB (2000)

BLAST (2011)

0 1 2 3 4 5 6

Q[fm−1]

10−4

10−3

10−2

10−1

1

|G
C

(Q
)
/
G

C
(0

)
|

EMN 500 MeV

NLO

N2LO

N3LO

Figure 4.5: Normalized deuteron charge form factor at different chiral orders of the wave function
as a function of the momentum transfer Q compared to experimental results. The three panels show
the order-by-order convergence of the form factor truncation error estimate obtained by calculating
the expectation value of the LO charge operator for order-by-order improved wave functions. Top
left panel: The result for the NLO NN interaction with a cutoff of 500 MeV is given by the dark
yellow solid line. The lightest shade shows the 95% DoB, while the slightly darker shade shows the
68% DoB interval. Top right panel: The dark green line shows the result for the calculation with
an N2LO interaction, and the colored bands are as before. Bottom left panel: The result for the
N3LO calculation is shown by the dark blue line, and the bands illustrate, again, the DoBs. Note that
the bands for increasing orders lie inside each other. Experimental results for the charge form factor
are given by [198] (open squares), [199] (solid square), [200, 201] (open upward triangle), [202] (open
downward triangle), [203] (solid downward triangle), [204] (solid cross), [205] (open circle), [206] (solid
circle), [207] (open diamond), and [208] (open pentagon).
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Figure 4.5 shows results obtained with calculations including a cutoff of 500 MeV for wave
functions at NLO (top left), N2LO (top right) and N3LO (bottom left). We make use of the
Bayesian model C650

χ−2,0.25−10, which means that a breakdown scale of Λb = 650 MeV is chosen
and that prior coefficients are drawn from a distribution with limits c̄< = 0.25 and c̄> = 10.
Recall the discussion about truncation uncertainty estimation in chiral EFT presented in
Section 2.5 for details about the Bayesian model. The 95% and 68% DoB intervals are shown
by light and dark shaded bands, respectively. We observe that the errors of the next order
always lie inside the error band of the previous order, showing explicitly the order-by-order
convergence. Note that the band of the N3LO result starts to strongly increase around 3.5
fm−1. In this region, the truncation uncertainty is dominated by the momentum transfer
as a result of Q = min

(mπ
Λb
, Q/2Λb

)
, where Q/2 represents the characteristic momentum. The

characteristic momentum scale for the deuteron is given by Q/2 at momentum transfers higher
than mπ, because the wave function is probed at momentum scales only half the momentum
transfer [71, 187]. This allows to extend the validity of calculations up to momentum transfers
of ∼ 6 fm−1, as shown in the figure. Another important observation is that the onset of the
DoB interval increase occurs consistently at higher momenta transfer for increasing orders.
This suggests that including higher orders in the calculation could make the DoBs smaller at
high Q. As a final remark, we point out that results at all orders perform well in the zero-
and low-momentum region. In Section 4.5, we extract charge and magnetic radii to quantify
this observation.

The top row of Fig. 4.6 depicts the results for calculations of the LO charge operator with
wave functions at N3LO for the charge (left) and quadrupole (right) form factor up to Q = 6.0
fm−1 together with experimental data. The two panels show results for cutoff values of 420,
450, 500, and 550 MeV with a dashed-dotted, dashed, solid, and dotted line, respectively.
In addition, the 95% and 68% DoB for the N3LO EMN 500 MeV results are shown by the
light and dark shade, respectively. The results for the 500 and 550 MeV cutoffs show good
agreement with data up to about 3 fm−1, to then result in a minimum at too high momentum
transfer compared to experiment. Corrections from higher-order charge operators have been
shown to shift the minimum to lower Q values [70, 72]. This is traced back to the fact that
the absolute value of N2LO and N3LO corrections are of the order of 10−2 − 10−3 over the
entire momentum range [70], resulting in almost no effect at low Q and a big effect at high Q
where the one-body charge operator result is of the same order. Taking into account this shift
caused by higher-order operators suggests that the results in this work could agree with the
experimental minimum. Note that at high momentum transfers, the theoretical error band
overlaps most of the data and that the 550 MeV result completely lies inside the 500 MeV 68%
DoB interval. This reduced cutoff dependence is expected at increasing order. However, not
all residual cutoff dependence lies inside the truncation uncertainty band, as seen from the 420
and 450 MeV results. They start to deviate from the other two cutoff calculations already at
∼ 2.5 fm−1 and completely fail to describe the higher momentum transfer regime, suggesting
that the interactions are too soft to reliably account for the high momentum-transfer region.
As two-body current corrections to the charge form factor are of order N3LO, they are rather
small and have a limited impact.

The quadrupole form factor calculation shows results which are consistently lower than
experimental data over the entire momentum transfer region. Calculations including N3LO
corrections to the charge operator have been shown to shift the result upwards [70]. On the
other hand, the cutoff dependence is much less dramatic and the results for different cutoff
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Figure 4.6: Deuteron charge and quadrupole form factor, in units of fm2, as a function of Q, in units
of fm−1. Top row: Deuteron charge (left) and quadrupole form factor (right) at different cutoff values
compared to experiment. The solid blue line represents the result for calculations with the EMN 500
MeV interaction at N3LO. The dashed-dotted, dashed, and dotted lines show the outcome for the
same interaction with a cutoff of 420, 450, and 550 MeV. The experimental data citation details are
as in Fig. 4.5. Bottom row: Comparison to calculations from Phillips [187] (green line, hatched band)
and from Piarulli et al. [70] (yellow line). Note that the charge form factor is much more sensitive to
the details of the interactions, and thus to the wave function, than the quadrupole form factor.

values all lie within the 68% DoB of the 500 MeV result, except for the 420 MeV result.
We conclude that results for the deuteron charge and quadrupole form factors including the
one-body operator give the most important contribution to results, and describe the low Q

region but fail to reproduce the minimum.
The bottom row of Fig. 4.6 shows a comparison to other calculations. The green lines, and

the hatched area between them, are results obtained by Phillips [187] using a NN interaction
from Ref. [209] at N3LO and a charge operator at N2LO. The yellow line represents the result
obtained by Piarulli et al. [70] using an NN interaction with a cutoff of 500 MeV at N3LO from
Ref. [190], the predecessor of the interaction used in this thesis, and the LO charge operator.
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Note that the hatched band, bounded by the green lines from the results of [187], are not equal
to an error estimate as our results indicate with the band, it rather shows the sensitivity of the
theory on the cutoff scale. For the charge form factor GC, both calculations start to deviate
from results in this thesis at 2 fm−1 and predict the minimum at much lower Q of ∼ 3.1− 3.8
fm−1 compared to ∼ 4.5 fm−1. As both calculations are also obtained from consistent chiral
EFT calculations, we can assume a similar behavior of the truncation uncertainty at high Q
compared to results obtained in this thesis. Therefore, we could conclude that the predicted
minima agree within the 68% DoB, as the truncation uncertainty is relatively large. The
result from Phillips underpredicts the observable in the region Q > 2.5 fm−1. This qualitative
disagreement most likely arises from differences in the deuteron wave functions obtained from
the different NN interactions [70]. A similar observation was made between results obtained
with the SNPA and chiral EFT, where it is known that the deuteron wave functions are
different [126]. The quadrupole form factor GQ, again, shows little or no dependence on
the interaction as all calculations are basically overlapping. This small variability has been
noticed before and results from the second-order spherical Bessel function presence in the
impulse approximation result for GQ(Q) [187] (see discussion below Eq. (36)).

4.3.5 Magnetic form factor

Figure 4.7 shows the LO results for GM(Q) for different cutoff values of the N3LO interaction
and compares these to experimental data and another calculation of Piarulli et al. [70]. The
results for cutoff values 420, 450 and 550 MeV all lie inside the 68% DoB interval of the
truncation error of the 500 MeV result. However, the 420 and 450 results have a minimum
at much higher transfer momenta, while the other two nearly coincide. The minima for the
500 and 550 MeV results are too low compared to the experimental one, which occurs at
∼ 6.5 fm−1. It is a well-known fact that 2BCs have a big impact on magnetic observables,
resulting in a shift of the minimum to higher momentum transfers. The calcuation gives a
good description of data up to a momentum transfer of ∼ 3 fm−1, before it starts to deviate.
As seen for the charge form factor, the 68% and 95% DoB intervals rapidly increase around
3.5 fm−1. As a result, the 68% DoB interval is consistent with experimental data up to
Q = 6 fm−1, such that more conclusive statements about the minima can only be made if
the truncation uncertainty is reduced by including higher-order corrections. The result from
Piarulli et al. is obtained by a calculation with the LO current operator and wave functions
from the EM NN interaction [190] with a cutoff of 500 MeV at N3LO. The calculation starts
to deviate from the central value of our result at 2 fm−1 and predicts a minimum, again, at
a lower momentum transfer than our result, similar as in the charge form factor comparison.
This disagreement can be traced back to the difference in the deuteron wave functions, as
for the charge form factor. On the other hand, if we assume that the truncation uncertainty
for the result from Piarulli et al. is similar to the uncertainty of our result, then we could
conclude that the predicted minima agree within the 68% DoB. It has been shown by Piarulli
et al. that including high-order operators shifts the minimum in GM(Q) to higher Q. In their
work, they are unable to reach the experimentally observed minimum, even after including
high-order effects. This suggests that high-order corrections to results from this thesis could
shift the minimum far enough.
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Figure 4.7: Deuteron magnetic form factor, in units of µN , from calculations with the LO order
current operator and wave functions at N3LO as a function of the transfer momentum Q. Left panel:
The form factor is shown for three different cutoff values, where the dashed-dotted, dashed, solid, and
dotted lines represent calculations with a cutoff of 420, 450, 500, and 550 MeV, respectively. The light
and dark blue bands represent the 95% and 68% DoB of the truncation error of the 500 MeV result.
Right panel: Deuteron form factor result in comparison to a similar calculation from Piarulli et al.[70],
which is represented by the yellow line. Experimental results for the magnetic form factor are given
by [210] (open hexagon), [211] (open diamond), [212] (solid cross), [213] (open plus), and [214] (open
star).

4.4 Trinucleon form factors

In this section we discuss the triton and the helion, hereafter also called trinucleons, electro-
magnetic form factors. We start by stating the electron-trinucleon scattering cross section
in terms of the Dirac and Pauli form factors. They are related to the charge and magnetic
form factor by a linear combination, and to Breit frame matrix elements of the triton and the
helion. In Section 4.4.1, we show the three-body partial-wave expanded charge and magnetic
form factors obtained with the one-body charge and current operator, respectively.

The trinucleons are not isoscalar like the deuteron. For this reason, the dominant isovector
two-body correction to the current operator can be calculated and its effect studied in the
magnetic form factor. We present the expression for this correction, entering at NLO, in
Section 4.4.2. Three-nucleon interactions first appear at N2LO in the chiral power counting,
recall our discussion in Section 2.3, and they depend on two new LECs, i.e., cD and cE . It
is well known that 3N interactions are important to obtain the correct binding energy of the
triton and, in general, provide significant contributions in few-nucleon systems. Therefore, we
present results with and without 3N interactions to investigate their impact on electromagnetic
form factors. In addition, we also give results for interactions that are evolved to different
SRG scales, without evolving the operator, to asses the influence on the high momentum
transfer region. A consistent calculation must evolve the operator as well, which will be
pursued in the next chapter.

The triton and the helion are both spin-1/2 particles, and therefore, have an elastic
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electron scattering cross section which is the same as the nucleons, see Eq. (4.12), except for
a different target-mass dependence. We restate the cross section for a spin-1/2 particle, now
with trinucleon-mass dependence:

dσ
dΩe

= σMf
−1
rec

[
F 2

1 (Q2) + τT

(
F 2

2 (Q2) + 2[F1(Q2) + F2(Q2)]2 tan2 θe
2

)]
, (4.49)

where τT = Q2/(4M2
T) now depends on the trinucleon nuclear mass MT, and F1(Q) and

F2(Q) represent the three-body Dirac and Pauli form factors, respectively. Because the
trinucleons are spin-1/2 particles, they only have two independent form factors describing
their electromagnetic structure, namely a charge and magnetic form factor. These charge
and magnetic form factors are defined as linear combinations of F1 and F2 and are explicitly
given by

FC(Q) = F1(Q)− τTF2(Q), (4.50)
FM(Q) = F1(Q) + F2(Q). (4.51)

Just as for the deuteron, the form factors are related to trinucleon matrix elements of the
charge and current operator in the Breit frame, which has an initial and final center-of-mass
momentum of P3N = −Q/2 and P′3N = Q/2. For the triton and the helion these relations
are given by

FC(Q) = 1
Z
〈M′J = +1/2|ρ̂(Q)|MJ = +1/2〉 , (4.52)

FM(Q) = −2mN

Q
〈M′J = +1/2|Ĵ+(Q)|MJ = −1/2〉 , (4.53)

with Ĵ+ ≡ (−Ĵx− iĴy) the current ladder operator, Z the proton number, and |MJ = ±1/2〉
either the triton (MT = −1/2) or the helion state (MT = +1/2). As a result, there are four
independent trinucleon form factors which are normalized as

FC(0) = 1, FM(0) = µ, (4.54)

with µ either the triton or the helion magnetic moment in units of µN .

4.4.1 Electromagnetic form factors with leading order currents

The interaction with the external electron changes the center-of-mass momentum of the system
and causes the wave function to be probed at higher momenta. This probing of the wave
function is proportional to a fraction of the momentum transfer. In the case of a one-body
charge or current operator, the interaction happens exclusively with a single particle, which
we choose to be the third one: 

k′1 = k1

k′2 = k2

k′3 = k3 + Q.
(4.55)

Here ki describes the single-particle initial and k′i final momentum of particle i.
In the Jacobi coordinate system, the electron interacts with the spectator particle only,



70 CHAPTER 4 – FEW-NUCLEON ELECTROMAGNETIC FORM FACTORS

which we again choose to be the third one. Recall that we have the freedom to select with
which particle the interaction occurs because of the antisymmetry of the wave function,
see Section 3.2.1. In the Jacobi coordinate system p represents the relative momentum
of subsystem {12} and q that of the spectator particle. Transforming the single-particle
momenta to Jacobi momenta, taking into account the Breit frame center-of-mass momenta,
yields

p′ = p and q′ = q + 2
3Q. (4.56)

Thus, also in Jacobi coordinates the shift to the wave function momentum dependence is
confined to the spectator particle variable only, i.e., φα(p, q) → φα(p′, |q + 2/3Q|). We
introduce a shorthand notation for the final spectator momentum by

q 2
3Q
≡ q′ = q + 2

3Q. (4.57)

Its magnitude and polar angle are given by

|q 2
3Q
| =

(
q2 + 4

9Q
2 + 4

3pQ cos θq 2
3Q

)1/2
and θq 2

3Q
= arccos

q 2
3Q,z

|q 2
3Q
|
, (4.58)

respectively. This is essentially the same situation as depicted in Fig. 4.4, with changes p→ q,
pQ → q 2

3Q
, and 1/2Q→ 2/3Q.

Because the external probe interacts with one particle only, the evaluation of the two-
body subsystem simplifies considerably, and is the same for both charge and magnetic form
factor. Therefore we will first provide the expression describing the two-body subsystem,
before specifying final expressions for the charge and magnetic form factor. Recall that the
matrix element of a general current operator in the three-body partial-wave basis, defined in
Section 3.2.3, is written as6

〈p′ q′ α′| Jµ(Q) |p q α〉 =
∑

MJM
′
J

∑
mjm′j

CJ
′M′J

J ′M ′J j
′m′j
CJMJJMJ jmj

∑
MTM

′
T

∑
mtm′t

CT
′M′T

T ′M ′T t
′m′t
CTMTTMT tmt

× PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (Q, p, p′)Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(Q, q, q
′), (4.59)

with P and Q given by

PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (Q, p, p′) = 1
(2π)3

∫
dp1

∫
dp′1

δ(p′1 − p′)
p′1 p

′ Y∗J
′M ′J

L′S′ (p̂′1)

× 〈p′1 T ′M ′T |Jµ(Q)|p1 TMT 〉
δ(p− p1)
p p1

YJMJ
LS (p̂1) , (4.60)

Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(Q, q, q
′) = 1

(2π)3

∫
dq1

∫
dq′1

δ(q′1 − q′)
q′1 q
′ Y∗j

′mj
`′s′ (q̂′1)

× 〈q′1 t′m′t|Jµ(Q)|q1 tmt〉
δ(q − q1)
q q1

Yjmj`s (q̂1) . (4.61)

The function P includes all variables and degrees of freedom belonging to the two-body

6We also remind the reader that lowercase letters denote the spectator particle quantum numbers, capital
letters show the two-body subsystem quantum numbers, and calligraphic letters describe the three-body
quantum numbers.



4.4 TRINUCLEON FORM FACTORS 71

subsystem, while Q describes the spectator particle. Consequently, the one-body charge and
current operator act in Eq. (4.61), while Eq. (4.60), because of the orthonormality of the
spherical harmonics, reduces to

PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (Q, p, p′) =
∑

MLMS

CJ
′M ′J

L′MLS′MS
CJMJ
LMLSMS

δLL′δSS′δTT ′δMTM
′
T

δ(p− p′)
p′p

. (4.62)

This expression holds for both charge and magnetic form factor. Hence, the two-body
subsystem is diagonal in all quantum numbers.

The charge and magnetic form factor of the triton and the helion are proportional to specific
matrix elements of the charge and current operator as indicated in Eqs. (4.52) and (4.53).
The initial and final state of the nucleus are given in a Jj-coupled basis and are solutions
of the Faddeev method described in Section 3.2.4. A general expression for the charge form
factor is then given by inserting completeness relations of the partial-wave basis between the
operator and the wave functions to find

FC(Q) ∝
∑
αα′

∫
dp p2

∫
dq q2

∫
dp′p′2

∫
dq′q′2 φ∗α′(p′, q′) 〈p′ q′ α′|ρ̂(Q)|p q α〉φα(p, q). (4.63)

To obtain an equivalent expression for the mangetic form factor FM, a simple change of the
operator ρ̂→ Ĵ has to be made. The final expression is given by substituting the results of
Eqs. (4.59) and (4.62) and examining the one-body charge and magnetic current operator
effect on Q

m′jm
′
tmjmt

(`′s′)j′t′ (`s)jt(Q, q, q
′). We will consider both separately below.

Charge form factor

The charge operator has the effect to shift the momentum dependence of the spectator particle.
This introduces a delta function that enforces the momentum conservation as follows

Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(Q, q, q
′) = 1

(2π)3

∫
dq1

∫
dq′1 Y

∗j′m′j
`′s′ (q̂′1) δ(q

′
1 − q′)
q′ q′1

× (2π)3δ(q1 − q′1 −
2
3Q)δ(q − q1)

q q1
Yjmj`s (q̂1) 〈t′m′t|eN (Q2)|tmt〉

=
∫

dq̂Y
∗j′m′j
`′s′ (q̂ 2

3Q
)
δ(q′ − |q 2

3Q
|)

q′ |q 2
3Q
|
Yjmj`s (q̂) 〈t′m′t|eN (Q2)|tmt〉 , (4.64)

where this result is obtained by changing Jµ with the correct one-body charge operator ρ̂(−3).
In the last step the integration over q′1 and q1 was carried out, and the renaming q̂1 → q̂

was made. Substituting results Eqs. (4.62) and (4.64) in the expression for the partial-wave
expanded matrix element, Eq. (4.59), and adding the correct prefactors, we find the one-body
trinucleon charge form factor expression:

FC(Q) = 3
Z

∑
α

τMTE;T (Q2)
∑
m`

∫
dp p2

∫
dq φ∗α(p, |q 2

3Q
|)Y ∗`m`(q̂ 2

3Q
) Y`m`(q̂) φα(p, q), (4.65)
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with the isospin factor given by

τMTE/M;T (Q2) ≡
∑

MT mt

C
1
2 MT
1
2mtTMT

C
1
2 MT
1
2mtTMT

GSE/M(Q2) +mtG
V
E/M(Q2)

2 . (4.66)

Here, the subscript E or M indicates the electric or magnetic nucleon form factor, respectively.
It is through this isospin factor that the nucleon substructure is taken into account in the
electromagnetic trinucleon one-body form factors. The total isospin of the three-nucleons
is T = 1/2, and its projection quantum number determines the nucleus for which the form
factor is calculated, i.e.,MT = −1/2 for the triton and 1/2 for the helion. The total one-body
operator is given by the sum of the interaction with each nucleon, which is accounted for by
the prefactor 3 in Eq. (4.65). Note that the expression for the charge form factor is diagonal
in all quantum numbers, represented by α, and that the angular integral over q̂ has to be
carried out explicitly because of the shift caused in the angle, as was the case for the deuteron.
We refer the reader to Appendix B.2 for detailed derivations of (4.64)-(4.66).

Below we present and discuss results for the trinucleon charge form factors FC obtained
with the one-body charge operator, i.e., Eq. (4.65). The integrals are computed by means
of the standard Gauss-Legendre method and to calculate the shift in the wave function a
global spline interpolation is used, as explained in Section 4.3.3. A sufficiently large mesh for
the magnitude, polar, and azimuthal angle of the three momentum variables is chosen, such
that variations are below 1% over the entire momentum-transfer range. The trinucleon wave
function configurations, obtained with the Faddeev method, are included up to Jmax = 3 or
26 channels in total.7 We use two different combinations of NN + 3N interactions to obtain
the wave functions:

• One combination uses the nonlocal EMN NN interaction [23] together with 3N inter-
actions fit to the triton binding energy and nuclear matter saturation properties [32].
These interactions are used at four orders for cutoff values of 420, 450, and 500 MeV,
such that the error from truncating the chiral Lagrangian can be estimated. We will
denote this interaction as follows: N3LO EMN 500 MeV, for calculations with wave
functions obtained from the EMN NN + 3N interaction with a cutoff of 500 MeV at
fourth order.

• The second combination uses the nonlocal Entem-Machleidt (EM) NN interaction [190]
with a cutoff of 500 MeV at N3LO and SRG-evolved to scale λSRG from Ref. [31],
together with 3N interactions at N2LO fit to the triton binding energy and the 4He
matter radius [31, 140, 215]. The 3N interaction is regularized with a cutoff Λ3N that
is varied separately from the NN cutoff. To denote calculations with this combination
we use: EM 500 MeV + 3N(2.0fm−1), for wave functions with an unevolved interaction
and with a three-body cutoff Λ3N = 2.0 fm−1, and: λSRG/Λ3N = 2.2/2.0 fm−1, for wave
functions from interactions evolved to scale λSRG = 2.2 fm−1 with and three-body cutoff
Λ3N = 2.0 fm−1.

We note again that the calculations are not consistent according to chiral EFT, because the
operator and the interaction are not considered at the same order. However, a calculation

7This means that the sum over α has 26 terms, where each term has a distinct combination of L, S, J , T ,
l, and j.
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with a one-body operator in combination with a higher-order interaction, functions as a test
for the wave functions.

Figure 4.8 shows the truncation error estimate for the triton charge form factor for a
momentum transfer up to Q = 5 fm−1 from calculations with the one-body charge operator
and with interactions at NLO, N2LO, and N3LO for the EMN 450 MeV. The isoscalar
and isovector nucleon form factors are given by the parametrization from Ref. [180] and
the truncation uncertainty is estimated by using the methods developed in Refs. [42, 43].
The hatched area represents the experimental information, given as a parametrization from
Ref. [75]. To calculate the truncation error and quantify the DoB intervals, we use the
Bayesian model C650

χ−2,0.25−10, indicating a breakdown scale of Λb = 650 MeV and a prior-
coefficients which are drawn from a distribution with bounds 0.25 6 c̄ 6 10. We refer again
to Section 2.5 for the details about the truncation estimation. The characteristic momentum
scale for the trinucleons is given by 2/3Q, which decreases the range over which chiral EFT
is applicable compared to the deuteron. In general, the valid range goes as (A− 1)/A for an
arbitrary nucleus with mass number A [71], such that the covered momentum-transfer range
is maximal for the deuteron. For the trinucleons this translates to a momentum-transfer range
of 0 6 Q 6 3/2Λb MeV, resulting in an upper limit of Q ≈ 4.95 fm−1. Therefore, we only
show results for the truncation error up to that momentum transfer. The Bayesian analysis
provides 95% (light shade) and 68% (dark shade) DoB intervals. These intervals grow with
increasing momentum transfer, and rapidly expand near the end of the allowed range (see
yellow, green, and blue bands between 4.6−4.95 fm−1 around halfway the y-axis), as expected.
As a result of the smaller characteristic-momentum scale compared to the deuteron, the N3LO
band starts to increase rapidly already around 2.8 fm−1. Beware of the logarithmic scale on
the y-axis which amplifies the lower bound of the truncation error, causing the impression
that the error is much larger there. We observe a systematic order-by-order convergence
of the truncation error for increasing orders, each DoB interval overlaps the band from the
preceding order.

The central value of the results at each order describe the low Q region well up to ∼ 2.5
fm−1, after which they consistently overestimate the experimental results. Consequently, the
minimum occurs at too high Q for each order, even pushing the minimum to larger values
with each increase in order. This pattern was also observed for the deuteron when the same
interaction, without the 3N part, was used. Note that the impact of adding N3LO corrections
is larger than only adding N2LO corrections.

A similar order-by-order convergence pattern is observed for the other cutoffs, as well as
for the helion. Therefore, we discussed the key features for this specific example such that we
can only present N3LO results from here on.

