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1. Introduction

Proper orthogonal decomposition (POD) is a method which comprises the essential information
contained in data sets. Data sets may have their origin in various sources, like, e.g., (uncertain)
measurements of geophysical processes, numerical simulations of (parameter-dependent) complex
physical problems, or (dynamical) imaging. In order to illustrate the POD idea of information
extraction let {y1, . . . , yn} ⊂ Rm denote a vector cloud (which here serves as our data set), where
we suppose at least one of the vectors yj is nonzero. Let us collect the vectors yj in the data matrix

Y = [y1 | . . . | yn] ∈ Rm×n.

Then we have r = rankY ∈ {1, . . . ,min(m,n)}. Our aim now is to find a vector ψ̄ ∈ Rm with length
one which carries as much information of this vector cloud as possible. Of course, we here have to
specify what information in this context means. For this purpose we equip Rm with some inner
product 〈· , ·〉 and induced norm ‖ · ‖. We define the information content of vector y with respect
to some unit vector ψ by the quantity |〈y, ψ〉|. Then we determine the special vector ψ̄ ∈ Rm by
solving the maximization problem

ψ̄ ∈ arg max

{ n∑
j=1

∣∣〈yj , ψ〉∣∣2 ∣∣∣ψ ∈ Rm with ‖ψ‖ = 1

}
. (1)

Notice that the solution to the maximization problem in (1) is not unique. If ψ̄ is a vector, where the
maximum is attained, then −ψ̄ is an optimal solution, too. Let us label the vector ψ̄ by ψ1. We now
iterate this procedure; suppose that for 2 ≤ ` ≤ r we have already computed such `− 1 orthonormal
vectors {ψi}`−1

i=1 , then seek a unit vector ψ` ∈ Rm which is perpendicular to the (`− 1)-dimensional
subspace

V`−1 = span
{
ψ1, . . . , ψ`−1

}
⊂ Rm,
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and which carries as much information of our vector cloud as possible, i.e., satisfies

ψ` = arg max

{ n∑
j=1

∣∣〈yj , ψ〉∣∣2 ∣∣∣ψ ∈ Rm with ‖ψ‖ = 1 and ψ ⊥ V`−1

}
.

It is now straightforward to see that the vectors {ψi}ri=1 are given by

W 1/2ψi = ψ̃i, 1 ≤ i ≤ r, (2)

where the ψ̃i’s solve the eigenvalue problem (cf. [42, 53])

Ȳ Ȳ >ψ̃i = λiψ̃i, i = 1, . . . , r and λ1 ≥ . . . ≥ λr > 0,

where Ȳ = W 1/2Y ∈ Rm×n with the symmetric, positive definite (weighting) matrix

W =
((
〈ei, ej〉

))
1≤i,j≤m. (3)

In (3) the vector ei denotes the i-th unit vector in Rm. The modes {ψi}`i=1 obtained in this way are
called POD Modes or Principal Components of our data cloud. If now m� n ≥ r it is advantageous
to consider the eigenvalue problem

Ȳ >Ȳ φi = λiφi, i = 1, . . . , r and λ1 ≥ . . . ≥ λr > 0,

which admits the same eigenvalues λi as before. The modes ψi and φi, i = 1, . . . , r, are related by
singular value decomposition (SVD):

ψi =
1

σi
Ȳ φi, i = 1, . . . , r,

and σi =
√
λi > 0 is the i-th singular value of the weighted data matrix Ȳ . Notice that in contrast