The left and right panel of Fig. 4.9 display the result of the triton and the helion charge
form factor, respectively. Both form factors are calculated with the N3LO EMN interaction
for cutoffs Λ = 420, 450, and 500 MeV shown by the dashed-dotted, dashed, and solid lines.
Further, the 95% and 68% DoB intervals are shown for the 500 MeV result. The results for
different cutoffs start to deviate from each other at 3 fm−1 and 2.6 fm−1 for the triton and the
helion, respectively, yet they all lie within the 68% DoB. In addition, the cutoff dependence is
weaker as observed for the deuteron charge form factor, see Fig. 4.6. We observe that a higher
cutoff results in a minimum at lower momentum transfer, demonstrating that interactions
with a harder cutoff reproduce the high Q region better. However, the central value of the
500 MeV results with minima at ∼ 4.2 fm−1 (triton) and ∼ 3.8 fm−1 (helion) still disagree
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Figure 4.8: Triton charge form factor at different orders of the wave function as a function of the
momentum transfer Q compared to an experimental parametrization of the world data. The three
panels show the order-by-order convergence of the form factor truncation error estimate obtained by
calculating the expectation value of the one-body charge operator for order-by-order improved wave
functions. Top left panel: The result for the NLO EMN 450 MeV interaction is given by the dashed
dark yellow line. The lightest shade shows the 95% DoB, while the slightly darker shade shows the
68% DoB interval. Top right panel: The dark green line shows the result for the calculation with an
interaction at N2LO, and the colored bands are as in the first panel. Bottom left panel: The result for
the N3LO calculation is shown by the dark blue line, and the bands illustrate, again, the DoBs. Note
that the bands for increasing orders lie inside each other. Experimental results for the charge form
factor are given by the hatched area [75].
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Figure 4.9: Triton (left) and helion (right) charge form factor as a function of the momentum transfer
Q, in units of fm−1, compared to an experimental parametrization and other calculations. Both charge
form factors are calculated with the one-body charge operator and the N3LO EMN interaction with
three different cutoffs of 500 MeV (solid line), 450 MeV (dashed line), and 420 MeV (dashed-dotted line).
The light blue bands are as in Fig. 4.8. The hatched area depicts the experimental parametrization
from Ref. [75] and results from Ref. [70] are shown by the yellow line, see text for more details about
these calculations.

with experiment. At low transfer momenta, the N3LO result agrees with data up to ∼ 1.2
fm−1 for the triton and ∼ 1.5 fm−1 for the helion. More importantly, for both the triton and
the helion, the experimental results are contained within the 95% DoB over the entire range
and within the 68% band in the higher transfer-momentum region, showing the capability
and importance of estimating the theoretical error.

Many results exist for form factors obtained with the SNPA. In contrast, charge form factor
results for three-nucleon systems from chiral EFT are very scarce. The yellow line in Fig. 4.9
describes results from Piarulli et al. [70] obtained with the N3LO EM 500 NN + N2LO 3N [130]
interaction and the chiral one-body charge operator, indicated by ρLO/(N3LO/N2LO).8 As
for the comparison with experiment, the results from this work agree with the central value
up to ∼ 1.2 fm−1 for the triton and 1.5 fm−1 for the helion, after which the results from
Ref. [70] are consistently lower and in better agreement with experiment. Nevertheless, if we
consider the truncation uncertainty intervals and assume that the results from Piarulli et al.
have a similar uncertainty, then both calculations would agree with each other. Results from
Piarulli et al. including higher-order operator corrections shift the minimum to lower transfer
momenta, as these corrections have an opposite sign compared to the one-body result. Taking
into account such a shift, has the consequence that the N3LO EMN results would agree better
with experiment. As pointed out in Ref. [71], however, the higher-order corrections beyond
the minimum are of the order of the one-body results, suggesting that the chiral expansion is

8That work presents results for two different interactions: the N3LO EM NN + N2LO 3N [130] with cutoffs
set at 500 and 600 MeV, denoted by N3LO/N2LO and N3LO ∗/N2LO ∗, respectively. The data are taken from
tables X and XI in Ref. [70].
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Figure 4.10: Charge form factor of the triton (left) and helion (right) as a function of Q, in units
of fm−1, compared to the experimental parametrization from Ref. [75]. The lines show results for
calculations with NN interactions only (solid lines) and NN + 3N interactions (dashed lines with
downward triangles) for an unevolved (purple), and two different SRG-evolved interactions: One is
evolved to a very soft interaction λSRG = 1.8 fm−1 (green) and the other to a medium scale λSRG = 2.2
fm−1 (red). The symbol Λ3N represents the three-body regulator scale. The insets display the low
momentum-transfer region as a function of Q2 to amplify the minor differences between results.

not convergent in this region. The large uncertainty bands in this region presumably provide
evidence for this argument.

Three-body interactions start to play a role for systems of three or more particles. To
investigate their impact on trinucleon form factors, we show in Fig. 4.10 the triton and the
helion charge form factor on the left and right, respectively, for results with and without
three-body interactions. In addition, we study the impact of interactions at different SRG
scales. Using renormalization group methods softens the short-range repulsion, or in other
words, it decouples high and low momentum in the interaction. It achieves this with a
unitary transformation which leaves the low-momentum observables invariant, such that an
effect should be present in the high-momentum-transfer region of the form factor. For more
information about the application of SRG in nuclear physics we refer the reader to, e.g.,
Ref. [216].

The three solid lines correspond to calculations with the one-body charge operator and
the N3LO EM 500 MeV NN interaction for three different SRG scales [31]. The purple curve
displays an unevolved interaction, the green one a moderate evolution to λSRG = 2.2 fm−1,
and the red line corresponds to an evolution until λSRG = 1.8 fm−1. This last interaction has
received a lot of attention since it reproduces the empirical saturation point quite well, while
simultaneously obtaining ground-state energies of closed-shell nuclei close to experiment, but
leaving charge radii underpredicted [217, 218]. It accomplishes these results, even though,
the interaction is only fit to few-body data. The three dashed lines with downward triangles
present results for the same NN interactions, however, now including the leading 3N interaction
at N2LO [31, 140, 215]. We repeat that the 3N interaction uses a different regulator compared
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to the NN interaction and has a separate cutoff scale denoted by Λ3N, which for these
calculations is Λ3N = 2.0 fm−1.

The result for the unevolved NN interaction (purple solid line) is in almost perfect agree-
ment with experiment for the triton, even reproducing the minimum, and is in good agreement
for the helion up to ∼ 3 fm−1 to then have a minimum at slightly to high Q. The two SRG-
evolved interactions give the same result up until about Q = 3 fm−1 and then start to deviate
from the unevolved result, as well as from each other. Results evolved to smaller and smaller
SRG scales, produce a minimum at consecutively higher Q. This is expected since the SRG
evolution softens the interaction, i.e., it modifies the high momentum part, which is probed
at high Q. A similar effect is observed for the EMN interactions, decreasing the cutoff pushes
the minimum further out. In fact, to restore the changes generated by the SRG evolution and
to achieve a consistent calculation, the operator should be SRG evolved as well. However, we
did not carry out this step for the one-body charge operator, but we will revisit this point in
the next chapter, see Section 5.7.

As the figure shows, the difference between the calculations including only NN interactions
and with 3N interactions included is minimal, especially considering the logarithmic scale.
Essentially, it only scales the NN result. For the two SRG-evolved interactions there is a tiny
shift of the zero crossing to lower momentum transfer and after the minimum, the curves 3N
results reach a higher maximum. Note that these results employ the same NN interaction, but
a different 3N interaction and nucleon form factor, as the yellow line in Fig. 4.9. Indeed, both
results have the same qualitative features, where a complete comparison is prevented because
of the coarse Q mesh. The fact that the inclusion of the 3N force is so small, even at higher
momentum transfers, is noteworthy since they provide important corrections to reproduce
correct binding energies and nuclear matter saturation properties [31]. It is not clear why
the inclusion of the three-body force does not have an impact on the electromagnetic form
factors for the trinucleons. Because of this small impact, we did not pursue a detailed study
of the effect caused by changing the three-nucleon couplings cD and cE .

In conclusion, the inset in both plots shows the charge form factor as a function of the
momentum transfer squared up to Q = 0.50 fm−2. This is done to amplify any existing
variation between the different results. As we will see in the next section, an expansion
around Q2 = 0 of the form factor can be made, resulting in a linear dependence at zero
momentum transfer. At very small momentum transfers, we can identify the linear behavior,
before the quadratic term takes over at ∼ 0.05 fm−2. The insets suggest that the slope of
the form factor calculated with the NN + 3N interaction could be slightly reduced, as the
dashed line is slightly higher. This would create a smaller radius compared to NN only results.
Calculating the radius provides more quantitative information for which we will present results
in Section 4.5.

Magnetic form factor

To find the expression for the magnetic form factor, we examine the effect of the current
operator in Eq. (4.61). Except for a shift in the momentum dependence of the spectator
particle, the current operator also acts on its spin and orbital angular momentum. We
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substitute the one-body current in Eq. (4.61) to find

Q
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tmjmt
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′) = 1

2mN

∫
dq̂Y

∗j′m′j
`′s′ (q̂ 2

3Q
)
[
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]
Yjmj`s (q̂) , (4.67)

The spin operator, σ, acts on the spin degree of freedom that is included in the coupled
spherical harmonic. This results in the following LO magnetic trinucleon form factor:
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Note that the form factor is nondiagonal in ` and j only, and that the first term includes the
electric isospin factor while the second term the magnetic one, see Eq. (4.66). The superscript
LO is added to distinguish between the NLO correction which is calculated below. After
introducing the NLO correction in the next section, we discuss the results for the magnetic
form factor with one- and two-body operator together. For detailed derivations, we refer the
reader to Appendix B.2.

4.4.2 Magnetic form factor with next-to-leading order currents

For the 2BC it is natural to consider that the interaction occurs between the external probe
and the two-body subsystem {12}. In that case, the third particle is left undisturbed, i.e.,
k′3 = k′3. In the Breit frame, this results in the following single-particle momenta, ki, expressed
in Jacobi coordinates, p̃ and q̃:

q1 = k′1 − k1 = −p̃− q̃
2 + Q

3 , (4.69a)

q2 = k′2 − k2 = p̃− q̃
2 + Q

3 , (4.69b)

q3 = k′3 − k3 = 0 = q̃ + Q
3 , (4.69c)

where the tilde over the Jacobi momenta represents the difference between the final and initial
momenta, i.e., p̃ ≡ p′−p and q̃ ≡ q′−q. Note that the symbols qi are not Jacobi momenta,
but indicate the momentum transfer between the single-particle momenta themselves. From
(4.69a)-(4.69c) we infer the momentum conservation to be

q 1
3Q
≡ q′ = q − 1

3Q, (4.70a)

q1 = −p̃ + Q
2 , (4.70b)

q2 = p̃ + Q
2 , (4.70c)
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where we introduced q 1
3Q

, similar to Eq. (4.57), such that its magnitude and polar angle are
the same as in Eq. (4.58) but with a prefactor 1/3.

As we notice from the momentum conservation, the 2BC has an effect on both the two-
body subsystem momentum, Eqs. (4.70b) and (4.70c), and the spectator particle momentum,
Eq. (4.70a). On the other hand, the action on the quantum numbers is restricted to the two-
body subsystem only, as a result Eq. (4.60) cannot be simplified as before. After performing
the radial integrations and changing Jµ for the correct the NLO current operator, i.e., j(−1)

+ ,
in Eq. (4.60), we find
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(4.71)

where the current operator acts on the two-body momentum, spin, isospin and orbital angular
momentum. For the function Q, the effect of the 2BC is given by
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where the delta function will introduce the shift in the trinucleon wave function, as before. Sub-
stituting these results, we find the three-body partial-wave expanded form factor expression
for the NLO 2BC:
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The isospin dependence is accounted for in the function ΓMTT ′T , which is given by
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and the spin and momentum operator action is summarized in ΣM ′SMS

S′S (q1,q2), which is defined
by
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(4.75)

where ω2
qi = q2

i + m2
π. This result for the trinucleon NLO magnetic form factor requires a
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few remarks. First, the Q dependence of the two-body subsystem is not as explicit as for
the one-body form factor result, but is included in qi, see Eqs. (4.70b) and (4.70c). Second,
compared to the one-body form factor there is an extra integration over p′, and over the
angular part of p, resulting in a nine-dimensional integral. This implies a substantial increase
in computational cost, as the integrals are still solved using the Gauss-Legendre method, see
Section 4.3.3. Even though the integration could be sped up with adaptive methods, the
calculation time was still acceptable. Finally, the expression is completely nondiagonal in α,
and there are many sums over projection quantum numbers, which grow if configurations up
to a high two-body angular momentum J are considered. We refer again to Appendix B.2 for
detailed derivations of the expressions of the 2BC correction to the magnetic form factor.

The two-body NLO current operator depends on the nucleon axial coupling gA, the pion
decay amplitude Fπ, the averaged pion mass mπ, and the nucleon mass mN for which we
adopt the following values 1.27, 92.3 MeV, 138.039 MeV, and 938.918 MeV, respectively. The
first combination of interactions (EMN), as described above, is used to calculate the magnetic
form factor results. We do not show results for the second combination of interactions, as
their results for the magnetic form factor provide the same qualitative observations made for
the charge form factor, see Fig. 4.10 and the corresponding discussion.

In Fig. 4.11 we show the triton (left column) and the helion (right column) magnetic form
factor, in units of µN , for calculations with the one-body current operator (top row) and with
NLO or 2BC corrections (bottom row) as a function of the momentum transfer Q, in units
of fm−1. The results are, again, given for the N3LO EMN interaction for cutoffs Λ = 420,
450, and 500 MeV by the dashed-dotted, dashed and solid lines, together with the DoBs for
the 500 MeV result. As for the charge form factor results, we compare to one-body current
operator (yellow line) and NLO corrected (green line) results from Ref. [70].

The magnetic form factor results for all cutoffs disagree with experiment over the entire
momentum-transfer region and underestimates the data until the minimum, even when the
truncation uncertainty is considered. At Q = 0, the result deviates from the experimental
value and for the low momentum transfer this offset appears constant. Compared to the
one-body charge form factor, for which higher-order corrections vanish at Q = 0, the higher-
order magnetic form factor corrections are sizeable at Q = 0, and adjust the offset at low
momentum transfers.

The bottom row shows results with 2BC corrections included. Values at low momentum
transfer are shifted up for both nuclei, but still disagree with experiment. This statement
is made more quantitative in the next chapter, where we study magnetic moments in more
detail. Note that the DoB intervals of the one-body and two-body results do not overlap
at low momentum transfers, which results from the inconsistent inclusion of the operators
compared to the order of the interaction. At higher Q, the minimum is shifted to higher
momentum transfers, such that the central value of the triton result reproduces the minimum
and the central value of the helion result is slightly too low, confirming once again that
2BC provide essential corrections to the one-body current operator. Nevertheless, within
the truncation uncertainty, the higher Q region overlaps experimental data completely. The
cutoff variation is slightly reduced with respect to the one-body result. If we again assume a
similar truncation uncertainty for the results from Piarulli et al. [70], then they agree with
our results and with experiment. Stronger conclusion could be made if a smaller uncertainty
is realized by including higher-order operators in the calculation.
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Figure 4.11: Triton (left column) and helion (right column) magnetic form factor, in units of µN , as
a function of Q, in units of fm−1, compared to experimental results and other calculations. Top row:
Calculations with the one-body current operator and the N3LO EMN interaction for three different
cutoffs: 500 MeV (solid line), 450 MeV (dashed line), 420 MeV (dashed-dotted line). The blue bands
are as in Fig. 4.9. Note that the experimental normalization value, i.e., FM(0), is not reproduced. The
hatched bands are the magnetic form factor parametrization from Ref. [75] and the yellow line are
one-body current operator calculations from Ref. [70]. Bottom row: Magnetic form factor calculations
including the NLO current operator correction, denoted by 2BC, for the same cutoffs. The light red
band represents the 95% DoB of the 500 MeV result and the darker red band the 68% DoB. The green
line shows the NLO result from Ref. [70].
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4.5 Charge and magnetic radius determination

At low- and zero-momentum transfer, the electron probes the long-range behavior of the wave
function, and thus, is sensitive to the radius. Extracting the radius from the electromagnetic
form factors is done by determining the slope at zero momentum transfer. As stated before,
nuclear form factors are Fourier transforms of the spatial charge and current distributions:9

FX(Q) = 4π
QZ

∫
dr ρX(r) eiQ·r, (4.76)

where X denotes the charge (C) or magnetic (M) form factor, such that ρX(r) is either the
charge or magnetic spatial density. For small momentum transfers, the exponential can be
expanded in even powers of qr, such that Eq. (4.76) becomes

FX(Q) = 1− 1
6Q

2〈r2
X〉+ 1

5!Q
4〈r4

X〉+ ..., (4.77)

with 〈r2
X〉 the mean-square radius of density ρX(r). Hence, the derivative of Eq. (4.77) at zero

momentum transfer determines the mean-square electromagnetic radius:

〈r2
X〉 = −6dFX(Q2)

dQ2

∣∣∣∣∣
Q2=0

. (4.78)

A few remarks are in order: First, the result in Eq. (4.78) strictly speaking only determines
the nuclear charge radius. However, the same value is extracted from the magnetic form factor.
Even though a magnetic radius definition in terms of only the wave functions does not exist,
the Q2-dependent term at Q = 0 can be considered a genuine magnetic radius which can be
compared to the same value from experiment. Second, the slope of the form factor determines
the radius only to the degree that higher-order effects are negligible. Equation (4.78) is also
used to determine experimental radii. Because experiments measure form factors at finite
momentum transfer, assumptions have to be made to extrapolate results to Q2 = 0, resulting
in model dependent uncertainties for the radii. Finally, by including nucleon form factors in
our calculations, we account for the proton and the neutron size. See Section 4.2 for details
about the electromagnetic nucleon radii and the nucleon form factor parametrization that we
use.

4.5.1 Deuteron electromagnetic radii

The deuteron is a loosely bound system, indicating that it is an extended nucleus. As a result,
the deuteron rms radius is rather independent of the NN interaction details, and instead,
depends on the binding energy. There are two quantities commonly quantifying the deuteron
size: the point-proton radius, rpt, and the charge radius, rch. The latter is obtained by
calculating the slope of the charge form factor, as described above, while the former depends
on the wave functions only. They are related by

r2
ch = r2

pt + r2
p + r2

n + 3
4m2

p
, (4.79)

9For the deuteron, the symbol GX is implied instead of FX.
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Table 4.1: Cumulative contributions to the deuteron root-mean-square charge and magnetic radius
obtained with the one-body charge and current operator at LO, NLO, N2LO, and N3LO for the
EMN NN interaction with cutoffs Λ = 450, 500, and 550 MeV. The quoted errors show the estimated
truncation uncertainty for each order. Experimental values for the rms charge and magnetic radius
from e-d scattering are 2.130(10) fm [219] and 2.072(18) fm [219], respectively.

rch [fm] rm [fm]

450 MeV 500 MeV 550 MeV 450 MeV 500 MeV 550 MeV

LO 2.069 2.075 2.082 2.029 2.041 2.052
NLO 2.129(20) 2.129(20) 2.128(19) 2.094(21) 2.095(19) 2.095(17)
N2LO 2.127(3) 2.127(3) 2.126(3) 2.100(3) 2.097(3) 2.098(3)
N3LO 2.125(1) 2.129(1) 2.128(1) 2.095(1) 2.098(1) 2.098(1)

where r2
p is the proton mean-square charge radius, r2

n the neutron mean-square charge radius,
mp the proton mass, and the last term is known as the Darwin-Foldy correction and is of
relativistic origin. As we can see from Eq. (4.79), the charge radius consists of the deuteron
internal structure, r2

pt, with contributions from the individual nucleons, r2
p,n. Essentially,

this corresponds to including the individual nucleon structure by folding the nucleon form
factors into the charge operator. It is important to make this distinction as experimental
and theoretical results provide both quantities. In this thesis, we only quote results for the
deuteron rms charge radius obtained with Eq. (4.78) from the form factor GC.

The experimental and theoretical deuteron rms magnetic radius are also extracted from
the slope of the magnetic form factor, GM, at zero momentum transfer. They are typically
less studied than the rms charge radius. However, new muonic experiments on light nuclei will
also provide precise magnetic radii, such that the importance of 2BC effects on the magnetic
radius can be studied in detail [220].

The deuteron rms charge and magnetic radius obtained with the chiral EMN NN in-
teraction at four different orders and cutoffs Λ = 450, 500, and 550 MeV are presented in
Table 4.1. For the nucleon form factors, the parametrization from Ref. [180] was used and
for orders i > 2 truncation uncertainties are given. The rms charge radius results are well
within the experimental error, and even close to the central value. On the other hand, the
rms magnetic radii slightly overestimate the experimental value. These two observations are
traced back to the fact that higher-order charge operators have a negligible effect on the
charge radius [70], because their corrections vanish at Q = 0, whereas higher-order current
operators do change the zero- and low-momentum transfer region of the magnetic form factor.
As the 2BC corrections for the deuteron are of order 10−3 [70], they are expected to have a
rather minor effect on the rms magnetic radius. In general, the cutoff dependence is below
1% for both radii at all orders, except the magnetic radius at LO, confirming the observation
about the cutoff dependence made for the form factor results, see Section 4.3. All results show
a systematic order-by-order convergence with overlapping errors. Truncation errors following
the EKM approach [96] were also calculated and are of the same size.

To revisit the deuteron-radius puzzle mentioned in Section 4.1.1, current chiral EFT
calculations are still not precise enough to differentiate between the muonic and atomic
deuterium results for which the error is one order-of-magnitude smaller. However, nuclear
structure calculations can help to reduce nuclear uncertainties which are important in the
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Figure 4.12: Trinucleon rms charge radius, in units of fm, at different orders of the chiral expansion
compared to the experimental radius. The four different orders of the EMN NN + 3N interaction are
denoted by orange (LO), yellow (NLO), green (N2LO), and blue (N3LO). The dashed and dotted lines
connect results with a cutoff of 450 MeV and 500 MeV, respectively. Truncation uncertainty estimates
are shown by the error bars. Left panel: Results for the triton. Right panel: Results for the helion.
The experimental values are 1.755(86) fm and 1.959(30) fm for the triton and helion, respectively,
from Ref. [75].

analysis, see, e.g., Refs. [221, 222]. We refer again to Appendix E for more information about
the deuteron-radius puzzle and for the experimental values. If we consider the range of the
charge radii resulting from the different cutoffs, then we notice that the CODATA-2018 [65]
and the muonic spectroscopy value [66] lie within.

4.5.2 Trinucleon electromagnetic radii

In this section we present and discuss the trinucleon electromagnetic radii results, obtained
with the two different combinations for the interactions, as outlined in Section 4.4.1. The
electromagnetic radii are extracted from Eq. (4.78) from the charge, i.e., FC, and magnetic
form factor, i.e., FM.

Figure 4.12 displays the results for the triton and the helion charge radius, calculated at
different chiral orders of the EMN NN + 3N interaction for cutoffs 450 and 500 MeV and
with the one-body charge operator. The cumulative contributions to the charge radius are
presented by showing the order-by-order increased result, which at NLO already agrees well
with experimental radii. In addition, the truncation uncertainty at each order, except LO,
is given by the error bars. At N3LO, the errors are smaller than the symbols. Equivalently
to the form factor results, the radii show a systematic order-by-order convergence with
overlapping errors and exhibit only minor cutoff dependence. The values at N3LO are given
by 1.722(8) fm and 1.721(6) fm for the EMN 450 and 500 MeV triton charge radius, and
1.947(8) fm and 1.941(8) fm for the EMN 450 and 500 MeV helion charge radius. The triton
results agree within error bars with values by Piarulli et al. [70], which are 1.750− 1.762 fm,
obtained with the N3LO ∗/N2LO ∗ (first value) and N3LO/N2LO (second value) interactions,
see Section 4.4.1 for details about the notation. To the contrary, the helion results which
are given by 1.958 − 1.955 fm [70] are somewhat higher. The experimental values are not
precise enough to distinguish between the impact of the interaction on the radius. A recent
ab initio study of medium-mass properties based on the same interactions found too large
charge radii, and underbound ground-state energies [162]. More results for light and heavy
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Figure 4.13: Trinucleon rms magnetic radius, in units of fm, at different orders of the chiral expansion
compared to the experimental radius. The colors and lines are as in Fig. 4.12, with the addition of red
symbols to represent results which include NLO 2BC corrections. Left panel: Results for the triton.
Right panel: Results for the helion. The experimental values are 1.840(181) fm and 1.965(153) fm for
the triton and helion, respectively, from Ref. [75].

nuclei are necessary to make firm conclusions about the systematics of this new family of
interactions.

We present results for the trinucleon magnetic radii in Fig. 4.13, obtained with the same
interactions as described for the charge radii above, with additionally results that include
NLO 2BC corrections in red. Recall that these corrections to the form factor are obtained
by adding Eq. (4.73) to Eq. (4.68). Note that the 2BCs are not included at the correct
order according to chiral EFT. Two-body current corrections substantially reduce the values,
shifting them towards the central experimental results. They are the dominant correction
to the magnetic radius, with an effect up to 5% [70], and are essential for agreement with
experiment. This case in particular, the large error of the experimental results prevent a clear
conclusion about the 2BC contributions. The magnetic radii at N3LO with 2BCs are 1.853(7)
fm 1.840(6) fm for the triton and 2.014(7) fm 1.994(6) fm for the helion, where the former
value is for Λ = 450 MeV and the latter Λ = 500 MeV, and show a slightly larger cutoff spread
that the charge radii. Again, the triton values agree within error with 1.845− 1.854 fm [70],
and disagree with the helion results, 1.983− 1.990 fm [70], which are somewhat higher than
our results.

Table 4.2 contains results for the trinucleon rms charge and magnetic radii, obtained with
unevolved and SRG-evolved EM NN 500 MeV and NN + 3N interactions, see Fig. 4.10 for
charge form factor results of the same interactions. The results are ordered at increasing
SRG-scale.

The trinucleon rms charge radii agree with experiment within error bars. Both the triton
and the helion show the same trends for the different interactions: the biggest correction
from inclusion of 3N interactions is seen for the unevolved potential and is ∼ 3%, while the
SRG-evolved interactions show corrections of 6 1%. This confirms the qualitative observation
made in Section 4.4.1 that the slope is slightly decreased if 3N interactions are included. In
general, accounting for 3N interactions moves the result closer to the central value of the
experimental result. The observed trend that charge radii are somewhat too small for nuclei
ranging to 100Sn [217, 218] is not confirmed by the trinucleon charge radii. Presumably, the
reason being that they are too much correlated with the helium-4 charge radius and the
triton binding energy which are used to fit these interactions. Finally, the results for the EM
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Table 4.2: Root-mean-square charge and magnetic radii in fm for the triton (3H) and the helion (3He),
obtained with NN EM 500 MeV and NN + 3N interactions evolved to different scales as introduced in
the text. The arrow depicts the addition of 2BC corrections in going from the left to the right column
(for magnetic radii). Experimental values for the triton and helion rms charge and magnetic radius
are from Ref. [75].

rch [fm] rm [fm]

Interaction 3H 3He 3H 3He

Exp. 1.755(86) 1.959(30) 1.840(181) 1.965(153)

2BC−−→ 2BC−−→
EM 500 MeV 1.795 2.022 1.917 1.872 2.153 2.068
EM 500 MeV + 3N(2.0 fm−1) 1.746 1.961 1.917 1.864 2.097 2.011

λSRG = 2.2 fm−1 1.766 1.979 1.922 1.873 2.097 2.010
λSRG/Λ3N = 2.2/2.0 fm−1 1.753 1.964 1.910 1.860 2.087 2.007

λSRG = 1.8 fm−1 1.770 1.979 1.919 1.873 2.091 2.017
λSRG/Λ3N = 1.8/2.0 fm−1 1.760 1.969 1.911 1.864 2.085 2.010

interactions are slightly larger compared to the results obtained with the EMN interactions,
see Fig. 4.12. Again, the too large experimental error prevents to make solid conclusions.

The rms magnetic radii in Table 4.2 include 2BC corrections, denoted by the arrow.
Similar trends for the 3N dependence and the SRG evolution are observed as for the charge
radii. Although, the inclusion of 3N interactions has a slightly smaller effect on the magnetic
radii. The dominant correction comes from the 2BCs and is of the order of ∼ 5%. Their
effect brings the theory results, again, closer to experimental values and is of the same size
as observed in Ref. [70]. Unquestionably, the magnetic radii and form factor results show the
importance of 2BCs for mangetic observables of the trinucleons.



5
MAGNETIC PROPERTIES

OF LIGHT NUCLEI

Static moments and electromagnetic transitions are important observables from nuclear struc-
ture theory to study nuclear interactions. These observables are sensitive to details of the
wave function, providing an ideal testing ground for our understanding of the nucleus. Mag-
netic observables, in particular, depend heavily on the dynamics between nucleons in the
form of many-body currents, which are derived from the chiral Lagrangian. In this chapter
we introduce the formalism to calculate magnetic moments and transitions, and we present
results for several light nuclei using currents and interactions from chiral EFT.

The chapter is organized as follows: in Section 5.1 we briefly mention the status of
theoretical calculations of magnetic observables with currents derived from chiral EFT. Then,
in Section 5.2 we restate the electromagnetic interaction Hamiltonian and, in contrast to
the previous chapter, we make a multipole expansion of the radiation field. The resulting
electromagnetic operators can be classified according to their behavior under parity. In
addition, we present the operators in the long-wavelength limit and their connection with
conventional multipole operators. Having shown this connection, the conventional multipole
operators can then be used to calculate magnetic moments and magnetic transitions. In fact,
the normalization of the form factor, which we primarily discussed in the previous chapter,
also provides the nuclear magnetic moment, and in Section 5.3 we demonstrate this statement.
Then, we include corrections to the conventional magnetic moment operator arising from 2BCs
in Section 5.4. After introducing these two possibilities to calculate the magnetic moment, we
present results for the magnetic moment of the deuteron and the trinucleons obtained from
the form factor normalization in Section 5.5.

In Section 5.6, as a preparation to embed the operator in many-body calculations we make
a transformation of the magnetic moment operator matrix elements to a single-particle HO
basis and benchmark the transformation by calculating magnetic moments for the trinucleons
and comparing them to the form factor normalization. Finally, in Section 5.7 we present
results for the magnetic moment and magnetic M1 transition strength for 6Li, which for the
first time are completely calculated within chiral EFT, and compare them to measurements
from a new experiment in Section 5.8. These results have been presented in our paper, which
is available as a preprint Ref. [223].
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5.1 Current theoretical status

Except for the two- and three-nucleon electromagnetic form factor calculations from Refs. [70,
187], which we presented in the previous chapter, there are presently no full chiral EFT
results for magnetic observables of higher-mass nuclei. Therefore, we summarize calculations
for magnetic moments and electromagnetic transitions obtained with a hybrid approach that
include corrections beyond the one-body operator.

Pioneering hybrid calculations for the magnetic moment of two- and three-nucleon systems
were performed in Refs. [224, 225], where the authors included currents up to N3LO in the
magnetic moment operator. Using this approach, they found agreement for the isoscalar and
isovector trinucleon magnetic moments with experimental values at the 2 − 3% level. The
most comprehensive study of magnetic moments and electromagnetic transitions with currents
from chiral EFT and wave functions from realistic nuclear Hamiltonians for A 6 9 nuclei
was carried out in Ref. [51]. In that work, Green’s function Monte-Carlo (GFMC) methods
were used to solve the many-body problem. As can be observed, both magnetic moments and
transitions are in good agreement with experimental data once 2BCs are included, i.e., red
diamonds are closer to the black stars. Although the agreement with experiment is good, the
hybrid approach fails to understand the nuclear dynamics from a microscopic point of view.
Therefore, in the rest of this chapter, we present the required steps to extend the calculation
of magnetic moments and magnetic transitions from few-nucleon systems to light nuclei with
currents and interactions from chiral EFT.

5.2 Electromagnetic interaction

We begin by stating the electromagnetic interaction Hamiltonian, which describes the inter-
action between an external probe and the nucleus [226]:

Hint = −ep
∫

dr j(r) ·A(r) +
e2
p

8π

∫
dr
∫

dr′ ρ(r)ρ(r′)
|r− r′| , (5.1)

where j(r) represents the nuclear current density in coordinate space and ρ(r) the nuclear
charge density. Here A(r) is the vector potential of the quantized radiation field, which is
given by

A(r) =
∑

q

∑
ρ=1,2

1
(2ωqΩ)1/2

[
eqρ aqρ e

iq·r + h.c.
]
, (5.2)

where q represents the momentum carried by the photon, ωq = |q| is the photon or momentum
transfer magnitude, eqρ, with ρ = (1, 2), defines two unit vectors transverse to the momentum
transfer, aqρ represents the field operators, and h.c. denotes the Hermitian conjugate. So far,
the interaction in Eq. (5.1) does not make specific assumptions about the target, except for
the presence of local current and charge densities j(r) and ρ(r): it can include corrections like
two-body operators. Note that the sum over q represents a quantized integral, with periodic
boundary conditions in a large box of volume Ω. We define circularly polarized unit vectors,
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eqλ, and field operators, aqλ, by

eq±1 ≡ ∓
1√
2

(eq1 ± ieq2), e0 ≡
q

|q| , and

aq±1 ≡ ∓
1√
2

(aq1 ∓ iaq2). (5.3)

Furthermore, we let q define the z-axis. With these definitions the vector potential can be
rewritten as

A(r) =
∑

q

∑
λ=±1

1
(2ωqΩ)1/2

[
eqλ aqλ e

iq·r + h.c.
]
. (5.4)

5.2.1 Multipole expansion

The nuclear matrix element of an electromagnetic process where a photon is absorbed or
emitted is given by [226]1

〈JfMf qλ|Ĥ ′|JiMi〉 = −ep
(2ωqΩ)1/2 〈JfMf qλ|

∫
dr eiq·reqλ j(r) |JiMi〉 , (5.5)

where eiq·reqλ represents the photons as circularly polarized plane waves, |qλ〉 = a†qλ |0〉, and
where it is assumed that the nuclear state, |JM〉, is an eigenstate of total angular momentum.
Note that we denoted the term linear in the vector potential by

Ĥ ′ ≡
∫

dr eiq·reqλ j(r). (5.6)

The goal is to make a multipole expansion of this expression to decompose the current density
into operators that commute with total angular momentum. This eventually will reduce the
calculation complexity.

We continue by expanding the plane wave in Eq. (5.5) into partial waves and coupling
the polarization vector with the resulting spherical harmonics:

eqλe
iq·r =

∑
`

∑
J

√
4π(2`+ 1) j`(qx) CJλl01λ YJλ`1 (r̂) . (5.7)

Through the properties of Clebsch-Gordan coefficients and spherical Bessel functions we can
rewrite the expansion to finally arrive at [58, 226]

−ep√
2ωqΩ

∫
dr e−iq·r e†qλ · ̂(r) = ep

∑
J≥1

(−1)J
√

2π(2J + 1)
2ωqΩ

[
T̂ el
J−λ(q) + T̂mag

J−λ(q)
]
. (5.8)

Here, J is the angular momentum carried by the photon. The transverse electric and magnetic

1The photon described here is allowed to be either a real photon, i.e., |k| = ω, or a virtual photon, denoted
by q with q2 < ω2. Recall that the virtual photon is exchanged between the probe and the target during the
scattering event. To connect with the previous chapter and to keep the notation consistent we use q = |q|
instead of k = |k|.
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multipole operators are defined by [58, 226]

T̂ el
JM (q) ≡ 1

q

∫
dr
[
∇× jJ(qx)YJMJ1 (r̂)

]
· ̂(r), (5.9)

T̂mag
JM (q) ≡

∫
dr
[
jJ(qx)YJMJ1 (r̂)

]
· ̂(r). (5.10)

Up to now, the expressions are general in that the form of the target current density is left
unspecified. It can consist of one-, two-, or many-body operators.

Tensor structure of transverse operators

The results obtained in Eqs. (5.9) and (5.10) are classified as spherical tensor operators of
rank J . Their evaluation between angular momentum eigenstates is considerably reduced
by applying the Wigner-Eckart theorem, which states that the dependence of any spherical
tensor operator matrix element on the projection quantum number can be entirely accounted
for by Clebsch-Gordan coefficients [167]:

〈j′m′|T̂kκ|jm〉 = (−1)2k
√

2j′ + 1
Cj
′m′

jmkκ 〈j
′||T̂k||j〉 , (5.11)

where T̂kκ is a spherical tensor of rank k with projection κ and 〈j′||T̂k||j〉 defines the so-
called reduced matrix element. Basically, the action of the tensor operator adds a state with
angular momentum k to the state with angular momentum j, which is accounted for by the
Clebsch-Gordan coefficient.

Angular momentum selection rules for the matrix elements can be obtained by applying
the Wigner-Eckart theorem to the transverse operators:

〈JfMf |T̂JM |JiMi〉 = (−1)2J√
2Jf + 1

CJfMf

JiMiJM
〈Jf ||T̂J ||Ji〉 . (5.12)

The Clebsch-Gordan coefficients restrict the multipole operators that contribute to a transition
matrix element by the triangle inequality, i.e., |Jf −Ji| 6 J 6 Jf +Ji. As such, the multipole
expansion expands the electromagnetic interaction in terms of exchanged angular momentum.
Together with the resulting tensor operators in Eq. (5.8), the Clebsch-Gordan coefficients
imply that Mf = Mi − λ. Furthermore, given that the sum starts at J = 1, real one-photon
transitions J = 0→ J = 0 are forbidden.

The behavior of the transverse operators under parity is deduced from the individual
components that make up the operator. Given the parity of the coupled spherical harmonics,2
Π̂YJMJ1 (r̂) Π̂−1 = (−1)JYJMJ1 (r̂) , and the gradient, Π̂ ∇ Π̂−1 = −∇, we find the transforma-
tion relations for the transverse operators

Π̂ T̂ el
JM Π̂−1 = (−1)J T̂ el

JM , Π̂ T̂mag
JM Π̂−1 = (−1)J+1 T̂mag

JM . (5.13)

These parity selection rules dictate if only parity-conserving or parity-changing operators
contribute to a specific transition, depending on the initial and final state of the matrix
element.

2The parity operator is denoted by Π̂ and changes the sign of spatial coordinates. Note that Π̂2 = 1 such
that its eigenvalues are ±1.
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One-body current densities

We now consider the transverse multipole operators for the one-body current density. To a first
approximation, the electromagnetic interaction between probe and target nucleus happens
both with the convection current density, which originates from the motion of the individual
charged particles, and with the intrinsic magnetization density coming from the magnetic
moments of the individual nucleons. Accordingly, the following change can be made for the
interaction term

−ep
∫

dr ̂(r) ·A(r)→ −ep
∫

dr ̂c(r)− ep
∫

dr µ̂(r) ·
[
∇×A(r)

]
= −ep

∫
dr
[
̂c(r) + ∇× µ̂(r)

]
·A(r), (5.14)

where the coordinate-space expressions for the convection current density and intrinsic mag-
netization density are, respectively, given by [58, 226]

̂c(r) =
Z∑
i=1

δ(r− ri)
pi
mp

and µ̂(r) = µN
e

A∑
i=1

λi σi δ(r− ri), (5.15)

with mp the proton mass, λi the magnetic moment of the ith nucleon in units of nuclear
magnetons, and σi the vector of Pauli matrices (σx, σy, σz). This substitution allows one
to rewrite the multipole operators in terms of the individual contributions to the one-body
current density [58, 226]:

T̂ el
JM (q) ≡1

q

∫
dr
([

∇× jJ(qr)YJMJ1 (r̂)
]
· ̂c(r) + q2 jJ(qr)YJMJ1 (r̂) · µ̂(r)

)
, (5.16)

T̂mag
JM (q) ≡

∫
dr
(
jJ(qr)YJMJ1 (r̂) · ̂c(r) +

[
∇× jJ(qr)YJMJ1 (r̂)

]
· µ̂(r)

)
. (5.17)

For low momentum transfers, the spherical Bessel function can be expanded such that
only a few multipoles are necessary to reach a given accuracy. We discuss this limit below.

5.2.2 Long-wavelength limit

The momentum transfer in many electromagnetic processes is small. Therefore, as a result
of qR � 1, where R is the typical nuclear size, only a few multipoles will contribute to the
sums in Eqs. (5.9) and (5.10). In this case, the asymptotic spherical Bessel function can be
written in its asymptotic form:3

lim
qr→0

jJ(qr) = (qr)J

(2J + 1)!! . (5.18)

Taking into account the leading term and rewriting the transverse electric and magnetic
multipole operators, Eqs. (5.16) and (5.17), their long-wavelength limit takes the form [58,

3The double factorial is given by (2J + 1)!! = 1× 3× ...× (2J + 1).
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226]

T̂ el
JM (q) ≈ qJ

(2J + 1)!!

√
J + 1
J

∫
dr
[
rJYJM (r̂) ρ̂(r)− iq

J + 1 µ̂(r) ·
(
r×∇rJ YJM (r̂)

)]
,

(5.19)

T̂mag
JM (q) ≈ i qJ

(2J + 1)!!

√
J + 1
J

∫
dr
[
µ̂(r) + 1

J + 1r× ̂c(r)
]
·∇rJ YJM (r̂) . (5.20)

These results are, except for a factor and power of q, equal to the static electric and magnetic
multipole operators. Note that the second term in Eq. (5.19) is small considering the extra
factor of q and the fact that the integration is over the nuclear volume. Therefore, this term
is negligible for low momentum transfers and is usually left out.

To make the connection with the conventional multipole operators more explicit, we state
the definitions of the electric and magnetic multipole operators. The nuclear electric multipole
operator is defined by [227]

Q̂`m =
∫

dr r`Y`m(r̂) ρ̂(r), (5.21)

and determines the static multipole moments of multipolarity ` and projectionm of the electric
charge density by taking expectation values of the operator with respect to nuclear states
|ψ〉 = |ξJMJ〉, where ξ collects all quantum numbers except the total angular momentum J

and its porjectionMJ . Usually, the static moments are defined in terms of maximal projection,
i.e., MJ = J . For instance, the nuclear quadrupole moment is defined by

Q ≡
√

16π
5 〈ξJM = J |Q̂20|ξJM = J〉 =

∫
dr(3z2 − r2)ρ(r), (5.22)

where the prefactor cancels the normalization of the spherical harmonic in Eq. (5.21), such
that Q matches the definition of its classical analog. In this case, the nuclear density is given
by the absolute square of the wave functions ρ(r) = |ψ(r)|2. Note that the first term of
the electric transverse operator in Eq. (5.19) is, except for a factor and power of q, equal to
Eq. (5.21).

The nuclear magnetic multipole operator is given by [227]

M̂mag
`m = 1

`+ 1

∫
dr r× ̂(r) ·∇r`Y`m(r) , (5.23)

which, again, equals the result in Eq. (5.20) up to a factor and powers in q. The ` = 1
multipole equals, up to a factor, the magnetic dipole moment operator:4

µ̂ = 1
2

∫
dr r× ̂(r). (5.24)

In addition to the connection with the transverse magnetic multipole operator, this result
shows the dependence of the magnetic dipole moment operator on the nuclear current operator.

From here on, we denote the magnetic dipole moment operator simply with magnetic
moment operator. As ̂(r) can be expanded as a sum of many-body operators, the magnetic
moment operator exhibits the same feature given Eq. (5.24). In a future section we examine
the corrections to the magnetic moment operator due to the the NLO 2BCs in more detail.

4The spherical harmonics in Eq. (5.23) provide a factor of
√

3
4π .
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To summarize, many electromagnetic processes involve low momentum transfers such
that the spherical Bessel function can be expanded and the transverse operators rewritten.
This leads to the result and conclusion that both transverse multipole operators are equal to,
except for a factor and power of q, the conventional electric and magnetic multipole operators,
which are used to define the nuclear static moments. In the next section we demonstrate
the connection between these general results, the form factor normalization, and the static
operators. Then, in Section 5.4 we examine the magnetic dipole moment operator and its
corrections in greater detail.

5.3 Magnetic moment from form factor

As we observed in Chapter 4, the Born approximation of the electron scattering process
naturally introduces two form factors F1(Q) and F2(Q) associated with the vertex. The
former is related to the electromagnetic coupling of the Dirac type, while the latter to a
Pauli-type coupling, hence their labeling as Dirac and Pauli form factors. These form factors
do not permit a direct physical interpretation. In Ref. [228], however, it was determined for a
spin-1/2 particle with internal structure, that a linear combination of them can be connected
to the distribution of charge and magnetization inside the particle by calculating moments of
the expectation value of the current operator. A generalization of this statement for particles
with a spin up to J = 3/2 was given in Ref. [229]. For particles with spin 1, an extra form
factor for the quadrupole charge distribution is introduced, and particles with spin 3/2 have
an additional octopole magnetic form factor. Interestingly, employing these physical form
factors in the analysis of scattering experiments, as opposed to F1(Q) and F2(Q), turns out
to be more straightforward due to the elimination of the interference term in the cross-section
expression, recall the discussion in Section 4.2.

Given that form factors are related to the distribution of charge and magnetization it is of
interest to calculate moments of the various distributions, as they give insights into the shape
of the distribution itself. Particularly, the normalization of the form factors is of interest. A
classical interpretation of the form factors follows from their connection with the definition of
classical multipole moments and from the observation that their normalization coincides with
static electromagnetic moments, which we illustrate below. First, we discuss the normalization
of the magnetic form factor of a spin-1/2 particle, to then show the normalization of the three
form factors of a spin-1 particle.

5.3.1 Spin-1/2 nucleus

We show that the normalization of the magnetic form factor of a spin-1/2 particle equals
the magnetic moment, following Refs. [228, 229], by calculating the expectation value of
Eq. (5.24). As a reminder, we restate the matrix element of the current operator between
particle states |Pλ〉, with four-momentum P and helicity λ:

〈P ′λ′|Jµ(0)|Pλ〉 = ie v̄(P ′, λ′)
[
γµF1(Q2) + κj

iσµνqν
2mT

F2(Q2)
]
v(P, λ), (5.25)

where mT is the target particle mass and where the current operator is evaluated at x = 0, see
Section 4.2 for more details. The matrix element of the current operator between momentum
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states can be written as

〈P ′|Jµ(x)|P 〉 = e−i(P ′−P )·x 〈P ′|Jµ(0)|P 〉 . (5.26)

To find the normalization, we use a wave packet
∫

dP a(P) |Pλ〉, where a(P) is the am-
plitude of the wave packet. The expectation value of the magnetic moment operator with
respect to the wave packets becomes [228]

〈µ〉 =1
2

∫
dP′ a∗(P ′)

∫
dP a(P )

∫
dr e−i(P ′−P )·x r× 〈P ′ s′|j(0)|P s〉

=− (2π)3 i

2

∫
dP′ a∗(P ′)

∫
dP a(P ) δ(P′ −P) ∇P × 〈P ′ λ′|j(0)|P λ〉 ei(P ′0−P0)·t, (5.27)

where in the last line the exponential was written as a Dirac delta function and the change
r → −i∇P was made. Substituting the expression for the matrix element, Eq. (5.25),
performing an integration by parts, and choosing a specific wave packet |a(P)|2 = δ(P),
yields the final result

〈µ〉 = e

[
F1(0) + F2(0)

]
v̄λ′(0)σvλ(0) = e FM(0) v̄λ′(0)σ vλ(0). (5.28)

The magnetic moment follows by selecting the z-component of the operator and the helicities
in their maximal projection.

5.3.2 Spin-1 nucleus

Because the deuteron has an integer spin of 1, its electromagnetic distribution is described
by three form factors: the charge, the quadrupole, and the magnetic form factor, whose
normalization give the total charge, the quadrupole moment, and the magnetic moment.
In the following we present how the normalization of each form factor is obtained using
the impulse approximation, i.e., one-body operators only, and the deuteron wave functions,
defined in Section 3.1.4. The steps follow the same ideas discussed in Section 5.2, however,
for the deuteron in particular an elegant solution can be found by starting from the one-body
operators instead of the general multipole expressions.

The effect of the momentum transfer is given by exp(i/2Q · r), where Q = P′ − P and
where Q is chosen along the positive z-direction. We restate the expression for the charge
form factor, this time with the exponential which enforces the momentum conservation:

GC(Q) = 1
3
∑
MJ

〈MJ |ei
1
2 Q·r|MJ〉 . (5.29)

Inserting complete sets of coordinate states and making a multipole expansion of the expo-
nential yields

GC(Q) =
∫

drψ∗d(r)
∞∑
λ=0

(2λ+ 1)iλjλ(Qr)Pλ(cos θ)ψd(r). (5.30)

Next, we expand the deuteron wave functions into partial waves, use Clebsch-Gordan and
spherical-harmonic properties, and perform the angular integration, so that the final result
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of the form factor expressed in coordinate space is given by [230]

GC(Q) =
∫

dr
[
u2(r) + w2(r)

]
j0

(
Qr

2

)
. (5.31)

The normalization follows immediately by using the asymptotic form of the spherical Bessel
function given in Eq. (5.18).

For the quadrupole form factor, retrieving the normalization is accomplished along the
same lines as for the charge form factor. If we fill out the exp(i/2Q · r) in the definition for
the quadrupole form factor and perform the same steps as outlined above, then we find [230]

GQ(Q) = 1
2η

[
〈MJ = 0|ei

1
2 Q·r|MJ = 0〉 − 〈MJ = 1|ei

1
2 Q·r|MJ = 1〉

]
=3
√

2
2η

∫
dr
[
u2(r)w2(r) + w2(r)

2
√

2

]
j2

(
Qr

2

)
. (5.32)

The asymptotic form of the spherical Bessel function for J = 2 equals (qr)2/15, such that the
normalization of the previous equation provides the quadrupole moment:

GQ(0) = M2
dQd = M2

d
1√
50

∫
dr r2

[
u2(r)w2(r) + w2(r)

2
√

2

]
. (5.33)

Finally, the magnetic form factor normalization is, again, obtained through the same
procedure. The coordinate space expression is given by [230]

GM(Q) =
∫

dr
{[
µs(u2(r) + w2(r))− 3

2(µs −
1
2)w2(r)

]
j0

(
Qr

2

)
+ 1√

2
w(r)

[
µs(u(r) + 1√

2
w(r)) + 3√

8
w(r)

]
j2

(
Qr

2

)}
, (5.34)

such that the expansion of the spherical Bessel functions and the limit of zero momentum
transfer yields the following result

GM(0) = µs −
3
2

(
µs −

1
2

)
PD, (5.35)

which is exactly the expression given in Section 3.1.4.

5.4 Magnetic moment operator

5.4.1 NLO magnetic moment operator from current operator

The magnetic moment operator is given in Eq. (5.24), where j(r) is the coordinate-space
implementation of the nuclear current density. Fourier transforming Eq. (5.24) yields the
magnetic moment operator in momentum space [89]:

µ̂ = − i2 lim
q→0

∇q × ̂(Q), (5.36)
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where the gradient operator with respect to Q is given by ∇Q = (∂Qx , ∂Qy , ∂Qz). Recall
from Chapter 1 that the current operator can be expanded as a sum of one- and many-body
operators. As a result the magnetic moment operator has an identical expansion. The one-,
two-, and many-body expansion of the magnetic moment operator is given by

µ̂ =
A∑
i

µ̂1b,i +
A∑
ij

µ̂2b,ij + ..., (5.37)

where µ̂1b,i is the single-nucleon contribution, µ̂2b,ij the two-body part, and the ellipsis
denotes the many-body operators. If the expansion is terminated after the two-body part,
then the total operator is obtained by summing over all individual nucleons and all pairs.

Because 2BC operators are translationally invariant with respect to the two-body center-
of-mass RNN, the center-of-mass motion can be factored out:

̂2b(Q,RNN) = eiQ·RNN ̂2b(Q). (5.38)

Accordingly, Eq. (5.36) splits into two parts, where one term depends on the relative position
between the two particles and the other on the center of mass. The former is the so-called
intrinsic magnetic moment operator and is given by [89]

µ̂int
2b = − i2 lim

Q→0
∇Q × ̂2b(Q). (5.39)

The other term is the Sachs contribution [231]:

µ̂Sachs
2b = 1

2 RNN × ̂2b(Q). (5.40)

This division into two parts is a general result valid for 2BC operators at any order.

Similar to the treatment of the magnetic form factor in the previous chapter, we continue by
considering the NLO correction to the magnetic moment operator. The total NLO correction
to the magnetic operator is given by

µ̂NLO
2b = µ̂NLO, int

2b + µ̂NLO, Sachs
2b . (5.41)

In the next two subsections we proceed by first Fourier transforming the momentum-space
2BC expressions to then show the explicit coordinate-space form of the intrinsic and Sachs
contribution to the NLO magnetic moment operator.