to (2) the square root matrix W 1/2 is not required.
It is now clear that a vector cloud also could be replaced by a function cloud {y(µj) | j = 1, . . . , n} ⊂ X
in some Hilbert space (X, 〈· , ·〉X), where {µj}nj=1 are parameters which may refer to, e.g., time
instances of a dynamic process, or stochastic variables, and the concept of information extraction
by the above maximization problems directly carries over to this situation. As it is shown in the
next section we can even extend this concept to general Hilbert spaces. This will be formalized
in Section 2.1 below. From the considerations above it also becomes clear that POD is closely
related to SVD. This is outlined in Section 2.2. The POD method for abstract nonlinear evolution
problems is explained in Section 2.3. The Hilbert space perspective also allows us to treat spatially
discrete evolution equations, which include adaptive concepts for the spatial discretization. This
is outlined in Section 2.4. The POD-Galerkin procedure is explained in Section 3, including a
discussion of the treatment of nonlinearities. The certification of the POD method with a priori and
a posteriori error bounds is outlined in Section 4. The POD approach heavily relies on the choice of
the snapshots. Related approaches are discussed in Section 5. In Section 6 we briefly address the
scope of the POD method in the context of optimal control of PDEs. Finally, in Section 7 we sketch
further important research trends related to POD. Our analytical exposition is supported by several
numerical experiments which give an impression of the power of the approach.
POD is one of the most successfully used model reduction techniques for nonlinear dynamical
systems; see, e.g., [23, 42, 53, 75, 90] and the references therein. It is applied in a variety of fields
including fluid dynamics, coherent structures [4, 9] and inverse problems [13]. Moreover in [11] POD
is successfully applied to compute reduced-order controllers. The relationship between POD and
balancing was considered in [61, 82, 101]. An error analysis for nonlinear dynamical systems in finite
dimensions was carried out in [78] and a missing point estimation in models described by POD was
studied in [10].
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2. Proper Orthogonal Decomposition (POD)

In this section we introduce a discrete variant of the POD method, where we follow partially [42,
Section 1.2.1]. For a continuous variant of the POD method and its relationship to the discrete one
we refer the reader to [58] and [42, Sections 1.2.2 and 1.2.3].

2.1. The POD method. Suppose that K,n1, . . . , nK are fixed natural numbers. Let the so-called
snapshot ensembles {ykj }

nk
j=1 ⊂ X be given for 1 ≤ k ≤ K, where X is a separable real Hilbert space.

For POD in complex Hilbert spaces we refer the reader to [97]. We set n = n1 + . . . + nK . To
avoid a trivial case we suppose that at least one of the ykj ’s is nonzero. Then we introduce the finite
dimensional, linear snapshot space

V = span
{
ykj
∣∣ 1 ≤ j ≤ nk and 1 ≤ k ≤ K

}
⊂ X (4)

with finite dimension d ≤ n. We distinguish two cases:

1) The separable Hilbert space X has finite dimension m: Then X is isomorphic to Rm;
see, e.g., [81, p. 47]. We define the finite index set I = {1, . . . ,m}. Clearly, we have
1 ≤ r ≤ min(n,m). Especially in case of X = Rm, the snapshots ykj = (ykij)1≤i≤m are vectors
in Rm for k = 1, . . . ,K.

2) X is infinite-dimensional: Since X is separable, each orthonormal basis of X has countably
many elements. In this case X is isomorphic to the set `2 of sequences {xi}i∈N of complex
numbers which satisfy

∑∞
i=1 |xi|2 <∞; see [81, p. 47], for instance. The index set I is now

the countable, but infinite set N.

The POD method consists in choosing a complete orthonormal basis {ψi}i∈I in X such that for every
` ∈ {1, . . . , r} the information content of the given snapshots ykj is maximized in the following sense:

max
∑̀
i=1

K∑
k=1

nk∑
j=1

αkj
∣∣〈ykj , ψi〉X ∣∣2

s.t. {ψi}`i=1 ⊂ X and 〈ψi, ψj〉X = δij , 1 ≤ i, j ≤ `

 (P`)

with positive weighting parameters αkj , j = 1, . . . , nk and k = 1, . . . ,K. Here, the symbol δij denotes
the Kronecker symbol satisfying δii = 1 and δij = 0 for i 6= j.