5.4.2 Two-body current Fourier transform

As we have seen in Section 2.4.3, the NLO 2BC momentum-space expressions can be linked
to two separate diagrams. One is the so-called seagull js and the other the pion-in-flight
diagram jπ, see Fig. 2.2. Their sum constitutes the NLO correction to the current operator
and is given by

j(−1)
2b = js + jπ, (5.42)
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where we introduced a notation for both terms. We restate the momentum-space expression
for both [70]:

js(q1,q2) = −ie g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z
[
σ1
σ2 · q2
ω2
q2

− σ2
σ1 · q1
ω2
q1

]
, (5.43)

jπ(q1,q2) = −ie g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z(q2 − q1)σ1 · q1
ω2
q1

σ2 · q2
ω2
q2

, (5.44)

where qi = k′i − ki, ω2
qi = q2

i +m2
π, mπ is the pion mass, and τi are the nucleon isospin Pauli

matrices. Their Fourier transforms provide the coordinate-space expressions,

js(Q, r,RNN) = e
g2
Am

2
π

4πF 2
π

(τ1 × τ2)z eiQ·RNN

[
ei

Q
2 ·rσ1(σ2 · r̂) + e−i

Q
2 ·rσ2(σ1 · r̂)

]
f(r), (5.45)

jπ(Q, r,RNN) = e
2 g2

A

F 2
π

(τ1 × τ2)z eiQ·RNN

[
σ1 ·

(Q
2 − i∇r

)][
σ2 ·

(Q
2 + i∇r

)]
∇rI(r,Q),

(5.46)

where r = |r|, r̂ = r
r is the unit vector defined by the relative coordinate r = x1−x2, and ∇r

the gradient with respect to that coordinate. The functions f(r) and I(Q, r) are given by

f(r) ≡
(

1 + 1
mπr

)
e−mπr

mπr
, (5.47)

I(Q, r) ≡
∫

p

eip·r[
m2
π + (p− Q

2 )2][m2
π + (p + Q

2 )2] . (5.48)

By examining Eqs. (5.45) and (5.46), we can easily observe that the two-body center-of-mass
dependence of the NLO 2BC factorizes. A step-by-step derivation of the Fourier transforms
is given in Appendix C.1.

5.4.3 Intrinsic and Sachs operators

The NLO magnetic moment operator in coordinate-space is given by substituting the NLO
2BC operator in Eq. (5.36), which yields

µNLO
2b (r) = − i2 lim

Q→0
∇q ×

(
eiQ·RNNj(−1)

2b (Q, r)
)
, (5.49)

where we have explicitly showed the factorization of the center-of-mass dependence. Employing
the vector identity ∇× (ψA) = ψ(∇×A)+(∇ψ)×A in Eq. (5.49) we find the NLO intrinsic
and Sachs [231] contributions to the magnetic moment operator:

µNLO, int
2b (r) = − i2 lim

Q→0
eiQ·RNN

(
∇Q × j(−1)

2b (Q, r)
)
, (5.50)

µNLO, Sachs
2b (r) = 1

2 lim
Q→0

eiQ·RNN RNN × j(−1)
2b (Q). (5.51)

The result for the Sachs term is given by

µNLO, Sachs
2b (r) = −1

2(τ1 × τ2)z V1π(r) RNN × r, (5.52)
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where V1π(r) is the coordinate-space one-pion-exchange potential:

V1π(r) = m2
π

12π
g2
A

F 2
π

(τ1 ·τ2)
{[
S12

(
1+ 3

mπr
+ 3

(mπr)2

)
+σ1 ·σ2

]
e−mπr

r
− 4π

3 σ1 ·σ2δ(r)
}
, (5.53)

with S12 = 3r̂ · σ1r̂ · σ2 − σ1 · σ2. Remarkably, the NLO Sachs term is uniquely determined
by the one-pion-exchange potential only and does not depend on the current operator.5

The intrinsic magnetic moment operator is obtained by substituting the expressions for
the seagull and pion-in-flight diagrams, Eqs. (5.45) and (5.46), into Eq. (C.10). For the seagull
term this results in

µint, s
2b (r) = e

g2
Amπ

16πF 2
π

(τ1 × τ2)z
[
r̂ × σ1(σ2 · r̂)− r̂ × σ2(σ1 · r̂)

]
mπr f(r). (5.54)

Substituting the pion-in-flight current yields

µint, π
2b (r) = e

2 g2
A

F 2
π

(τ1×τ2)z lim
Q→0

∇Q×
[
σ1 ·

(Q
2 −i∇r

)][
σ2 ·

(Q
2 +i∇r

)]
∇rI(r,Q). (5.55)

Three distinct terms are identified before applying the curl to the expression:

∇Q ×
(
σ1 ·

Q
2

)(
σ2 ·

Q
2

)
∇rI(r,Q), (5.56a)

∇Q ×
(
− σ1 · i∇r

)(
σ2 · i∇r

)
∇rI(r,Q), (5.56b)

∇Q ×
[(
σ1 ·

q
2

)(
σ2 · i∇r

)
∇rI(r,Q)−

(
σ1 · i∇r

)(
σ2 ·

Q
2

)
∇rI(r,Q)

]
. (5.56c)

A detailed examination of each term can be found in Appendix C.2. Consequently, the result
for the intrinsic pion-in-flight term is given by

µint, π
2b (r) =eg2

Amπ

16πF 2
π

(τ1 × τ2)z
{[

(r̂ · σ2)(σ1 × r̂)− (r̂ · σ1)(σ2 × r̂)
](

1 + 1
mπr

)
− 2
mπr

(σ1 × σ2)
}
e−mπr. (5.57)

Summing the seagull, Eq. (5.54), and the pion-in-flight, Eq. (5.57), contributions yields the
total intrinsic operator

µNLO, int
2b (r) = µint, s

2b (r) + µint, π
2b (r)

= −g
2
Amπ

8πF 2
π

(τ1 × τ2)z
{(

1 + 1
mπr

)[
(σ1 × σ2) · r̂

]
r̂ − (σ1 × σ2)

}
e−mπr. (5.58)

The total NLO magnetic moment operator that is used in this work is given by the sum
of the intrinsic, Eq. (5.58), and the Sachs contribution, Eq. (5.52):

µNLO
2b (r) = µNLO, int

2b (r) + µNLO, Sachs
2b (r). (5.59)

5Given that the potential between the nucleons uniquely defines the Sachs term [89], higher-order Sachs
contributions depend on higher-order parts of the NN potential. For example, the N3LO Sachs term depends
on two-pion-exchange parts of the potential entering the chiral expansion at that order.
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Table 5.1: Deuteron magnetic moment in units of the nuclear magneton µN . Results are obtained
with the one-body current operator at LO, NLO, N2LO, and N3LO (rows) of the EMN NN interaction
for cutoffs Λ = 450, 500, and 550 MeV (columns). Values between brackets represent the truncation
uncertainty. The experimental deuteron magnetic moment is given by 0.8574382338(22) µN [65].

µd [µN ]

450 MeV 500 MeV 550 MeV

LO 0.843 0.838 0.835
NLO 0.861(12) 0.860(13) 0.859(13)
N2LO 0.857(2) 0.854(2) 0.852(2)
N3LO 0.854(1) 0.856(0) 0.856(1)

5.5 Deuteron and trinucleon magnetic moments

Deuteron

In Table 5.1 we present results for the deuteron magnetic moment obtained from the normaliza-
tion of the magnetic form factor. The three columns correspond to values from three different
cutoffs for the EMN NN interaction and each row contains results for increasing orders of
the chiral expansion. Starting at NLO, truncation uncertainty estimates from the Bayesian
analysis are displayed, see Section 4.3.4 for details. Results for all cutoffs exhibit systematic
convergence, where each result at successive chiral order is contained in the interval of the
previous one and at N3LO there is only a very small cutoff dependence of ≤ 1%. Remarkably,
one-body current calculations with the N3LO interaction are within 1% of the experimental
deuteron magnetic moment, which equals 0.8574382338(22) µN [65]. As previously noted,
the NLO 2BC operator is isovector and, therefore, has no effect on the deuteron ground-state
magnetic moment.

Higher-order isoscalar current operators introduce new LECs that have to be fixed. The
deuteron magnetic moment is the observable of choice to constrain these new LECs [70,
89, 224, 225]. As a result, calculations that include higher-order corrections to the current
operator always agree with experiment and results from other light nuclei are necessary to
test the impact of these corrections.

Trinucleons

For the trinucleons we present results for the two combinations of interactions introduced in
Section 4.4.1. Figure 5.1 displays the trinucleon magnetic moments in µN obtained from FM(0)
as a function of increasing chiral order for cutoffs 450 MeV, indicated by downward triangles
and connected by dashed lines, and 500 MeV, indicated by circles and solid lines. Additionally,
results for the unevolved interaction of the second combination are shown by purple squares
and solid lines. They are compared to the experimental values of 2.9789624659(59) µN and
−2.127625307(25) µN for the triton and the helion, respectively.

The sign of magnetic moments can be understood to be driven by the valence nucleon.
Therefore, given that the triton has a valence proton it is situated in the positive region, while
the helion, which has a valence neutron, in the negative region. We observe that increasing
the order of the interaction has almost no effect on the magnetic moment of the trinucleons.
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Figure 5.1: Triton and helion magnetic moments in units of µN as a function of increasing order of
the chiral expansion for the EMN NN + 3N interaction at cutoffs 450 MeV (downward triangles and
dashed lines) and 500 MeV (circles and solid lines). Results from calculations with LO, NLO, N2LO,
and N3LO interactions are shown in orange, yellow, green, and blue, respectively. The inclusion of
2BCs in the operator is shown by the red symbols. Purple squares show the result of calculations with
the N3LO EM NN + N2LO 3N interaction.

However, adding NLO 2BC corrections, shown by N3LO + 2BC and red symbols, adjusts the
value by ∼ 10%, making the agreement with experiment better. Similarly to the higher-order
isoscalar current operators, their isovector counterparts also introduce new LECs that have
to be fixed. Different strategies exist, however, commonly the isovector combination µV of
the trinucleon magnetic moments is chosen to constrain these LECs [70, 89].6 This has again
the effect that the experimental magnetic moment is exactly reproduced if these higher-order
corrections to the operator are taken into account. Therefore, one has to consider other light
nuclei, i.e., A > 3, to study the effects of both higher-order isoscalar and isovector corrections.

Table 5.2 displays the results for calculations performed with the second combination of
interactions. They include the N3LO NN EM + N2LO 3N for an unevolved interaction and for
two SRG-evolved interactions to scales λSRG = 2.2 fm−1 and λSRG = 1.8 fm−1. Additionally,
results with and without 3N interactions are shown individually to evaluate their impact on
the magnetic moment. For both nuclei, the left column shows results for the one-body current
operator, while the right column shows results with NLO 2BC corrections. This addition is
demonstrated by the arrow above the columns.

We start by discussing the impact of the SRG evolution. Going from the top of the columns
to the bottom corresponds to starting with an unevolved interaction and ending with a fairly

6The isoscalar (µS) and isovector (µV ) combinations of the trinucleon magnetic moments are defined by
µS ≡ µt + µh and µV ≡ µt − µh.
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Table 5.2: Magnetic moments in units of µN for the triton and the helion, obtained with NN EM
500 MeV and NN + 3N interactions evolved to different SRG-scales as introduced in the text. The
arrow depicts the addition of 2BC corrections in going from the left to the right column.

µ [µN ]

Interaction 3H 3He

Exp. 2.9789624659(59) −2.127625307(25)

2BC−−→ 2BC−−→
EM 500 MeV 2.579 2.793 −1.773 −1.983
EM 500 MeV + 3N(2.0 fm−1) 2.575 2.798 −1.772 −1.991

λSRG = 2.2 fm−1 2.646 2.840 −1.808 −1.999
λSRG/Λ3N = 2.2/2.0 fm−1 2.640 2.839 −1.805 −2.000

λSRG = 1.8 fm−1 2.672 2.852 −1.821 −1.999
λSRG/Λ3N = 1.8/2.0 fm−1 2.666 2.851 −1.818 −2.000

large SRG-evolved interaction. The trend is clear: SRG-evolving the interaction generates
larger magnetic moments (in absolute values), shifting the values towards the experimental
one in the case for the trinucleons. We expect that a consistent evolution of the operator
restores the values from the evolved interactions to the value from the unevolved one. In
Section 5.7 we will present results for 6Li with consistently evolved operators to observe the
effect of the evolution.

The impact of the 3N interaction contribution can be examined for each SRG-evolved
scale by inspecting the each group of two rows. For each of the three interactions, the addition
of 3N forces is almost negligible. This is in contrast to the effect observed for the magnetic
radius where the value changed up to ∼ 2%, see Section 4.5.2.

Finally, we discuss the effect on the magnetic moment by including NLO 2BCs to the
operator. As was seen in calculations with the first combination of interactions, here 2BCs
change the magnetic moment up to 10% and substantially improve agreement with experiment.
The observations made about 2BC effects on the magnetic moment in Fig. 5.1 and Table 5.2,
and similarly on the magnetic form factor and magnetic radius, see Sections 4.4.2 and 4.5.2,
are proof of their importance in a chiral framework.

5.6 Current matrix elements in harmonic-oscillator ba-
sis

Many basis-expansion methods rely on operator representations with respect to a single-
particle basis. One example of such a basis which is often used is the HO basis, as it covers
the relevant physics and is able to exploit symmetries of the operators. The goal of this section
is to obtain a description of current operator matrix elements in terms of single-particle HO
basis states.

Until now, we have expanded matrix elements of the current operator with respect to
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partial waves, either in a two-body or three-body angular-momentum coupled basis. These
basis states allow for a direct transformation to relative HO basis states. Here, ‘relative’
indicates that this basis too is defined in terms of Jacobi coordinates, i.e., it is defined with
respect to the relative and the center-of-mass motion. As both bases have the same angular
dependence, only the radial component has to be transformed.

After a transformation to the relative HO basis, a second transformation is necessary to
obtain single-particle basis states. This crucial step is achieved by performing the so-called
Talmi-Moshinsky transformation [232, 233], which connects single-particle states to relative
and center-of-mass states. The resulting current operator matrix elements with respect to
single-particle HO basis states can then be used to construct many-body states, which are
the key component in many-body calculations.

In Section 5.6.1 we lay the foundation by examining the transformation of the two-body
basis and in Section 5.6.2 we consider the three-body basis. Note that the transformation
of the matrix elements is unrelated to the deuteron or the trinucleon wave functions, but
enables the use of partial-wave expanded matrix elements in calculations of observables for
other light- and medium-mass nuclei. To finish the section, we present benchmark results in
Section 5.6.3 of the trinucleon magnetic moments obtained from the expectation value of the
magnetic moment operator between single-particle HO states.

5.6.1 Two-body harmonic-oscillator transformation

A general relative two-body HO basis state with relative orbital angular momentum L and
total spin S coupled to relative angular momentum J is given by

|N(LS)JMJ〉 =
∑

MLMS

CJMJ
LMLSMS

|N LML SMS〉 , (5.60)

where N is the HO radial quantum number related to the relative coordinate and where we
suppressed the isospin dependence. Considering only the relative orbital angular momentum
part of these HO basis states, they can be expressed in terms of the relative momentum p by
inserting a complete set of relative momentum states,

|NLML〉 =
∫ dp

(2π)3 |p〉 〈p|NLML〉 . (5.61)

The overlap defines the HO wave function:

〈p|N LML〉 ≡
√

(2π)3RNL(p)YLML
(p̂) . (5.62)

Here, the radial part of the overlap is given by [234]

RNL(p) = (−1)N
√

2n! b3
Γ(n+ l + 3

2)
(pb)L e−

1
2p

2b2
L

(L+ 1
2 )

N (p2b2), (5.63)

where b−1 =
√
mNΩ is the oscillator parameter with oscillator frequency Ω which sets the

width of the HO potential, L(α)
n (x) represents the generalized Laguerre polynomials, and Γ(x)

the well-known gamma function. Note that the spherical harmonic contains the angular
dependence, equivalent to the partial-wave states we discussed in Section 3.1.2.

By inserting a complete set of partial waves, defined in Section 3.1.2, in Eq. (5.61) and
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using the definition of the overlap from Eq. (5.62), we find the connection between the HO
basis states and the partial-wave basis states as follows

|NLML〉 =
∫ dp

(2π)3

√
(2π)3RNL(p)YLML

(p̂)
∑
L′M ′L

∫
dp′ p′2

√
(2π)3 δ(p− p

′)
p p′

Y ∗L′M ′L
(p̂′) |p′L′M ′L〉

=
∫

dp p2RNL(p) |pLML〉 . (5.64)

This result allows us to express the relative two-body HO current operator matrix elements
in terms of two-body partial-wave expanded matrix elements:

〈N ′(L′S′)J ′M ′J T ′M ′T |Jµ|N(LS)JMJ TMT 〉 =
∫

dp′ p′2RN ′L′(p′)
∫

dp p2RNL(p)

× 〈p′(L′S′)J ′M ′J T ′M ′T |Jµ|p(LS)JMJ TMT 〉 ,
(5.65)

where we accounted for spin and isospin degrees of freedom and coupled orbital angular
momentum L and spin S to the total angular momentum J = L+S. This HO transformation
of the two-body partial waves concludes the first step in obtaining a matrix element expansion
in terms of single-particle HO basis states. In the following we continue by transforming the
relative HO basis to a single-particle basis.

The basis states presented in Eq. (5.61) are formulated in terms of the coordinate system
introduced in Section 3.1.1. With respect to this coordinate system, the HO Hamiltonian is
given by

ĤHO = P̂2
NN

2M + 1
2MΩ2R̂2

NN + r̂2

2µ + 1
2µΩ2r̂2, (5.66)

where, for particles with equal mass, the total mass is given by M = m1 + m2 = 2m and
the reduced mass by µ = m/2. However, different conventions exist for the center-of-mass
coordinate system. For example, an alternative and more symmetric choice for the relative
and center-of-mass momentum is given by

p̃ = 1/
√

2(k1 − k2), P̃NN = 1/
√

2(k1 + k2), (5.67)

where the tilde over the variable labels the coordinate system. As a result, the oscillator
parameters from both representations are related by b̃ =

√
2b. This distinction is important

given that the transformation to single-particle states, which we discuss next, assumes the
symmetric definition of the coordinate system while partial-wave states assume the normal
one.

In the following, we derive the transformation that takes relative two-body HO states to
jj-coupled single-particle HO states. As mentioned above, the crucial step in this process
is given by the so-called Talmi-Moshinsky transformation, which connects the two nucleon
single-particle state to the center-of-mass and relative state of the two-body system. Other
steps in the derivation exclusively involve recoupling of angular momenta. The ultimate goal
is then to express the current operator matrix elements in terms of the acquired single-particle
states.

Before we start, we remark that we only show those quantum numbers relevant to the
specific step. To find an expression for the transformation to single-particle HO basis states
{|nk(lksk)jkmjktkmtk〉}, we begin by coupling two single-particle states to total angular
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momentum Jtot and total isospin T :7

|1, 2〉 ≡ |n1(l1s1)j1mj1t1mt1 , n2(l2s2)j2mj2t2mt2〉

=
∑

JtotMJtot

∑
TMT

CJtotMJtot
j1mj1j2mj2

CTMT
t1mt1 t2mt2

|[n1(l1s1)j1, n2(l2s2)j2]JtotMJtot (t1t2)TMT 〉 .

(5.68)

As a second step, we recouple from a j1j2-coupling to a ΛS-coupling, where Λ is the total
orbital angular momentum and S the total spin, by using a 9j-symbol:

|[(l1s1)j1, (l2s2)j2]JtotMJtot〉 =
∑
ΛS

̂1 ̂2 Λ̂ Ŝ


l1 s1 j1
l2 s2 j2
Λ S Jtot

 |[n1(l1l2)Λ, (s1s2)S]JtotMJtot〉 ,

(5.69)

where we adopted the notation â ≡
√

2a+ 1. In a next step, we transform the single-particle
momenta k1 and k2 to the relative and center-of-mass momenta, as given in Eq. (5.67), via
the following orthogonal matrix [235]

(
P̃NN

p̃

)
=

√ d
d+1

√
d
d+1√

d
d+1 −

√
d
d+1

(k1
k2

)
, (5.70)

with d = 1 for a two-body system. This transformation is represented by a Talmi-Moshinsky
bracket or HO bracket, which is specified by

|[n1l1(k1), n2l2(k2)]Λ〉 =
∑

NNN LNN
N L

〈NNNN(LNNL)Λ|n1 n2(l1 l2)Λ〉d=1

× |[NNNLNN(P̃NN)NL(p̃)]Λ〉 . (5.71)

A modern and simple implementation of the HO bracket is given in Ref. [235]. The last step
involves recoupling of angular momenta: the relative orbital angular momentum L is coupled
with the total spin S to the relative angular momentum J , which is successively coupled with
the center-of-mass orbital angular momentum LNN to the total angular momentum Jtot:

|[(LNNL)ΛS]Jtot〉 =
∑
J

(−1)LNN+L+S+J Λ̂ Ĵ
{
LNN L Λ
S Jtot J

}
|[LNN(LS)J ]Jtot〉 , (5.72)

where the recoupling was achieved by a 6j-symbol [167], which is represented by {...}. Combin-
ing the outcomes of Eqs. (5.68), (5.69), (5.71), and (5.72) and decoupling the center-of-mass

7Note that the total angular momentum Jtot = j1 + j2 does not coincide with the relative two-body angular
momentum J = L + S, which emerges from the coupling of the relative orbital angular momentum L and the
total spin S. We use the notation Jtot and distinguish with J to keep everything consistent with previous
notation.
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orbital momentum LNN and the relative angular momentum J yields the final result

|1, 2〉 =
∑

JtotMJtot

∑
TMT

∑
ΛS

∑
NNN LNN
N L

∑
J

∑
MLNNMJ

(−1)LNN+L+S+J ĵ1 ĵ2 Λ̂2 Ŝ Ĵ

× CJtotMJtot
j1mj1j2mj2

CTMT
t1mt1 t2mt2


l1 s1 j1
l2 s2 j2
Λ S Jtot


× 〈NNNN(LNNL)Λ|n1 n2(l1 l2)Λ〉d=1

{
LNN L Λ
S Jtot J

}
× CJtotMJtot

LNNMLNNJMJ
|NNNLNNMLNN ;N(LS)JMJTMT 〉 . (5.73)

This expression is the full transformation that has to be carried out to obtain single-particle
HO states, which can be used in many-body frameworks, from center-of-mass and relative
HO states.

The matrix element of a general current operator with respect to a general center-of-mass
and relative HO state is given by

〈N ′NNL′NNM ′LNN ;N ′(L′S′)J ′M ′JT ′M ′T |Jµ |NNNLNNMLNN ;N(LS)JMJTMT 〉
= δNNNN ′NN

δLNNL′NN
δMLNNM

′
LNN

× 〈N ′(L′S′)J ′M ′JT ′M ′T | Jµ |N(LS)JMJTMT 〉 .
(5.74)

In words, the current operator does not act on the center-of-mass quantum numbers. In the
last line of the expression we recognize the matrix element as the one given in Eq. (5.64).
Finally, the matrix element with respect to single-particle states is found by placing the current
operator between two single-particle states and substituting the result from Eq. (5.73).

5.6.2 Three-body Jacobi harmonic-oscillator states

In this section we outline the necessary steps to obtain single-particle states starting from
three-body Jacobi partial waves, but without going into the same detail as for the two-body
case. The relative three-body Jacobi HO basis states are given by

|N nα〉 = |N n [(LS)J (`s)j]JMJ (Tt)TMT 〉 , (5.75)

where N is the radial HO quantum number related to the {12} subsystem and n to the
spectator particle. Note that the notation for the quantum numbers corresponds to the one
introduced in Section 3.2.1. As the HO transformation only affects the spatial part of the
state, we decouple total angular momentum and, subsequently, orbital angular momentum
from spin for both the subsystem and the spectator particle, which leads to

|N nα〉 =
∑

MLMSMJ
m`msmj

CJMJJMJ jmj
CJMJ
LMLSMS

Cjmj`m`sms
|N nLML SMS `m` sms〉 , (5.76)

where we suppressed the isospin dependence. In analogy to the two-body case, the transfor-
mation for the three-body current operator matrix elements from the partial-wave basis to
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the three-body Jacobi HO basis is given by8

〈N ′n′α′|Jµ|Nnα〉 =
∫

dp′ p′2RN ′L′(p′)
∫

dq q′2Rn′l′(q′)
∫

dp p2RNL(p)
∫

dq q2Rnl(q)

× 〈p′q′α′|Jµ|pqα〉 , (5.78)

where RNL(p) and Rnl(q) are the radial wave functions defined in Eq. (5.63) with oscillator
parameters bp and bq, respectively.

Similar to the relative HO two-body states, the definition of Jacobi momenta used in the
derivation to obtain single-particle states is given by the symmetric choice:9

p̃ = k1 − k2√
2

, q̃ =
√

2
3

(
k3 −

1
2(k1 − k2)

)
, P̃3N = k1 + k2 + k3√

3
. (5.79)

This results in a change b̃p =
√

2bp for the oscillator parameter related to the two-body
subsystem, b̃q =

√
3/2bq for the oscillator parameter connected to the spectator particle, and

b̃3N = 1/
√

3b3N for the center-of-mass oscillator parameter.
The derivation of the transformation for three-body Jacobi HO states largely follows the

same steps as for the two-body case, with the extra difficulty that the two-body center-of-mass
motion and the spectator motion have to be related to the three-body center-of-mass P3N
and the second Jacobi momentum q, i.e., a second Talmi-Moshinsky transformation. Given
that the derivation is rather lengthy and cluttered we have kept it for the appendices: we
present the full transformation in Appendix D. Here we only state the final result, which is
given by

|1 2 3〉 ≡ |n1(l1s1)j1mj1t1mt1 , n2(l2s2)j2mj2t2mt2 , n(ls)jmjtmt〉

=
∑

JtotJtot

∑
TT

∑
N3NL3N

∑
β

∑
ML3NMJ3

CJtotMJtot
j1mj1j2mj2

CJtotMJtot
JtotMJtotjmj

CTMT
t1mt1 t2mt2

CTMTTMT tmt

× T CJtotMJtot
L3NML3NJ3MJ3

|N3NL3N〉 |βMJ3〉 , (5.80)

where T represents the overlap between relative and center-of-mass states, and angular-
momentum coupled single-particle states. Evidently, the three-body transformation amounts
to finding an expression for this overlap, which is given in the appendix mentioned above.

5.6.3 Magnetic moment operator benchmark

The results presented here are the outcome from a collaboration with Ref. [236]. They consist
of a benchmark of the trinucleon magnetic moments obtained from the magnetic moment
operator, as presented in Section 5.4, evaluated between single-particle HO states, as outlined
above. These values are then compared to the magnetic moments obtained from the form
factor normalization.

8The overlap between three-body momentum states in Jacobi coordinates |pq〉 and three-body HO states
|N n (L`)LML〉, where only the relevant orbital angular momenta are shown, is given by

〈p q|N n (L`)LML〉 = (2π)3RNL(p)Rnl(q)YLML
L` (p, q) . (5.77)

Here, the momentum-space radial wave functions RNL contain the radial part of the two-body subsystem and
Rnl that of the spectator particle.

9This is compared to the definition of the Jacobi momenta given in (3.22a)-(3.22c).
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Table 5.3: Magnetic moment of the triton (µt) and the helion (µh) in units of µN from the form
factor normalization FM(0) and the magnetic moment operator µ̂ = µ̂LO

1b + µ̂NLO
2b . Calculations with

the magnetic moment operator use the HO formalism, see text for details. The values between brackets
represent the uncertainties from the HO model-space truncation. The experimental values are taken
from Ref. [65].

µt [µN ] µh [µN ]

FM(0) µ̂ FM(0) µ̂

LO 2.622 2.622 −1.783 −1.783
NLO 2.836 2.833(4) −1.993 −1.989(4)

intrinsic - 0.192 - −0.189
Sachs - 0.018(4) - −0.017(4)

Exp. 2.979 -2.128

Table 5.3 shows the magnetic moments obtained from both formalisms for the N3LO
EM NN interaction with Λ = 500 MeV.10 The first row presents results from calculations
with the one-body operator only (‘LO’), while the second row shows results with the NLO
2BCs included (‘NLO’). Contributions from the latter to the magnetic moment are shown
separately by the rows indicated with ‘intrinsic’ and ‘Sachs’. As noted in Section 5.4, this
separation cannot be made for the form factor calculation, hence only the total values can
be compared. Bracketed values represent numerical uncertainties from the HO model-space
truncation: calculations were performed for Nmax = 10, 20, and 30 with HO frequencies
Ω = 20, 30, and 40 MeV, where the nominal value was taken from the converged result at
Nmax = 30 and the uncertainty was determined by calculating the standard deviation from
values for the different oscillator frequencies.

The effect on the ground state magnetic moment of the µ̂NLO, intrinsic
2b operator is an

improvement of the value around 10%, while the Sachs operator has a small effect of 0.5%−1%.
Clearly, the intrinsic term accounts for the bulk of the correction. Total results from both
methods agree with each other within uncertainties. As a result, the matrix elements of the
magnetic moment operator in the HO basis can be safely used in other calculations, which
we will discuss in the next section.

5.7 Magnetic properties of 6Li

As a first step towards calculating magnetic properties of other light nuclei A > 4, we consider
6Li, which is the next stable light nucleus with a nonzero nuclear spin: the 4He nucleus is
spinless and, therefore, has no magnetic properties. The 6Li nucleus is essentially a 4He core
with a deuteron halo. As a result, ground state magnetic properties of 6Li are approximately
given by the deuteron properties. Similar to the deuteron, 6Li is an isoscalar nucleus such
that isovector two-body NLO contributions to the magnetic moment operator have no effect,
see Sections 4.1.1 and 4.3.4. Nevertheless, two-body NLO corrections to the operator can be
studied through isovector radiative processes involving the absorption or emission of photons.

10Note that the 3N interaction is left out for these results.
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The study of these radiative processes is largely equivalent to the study of the ground
state properties, which have been the main focus in this thesis, with the distinction that initial
and final nuclear state differ. Hence, we can use the framework presented in Section 5.2. We
start in Section 5.7.1 by introducing transition probabilities and linking them to the decay
width, which is measured experimentally. Then, in Section 5.7.2, we briefly describe the
IT-NCSM, the many-body method of choice for the ab initio calculations of the magnetic
moment and transition of 6Li. Finally, we present results in Section 5.7.3, which are taken
from a publication that is available as a preprint [223].

5.7.1 Magnetic transition probabilities

The probability of an initial state of the nucleus to emit or absorb a photon is given by Fermi’s
golden rule:

Γγ,i→f = 2π| 〈f |Ĥ ′|i〉 |2ρ(Ef ), (5.81)

where ρ(Ef ) is the density of final states with energy Ef and Ĥ ′ is the interaction Hamiltonian
as defined in Eq. (5.6). Suppose that the emitted photons originate from an unoriented
source,11 then the total transition probability is given by summing over final states and
averaging over initial spins [226],12

Γγ,i→f = 2π
∑
λ

∑
Mf

1
2Ji + 1

∑
Mi

∫ dq
(2π)3 | 〈JfMfkλ|Ĥ ′|JiMi〉 |2 δ(Ef + ωk − Ei), (5.82)

where the delta function ensures energy conservation and where we specified the initial and
final nuclear state to be eigenstates of angular momentum. Using the result from the multipole
expansion, Eq. (5.8), and applying the Wigner-Eckart theorem to the nuclear matrix elements,
Eq. (5.12), results in a squared matrix element of the form

| 〈JfMf ||T̂ el
J + T̂mag

J ||JiMi〉 |2. (5.83)

Because parity conservation dictates that one or the other multipole must vanish, it follows
that the cross term is evidently zero:

| 〈JfMf ||T̂ el
J + T̂mag

J ||JiMi〉 |2 = | 〈JfMf ||T̂ el
J ||JiMi〉 |2 + | 〈JfMf ||T̂mag

J ||JiMi〉 |2. (5.84)

Clebsch-Gordan orthonormality properties eliminate sums overMf andMi such that, together
with the previous result, Eq. (5.82) can be written as [226]

Γγ,i→f = 8π α k 1
2Ji + 1

∑
J>1

[
| 〈Jf ||T̂ el

J (q)||Ji〉 |2 + | 〈Jf ||T̂mag
J (q)||Ji〉 |2

]
. (5.85)

This outcome is general in the sense that it is valid for any localized quantum mechanical
system. It contains both electric and magnetic transverse operators at every allowed multipole
order.

11Experiments measuring transition probabilities detect radiation from a polarized or an unpolarized source,
where the quantity that is polarized is the nuclear spin. The difference between these two kinds of experiments
is accounted for by selecting a spcific initial spin state or by averaging over the initial spin states.

12Note that now k = |k| is used to denote the real photon momentum, given that the discussion is about
transitions induced by real photons.
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In reality, the wavelength of the photon will be large compared to size of the target, such
that only one or few multipoles have to be taken into account, as we showed in Section 5.2.2.
Substituting the long wavelength limit of the transverse operators, Eqs. (5.19) and (5.20),
into Eq. (5.85) and only regarding a single multipole yields [237]

Γγ,i→f =
∑
J>1

8π α k2J+1(J + 1)
J
[
(2J + 1)!!

]2 B(E/M J ; Ji → Jf ), (5.86)

where the last factor defines the transition strength

B(E/M J ; Ji → Jf ) ≡ 1
2Ji + 1 | 〈JfMf ||Ô

E/M
J ||JiMi〉 |2. (5.87)

Here, ÔE/MJ represents the remaining part of the electric or magnetic multipole operator in
the long-wavelength limit. Note that the transition strength contains all the nuclear structure
information.

In the following, we are interested in calculating the magnetic dipole (J = 1) transition
strength of the first excited state to the ground state of 6Li, i.e., B(M1; 0+

T=1 → 1+
T=0), where

M1 denotes the magnetic dipole operator and IπT denotes a specific nuclear state with spin I,
parity π, and isospin T . Given that the long-wavelength limit of the multipole operators differs
from the magnetic moment operator only by a factor and power in k, we can substitute the
magnetic moment operator for ÔE/MJ in Eq. (5.87). Accordingly, we can use the conventional
LO magnetic moment operator with corrections from the NLO two-body operator, for which
we obtained expressions in Section 5.4. From now on we will denote the magnetic moment
operator with M1, which refers to the magnetic dipole character of the transition.

5.7.2 Importance-truncated no-core shell model

In order to calculate observables of atomic nuclei with more than four constituents, different
techniques from those discussed in Chapter 3 are required. A common approach to solv-
ing the many-body problem is to use basis-expansion methods, where the eigenstate of the
Hamiltonian is expanded in terms of a suitable many-body basis. In particular, the con-
figuration interaction (CI) typically employs A-body Slater determinants constructed from
single-particle states to represent the eigenstate and, in principle, provides an exact solution
of the Schrödinger equation in A-body space. However, in practice one has to reduce the basis
size due to computational limitations: the large dimension of the A-body basis generates a
Hamiltonian too large to store. As a result of this basis truncation, only upper bounds to the
ground state energy can be obtained.

A restriction of the infinite basis is provided by, for example, the so-called no-core shell
model (NCSM) which constrains the allowed excitations with respect to a chosen reference
state, allowing one to calculate nuclei up to A ∼ 12 [238, 239]. Even though the computational
cost is reduced by employing the NCSM, further extensions have to be considered to tackle the
computation of higher-mass nuclei. To this end, the importance-truncated NCSM (IT-NCSM)
provides a physics-driven method to select individual many-body basis states according to
their importance, extending calculations to the medium-mass range up to A ∼ 24 [26].

The CI and its variations are powerful many-body methods as they provide solutions
which are intrinsically variational, i.e., enlarging the basis results in solutions that approach
the exact one from above. Furthermore, they are versatile, in the sense that, any observable
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can be calculated and they can address open- and closed-shell nuclei on equal footing. In
the following, we briefly describe the general CI framework, then introduce the NCSM, and
finally specify the approach employed in the IT-NCSM.

Configuration interaction

The CI ansatz is given by

|Ψn〉 =
∑
i

c
(n)
i |Φi〉 =

∑
i

〈Φi|Ψn〉 |Φi〉 , (5.88)

where n denotes the labeling of excited states of the nucleus and where the expansion of the
nuclear eigenstate is given in terms of A-body Slater determinants |Φi〉. In general, Slater
determinants are constructed from any suitable single-particle basis, e.g., HO, natural orbitals,
or HF, using the M -scheme approach, i.e., the total angular momentum projection is given by
M =

∑A
i mi such that Slater determinants are eigenstates of Ĵz. In the following we assume

Slater determinants to be constructed from HO single-particle states {|n(`s)jmjtmt〉}, given
that the results in this thesis are obtained with such a basis.

By employing an expansion as in Eq. (5.88), the typical eigenvalue problem Ĥ |Ψn〉 =
En |Ψn〉 becomes ∑

i

〈Φj |Ĥ|Φi〉 〈Φi|Ψn〉 = En 〈Φj |Ψn〉 , (5.89)

where we multiplied 〈Φj | from the left and where En represent eigenenergies corresponding
to state n. Equation (5.89) demonstrates that the Hamiltonian in the CI framework is
composed of matrix elements 〈Φj |Ĥ|Φi〉. They do not correspond to two-body interaction
matrix elements, and they can be derived using Slater-Condon rules [240].13 A diagonalization
of the Hamiltonian then determines the eigenvalues and the eigenstates, hence, obtaining
the energies En and the coefficients c(n)

i . Mostly, one is only interested in a few low-lying
eigenvalues, such that merely a part of the matrix needs to be diagonalized. This is achieved
with the Lanczos algorithm, which efficiently calculates extremal eigenvalues and eigenstates
for matrices with a linear dimension up to 1010 [241]. Consequently, the eigenstates allow one
to calculate any observable by determining the expectation value of any operator of interest:

〈Ψ′n|Ô|Ψn〉 . (5.90)

The matrix elements can again be obtained with Slater-Condon rules and, in principle, create
the possibility to calculate transitions given that the final and initial state can differ.

Commonly, the determinants |Φi〉 are organized according to a reference state |Φ〉 with
particle-hole (p-h) excitations built on top of it:

|Ψn〉 = |Φ〉+
∑
a,p

cpn,a |Φp
a〉+

∑
a<b
p<q

cpqn,ab |Φ
pq
ab〉+

∑
a<b<c
p<q<r

cpqrn,abc |Φ
pqr
abc〉+ ..., (5.91)

13The Slater-Condon rules express many-body matrix elements as integrals in terms of single-particle orbitals
to exploit the orthogonality of the single-particle basis. The nonvanishing many-body matrix elements depend
on the operator structure: one-body operators can connect many-body states which differ by one single-particle
state, whereas two-body operators can connect at most many-body states differing by two single-particle states
(and so on for n-body operators). This reduces the cost of matrix element calculations, since the vanishing
matrix elements can be easily predicted and need not be computed.
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where a, b, c, ... represent single-particle hole states which are obtained by exciting a particle to
a single-particle particle state, represented by p, q, r, ... . A full CI calculation of a nucleus with
mass A would include all combinations of Ap-Ah excitations. In reality, the single-particle
basis is truncated by restricting the single-particle states available to construct the many-body
basis. The truncated basis spans the model spaceM and, as a result, eigenvalues are no longer
exact but yield an upper bound. The dimension of the CI space exhibits factorial growth for
both the single-particle basis dimension and the particle number A, limiting CI calculations
to the lightest nuclei only. Further truncations have to be made to push calculations to higher
nuclear-mass regions, introducing variations of the CI method like the NCSM [242, 243] which
we discuss next.

No-core shell model

The truncation scheme adopted in the NCSM is based on only including many-body states
which have a certain maximal excitation compared to the reference determinant |Φ〉. For HO
single-particle states the energy is given by

ε =
(

2n+ l + 3
2

)
~Ω. (5.92)

Then, the restriction of the model space is achieved by the so-called Nmax truncation, which
allows a maximum of HO excitation energy above the reference:

A∑
i=1

(εi − ε0,i) 6 NmaxΩ, (5.93)

where the sum runs over the single-particle energies of the occupied particle states in the
many-body state and where

∑A
i=1 ε0,i defines the energy of the reference.

NCSM calculations are typically performed for a range of Nmax values to assess the
convergence of observables with respect to the model-space size. Converged results should be
independent of the HO frequency Ω, which would show as a flat trend of the observable as
a function of Ω. In practical calculations, however, converged results are often not realized.
One possibility to obtain an estimate is to resort to choosing the optimal Ω as the value which
minimizes the energy.

Importance-truncated no-core shell model

Because of the combinatorial growth of the model space as a function of basis size and Nmax
truncation, many NCSM calculations still do not fully converge. The observation that a large
fraction of many-body states have an almost negligible contribution to the expansion of the
eigenstate, i.e., certain coefficients c(n)

i are small, led to the formulation of the IT-NCSM [244,
245]. The main idea behind the IT-NCSM is to select important basis states based upon
a predefined importance measure without solving the many-body problem in the full model
space. Subsequently, the importance-truncated model space is determined by imposing a
threshold on the importance measure.

The importance measure is defined as the first-order perturbative correction of a reference
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state which approximates the desired eigenstate. This reference state is given by

|Ψ(n)
ref 〉 =

∑
i∈Mref

c
(n)
i,ref |Φi〉 , (5.94)

and is obtained by diagonalizing the Hamiltonian in a smaller model space Mref. The
definition of the importance measure κ(n)

i for basis states not included inMref is given by

κ
(n)
i ≡− 〈Φi|Ĥ|Ψ(n)

ref 〉
∆εi

=
∑

j∈Mref

c
(n)
j,ref
〈Φi|Ĥ|Φj〉

∆εi
, (5.95)

which is the first-order perturbative correction to |Ψ(n)
ref 〉 and where ∆εi = εi−εref. Constructing

the importance-truncated model spaceMIT is done by selecting those states for which the
absolute value of the importance measure is larger than a predefined threshold

|κ(n)
i | > κmin, (5.96)

such that the full NCSM model space is retrieved in the limit κmin → 0. Final results for
observables are determined by extrapolating calculations obtained with several different values
for κmin to a vanishing threshold. For reviews on the subject of the NCSM and the IT-NCSM
we refer to, e.g., Refs. [239, 245].

5.7.3 6Li magnetic dipole strength and magnetic moment

Significant progress has been made in chiral EFT [23, 125]. In addition, the ab initio solution
of the quantum many-body problem for light nuclei has also seen much progress in the last
decade, making precision calculations possible [8, 239]. Recently, the attention has been
on the consistent inclusion of electroweak transition operators [81], with a focus on the
impact of 2BCs. For EM transitions in light nuclei, calculations with traditional 2BCs and
potentials were performed in Ref. [246], while calculations with 2BCs from chiral EFT used
in conjunction with wave functions derived from traditional potentials were performed in
Ref. [51], reaching a precision at the few percent level. In this section, we will present the
first calculations obtained with both 2BCs and interactions consistently derived from chiral
EFT. In the case of weak β decays, this has been shown to lead to a systematic improvement
between experiment and theory [149].

We present results for the ground-state magnetic moment µ(1+
T=0) and the transition

strength of the first excited state to the ground state B(M1; 0+
T=1 → 1+

T=0) of 6Li, obtained
with the LO, SRG evolved LO, and SRG evolved NLO M1 operator. For the ab initio
calculations, the IT-NCSM, introduced in the previous section, was employed as a state-of-
the-art many-body method. Within the IT-NCSM, NN and 3N interactions derived within
chiral EFT were used. Four different Hamiltonians were considered which are denoted by
Roman numerals I-IV. They include (I) the EM NN interaction at N3LO, introduced in
Section 4.4.1, complemented with a local 3N interaction (cutoff Λ = 500 MeV, cD = 0.8)
at N2LO, which is fitted to reproduce the binding energy as well as the β-decay half-life of
3H [50]. Furthermore, Hamiltonians (II- IV) use the EMN NN interactions at N2LO, N3LO,
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and N4LO with Λ = 500 MeV [23] complemented with consistent nonlocal 3N interactions
up to N2LO, N3LO, and N3LO, respectively. The NN interactions were only fitted to NN
scattering data and the deuteron binding energy, while the 3N interactions were fitted to
reproduce the triton binding energy and to optimize the ground-state energy and radius of
4He, which led to the values cD = −1, cD = 2, and cD = 3, for cases II, III and IV, respectively.
The SRG was employed at the NN and 3N level with a flow parameter of α = 0.08 fm4 [247,
248]. The SRG transformation provides interactions that result in faster convergence when
they are used in many-body calculations [216].

Using an SRG-transformed Hamiltonian requires a consistent SRG transformation of
the M1 operator. In previous studies, this consistent treatment was neglected. Here SRG
corrections of the M1 operator were included at the two-body level. In addition to the SRG
corrections, the NLO 2BC contributions to the M1 operator were included as well. At NLO,
these are commonly expressed as a sum of two contributions, the intrinsic term and the Sachs
term, see Eqs. (5.52) and (5.58). The Sachs term only depends on the potential between the
two nucleons, whereas the translationally invariant intrinsic term is given by the spatial part
of the 2BC.

For each interaction, an IT-NCSM calculation was carried out with Nmax from 2 to 12
with harmonic-oscillator frequencies Ω = 16, 20, and 24 MeV. For the resulting value of the
magnetic moment and the transition strength, the central value for the highest Nmax was
used as the nominal result, and the neighboring results as an estimate for the many-body
uncertainties. Results of the calculations are listed in Table 5.4, which also lists results of
quantum Monte Carlo (QMC) calculations from Refs. [51, 246]. Calculations in Ref. [246]
were performed using the SNPA, with wave functions obtained from the Argonne v18 NN [249]
and the Illinois-2 3N potential [250]. Two-body MECs were constructed from the NN potential
by satisfying the continuity equation, recall the discussion from Section 4.1.1. The second set
of QMC calculations generated the wave functions from the Argonne v18 NN [249] and the
improved Illinois-7 3N potential [251]. In this case, results from the SNPA 2BC operators
(same operator as in Ref. [246]) were compared to results obtained with 2BCs derived within
chiral EFT. The latter approach is commonly called a hybrid approach, again, see Section 4.1.1.

The LO results for the magnetic moment and the transition strength are consistently
higher compared to the LO QMC results. The SRG evolution decreases the values by about
2% and 4% for µ and B(M1), respectively. Adding two-body NLO corrections leads to a
large increase of ∼ 9% for the transition strength. This observation is comparable to the
effect for the trinucleons presented in Fig. 5.1 and Table 5.2, once more indicating the 2BC
importance for magnetic observables. Due to 6Li being isoscalar, the magnetic moment value
is practically unaffected by adding the NLO corrections.

Even for results from complete calculations (total QMC hybrid and SRG evolved NLO),
there is disagreement between the two approaches. This could originate from two possible
sources: the QMC results take higher-order corrections to the operator, up to N3LO, into
account or the mismatch between the short-range behavior of the interaction and the operator,
inherent to the hybrid approach, causes inconsistencies which can lead to incorrect results.
Further studies are necessary to gain more insight into this disagreement. In the next section
we compare the results to experimental values.
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Table 5.4: Results of the calculations for B(M1; 0+
T=1 → 1+

T=0), in units of µ2
N , and µ(1+

T=0), in units
of µN , of 6Li. They employ four different Hamiltonians (I-IV), which are introduced in the text, and
values between brackets represent the estimated many-body uncertainties. Calculations are sorted by
the type of M1 operator used, i.e., LO, LO SRG evolved, and NLO SRG evolved. For comparison,
results of QMC calculations from Refs. [51, 246] are shown in the second part of the table. The SNPA
for the operator in Ref. [246] was complemented by a ‘Hybrid’ approach in Ref. [51]. Here ‘LO’ refers
to one-body currents and ‘Total’ to the inclusion of 2BCs. Table adapted from Ref. [223].

µ [µN ] B(M1) [µ2
N ]

LO LO SRG ev. NLO SRG ev. LO LO SRG ev. NLO SRG ev.

I 0.8399(22) 0.8221(28) 0.8240(34) 15.02(10) 14.44(8) 15.74(12)
II 0.8374(24) 0.8195(29) 0.8216(34) 14.92(13) 14.36(11) 15.48(15)
III 0.8344(21) 0.8188(26) 0.8217(32) 14.68(10) 14.13(8) 15.15(13)
IV 0.8388(18) 0.8236(23) 0.8261(28) 14.81(10) 14.32(8) 15.32(13)

QMC LO QMC Total QMC LO QMC Total

SNPA [246] 0.810(1) 0.800(1) 12.84(11) 15.00(11)
SNPA [51] 0.817(1) 0.807(1) - -
Hybrid [51] 0.817(1) 0.837(1) 13.18(4) 16.07(6)

5.8 Comparison against new S-DALINAC experiment

Nuclear structure physics has entered an era of precision studies, both in experiment and
theory. For light nuclei, ab initio theory based on interactions from chiral effective field
theory [125] is reaching an accuracy at which corrections to EM operators that emerge
naturally in the chiral expansion become relevant. A recent review [81] indicates that precision
measurements of EM transition rates with uncertainties of a few percent or better are required
to explore and validate the effects of these subleading corrections. For few-nucleon systems,
direct measurements of strong transition rates with such precision are often challenging
experimentally owing to the very short lifetimes involved.

Therefore, to test the above obtained results and reduce experimental uncertainties, a
precision experiment with a new technique was carried out at the Superconducting Darmstadt
Electron Linear Accelerator (S-DALINAC) [253, 254], which measured the dominant internal
EM decay branch of the first excited 0+

1 state of 6Li at E0+
1

= 3562.88(10) keV [252] to
its 1+

1 ground state. The extremely short half-life of the excited state of about 80 as [252]
makes a direct measurement of its decay rate impossible [255].14 The potentially competing
parity-forbidden decay via α emission has not been observed, and it is at least a million times
weaker than the γ decay [256]. Because of its occurrence as stable matter (compared to the
lighter hypernuclei [257]) and the low nucleon number of 6Li, the decay of its 0+

1 state is
the EM transition of the most simple hadronic system simultaneously accessible by precision
studies in theory and experiment. It is, therefore, ideally suited for testing our understanding
of nuclear forces and electromagnetic currents in a many-nucleon system.

The experiment was performed at theDarmstadt High-Intensity Photon Setup (DHIPS) [258],

14One attosecond (as) equals 10−18 of a second.
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Figure 5.2: Results for B(M1; 0+
T=1 → 1+

T=0) and µ(1+
T=0) from calculations based on Hamiltonians

I-IV, see also Table 5.4. As shown in the upper legend, upward triangles indicate calculations with the
unevolved (LO) one-body transition operator, diamonds indicate calculations with the consistently
SRG-transformed operator (LO SRG ev.), and pentagonal markers indicate the calculations with a
consistently SRG-transformed operator including contributions from NLO 2BCs (NLO SRG ev.). The
labeled arrows illustrate the impact of the two aforementioned improvements. The experimental 68%
confidence interval for B(M1) is indicated by the shaded area, and the central values for B(M1) and
µ [252] by a solid line (the confidence interval of µ is not visible at this scale). Figure adapted from
Ref. [223].

with continuous energy photon beams generated by bremsstrahlung processes of the 7.1(2)
MeV electron beam of the S-DALINAC on a copper radiator. To achieve the high precision
necessary, the new nuclear resonance fluorescence (NRF) based relative self-absorption (SAbs)
method [259, 260] was employed. The measurements and analysis of systematic effects pro-
duced a value for the γ-decay width Γγ,0+

T=1→1+
T=0

= 8.17+0.14
−0.13 (stat.)+0.10

−0.11 (syst.) eV, which
corresponds to a strength B(M1; 0+

T=1 → 1+
T=0) = 15.61+0.27

−0.25 (stat.)+0.19
−0.21 (syst.) µ2

N [223].
The 68.3% confidence interval is divided into statistical (stat.) and systematic (syst.) parts,
where the latter accounts for uncertainties of the target dimensions as well as atomic and
condensed-matter contributions. Since both contributions are uncorrelated and the confi-
dence intervals are almost symmetric, a symmetrized and quadratically summed uncertainty
of 15.61(33) µ2

N is used in Fig. 5.2 to compare against the theoretical results.
Figure 5.2 shows the results obtained in the previous section, compared to the new

experimental constraint and the magnetic moment µ(1+
1,T=0) = 0.82205667(26) µN [252] of
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the ground state of 6Li. The four different Hamiltonians are denoted by four colors, teal,
pink, orange, and indigo for I, II, III, and IV, while the different operators are shown by
three distinct symbols, an upward triangle, a diamond, and a pentagon for the LO, SRG
evolved LO, and SRG evolved NLO operators, respectively. Remarkably, the results of the
most complete calculations, including contributions from the 2BC to theM1 operator, exhibit
excellent agreement with the new experimental constraints. This indicates once again the
importance of 2BCs for a correct description of the 6Li nucleus. Such tests of chiral EFT
would not have been possible on the basis of the pre-2019 data. The increase of the B(M1)
is also found in QMC calculations when 2BCs are included [51, 246], see also Table 5.4 and
the discussion in the previous section.

The situation encountered here may remind the reader of the 6He beta-decay half-life
discrepancy that existed in the literature before 2012 and was resolved by a high-precision
measurement of Knecht et al. [261] in that year. Similar to the weak-interaction sector,
the new experiment improves the validation on the corresponding EM-analog transition by
remeasuring the γ-decay half-life of the first excited state of 6Li with isospin T = 1. In total,
a relative uncertainty of 2% with balanced contributions by statistics and systematics was
achieved. This translates into an uncertainty of about 2 as for the half-life of the 0+

1 state of
6Li. In addition, chiral EFT nuclear structure calculations were performed that, for the first
time, take 2BCs at NLO, combined with chiral interactions at various orders, into account.
The high degree of agreement between experiment and theory is a result of the recent progress
in both areas.