An optimal solution {Ψi}`i=1 to (P`) is called a POD basis of rank `. It is proved in [42, Theorem 1.8]
that for every ` ∈ {1, . . . , r} a solution {Ψi}`i=1 to (P`) is characterized by the eigenvalue problem

RΨi = λiΨi for 1 ≤ i ≤ `, (5)

where λ1 ≥ . . . ≥ λr > 0 denote the largest eigenvalues of the linear, bounded, nonnegative and
self-adjoint operator R : X → X given as

RΨ =
K∑
k=1

nk∑
j=1

αkj 〈Ψ, ykj 〉X y
k
j for Ψ ∈ X. (6)

Moreover, the operator R can be presented in the form

R = YY∗ (7)

with the mapping

Y : Rn → X, Y(Φ) =
K∑
k=1

nk∑
j=1

√
αkjφ

k
j y
k
j for Φ =

(
φ1

1, . . . , φ
K
nK

)
∈ Rn,

where Y∗ : X → Rn denotes the Hilbert space adjoint of Y, whose action is given by

Y∗(Ψ) =

(〈
Ψ,
√
α1

1y
1
1

〉
X

, . . . ,
〈

Ψ,
√
αKnKy

K
nK

〉
X

)>
for Ψ ∈ X.
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The operator K : Rn → Rn, K := Y∗Y then admits the same nonzero eigenvalues λ1 ≥ . . . ≥ λr > 0
with corresponding eigenvectors Φ1, . . . ,Φr, and its action is given by

KΦ =
K∑
k=1

nk∑
j=1

(√
α1

1α
k
jφ

k
j 〈ykj , y1

1〉X , . . . ,
√
αKnKα

k
jφ

k
j 〈ykj , yKnK 〉X

)>
(8)

with the vector Φ = (φ1
1, . . . , φ

K
nK

) ∈ Rn. For the eigensystems of R and K there holds the relation

Φi =
1√
λi
Y∗Ψi, and Ψi =

1√
λi
YΦi, for i = 1, . . . , r. (9)

Furthermore, we obtain

∑̀
i=1

K∑
k=1

nk∑
j=1

αkj
∣∣〈ykj ,Ψi〉X

∣∣2 =
∑̀
i=1

λi,

and for the POD projection error we get

K∑
k=1

nk∑
j=1

αkj

∥∥∥∥∥∥ykj −
∑̀
i=1

K∑
k=1

nk∑
j=1

〈ykj ,Ψi〉X Ψi

∥∥∥∥∥∥
2

X

=
r∑

i=`+1

λi. (10)

Thus, the decay rate of the positive eigenvalues {λi}ri=1 plays an essential role for a successful
application of the POD method. In general, one has to utilize a complete orthonormal basis
{Ψi}i∈I ⊂ X to represent elements in the snapshot space V by their Fourier sum. This leads to
a high-dimensional or even infinite-dimensional approximation scheme. Nevertheless, if the term∑r

i=`+1 λi is sufficiently small for a not too large `, elements in the subspace V can be approximated

by a linear combination of the few basis elements {Ψi}`i=1. This offers the chance to reduce the
number of terms in the Fourier series using the POD basis of rank `, as shown in the following
examples. For this reason it is useful to define information content of the basis {Ψi}`i=1 in V by the
quantity

E(`) =

∑`
i=1 λi∑r
i=1 λi

∈ [0, 1]. (11)

It can e.g. be utilized to determine a basis of length ` ∈ {1, . . . , r} containing ≈ 99% of the
information contained in V by requiring E(`) ≈ 99%. Now it is shown in [42, Section 1.2.1] that

r∑
i=1

λi =

K∑
k=1

nk∑
j=1

αkj ‖ykj ‖
2

X

holds true. This implies

E(`) =

∑`
i=1 λi∑K

k=1

∑nk
j=1 α

k
j ‖ykj ‖

2

X

∈ [0, 1],

so that the quantity E(`) can be computed without knowing the eigenvalues λ`+1, . . . , λr.