6
CONCLUSIONS AND OUTLOOK

In this thesis, we examined the effect of the leading 2BC operators on electromagnetic
observables of A = 2, 3, and 6 nuclei. They are essential in describing electromagnetic
properties, especially magnetic ones, and they arise from the exchange of a pion between
a pair of nucleons. To study them, we have used chiral EFT as the nuclear framework of
choice to provide nuclear interactions and electromagnetic nuclear current operators. This
framework allows a systematically improvable calculation scheme to describe interactions
between nucleons and with external probes at low energies in close connection to the underlying
theory of QCD. We obtained results with associated uncertainty estimates from calculations
with high-precision NN and 3N chiral interactions developed in an order-by-order manner.

The main focus of this thesis was the analysis of the electromagnetic deuteron and tri-
nucleon form factors. For the deuteron, we presented results for the charge, quadrupole, and
magnetic form factors obtained with the one-body operator. The leading 2BC contributions
vanish for the isoscalar deuteron due to its isovector structure. In order to obtain the form
factors, we expanded the one-body charge and current operators with respect to a relative
momentum-space partial-wave basis. The form factors were then obtained by computing
specific linear combinations of deuteron matrix elements, where we made use of the EMN
NN interactions [23] up to fourth order to determine the deuteron wave functions. As the
chiral interactions are consistently developed order by order, we were able to compute reliable
truncation uncertainty DoB intervals at each order by employing a Bayesian model. We ob-
served a systematic order-by-order convergence of the uncertainty intervals with successively
overlapping bands. Given that the uncertainty depends on the characteristic momentum scale
of the process, the DoB intervals grow as the momentum transfer increases. This generated
rather large intervals in the kinematic region where the first minimum occurs for both the
charge and magnetic form factors. Consequently, the majority of experimental data was
consistent with the 68% DoB interval, while the 95% interval covered essentially all data.
This suggests that the requirement to exactly reproduce the experimental minimum might
be too strict given that chiral EFT’s predictive power in this kinematic region diminishes
as the expansion parameter is momentum dependent, and hence inherently results in larger
uncertainties. Finally, as an extra verification, we extracted the magnetic moment from the
magnetic form factor normalization. Its value confirmed our findings on the form factor and
almost exactly agreed with the experimental value.

The analysis of the deuteron form factors laid the foundation for our examination of
the trinucleons, for which we provided charge and magnetic form factor results. Similar to
the two-body case, we started by expanding the charge and current operators with respect
to a relative three-body momentum-space partial-wave basis, where the three particles are

117



118 CHAPTER 6 – CONCLUSIONS AND OUTLOOK

described in terms of Jacobi momenta. We determined the form factors using two different
combinations of NN + 3N interactions: the first combination used the same NN interaction
as for the deuteron calculations but complemented with 3N interactions at fourth order which
are fit to the triton binding energy and nuclear matter [32], while the second combination
used unevolved as well as SRG-evolved EM NN interactions [190] with 3N interactions at
third order which are fit to few-nucleon systems only [31]. The latter combination was used
to investigate the effect of 3N and SRG-evolved interactions on the form factors. As the SRG-
evolution softens the interaction, a difference in the form factor at higher-momentum transfers
is expected. This effect was indeed confirmed by our observations: a softer interaction pushes
the minimum to higher momentum transfers. On the other hand, the omission or addition of
3N interactions had an almost negligible effect upon qualitative inspection of the form factor.
The main goal of our study with the first combination of interactions was to assess the impact
of 2BCs. If 2BC corrections are included, we observed that the form factor curve is shifted up
at low transfer momenta, while the minimum is simultaneously shifted to higher momentum
transfers. Both trends bring the theoretical result to better agreement with experimental data
and the overlap of the truncation uncertainty DoB intervals with the experimental bands is
also improved when 2BCs are included, especially for helion.

The effect of 2BCs on the trinucleon form factors is well known on a qualitative level,
whereas the form factor curves do not allow to conclusively determine the effect of SRG-
evolving or including 3N interactions, especially in the regime of low momentum transfers. To
quantify possible effects and to analyze them in more detail, we studied the electromagnetic
radii and magnetic moments of trinucleons. First of all, we observed that SRG-evolved inter-
actions increased the absolute value of the magnetic moment and of the charge radius, while
the magnetic radius stayed nearly constant. Second, the effect of including 3N interactions on
the magnetic moment is almost negligible, yet the charge and magnetic radius both reduced
in size by up to 3%, shifting the result towards the central experimental value. Finally,
incorporation of 2BC corrections resulted in a decrease of the magnetic radius of about 5%
and a large increase of the absolute value of the magnetic moment by as much as 10%, leading
to better agreement with the experimental value in both cases. Experimental values for the
electromagnetic radii are, however, not precise enough to allow decisive conclusions about
the necessity of 3N interactions or even 2BCs. The magnetic moments on the other hand are
known very precisely and the leading 2BCs are found to produce significant corrections to
the theoretical result such that they are in better agreement.

As we demonstrated for trinucleons: magnetic observables are very sensitive to the ex-
change dynamics between the nucleons. In order to extend our study of the leading 2BC
effects on magnetic observables, we considered the next light nucleus after the trinucleons
with nonvanishing magnetic properties, 6Li, as a first exploration of light nuclei. To this end,
we calculated the magnetic moment and an isovector magnetic transition from an excited
state to the ground state. To simplify the analysis, we examined the magnetic dipole moment
operator which equals the zero-momentum-transfer limit of the curl of the current operator.
Which allowed us to include the 2BC contributions to the magnetic moment operator. These
contributions constitute the well-known intrinsic and Sachs corrections. In order to compute
the magnetic properties, we employed the IT-NCSM to solve the many-body problem and
obtain the 6Li wave functions. We used four different Hamiltonians to assess interaction sys-
tematics. The Hamiltonians were SRG-evolved in order to accomplish a better convergence
of the calculation. Furthermore, the magnetic moment operator needed to be represented
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in a single-particle basis before it could be incorporated into the IT-NCSM calculations. To
achieve this, we performed a basis transformation of the relative partial-wave basis to a HO
single-particle basis and successfully benchmarked the transformation against the trinucleon
magnetic moments obtained from form factor calculations. The result for the magnetic mo-
ment and the transition strength led to two main findings. First, 2BC contributions caused a
large correction to the isovector transition strength result, leading to an improved agreement
with experiment. Second, a consistent SRG evolution of the operator is key in order to
obtain agreement with the experimental magnetic moment and transition strength. These
conclusions and further high-precision tests of chiral EFT were only possible by a recent mea-
surement performed at the S-DALINAC based on a new experimental technique to measure
the magnetic transition strength.

Our studies can be extended in future work by including higher-order two-body charge
and current operators in the few-nucleon form factor calculations. In this way, a consistent
calculation with operators and interactions at the same order can be performed. Such
an approach may lead to insights in the convergence behavior of the observables at high
momentum transfers. In relation to this, it will be interesting to see the effect on the
truncation uncertainty intervals of the form factors, especially in the high momentum transfer
region.

As some of the higher-order operators are associated with new LECs which have to be
fixed to few-nucleon observables, one approach to further investigate 2BCs is by studying
other light nuclei or even medium-mass nuclei. To achieve this, the technique we used for 6Li
has to be extended to other nuclei showing interesting electromagnetic properties. This would
result in an improvement over existing calculations of light nuclei which use a hybrid approach,
i.e., current operators from chiral EFT in combination with phenomenological interactions,
to obtain electromagnetic properties. In addition, the impact of 2BCs on electromagnetic
transitions, magnetic moments, and electromagnetic form factors of medium-mass nuclei is
completely unexplored. For example, an interesting phenomenon worthwhile studying is
given by the unexpectedly large charge radii of neutron-rich calcium isotopes [30]. These
radii cannot be reproduced by conventional methods. This may result from truncations in the
many-body calculations or from important higher-order operator effects which are presently
not included. To conclude, this thesis provides a basis for calculations with chiral 2BCs in
the electromagnetic sector beyond light nuclei.





A
DEUTERON, TRITON, AND HELION
PARTIAL-WAVE CONFIGURATIONS

Making a partial-wave expansion of the deuteron and trinucleon wave functions results in
several possible configurations which depend on the total two- and three-body quantum
numbers. Below we list these configurations for the deuteron and the trinucleons.

Two-body configurations

There are only two configurations of the two-body partial-wave basis states that contribute to
the deuteron wave function. For completeness and to show the similarity with the three-body
basis, we specify these two configurations in Table A.1.

Table A.1: Deuteron two-body partial-wave quantum numbers. The leftmost column shows the
nuclear spectroscopic notation.

(2S+1)LJ L S J T

3S1 0 1 1 0
3D1 2 1 1 0

Three-body configurations

In this thesis we investigate the triton and the helion. Their three-body quantum numbers J
= T = 1

2 , together with positive parity P = +1 and an antisymmetric two-body subsystem,
i.e., (−1)L+S+T = −1, determine the possible configurations of the Jj-coupled basis. All the
different possibilities for a two-body angular momentum of J 6 8 are listed in Table A.2.
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Table A.2: Possible three-body configurations for quantum numbers in α = {L, S, J, T, `, j} satisfying
total angular momentum and total isospin J = T = 1

2 , positive parity P = +1 up to J = 8. Table
adapted from [33].

L S J T ` j

1 0 0 0 1 0 1
2

2 1 1 0 1 1 1
2

3 1 0 1 0 1 1
2

4 1 0 1 0 1 3
2

5 0 1 1 0 0 1
2

6 0 1 1 0 2 3
2

7 1 1 1 1 1 1
2

8 1 1 1 1 1 3
2

9 2 1 1 0 0 1
2

10 2 1 1 0 2 3
2

11 2 0 2 1 2 3
2

12 2 0 2 1 2 5
2

13 1 1 2 1 1 3
2

14 1 1 2 1 3 5
2

15 2 1 2 0 2 3
2

16 2 1 2 0 2 5
2

17 3 1 2 1 1 3
2

18 3 1 2 1 3 5
2

19 3 0 3 0 3 5
2

20 3 0 3 0 3 7
2

21 2 1 3 0 2 5
2

22 2 1 3 0 4 7
2

23 3 1 3 1 3 5
2

24 3 1 3 1 3 7
2

25 4 1 3 0 2 5
2

26 4 1 3 0 4 7
2

27 4 0 4 1 4 7
2

28 4 0 4 1 4 9
2

29 3 1 4 1 3 7
2

30 3 1 4 1 5 9
2

31 4 1 4 0 4 7
2

32 4 1 4 0 4 9
2

33 5 1 4 1 3 7
2

L S J T ` j

34 5 1 4 1 5 9
2

35 5 0 5 0 5 9
2

36 5 0 5 0 5 11
2

37 4 1 5 0 4 9
2

38 4 1 5 0 6 11
2

38 5 1 5 1 5 9
2

40 5 1 5 1 5 11
2

41 6 1 5 0 4 9
2

42 6 1 5 0 6 11
2

43 6 0 6 1 6 11
2

44 6 0 6 1 6 13
2

45 5 1 6 1 5 11
2

46 5 1 6 1 7 13
2

47 6 1 6 0 6 11
2

48 6 1 6 0 6 13
2

49 7 1 6 1 5 11
2

50 7 1 6 1 7 13
2

51 7 0 7 0 7 13
2

52 7 0 7 0 7 15
2

53 6 1 7 0 6 13
2

54 6 1 7 0 8 15
2

55 7 1 7 1 7 13
2

56 7 1 7 1 7 15
2

57 8 1 7 0 6 13
2

58 8 1 7 0 8 15
2

59 8 0 8 1 8 15
2

60 8 0 8 1 8 17
2

61 7 1 8 1 7 15
2

62 7 1 8 1 9 17
2

63 8 1 8 0 8 15
2

64 8 1 8 0 8 17
2

65 9 1 8 1 7 15
2

66 9 1 8 1 9 17
2



B
PARTIAL-WAVE EXPANDED

FORM FACTORS

Because we represent the deuteron and trinucleon wave functions in a two- and three-body
partial-wave basis, respectively, we have to expand the charge and current operators in the
respective partial-wave basis. In this chapter, we represent the detailed derivation of each
form factor. In the first section, we address the deuteron form factors and in the second
section we consider the trinucleon form factors.

B.1 Deuteron form factors

B.1.1 One-body charge and quadrupole form factor

Charge form factor

In the following we show the step-by-step derivation of the deuteron charge form factor. The
notation we use here employs the one that we introduced in Section 4.3.2. We begin by
restating the charge form factor expression we obtained in Section 4.3.1, which was given in
terms of the independent deuteron matrix elements,

GC(Q) = 1
3
√

1 + ηd
(g0 + 2g−1) = 1

3
√

1 + ηd

∑
MJ=±1,0

〈MJ Q/2| ρ̂(−3) |MJ −Q/2〉 . (B.1)

As a first step, we insert two relative-momentum completeness relations between the one-body
charge operator and the deuteron states and decouple the total angular momentum J = 1
into orbital angular momentum L and spin S:

GC(Q) = 1
3
√

1 + ηd

∑
MJ=±1,0

∑
L′M ′L
S′M ′S

∑
LML
SMS

C1MJ

L′M ′LS
′M ′S
C1MJ
LMLSMS

∫
p′

∫
p
φ∗L′
(
p′
)
Y ∗L′M ′L

(p̂′)

× 〈S′M ′S |SMS〉 〈Q/2 p′| ρ̂(−3) | −Q/2 p〉 YLML
(p̂) φL

(
p
)
. (B.2)
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Evaluating the one-body charge operator between momentum states yields

GC(Q) = 1
3
√

1 + ηd

∑
MJ=±1,0

∑
L′M ′L
S′M ′S

∑
LML
SMS

C1MJ

L′M ′LS
′M ′S
C1MJ
LMLSMS

∫
p′

∫
p
φ∗L′
(
p′
)
Y ∗L′M ′L

(p̂′)

× δSS′ δMSM
′
S
GSE(Q2) (2π)3δ(p− p′ −Q/2)YLML

(p̂) φL
(
p
)
, (B.3)

where the isoscalar electric nucleon form factor GSE(Q2) arises from

〈T ′M ′T | eN,i(Q2) |TMT 〉 =
∑
i=1,2

∑
m′ti

mti

C00
1
2 m
′
t1

1
2 m
′
t2
C00

1
2 mt1

1
2 mt2

× 〈12m
′
t1

1
2m
′
t2 |
GSE(Q2) +GVE (Q2)τ̂i,z

2 |12mt1
1
2mt2〉

=GSE(Q2).

Integrating over p′ eliminates the delta function and yields

GC(Q) = GSE(Q2)
3
√

1 + ηd

∑
MJ=±1,0

∑
L′M ′L

∑
LML
SMS

C1MJ

L′M ′LS
′M ′S
C1MJ
LMLSMS

×
∫

p
φ∗L′
(
|pQ|

)
Y ∗L′M ′L

(p̂Q)YLML
(p̂) φL

(
p
)
, (B.4)

where we introduced the notation pQ = p−Q/2. In a next step, we use the fact that S = 1
for the deuteron and the following Clebsch-Gordan property [167]

∑
αγ

Ccγaαbβ C
cγ
aαb′β′ = 2c+ 1

2b+ 1δbb
′ δββ′ , (B.5)

so that we find

GC(Q) = GSE(Q2)
3
√

1 + ηd

∑
L′M ′L

∑
LML
SMS

2J + 1
2L+ 1δLL

′ δMLM
′
L

×
∫

p
φ∗L′
(
|pQ|

)
Y ∗L′M ′L

(p̂Q) YLML
(p̂) φL

(
p
)
. (B.6)

Performing the sum over the delta functions and rewriting the result provides the final
expression for the one-body deuteron charge form factor:

GC(Q) = GSE(Q2)
3
√

1 + ηd

∑
LML

2 · 1 + 1
2L+ 1

∫
p
φ∗L
(
|pQ|

)
Y ∗LML

(p̂Q) YLML
(p̂) φL

(
p
)

(B.7)

=GSE(Q2)√
1 + ηd

∑
LML

1
2L+ 1

×
∫ ∞

0

dp
(2π)3 p

2
∫ π

0
dθp sin θp

∫ 2π

0
dϕp φ∗L

(
|pQ|

)
Y ∗LML

(p̂Q) YLML
(p̂) φL

(
p
)
. (B.8)

The last step explicitly shows the integration over each variable of the three-dimensional
integral that we have to solve. To calculate this integral, we use the techniques explained in
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Section 4.3.3. Note that the expression for the charge form factor is completely diagonal in
its quantum numbers.

Quadrupole form factor

Because the steps we need to carry out to obtain the quadrupole form factor are practically
the same as the ones we showed for the charge form factor, we present all them one after
another without a detailed explanation. The deuteron quadrupole form factor expression due
to the one-body charge operator is found by

GQ(Q) = 2M2
d

Q2√1 + ηd

[
〈0 Q/2| ρ̂(−3) |0 −Q/2〉 − 〈1 Q/2| ρ̂(−3) |1 −Q/2〉

]
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Y ∗L′M ′L

(p̂′) 〈S′M ′S |SMS〉 〈Q/2 p′| ρ̂(−3) | −Q/2 p〉 YLML
(p̂) φL

(
p
)
(B.9)
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=2M2
d G

S
E(Q2)

Q2√1 + ηd

∑
L′M ′L

∑
LML
SMS

(
C10
L′M ′LSMS

C10
LMLSMS

− C11
L′M ′LSMS

C11
LMLSMS

)

×
∫

p
φ∗L
(
|pQ|

)
Y ∗L′M ′L

(p̂Q) YLML
(p̂) φL

(
p
)

(B.11)

=2M2
d G

S
E(Q2)

Q2√1 + ηd

∑
L′M ′L

∑
LML
MS

(
C10
L′M ′L1MS

C10
LML1MS

− C11
L′M ′L1MS

C11
LML1MS

)

×
∫ ∞

0

dp
(2π)3 p

2
∫ π

0
dθp sin θp

∫ 2π

0
dϕp φ∗L′

(
|pQ|

)
Y ∗L′M ′L

(p̂Q) YLML
(p̂) φL

(
p
)
, (B.12)

where in the last step we made explicit that S = 1. Compared to the charge form factor
expression, the quadrupole form factor expression is nondiagonal in orbital angular momentum
and still depends on Clebsch-Gordan coefficients.

B.1.2 One-body magnetic form factor

The one-body current operator consists of two terms. Therefore, we can split the magnetic
form factor calculation into two parts as follows

GM(Q2) = GM,1(Q2) +GM,2(Q2). (B.13)

Below, we consider both terms separately.
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Magnetic form factor first term

The detailed derivation of the first term of the magnetic form factor expression is given by

GM,1(Q2) = −2Md
Q
√

1 + ηd
〈+1 Q/2| eN,i(Q2) p̂+

2mN
|0 −Q/2〉 (B.14)

= −2Md
Q
√

1 + ηd

∑
L′M ′L
S′M ′S

∑
LML
SMS

C11
L′M ′LS

′M ′S
C10
LMLSMS

∫
p′

∫
p
φ∗L′
(
p′
)
Y ∗L′M ′L

(p̂′)

× 〈S′M ′S |SMS〉 〈Q/2 p′| eN,i(Q2) p̂+
2mN

| −Q/2 p〉 YLML
(p̂) φL

(
p
)

(B.15)

= −Md
QmN

√
1 + ηd

∑
L′M ′L
S′M ′S

∑
LML
SMS

C11
L′M ′LS

′M ′S
C10
LMLSMS

∫
p′

∫
p
φ∗L′
(
p′
)
Y ∗L′M ′L

(p̂′)

× δS′S δM ′SMS
GSE(Q2) (2π)3δ(p′ − p−Q/2) (pf+ + pi+)YLML

(p̂) φL
(
p
)

(B.16)

= −MdG
S
E(Q2)

QmN
√

1 + ηd

∑
L′M ′L

∑
LML
SMS

C11
L′M ′LSM

′
S
C10
LMLSMS

∫
p
φ∗L′
(
|pQ|

)
Y ∗L′M ′L

(p̂Q)

× (2p+ +Q+ + P+)YLML
(p̂) φL

(
p
)

(B.17)

=−2MdG
S
E(Q2)

QmN
√

1 + ηd

∑
L′M ′L

∑
LML
MS

C11
L′M ′L1M ′S

C10
LML1MS

∫ ∞
0

dp
(2π)3 p

2
∫ π

0
dθp sin θp

×
∫ 2π

0
dϕp φ∗L′

(
|pQ|

)
Y ∗L′M ′L

(p̂Q) p+ YLML
(p̂) φL

(
p
)
. (B.18)

The momentum operator p̂+ has the effect to generate the extra factor (2p+ +Q+ + P+). In
the end this factor will only contribute p+, because in the Breit frame we have P = −Q/2 and
we chose Q along the positive z direction so that Q+ = −Q/

√
2(sin θ cosϕ+ i sin θ sinϕ) = 0.

The factor p+ is given by

p+ = −px + i py√
2

= −p√
2

(sin θp cosϕp + i sin θp sinϕp). (B.19)

It acts as a ladder operator on the orbital angular momentum quantum number L.

Magnetic form factor second term

We continue with the second term of the magnetic moment operator which is found by

GM,2(Q2) = 2Md
Q
√

1 + ηd
〈+1 Q/2|µN,i(Q2) i(σ ×Q)+

2mN
|0 −Q/2〉 (B.20)

= 2Md
Q
√

1 + ηd

∑
L′M ′L
S′M ′S

∑
LML
SMS

C11
L′M ′LS

′M ′S
C10
LMLSMS

∫
p′

∫
p
φ∗L′
(
p′
)
Y ∗L′M ′L

(p̂′)

×GSM(Q2) (2π)3δ(p′ − p−Q/2)

× 1
2mN

〈S′M ′S | i(iQz σ̂+,i + iQ+ σ̂z) |SMS〉 YLML
(p̂) φL

(
p
)
, (B.21)
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where we worked out the cross product between the spin operator and the momentum transfer.
Carrying out the integration over p′ reduces the expression to

GM,2(Q2) = MdG
S
M(Q2)

��QmN
√

1 + ηd

∑
L′M ′L
S′M ′S

∑
LML
SMS

C11
L′M ′LS

′M ′S
C10
LMLSMS

×
∫

p
φ∗L′
(
|pQ|

)
Y ∗L′M ′L

(p̂Q)
∑
i=1,2

∑
m′1m

′
2

m1m2

CS
′M ′S

1
2 m
′
1

1
2 m
′
2
CSMS

1
2 m1

1
2 m2

× 〈12m
′
1

1
2m
′
2|��Qz σ̂+,i |12m1

1
2m2〉 YLML

(p̂) φL
(
p
)
, (B.22)

where Qz = Q cancels the momentum transfer in the denominator of the prefactor. By
employing the index notation, we simplified the calculation of the cross product Q× σ. We
treat the spin part separately as follows

SS′SM ′SMS
=
∑
i=1,2

∑
m′1m

′
2

m1m2

CS
′M ′S

1
2 m
′
1

1
2 m
′
2
CSMS

1
2 m1

1
2 m2

〈12m
′
1

1
2m
′
2| σ̂+,i |12m1

1
2m2〉 (B.23)

=
∑
m′1 m

′
2

m1 m2

CS
′M ′S

1
2 m
′
1

1
2 m
′
2
CSMS

1
2 m1

1
2 m2

[√
3
4 −m1(m1 + 1) δm′1(m1+1) δm′2m2

+
√

3
4 −m2(m2 + 1) δm′1m1 δm′2(m2+1)

]
(B.24)

=
∑
m1 m2

[√
3
4 −m1(m1 + 1) CS

′M ′S
1
2 m1+1 1

2 m2
CSMS

1
2 m1

1
2 m2

+
√

3
4 −m2(m2 + 1) CS

′M ′S
1
2 m1

1
2 m2+1 C

SMS
1
2 m1

1
2 m2

]
. (B.25)

Note that we decoupled the spin part into its components, i.e., the spin of the neutron and
proton, in order to evaluate the matrix elements involving the spin operator. With this result,
we obtain the final expression of the second term as

GM,2(Q2) =MdG
S
M(Q2)√

1 + ηd

∑
L′M ′L
S′M ′S

∑
LML
SMS

C11
L′M ′LS

′M ′S
C10
LMLSMS

SS′SM ′SMS

×
∫

p
φ∗L′
(
|pQ|

)
Y ∗L′M ′L

(p̂Q) YLML
(p̂) φL

(
p
)

(B.26)

=MdG
S
M(Q2)√

1 + ηd

∑
L′M ′L
M ′S

∑
LML
MS

C11
L′M ′L1M ′S

C10
LML1MS

S1 1
M ′SMS

×
∫ ∞

0

dp
(2π)3 p

2
∫ π

0
dθp sin θp

∫ 2π

0
dϕp φ∗L′

(
|pQ|

)
Y ∗L′M ′L

(p̂Q) YLML
(p̂) φL

(
p
)
.

(B.27)

This final expression concludes the detailed derivation for the deuteron form factors repre-
sented in a two-body partial-wave basis.
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B.2 Trinucleon form factors

In this section we provide detailed derivations and expressions for the trinucleon charge and
magnetic form factors. Particularly, we employ the one-body charge operator to obtain the
charge form factor, and the one- and two-body current operators to calculate the magnetic
form factor. Because we use Jacobi momenta, the action of the one-body operator is isolated to
the separate particle, while the two-body subsystem is left invariant (see Section 3.2.1). On the
other hand, the two-body operator acts on the quantum numbers of the two-body subsystem
and causes a shift only to the relative momentum of the separate particle. Therefore, we can
identify general parts of the expression that do not change regardless of which electromagnetic
form factor we investigate.

General current operator partial-wave expansion

Before we show the detailed form factor expressions expanded with respect to a three-body
partial-wave basis, we restate the expansion of a general current operator. We find it by
inserting complete sets of momentum states,

〈p′ q′ α′ J ′M′J T ′M′T | Ĵµ |p q αJMJ TMT 〉

=
∫

p′1

∫
q′1

∫
p1

∫
q1
〈p′ q′ α′ J ′M′J T ′M′T |p′1 q′1〉 〈p′1 q′1| Ĵµ |p1 q1〉

× 〈p1 q1|p q αJMJ TMT 〉 . (B.28)

Then, we decouple total angular momentum J and total isospin T , and write the overlap
between the partial-wave states and the momentum states as coupled spherical harmonics to
obtain

=
∫

p′1

∫
q′1

∫
p1

∫
q1

∑
M ′Jm

′
j

MJmj

CJ
′M′J

J ′M ′J j
′mj′ C

JMJ
JMJ jmj

∑
M ′Tm

′
t

MTmt

CT
′M′T

T ′M ′T t
′m′t
CTMTTMT tmt

× Y∗J
′M ′J

L′S′ (p̂′1)
√

(2π)3 δ(p
′
1 − p′)
p′1 p

′ Y∗j
′mj

`′s′ (q̂′1)
√

(2π)3 δ(q
′
1 − q′)
q′1 q
′

× YJMJ
LS (p̂1)

√
(2π)3 δ(p− p1)

p p1
Yjmj`s (q̂1)

√
(2π)3 δ(q − q1)

q q1

× 〈p′1q′1 t′m′t TMT | Ĵµ |p1q1 tmt TMT 〉 . (B.29)

We identify and isolate the parts of the separate particle and the two-body subsystem as
follows

=
∑
M ′Jm

′
j

MJmj

CJ
′M′J

J ′M ′J j
′m′j
CJMJJMJ jmj

∑
M ′Tm

′
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MTmt
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′M′T

T ′M ′T t
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∫
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∫
p1

∫
q1

× (2π)3 δ(p′1 − p′)
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′ Y∗J
′M ′J
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q′1 q
′ YJMJ

LS (p̂1)

× (2π)3 δ(p− p1)
p p1

Y
∗j′m′j
`′s′ (q̂′1) 〈q′1 t′m′t| Ĵµ |q1 tmt〉

δ(q − q1)
q q1

Yjmj`s (q̂1) . (B.30)
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In a next step, we introduce the functions P and Q

=
∑
M ′Jm

′
j

MJmj

CJ
′M′J

J ′M ′J j
′m′j
CJMJJMJ jmj

∑
M ′Tm

′
t

MTmt

CT
′M′T

T ′M ′T t
′m′t
CTMTTMT tmt

× PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (p, p′)Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(q, q
′). (B.31)

They are given by

PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (p, p′) ≡ 1
(2π)3

∫
dp′1

∫
dp1

δ(p′1 − p′)
p′1 p

′ Y∗J
′M ′J

L′S′ (p̂′1)

× 〈p′1 T ′M ′T | Ĵµ |p1 TMT 〉
δ(p− p1)
p p1

YJMJ
LS (p̂1) , (B.32)

Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(q, q
′) ≡ 1

(2π)3

∫
dq′1

∫
dq1

δ(q′1 − q′)
q′1 q
′ Y

∗j′m′j
`′s′ (q̂′1)

× 〈q′1 t′m′t| Ĵµ |q1 tmt〉
δ(q − q1)
q q1

Yjmj`s (q̂1). (B.33)

These two functions parametrize the action of the operator on the quantum numbers and
momentum of the separate particle, Q, or of the two-body subsystem, P. In the following
we give explicit forms of these functions once we replace the general current operator with
specific expressions for the charge and current operators.

B.2.1 One-body charge and magnetic form factor

The one-body charge and current operators act on the separate particle only. As a result, we
can simplify P and use the outcome for both the charge and magnetic form factor. To find
the simplified expression, we begin by decoupling the two-body angular momentum J into its
components:

PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (p, p′) = 1
(2π)3

∫
dp′1

∫
dp1

δ(p′1 − p′)
p′1 p

′ Y∗J
′M ′J

L′S′ (p̂′1)

× 〈p′1 T ′M ′T |p1 TMT 〉
δ(p− p1)
p p1

YJMJ
LS (p̂1) (B.34)

= 1
(2π)3

∫
dp′1

∫
dp1

δ(p′1 − p′)
p′1 p

′

∑
M ′LM

′
S

CJ
′M ′J

L′M ′LS
′M ′S

Y ∗L′M ′L
(p̂′1)

× (2π)3δ(p1 − p′1) δTT ′ δMTM
′
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δ(p− p1)
p p1

×
∑

MLMS

CJMJ
LMLSMS

YLML
(p̂1) 〈S′M ′S |SMS〉 . (B.35)

In a next step we perform the integration over p′1, which yields

PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (p, p′) =
∫

dp1
δ(p1 − p′)
p1 p′
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p p1

×
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MLMS
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LMLSMS

YLML
(p̂1) δSS′ δMSM

′
S
δTT ′ δMTM

′
T
. (B.36)
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Integrating over p1 removes one of the delta functions and the angular integration over p̂1, due
to
∫

dx̂Y ∗`′m′
`
(x̂)Y`m`(x̂) = δ``′ δm`m′` , eliminates the spherical harmonics, so that we obtain

PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (p, p′) =δ(p− p′)
p p′

∑
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(B.37)

=
∑

MLMS

CJ
′M ′J

L′MLS′MS
CJMJ
LMLSMS

δLL′ δSS′ δTT ′ δMTM
′
T

δ(p− p′)
p′p

. (B.38)

This last expression is the final result for P in case the operator is of the one-body type. Note
that the two-body subsystem is diagonal in its quantum numbers.

The isospin part of the one-body operators is practically the same for both form factors
except for a different type of nucleon form factor. That is, the trinucleon charge form factors
depend on the electric nucleon form factors, while the magnetic form factors depend on the
magnetic nucleon form factors. The operator only acts on the isospin quantum number of
the separate particle. Therefore, we address it separately and parametrize it as follows

τMTE/M;T (Q2) = 〈(T ′ 12)TMT |
GSE/M(Q2) +GVE/M(Q2) τ3,z

2 |(T 1
2)TMT 〉 (B.39)

=
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M ′Tm
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MTmt

CTMT1
2 m
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′M ′T
CTMT1

2 mtTMT

× 〈12 m
′
t T
′M ′T |

GSE/M(Q2) +GVE/M(Q2) τ3,z

2 |TMT
1
2 mt〉 (B.40)
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∑
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CTMT1

2 mtTMT
δTT ′ δMTM

′
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δmtm′t
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GSE/M(Q2) +mtG

V
E/M(Q2)

2 (B.41)

=
∑

MT mt

C
1
2 MT
1
2 mtT

′MT
C

1
2 MT
1
2 mtTMT

δTT ′
GSE/M(Q2) +mtG

V
E/M(Q2)

2 , (B.42)

where the subscript E/M denotes the use of the electric or magnetic nucleon form factors
and where we assumed that the isospin of the initial and final state are equal, i.e., T ′ = T
and M′T = MT . Note that we employed t = 1/2 for the nucleon isospin, T = 1/2 for the
trinucleon isospin, and that MT = 1/2 or −1/2 determines if the nucleus is a helion or a
triton, respectively. If we make the point particle assumption, then GSE(Q2) = GVE (Q2) = 1
and GSM(Q2) = 0.880µN GVM(Q2) = 4.706µN .

Charge form factor

The charge form factor due to the one-body charge operator expanded in a partial-wave basis
is given by

FC(Q) = 1
Z
〈M′J = +1/2|ρ̂(−3)(Q)|MJ = +1/2〉 . (B.43)
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As a first step, we insert complete sets of partial-wave states:

FC(Q) = 3
Z

∑
α′α

∫
dp′ p′2

∫
dq′ q′2

∫
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∫
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= 3
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where the factor 3 originates from the antisymmetry of the wave functions and P is given by
Eq. (B.38). The effect of the one-body charge operator on Q is given by

Q
m′jm

′
tmjmt

(`′s′)j′ 12 (`s)j 1
2
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Performing the integration over q′1 and q1 yields
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2

(Q, q, q′) =
∑
m′`m

′
s

m`ms

C
j′m′j
`′m′

`
s′m′s
Cjmj`m`sms

∫
dq̂1 Y

∗
`′m′

`
(

̂
qq̂1 −

2
3Q) 〈s′m′s|sms〉

×
δ(|qq̂1 + 2

3Q| − q′)
q′ |qq̂1 + 2

3Q|
Y`m`(q̂1) (B.47)
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∑
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Combining this result with the outcomes of Eq. (B.38) and Eq. (B.42) yields the expression
for the trinucleon charge form factor

FC(Q) = 3
Z

∑
α

τMTE;T (Q2)
∑
m`

∫
dp p2

∫
dq φ∗α(p, |q 2

3Q
|)Y ∗`m`(q̂ 2

3Q
) Y`m`(q̂) φα(p, q), (B.49)

where the value ofMT determines which trinucleon is calculated. Note that the expression
is diagonal in all quantum numbers.

Magnetic form factor

We continue by deriving the expression for the magnetic form factor. The trinucleon magnetic
form factor resulting from the one-body current operator expanded in a partial-wave basis is
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defined by

FLO
M (Q) =−2mN

Q
〈M′J = +1/2|̂(−2)

+ (Q)|MJ = −1/2〉 . (B.50)

To start, we insert complete sets of partial-wave states and parametrize the resulting expression
with the functions P and Q

FLO
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with P given by Eq. (B.38). The impact on the form of Q due to the one-body magnetic
operator is given by

Q
m′jm

′
tmjmt

(`′s′)j′ 12 (`s)j 1
2

(Q, q, q′) = 1
(2π)3

∫
dq′1

∫
dq1

δ(q′1 − q′)
q′1 q
′ Y

∗j′m′j
`′s′ (q̂′1)

× 〈q′1 t′m′t|̂
(−2)
+ |q1 tmt〉

δ(q − q1)
q q1

Yjmj`s (q̂1) (B.52)

= e

2mN

1
(2π)3

∫
dq′1

∫
dq1

δ(q′1 − q′)
q′1 q
′ Y

∗j′m′j
`′s′ (q̂′1)

× (2π)3δ(q1 − q′1 −
2
3Q)

[
2 τMTE;T (Q2) q̂+ + τMTM;T (Q2) i(σ ×Q)+

]
× δ(q − q1)

q q1
Yjmj`s (q̂1) . (B.53)

Note that the first term depends on the electric isospin function τMTe;T (Q2), while the second
term depends on the magnetic isospin function τMTM;T (Q2). In the next step, we perform the
integrations over q′1 and q1:

Q
m′jm

′
tmjmt

(`′s′)j′ 12 (`s)j 1
2

(Q, q, q′) = e

2mN

∫
dq̂1 Y

∗j′m′j
`′s′ (

̂
qq̂1 −

2
3Q)

δ(|qq̂1 + 2
3Q| − q′)

q′ |qq̂1 + 2
3Q|

×
[
2 τMTE;T (Q2) q̂+ + τMTM;T (Q2)Qσ̂+

]
Yjmj`s (q̂) . (B.54)

Using the notation q 2
3Q

and decoupling the coupled spherical harmonics gives

= e

2mN

∑
m′`m

′
s

m`ms

C
j′m′j
`′m′

`
s′m′s
Cjmj`m`sms

∫
dq̂ Y ∗`′m′

`
(q̂ 2

3Q
)

×
[ 2√

2
τMTE;T T (Q2)(−qx − iqy) δmsm′s + τMTM;T T (Q2)Q 〈12m

′
s| σ̂+ |

1
2ms〉

]
Y`m`(q̂) . (B.55)
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Substituting this result, together with the result obtained in Eq. (B.38) into Eq. (B.51) we
find the final expression for the LO magnetic form factor,

FLO
M (Q) =−3e

Q

∑
α,{`′,j′}

∑
m′j

MJmj

∑
m′`m

′
s

m`ms

C
1
2

1
2

JMJ j′m
′
j
C

1
2 −

1
2

JMJ jmj

∫
dp p2

∫
dq φ∗α′(p, |q 2

3Q
|)Y ∗`′m′

`
(q̂ 2

3Q
)

× C
j′m′j
`′m′

`
1
2 m
′
s
Cjmj
`m`

1
2 ms

[√
2 τMTE;T (Q2) (−qx − iqy) δm′sms

+ τMTM;T (Q2)Q 〈12m
′
s| σ̂+ |

1
2ms〉

]
Y`m`(q̂)φα(p, q). (B.56)

We denote this result with LO to distinguish between the correction to the magnetic form
factor arising from the leading 2BCs.

B.2.2 Two-body magnetic form factor

The correction to the trinucleon magnetic form factor arising from the NLO 2BC operators
is found by replacing ̂(−2)

+ (Q) with ̂(−1)
+ (Q) in Eq. (B.50), and hence calculating the effect

of this operator on Q and P. For the two-body current, the impact on Q is limited to a shift
in the momentum of the separate particle,

Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(Q, q, q
′) = 1

(2π)3

∫
dq′1

∫
dq1

δ(q′1 − q′)
q′1 q
′

∑
m′
`
m′s

C
j′m′j
`′m′

`
s′m′s

Y ∗`′m′
`
(q̂′1) 〈s′m′s|

× (2π)3δ(q′1 − q1 −
1
3Q)δ(q − q1)

q q1

∑
m`ms

Cjmj`m`sms
Y`m`(q̂1) |sms〉 .

(B.57)

Integrating over q′1 gives

Q
m′jm

′
tmjmt

(`′s′)j′t′ (`s)jt(Q, q, q
′) =

∫
dq1

δ(|q1 − 1/3Q| − q′)
q1 q′

∑
m′
`
m′s

C
j′m′j
`′m′

`
s′m′s

Y ∗`′m′
`
(

̂
q1 −

1
3Q)

× δ(q − q1)
q q1

∑
m`ms

Cjmj`m`sms
Y`m`(q̂1) δss′ δmsm′s (B.58)

=
∑
m′`

m`ms

C
j′m′j
`′m′

`
s′m′s
Cjmj`m`sms

δss′

×
∫

dq̂1 Y
∗
`′m′

`
(

̂
qq̂1 −

1
3Q) δ(|qq̂1 − 1/3Q| − q′)

q q′
Y`m`(q̂1) (B.59)

=
∑
m′`

m`ms

C
j′m′j
`′m′

`
s′m′s
Cjmj`m`sms

δss′

×
∫

dq̂ Y ∗`′m′
`
(q̂ 1

3Q
)
δ(q′ − |q 1

3Q
|)

q′ |q 1
3Q
|

Y`m`(q̂) , (B.60)

where in the last step we introduced the notation q 1
3Q

= q − Q. On the other hand, the
2BC operator acts on the quantum numbers of the two-body subsystem so that P does not
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simplify as in the one-body operator case. We find

PM
′
JM
′
TMJMT

(L′S′)J ′T ′ (LS)JT (Q, p, p′) = 1
(2π)3

∫
dp′1

∫
dp1

δ(p′1 − p′)
p′1 p

′ Y∗J
′M ′J

L′S′ (p̂′1)

× 〈p′1 T ′M ′T | ̂
(−1)
+ (Q) |p1 TMT 〉

δ(p− p1)
p p1

YJMJ
LS (p̂1) . (B.61)

Substituting the expression for the NLO 2BC yields

= 1
(2π)3

∑
M ′LM

′
S

MLMS

CJ
′M ′J

L′M ′LS
′M ′S
CJMJ
LMLSMS

∫
dp′1

∫
dp1

δ(p′1 − p′)
p′1 p

′ Y ∗L′M ′L
(p̂′1)

× 〈p′1 S′M ′S |
(
σ1+ − q1+

σ1 · q1
ω2
q1

)
σ2 · q2
ω2
q2

+ 1� 2 |p1 SMS〉

× 〈T ′M ′T | i(τ1 × τ2)z |TMT 〉
δ(p− p1)
p p1

YLML
(p̂1) (B.62)

= 1
(2π)3

∑
M ′LM

′
S

MLMS

CJ
′M ′J

L′M ′LS
′M ′S
CJMJ
LMLSMS

∫
dp̂′

∫
dp̂Y ∗L′M ′L(p̂′)

× ΣM ′SMS

S′S (Q,p′,p) 〈T ′M ′T | i(τ1 × τ2)z |TMT 〉YLML
(p̂) , (B.63)

where we introduced the following function

ΣM ′SMS

S′S (Q,p′,p) =
∑

m′s1m
′
s2

ms1ms2

CS
′M ′S

1
2 m
′
s1

1
2 m
′
s2
CSMS

1
2 ms1

1
2 ms2

× 〈p′ 1
2m
′
s1

1
2m
′
s2 |
(
σ1+ − q1+

σ1 · q1
ω2
q1

)
σ2 · q2
ω2
q2

+ 1� 2 |p 1
2ms1

1
2ms2〉,

(B.64)

which summarizes the action of the spin and momentum operators. Recall that q1 = −p′ +
p + Q/2 and q2 = p′ − p + Q/2. If we combine the results from Eq. (B.60) and Eq. (B.63),
then the trinucleon magnetic form factor at NLO becomes

FNLO
M (Q) =3

√
2mN

Q(2π)3
e g2

a

(2Fπ)2 G
V
E (Q2)

∑
α′α

∑
M ′Jm

′
j

MJmj

C
1
2

1
2

J ′M ′J j
′m′j
C

1
2 −

1
2

JMJ jmj

∑
m′`

m`ms

C
j′m′j
`′m′

`
1
2 ms
Cjmj
`m`

1
2 ms

×
∑

M ′LM
′
S

MLMS

CJ
′M ′J

L′M ′LS
′M ′S
CJMJ
LMLSMS

∫
dp′

∫
dp

∫
dq φ∗α′(p′, |q 1

3Q
|)Y ∗L′M ′L(p̂′)

× Y ∗`′m′
`
(q̂ 1

3Q
) ΓMTT ′T ΣM ′SMS

S′S (Q,p′,p)Y`m`(q̂) YLML
(p̂) φα(p, q). (B.65)

Note that now we employed NLO to denote the correction to the magnetic form factor from
the leading 2BCs. The isospin dependence is accounted for in the function ΓMTT ′T , which is
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given by

ΓMTT ′T =
∑

M ′TMT

∑
mt

C
1
2MT
T ′M ′T

1
2mt
C

1
2 MT
TMT

1
2 mt
〈T ′M ′T | i(τ1 × τ2)z |TMT 〉 . (B.66)

Compared to the expression resulting from the one-body current operator, the result in
Eq. (B.65) is much more costly to calculate numerically: the expression is nondiagonal in all
the quantum numbers represented by the index α and involves a nine-dimensional integral
over the momenta p, p′, and q.





C
NLO MAGNETIC MOMENT

OPERATOR

The following two sections are devoted to the detailed derivations to the equations presented in
Sections 5.4.2 and 5.4.3. In the first section, we calculate the Fourier transform of the seagull
and pion-in-flight contribution to the NLO 2BC. Then in the second section, we proceed
by calculating the NLO corrections to the magnetic moment operator with the expressions
obtained in the first section.

C.1 Fourier transform of NLO current operator

In the following, we provide the derivations for the Fourier transform of the seagull js and
pion-in-flight jπ contributions to the NLO current operator. We start with the pion-in-flight
contribution. Its Fourier transform is given by

jπ(Q, r,RNN) =
∫

q1
eiq1·r1

∫
q2
eiq2·r2 jπ(Q,q1,q2) (2π)3δ(q1 + q2 −Q)

=− ie g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z
∫

q1
eiq1·r1

∫
q2
eiq2·r2 (2π)3δ(q1 + q2 −Q)

× (q2 − q1) σ1 · q1
ω2
q1

σ2 · q2
ω2
q2

, (C.1)

where the delta function enforces momentum conservation. Carrying out the integration over
the delta function yields

jπ(Q, r,RNN) =− ie g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z
∫

q1
eiq1·r1 ei(Q−q1)·r2

[
(Q− q1)− q1

]
× σ1 · q1

ω2
q1

σ2 · (Q− q1)
m2
π + (Q− q1)2 . (C.2)

We rewrite the exponentials to express them in terms of relative and center-of-mass coordinates
as follows

eiq1·r1ei(Q−q1)·r2 =eiq1·(r1−r2)eiQ·r2

=eiq1·reiQ·(RNN− r
2 )

=ei(q1−Q
2 )·reiQ·RNN .

137
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Inserting this result and making the substitution p = q1 −Q/2 yields

jπ(Q, r,RNN) =− 2ie g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z eiQ·RNN

∫
p

p
σ1 · (p + Q

2 )
m2
π + (p + Q

2 )2
σ2 · (p− Q

2 )
m2
π + (p− Q

2 )2

=2e g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z eiQ·RNN

[
σ1 ·

(Q
2 − i∇r

)]
×
[
σ2 ·

(Q
2 + i∇r

)]
∇rI(r,Q), (C.3)

where we used p→ −i∇r to obtain the last equality and defined

I(r,Q) ≡
∫

p

eip·r[
m2
π + (p− Q

2 )2][m2
π + (p + Q

2 )2] . (C.4)

The result in Eq. (C.3) is the Fourier transformed pion-in-flight current in terms of relative
and center-of-mass coordinates.

We continue by evaluating the Fourier transform of the seagull term. It is given by

js(Q, r,RNN) =
∫

q1
eiq1·r1

∫
q2
eiq2·r2 js(Q,q1,q2) (2π)3δ(q1 + q2 −Q)

=− ie g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z
∫

q1
eiq1·r1

∫
q2
eiq2·r2 (2π)3δ(q1 + q2 −Q)

×
[
σ1
σ2 · q2
ω2
q2

− σ2
σ1 · q1
ω2
q1

]
. (C.5)

Performing the integration over the delta function yields two terms:

js(Q, r,RNN) =− ie g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z
[
eiQ·r1

∫
q2
e−iq2·rσ1

σ2 · q2
ω2
q2

− eiQ·r2

∫
q1
eiq1·rσ2

σ1 · q1
ω2
q1

]

=− ie g
2
A

F 2
π

GVE (Q2) (τ1 × τ2)z
[
− ieiQ·r1σ1

(
σ2 ·∇r

) ∫
q2

e−iq2·r

ω2
q2

+ ieiQ·r2σ2
(
σ1 ·∇r

) ∫
q1

eiq1·r

ω2
q1

]
=e g2

A

4πF 2
π

GVE (Q2) (τ1 × τ2)z
[
eiQ·r1σ1

(
σ2 ·∇r

)
+ eiQ·r2σ2

(
σ1 ·∇r

)]e−mr
r

=eg
2
Am

2

4πF 2
π

GVE (Q2) (τ1 × τ2)z eiQ·RNN

[
ei

Q
2 ·rσ1(σ2 · r̂) + e−i

Q
2 ·rσ2(σ1 · r̂)

]
f(r),

(C.6)

where we used q1 → −i∇r and q2 → −i∇r to obtain the second equality and where r̂ = r
|r| .

Furthermore, we defined

f(r) ≡
(

1 + 1
mr

)
e−mr

mr
. (C.7)

The final expression given by Eq. (C.6) provides the Fourier transformed seagull current.
Both Fourier transforms of the seagull and pion-in-flight current are split into a center-
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of-mass and relative part. This allows us to separate out the center-of-mass motion of the
two-body system as follows

j(−1)(Q, r,RNN)→ eiQ·RNNj(−1)(Q, r). (C.8)

In fact, this observation is true, not only for the NLO 2BC, but for any 2BC operator as a
result of its translational invariance with respect to the two-body center of mass.

C.2 Intrinsic magnetic moment operator

As a result of the separation of the 2BC operators into a part that only depends on the
relative or center-of-mass coordinate, the magnetic moment operator splits into two terms:
the intrinsic and Sachs term (see Section 5.4.3). It turns out that, for the NLO contribution
to the magnetic moment operator, the Sachs term only depends on the one-pion-exchange
potential. On the other hand, the intrinsic term is determined by the NLO 2BC operator.
The contributions to the magnetic moment operator beyond leading order coming from the
NLO 2BC are thus given by

µNLO
2b (r) = µNLO, int

2b (r) + µNLO, Sachs
2b (r). (C.9)

In the following we will derive the expression for the intrinsic magnetic moment operator
at NLO. This is obtained by filling out the expression for the NLO 2BC into

µNLO, int
2b (r) = − i2 lim

Q→0
eiQ·RNN

(
∇Q × j(−1)(Q, r)

)
. (C.10)

Because the NLO 2BC operator consists of two terms, the seagull and pion in flight, the
intrinsic part of the magnetic moment operator will be made up of two terms:

µNLO, int
2b (r) = µint, s

2b (r) + µint, π
2b (r), (C.11)

where the first term is obtained by substituting Eq. (C.6) and the second by substituting
Eq. (C.3).

We start with the seagull term. Substituting the expression for the seagull term, Eq. (C.6),
into Eq. (C.10) gives

µint, s
2b (r) =− e i2

g2
Am

2

4πF 2
π

(τ1 × τ2)z

× lim
Q→0

eiQ·RNN

[
∇Q × ei

Q
2 ·rσ1(σ2 · r̂) + ∇Q × e−i

Q
2 ·rσ2(σ1 · r̂)

]
f(r)

=− e i2
g2
Am

2

4πF 2
π

(τ1 × τ2)z

× lim
Q→0

eiQ·RNN

[
i

2e
iQ

2 ·rr× σ1(σ2 · r̂) + −i2 e−i
Q
2 ·rr× σ2(σ1 · r̂)

]
f(r)

=− e g
2
Am

2

16πF 2
π

(τ1 × τ2)z
[
r̂ × σ1(σ2 · r̂)− r̂ × σ2(σ1 · r̂)

]
r f(r). (C.12)
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Which can be rewritten as

µint, s
2b (r) = −e g

2
Am

2

16πF 2
π

(τ1 × τ2)z
{
r̂
[
r̂ · (σ1 × σ2)

]
− σ1 × σ2

}
r f(r), (C.13)

to give the final result for the intrinsic seagull contribution to the magnetic moment operator.
The calculation of the pion-in-flight term requires more work. Substituting expression

Eq. (C.3), into Eq. (C.10) gives

µint, π
2b (r) =2 e g

2
A

F 2
π

(τ1 × τ2)z

× lim
Q→0

eiQ·RNN∇Q ×
[
σ1 ·

(Q
2 − i∇r

)][
σ2 ·

(Q
2 + i∇r

)]
∇rI(r,Q). (C.14)

Simplifying this expression comes down to calculating the effect of the curl on the three
factors:

∇Q ×
[
σ1 ·

(Q
2 − i∇r

)][
σ2 ·

(Q
2 + i∇r

)]
∇rI(r,Q). (C.15)

Therefore, we can identify three separate parts before we calculate the curl,

F1(r,Q) =∇Q ×
(
σ1 ·

Q
2

)(
σ2 ·

Q
2

)
∇rI(r,Q), (C.16a)

F2(r,Q) =∇Q ×
(
− σ1 · i∇r

)(
σ2 · i∇r

)
∇rI(r,Q), (C.16b)

F3(r,Q) =∇Q ×
[(
σ1 ·

Q
2

)(
σ2 · i∇r

)
∇rI(r,Q)−

(
σ1 · i∇r

)(
σ2 ·

Q
2

)
∇rI(r,Q)

]
.

(C.16c)

The first term gives

F1(r,Q) =∇Q

(
σ1 ·

Q
2

)(
σ2 ·

Q
2

)
×∇rI(r,Q) +O(Q2)

=
(
σ1 ·

Q
2

)
σ2 ×∇rI(r,Q) +

(
σ2 ·

Q
2

)
σ1 ×∇rI(r,Q) +O(Q2). (C.17)

This last expression trivially gives zero when taking the limit Q → 0. The second term
evaluates to

F2(r,Q) =
(
− σ1 · i∇r

)(
σ2 · i∇r

)
∇Q ×∇rI(r,Q), (C.18)

which also vanishes in the limit Q→ 0 because of

lim
Q→0

∇Q∇rI(r,Q) = lim
Q→0

∫
p

∇Q p eip·r[
m2
π + (p− Q

2 )2][m2
π + (p + Q

2 )2]
=1

2 lim
Q→0

∫
p

p eip·r
[

−p− Q
2[

m2
π + (p + Q

2 )2]2[m2
π + (p− Q

2
]2)

+
p− Q

2[
m2
π + (p− Q

2 )2]2[m2
π + (p + Q

2 )2]
]
, (C.19)

(C.20)
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which straithforwardly gives

=1
2

∫
p

p eip·r
[

−p(
m2
π + p2)3 + p(

m2
π + p2)3

]
= 0.

Finally, the third term yields

F3(r,Q) = σ1 ×
(
σ2 · i∇r

)
∇rI(r,Q)− σ2 ×

(
σ1 · i∇r

)
∇rI(r,Q) +O(Q). (C.21)

The terms linear in Q will vanish upon taking the limit to zero momentum transfer. What is
still left, is the double derivative of the integral represented by I(r,Q). The integral simplifies
after taking the limit, such that we perform this as a first step:

lim
Q→0

I(r,Q) = I(r) = π2

mπ
e−mπr. (C.22)

Taking a first gradient gives

∇r
π2

mπ
e−mπr = −π2e−mπrr̂. (C.23)

We use this result to take the second derivative as follows(
σi ·∇r

)
∇r

π2

mπ
e−mπr =

(
σx

∂

∂x
+ σy

∂

∂y
+ σz

∂

∂z

)
(−π2)e−mπrr̂, (C.24)

which is easier to calculate if we regard the x coordinate only:

⇒ ∂

∂x
(e−mπrr̂) = e−mπr

∂

∂x

(r
r

)
+ r̂

∂

∂x
(e−mπr)

= e−mπr
[
∂r
∂x

1
r

+ r ∂
∂x

(1
r

)]
+ r̂

∂

∂x
(e−mπr)

= e−mπr
[
î

r
− rx
r3

]
− mπx

r
r̂ e−mπr.

If we perform the same steps for the other two coordinates and write everything in terms of
vectors again, we find(

σi ·∇r

)
∇r

π2

mπ
e−mπr =

[
σi
e−mπr

r
− (σi · r̂)r̂

1
r
e−mπr −mπ(σi · r̂)r̂e−mπr

]
(−π)2

=mππ
2
[(

1 + 1
mπr

)
(r̂ · σi)r̂ −

1
mπr

σi

]
e−mπr. (C.25)

Hence, the final result for F3(r,Q) in the limit of zero momentum transfer is given by

lim
Q→0

F3(r,Q) =mππ
2[(r̂ · σ2)(σ1 × r̂)− (r̂ · σ1)(σ2 × r̂

]
mπ r f(r)

− 2mππ
2(σ1 × σ2)

(
e−mπr

mπr

)
. (C.26)
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Combining all the results yields the expression for the pion-in-flight magnetic moment operator

µint, π
2b (r) =eg2

Amπ

16πF 2
π

(τ1 × τ2)z
[
(r̂ · σ2)(σ1 × r̂)− (r̂ · σ1)(σ2 × r̂)

]
mπ r f(r)

− eg2
Amπ

8πF 2
π

(τ1 × τ2)z(σ1 × σ2)e
−mπr

mπr
. (C.27)

We can find a final expression for the total intrinsic magnetic moment operator by using
the identity

A · (B×C)D = (A ·D)(B×C) + (B ·D)(C×A) + (C ·D)(A×B), (C.28)

such that it becomes

µNLO, int
2b (r) = µint, π

2b (r) + µint, s
2b (r)

= −g
2
Amπ

8πF 2
π

(τ1 × τ2)z
[(

1 + 1
mπr

)
((σ1 × σ2) · r̂)r̂ − (σ1 × σ2)

]
e−mπr. (C.29)

This result is the final expression for the intrinsic magnetic moment operator at NLO.



D
THREE-BODY TALMI-MOSHINSKY

TRANSFORMATION

In the following we derive the transformation that takes three-body Jacobi HO states to single-
particle HO states. To achieve this goal, we follow the discussions presented in Refs. [262,
263].

We begin with j-coupled HO single-particle states and couple the angular momentum of
particle 1 and 2 to Jtot, and, successively, couple the resulting angular momentum of the
two-body subsystem with the angular momentum of the third particle (and equivalently for
the isospin):

|1 2 3〉 ≡ |n1(l1s1)j1mj1t1mt1 , n2(l2s2)j2mj2t2mt2 , n(ls)jmjtmt〉

=
∑

JtotJtot

∑
TT
CJtotMJtot
j1mj1j2mj2

CJtotMJtot
JtotMJtotjmj

CTMT
t1mt1 t2mt2

CTMTTMT tmt

× |{[n1(l1s1)j1n2(l2s2)j2]JtotMJtotn(ls)j}JtotMJtot{[t1t2]Tt}TMT 〉 , (D.1)

with MJtot = mj1 + mj2 + mj and MTtot = mt1 + mt2 + mt. Note that the subscript ‘tot’
distinguishes Jtot from the total relative angular momentum J , which arises from J = L + S.
In what follows we define the ket appearing in the last line of Eq. (D.1) as{
{|1〉 |2〉}Jtot |3〉

}JtotMJtot

≡ |{[n1(l1s1)j1n2(l2s2)j2]JtotMJtotn(ls)j}JtotMJtot{[t1t2]Tt}TMT 〉 . (D.2)

The completeness of the three-body center-of-mass and the relative motion in the Jacobi HO
basis is given by ∑

N3NL3NML3N

∑
β

|N3NL3NML3Nβ〉 〈N3NL3NML3Nβ| = 1, (D.3)

where the index collects the quantum numbers β = {N,L, S, J, n, l, j,J ,MJ , T, T ,MT }
and where |β〉 is the state defined in Eq. (5.75). Recoupling these states to total angular
momentum Jtot yields∑

N3NL3N

∑
β

∑
JtotMJtot

{
|N3NL3N〉 |β〉

}JtotMJtot
{
〈N3NL3N| 〈β|

}JtotMJtot = 1, (D.4)

where the collective index β no longer containsMJ . Inserting this set of complete states in
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Eq. (D.1) gives

|1 2 3〉 ≡ |n1(l1s1)j1mj1t1mt1 , n2(l2s2)j2mj2t2mt2 , n(ls)jmjtmt〉

=
∑

JtotJtot

∑
TT
CJtotMJtot
j1mj1j2mj2

CJtotMJtot
JtotMJtotjmj

CTMT
t1mt1 t2mt2

CTMTTMT tmt

× T
{
|N3NL3N〉 |β〉

}JtotMJtot , (D.5)

with the overlap T defined by

T ≡
{
〈N3NL3N| 〈β|

}JtotMJtot
{
{|1〉 |2〉}Jtot |3〉

}JtotMJtot . (D.6)

Accordingly, the transformation to singe-particle states amounts to finding an expression
for the overlap T . This can be done by considering the quantum numbers of the two-body
subsystem and the spectator particle separately. Consequently, we have to perform two Talmi-
Moshinsky transformations: one transformation applies to the two nucleon single-particle
state constructed from particle 1 and 2, and the two-body center-of-mass and relative motion,
while the second transfromation applies to the single-particle state of the third particle and
the two-body state to the three-body center-of-mass and relative motion.

We start by examining the two-body subsystem. As a first step, we recouple to a ΛS-
coupling:

|[(l1s1)j1(l1s1)j1]Jtot〉 =
∑
ΛS

̂1 ̂2 Λ̂ Ŝ


l1 s1 j1
l2 s2 j2
Λ S Jtot

 |[(l1l2)Λ(s1s2)S]Jtot〉 . (D.7)

Then, we perform the Talmi-Moshinsky transformation for the single-particle momenta k1
and k1 to the center-of-mass PNN and relative momenta p

|[n1l1(k1), n2l2(k2)]Λ〉 =
∑

NNN LNN
N L

〈NNNN(LNNL)Λ|n1 n2(l1 l2)Λ〉d=1

× |[NNNLNN(P̃NN)NL(p̃)]Λ〉 . (D.8)

These two steps conclude the first part with respect to the two-body subsystem.
Before we make the Talmi-Moshinsky transformation for the spectator particle, we have

to perform two angular-momenta recouplings. The first one consists of decoupling the angular
momentum of the spectator particle j and coupling its orbital angular momentum l with the
total orbital angular momentum of the two-body subsystem Λ to the total orbital angular
momentum L, and similar for the spins, so that

|[(ΛS)Jtot(ls)j]Jtot〉 =
∑
LS

Ĵtot ̂ L̂ Ŝ


Λ S Jtot
l s j

L S Jtot

 |[(Λl)L(Ss)S]Jtot〉 . (D.9)

Subsequently, we recouple the orbital angular momenta LNN and l to I, to then couple I and
L to the total orbital angular momentum L:

|[(LNNL)Λl]L〉 =
∑
I

(−1)L+l+Λ+I Λ̂ Î
{
l LNN I

L L Λ

}
|[(LNNl)IL]L〉 . (D.10)
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The second Talmi-Moshinsky transformation relates the center-of-mass momentum of the
two-body subsystem and the spectator momentum to the second Jacobi momentum q and
the three-body center-of-mass momentum through

(
P3N

q

)
=

√ d
d+1

√
d
d+1√

d
d+1 −

√
d
d+1

(PNN
k3

)
, (D.11)

with d = 2, which in HO brackets becomes

|[NNNLNN(PNN)nl(k3)]I〉 =
∑

N3NL3N
n3l3

〈N3Nn3(L3Nl3)I|NNN n(LNN l)I〉d=2

× |[N3NL3N(P3N)n3l3(q)]I〉 . (D.12)

The next two steps eliminate the orbital angular momentum of the center-of-mass mo-
mentum L3N, given that

{
〈NNNLNN| 〈β|

}JtotMJtot is independent of it. First, we couple the
orbital angular momenta L and l3 to L3 and, successively, couple L3 and L3N to the total
orbital angular momentum L:

|[(L3Nl3)IL]L〉 =
∑
L3

(−1)L3N+l3+L+L Î L̂3

{
L3N l3 I

L L L3

}
|[L3N(l3L)L3]L〉 . (D.13)

Additionally, the order of the coupling is reversed from (l3L)L3 to (Ll3)L3, which adds a
phase (−1)l3+L−L3 according to the Clebsch-Gordan symmetry relations. Second, we separate
the center-of-mass orbital angular momentum L3N from L3 and couple L3 with the total spin
S to the total relative angular momentum J3, which yields

|[(L3NL3)LS]Jtot〉 =
∑
J3

(−1)L3N+L3+S+Jtot L̂ Ĵ3

{
L3N L3 L
S Jtot J3

}
|[L3N(L3S)J3]Jtot〉 .

(D.14)

In the final step before collecting all terms, we change from a ΛS-coupling to a Jj3-coupling,
which introduces the relative angular momenta J and j3:

|[(Λl3)L3(Ss)S]J3〉 =
∑
J j3

L̂3 Ŝ Ĵ ̂3


L l3 L3
S s S
J j3 J3

 |[(ΛS)J(l3s)j3]J3〉 . (D.15)

The transformation from a three-body Jacobi HO basis to a single-particle HO basis is then
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given by combining all results obtained above into{
{|1〉 |2〉}Jtot |3〉

}JtotMJtot =
∑
ΛS

∑
NNNLNN
NL

∑
LS

∑
I

∑
N3NL3N
n3 l3

∑
L3

∑
J3

∑
J j3

× ̂1 ̂2 Λ̂ Ŝ


l1 s1 j1
l2 s2 j2
Λ S Jtot


× 〈NNNN(LNNL)Λ|n1 n2(l1 l2)Λ〉d=1

× Ĵtot ̂ L̂ Ŝ


Λ S Jtot
l s j

L S Jtot


× (−1)L+l+Λ+I Λ̂ Î

{
l LNN I

L L Λ

}
× 〈N3Nn3(L3Nl3)I|NNN n(LNN l)I〉d=2

× (−1)L3N+l3+L+L Î L̂3

{
L3N l3 I

L L L3

}
(−1)l3+L−L3

× (−1)L3N+L3+S+Jtot L̂ Ĵ3

{
L3N L3 L
S Jtot J3

}

× L̂3 Ŝ Ĵ ̂3


L l3 L3
S s S
J j3 J3


×
{
|NNNLNN〉 |β〉

}JtotMJtot . (D.16)

Multiplying the state
{
〈N ′NNL′NN| 〈β|

′ }JtotMJtot from the left to the above result creates the
following Kronecker deltas

δN3NN ′3N
δL3NL′3N

δNN ′δLL′δSS′δjj′δn3n′3
δl3l′3δj3j′3δJ3J ′3

, (D.17)
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such that the overlap T becomes

T =
∑
Λ

∑
NNNLNN

∑
LS

∑
I

∑
L3

× ̂1 ̂2 Λ̂ Ŝ


l1 s1 j1
l2 s2 j2
Λ S Jtot


× 〈NNNN(LNNL)Λ|n1 n2(l1 l2)Λ〉d=1

× Ĵtot ̂ L̂ Ŝ


Λ S Jtot
l s j

L S Jtot


× (−1)L+l+Λ+I Λ̂ Î

{
l LNN I

L L Λ

}
× 〈N3Nn3(L3Nl3)I|NNN n(LNN l)I〉d=2

× (−1)L3N+l3+L+L Î L̂3

{
L3N l3 I

L L L3

}
(−1)l3+L−L3

× (−1)L3N+L3+S+Jtot L̂ Ĵ3

{
L3N L3 L
S Jtot J3

}

× L̂3 Ŝ Ĵ ̂3


L l3 L3
S s S
J j3 J3

 . (D.18)

We restate Eq. (D.5) and decouple the angular momentum Jtot, to find the final transfor-
mation relation

|1 2 3〉 ≡ |n1(l1s1)j1mj1t1mt1 , n2(l2s2)j2mj2t2mt2 , n(ls)jmjtmt〉

=
∑

JtotJtot

∑
TT

∑
N3NL3N

∑
β

∑
ML3NMJ3

CJtotMJtot
j1mj1j2mj2

CJtotMJtot
JtotMJtotjmj

CTMT
t1mt1 t2mt2

CTMTTMT tmt

× T CJtotMJtot
L3NML3NJ3MJ3

|N3NL3N〉 |βMJ3〉 . (D.19)





E
EXPERIMENTAL QUANTITIES OF

A =2, 3, AND 6 NUCLEI

In this chapter, we list experimental quantities that are relevant to our discussion of the
nuclei under investigation. In that regard, these quantities include either input values to
calculations or values of observables we compute.

E.1 Deuteron experimental results

The deuteron binding energy is measured by observing gamma rays originating from the
radiative capture of thermal neutrons on 1H, i.e., the reaction 1H(n, γ)2H. Additionally,
the neutron mass can be extracted by summing the binding energy and the mass difference
2H−1H [264].

Atomic masses are determined to very high precision with Penning trap measurements.
To obtain the deuteron mass, cyclotron frequencies of two ions are compared yielding a mass
ratio. This technique reaches relative accuracies of the order of ∼ 10−11, resulting in some of
the most precise measurements in physics. Very recently, a new measurement of the deuteron
mass found a difference of 4.8 standard deviations from the CODATA-2018 [65] value, see
Ref. [265]. However, this difference has no significant effect on results in this thesis since
other inputs to the calculation are less precise. Both the new and the CODATA-2018 value
are presented in Table E.1 in atomic mass units (AMU), while the mass in MeV is only given
for the CODATA-2018 determination.

The deuteron magnetic moment is obtained by measuring the electronic and nuclear
Zeeman level splitting in a deuterium atom. This measurement then provides the ratio of
deuteron to electron magnetic moment [60].

Measuring the electric-quadrupole-interaction constant eqQd/h, which is measured by the
hyperfine splitting in HD or D2 molecules, allows one to extract the deuteron quadrupole
moment. A theoretical calculation of the electric field gradient, i.e., q, for these molecules
then determines the quadrupole moment Qd. This calculation has been performed resulting in
a value Qd = 0.2860(15) fm2 [169]. Later work argued that the high quality analysis of [169]
demands a readjustment [170]. Consequently, they readjusted the value to Qd = 0.2859(3)
fm2, stating that even after the readjustment the error estimate remains too conservative [170].
Theoretical results for Qd compare to this last value.

The determination of the deuteron root-mean-square (rms) charge radius is accomplished
using three different methods:
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Table E.1: Experimental results for the static properties of the deuteron. The deuteron mass is the
only value used as an input in calculations, while the rest of the quantities function as a cross-check
for results. See text for a short explanation how each result is obtained.

Quantity Symbol Numerical Value Ref.

Binding energy εd 2.22456612(48) MeV [264]
Mass Md

energy equivalent 1875.612928(12) MeV [65]
AMU: CODATA 2018 2.013553212745(40) u [65]
AMU: MPIK 2020 2.013553212535(17) u [265]

Magnetic dipole moment µd 0.8574382338(22) µN [65]
Electric quadrupole moment Qd 0.2859(3) fm2 [169, 170]
rms Charge radius 〈r2

ch〉
1/2
d

e-d scattering 2.130(10) fm [219]
d spectroscopy 2.1415(45) fm [67]
µd spectroscopy 2.12562(78) fm [66]
CODATA 2014 2.1413(25) fm [60]
CODATA 2018 2.12799(74) fm [65]

rms Magnetic radius 〈r2
m〉

1/2
d

e-d scattering 2.072(18) fm [219]

1. electron-deuteron (e-d) elastic scattering: Elastic scattering of electrons on deuteron
nuclei measures its charge distribution. The mean-square (ms) charge radius is defined
by the slope at zero momentum transfer of this charge distribution, i.e.,

〈r2
ch〉d = −6dGch(Q2)

dQ2

∣∣∣∣
Q2=0

. (E.1)

The most complete and precise determination of the deuteron charge radius was per-
formed by fitting the world e-d scattering data with a parametrization for the form
factor. This analysis results in a value 〈r2

ch〉
1/2
d = 2.130(10) fm [219].

2. atomic deuterium spectroscopy: Two different methods determine the deuteron
charge rms radius with precision spectroscopy of deuterium (D) atoms. First, one can
study internal transitions in D to deduce the rms charge radius. This is because atomic
S-state energy levels contain a correction term which accounts for the finite size of nuclei
which is denoted by ENS. The leading-order term of ENS is proportional to the ms
charge radius:

E ∝ ENS ∝ 〈r2
d〉. (E.2)

Examining several transitions between energy levels in atomic deuterium results in
〈r2

ch〉
1/2
d = 2.1415(45) fm [67].

Alternatively, the hydrogen-deuterium isotope shift of the 1S - 2S transition is measured.
From this measurement the deuteron-proton ms charge-radius difference can be inferred
very accurately [266]:

〈r2
ch〉d − 〈r2

ch〉p = 3.82007(65)fm. (E.3)
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Using the proton rms charge radius from the latest CODATA-2018 update, i.e., 〈r2
ch〉p =

0.8414(19) fm [65], leads to a value of 〈r2
ch〉

1/2
d = 2.1279(20) fm.

3. muonic deuterium spectroscopy: This experimental method relies on the same
measurement techniques as just described, however, in this case a negative muon orbits
the nucleus instead of an electron. Because the muon is roughly 200 times heavier
than the electron its muonic Bohr radius is much smaller than the electronic Bohr
radius. Therefore, the overlap of the muonic wave function with the nuclear charge
distribution is much larger. In particular, the overlap scales as (mred/me)3, with
mred ≡ (mµmd)/(mµ + md) which for the muon approximately equals mred ≈ 196me,
causing a ∼ 107 times bigger overlap for muonic deuterium. Hence, measuring the Lamb
shift, which is the energy difference between 2P - 2S, results in an extreme sensitivity to
the deuteron ms charge radius. The measurement in muonic deuterium finds a radius of
〈r2

ch〉
1/2
d = 2.12562(13) fm [66], which is very precise and disagrees with the scattering

and atomic spectroscopy measurements. In this sense, there is a deuteron-radius puzzle
in analogy to the proton-radius puzzle.

The three methods described above provide uncorrelated results for the deuteron rms
charge radius. From the electronic deuterium results the CODATA determines the interna-
tionally recomended value. They calculate a combined least-squares adjusted value of the e-d
scattering and H - D spectroscopy results, omitting the muonic deuterium value from their
2018 revision [60]. Moreover, the deuteron-radius puzzle and the proton-radius puzzle are
connected through Eq. (E.3). Therefore, new information about one affects the other and
vice versa.

Recently, two atomic hydrogen measurements [63, 64] and an e-p scattering experiment [62]
obtained values for the proton rms charge radius that agree with the observed radius from
muonic experiments possibly clarifying the proton-radius puzzle. Although they support
the smaller radius found by muonic experiments, they are unable to explain the difference
observed in pre-2010 data, withholding a universal acceptance of the apparent solution.
Nevertheless, the CODATA changed their recommended value for the proton rms charge
radius to rp = 0.8414(19) fm in their latest update [65].1 As stated, this affects the deuteron
rms charge radius value which was updated accordingly, see table Table E.1. The updated
result is still 1.9σ larger than the muonic deuterium value and 2.9σ smaller than the value
from electronic deuterium. Obviously, the possible clarification of the proton-radius puzzle
did not settle the deuteron-radius puzzle yet. New muon-nucleon and muon-nuclei scattering
experiments are under construction to obtain form factors from the interaction with a different
lepton than the electron [267, 268]. These results will contribute to the understanding of the
radius puzzles.

The last experimental result in the table represents the deuteron rms magnetic radius
which is equivalent to the rms charge radius in the sense that it describes the Q2 dependence
of the magnetic form factor at Q2 = 0. In this case, the magnetic form factor is again obtained
by fitting a parametrization to the world e-d scattering data. Calculating the slope of the
magnetic form factor yields an rms magnetic radius of 〈r2

m〉
1/2
d = 2.072(18) fm [59].

1The latest update is not published yet but can be accessed through a web-based database, see Ref. [65].
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Table E.2: Experimental results for the static properties of the triton and the helion. See text for a
short explanation how each value is obtained.

triton helion

Quantity Symbol Numerical Value Numerical Value Ref.

Magnetic dipole moment µt/h 2.9789624659(59) µN −2.127625307(25) µN [65]

rms Charge radius 〈r2
ch〉

1/2
t/h 1.755(86) fm 1.959(30) fm [75]

rms Magnetic radius 〈r2
m〉

1/2
t/h 1.840(181) fm 1.965(153) fm [75]

E.2 Triton and helion experimental results

The triton and helion rms radii are obtained by determining the Q2 dependence of the form
factor at Q2 = 0. Obtaining the form factors is done by fitting a general parametrization to the
elastic electron scattering world data [59, 75]. This approach ensures that the parametrization
contains the complete experimental information. Subsequently, the charge and magnetic rms
radii are extracted by calculating the slope, see Eq. (E.1). The results for the triton and the
helion radii from Ref. [75] are summarized in Table E.2. Later determinations of the radii
from Ref. [59], which were based on the same approach, give identical results.

Unfortunately, the precision of electron scattering experiments, which is around 5% for
charge and 10% for magnetic radii, proves to be insufficient for chiral EFT’s precise results
which have less than a 1% cutoff spread at N3LO, see Section 4.5. As such no clear conclusions
can be made about, for example, 2BC contributions to the radii. At the moment, there are
ongoing efforts of the Charge Radius Experiment with Muonic Atoms (CREMA) collaboration
to measure the Lamb shift of several light muonic atoms, including µ3He, which will result in
more precise radii determinations. Of course, these efforts were triggered by the proton- and
deuteron-radius puzzles as a way to acquire more information. The data analysis to determine
the helion rms charge radius is being carried out right now and a result will be published
soon [74, 269]. The higher precision will allow tests for 2BC and 3N force contributions to
the radii. As an additional benefit, these experiments also provide rms magnetic radii of the
different light nuclei the CREMA collaboration investigates [220].

The magnetic dipole moment of the trinucleons is obtained with nuclear magnetic reso-
nance (NMR) experiments, which measure resonance frequencies of a reference atom and the
atom under investigation. The ratio of these resonance frequencies then yields the magnetic
moment of the nucleus with respect to the reference nucleus [60].

E.3 6Li experimental results

The excitation energy of the first excited state of 6Li is obtained using NRF. This experimental
technique uses a photon beam to irradiate the target of interest and subsequently investigates
the decay of the resonantly excited states. The excitation energy of the first excited state of
6Li was determined by resonantly scattering gamma rays from a 6Li target and subsequently
comparing their energies to known lines from a 56Co reference source [270].

The isovector magnetic dipole transition strength between the first excited state 0+ to
the ground state 1+ is impossible to determine with a direct measurement due to its short
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Table E.3: Experimental results for static properties of 6Li relevant to our work. See text for a short
explanation how each value is obtained.

Quantity Symbol Numerical Value Ref.

Magnetic dipole moment µLi 0.82205667(26) µN [271]
0+ Excited state E0+ 3562.88(10) keV [252, 270]
Transition Strength B(M1 : 0+ → 1+) 15.61(33) µ2

N [223]

half-life of about 80 as [252]. There exist multiple determinations of the transition strength
which are measured using different techniques, and they are either not very precise or rely on
model-dependent extrapolations, see the discussion in Ref. [223]. Therefore, a new experiment
was performed at the S-DALINAC which used the newly developed NRF-based relative SAbs
method [259, 260] in order to provide a model-independent and precise measurement of the
transition.

The magnetic dipole moment of 6Li is obtained with NMR experiments where the deuteron
is used as a reference isotope [271]. Experimental values for the properties of 6Li we mentioned
here are summarized in Table E.3.
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