2.2. Singular value decomposition and POD. To investigate the relationship between singular
value decomposition (SVD) and POD let us discuss the POD method for the specific case X = Rm.
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Then we define the matrices

Dk =

 αk1 0
. . .

0 αknk

 ∈ Rnk×nk for 1 ≤ k ≤ K,

D =

 D1 0
. . .

0 DK

 ∈ Rn×n,

Y k =
[
yk1 | . . . | yknk

]
∈ Rm×nk for 1 ≤ k ≤ K,

Y =
[
Y 1 | . . . |Y K

]
∈ Rm×n, Ȳ = W 1/2Y D1/2 ∈ Rm×n,

where we have introduced the weighting matrix W ∈ Rm×m in (3).

Remark 1. Let us mention that Ȳ = Y holds true provided all αkj are equal to one (i.e., D is the

identity matrix) and the inner product in X is given by the Euclidean inner product (i.e., W is the
identity matrix). ♦

Now (5) is equivalent to the m×m eigenvalue problem

Ȳ Ȳ >Ψ̄i = λiΨ̄i for 1 ≤ i ≤ ` (12)

with Ψi = W−1/2Ψ̄i and the n× n eigenvalue problem

Ȳ >Ȳ Φ̄i = λiΦ̄i for 1 ≤ i ≤ ` (13)

with Ψi = Y D1/2Φ̄i/
√
λi. If m� n holds, we solve (12). However, we have to solve the linear system

W 1/2Ψi = Ψ̄i for any i = 1, . . . , ` in order to get the POD basis {Ψi}`i=1. Thus, if n ≤ m holds, we

will compute the solution {Φ̄i}`i=1 to (13) and get the POD basis by the formula Ψi = Y D1/2Φ̄i/
√
λi.

In that case we also have Ȳ >Ȳ = Y >WY so that we do not have to compute the square root matrix
W 1/2. On the other hand, the diagonal matrix D1/2 can be computed easily. The relationship
between (12) and (13) is given by SVD: There exist real numbers σ1 ≥ . . . ≥ σr > 0 and orthogonal
matrices Ψ ∈ Rm×m, Φ ∈ Rn×n with column vectors {Ψ̄i}mi=1, {Φ̄i}ni=1, respectively, such that

Ψ>ȲΦ =

(
Σr 0
0 0

)
=: Σ ∈ Rm×n, (14)

where Σr = diag (σ1, . . . , σr) ∈ Rr×r and the zeros in (14) denote matrices of appropriate dimensions.
Moreover, the vectors {Ψ̄i}ri=1 and {Φ̄i}ri=1 are eigenvectors of Ȳ Ȳ > and Ȳ >Ȳ , respectively, with
eigenvalues λi = (σi)

2 > 0 for i = 1, . . . , r. The vectors {Ψ̄i}mi=r+1 and {Φ̄i}ni=r+1 (if r < m respectively

r < n) are eigenvectors of Ȳ Ȳ > and Ȳ >Ȳ with eigenvalue 0. We summarize the computation of the
POD basis in the pseudo code function [Ψ, Λ]= POD(Y , W , D, `, flag).
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function [Ψ, Λ]= POD(Y , W , D, `, flag)

Require: Snapshots matrix Y = [Y 1, . . . , Y K ] with rank r, weight-
ing matrices W , D, number ` of POD functions and flag for
the solver;

1: if flag = 0 then
2: Set Ȳ = W 1/2Y D1/2;
3: Compute singular value decomposition [Ψ,Σ,Φ] = svd (Ȳ );
4: Define Ψ̄i as the i-th column of Ψ and σi = Σii for 1 ≤ i ≤ `;
5: Set Ψi = W−1/2Ψ̄i and λi = σ2

i for i = 1, . . . , `;
6: else if flag = 1 then
7: Compute eigenvalue decomposition [Ψ,Λ] = eig (Ȳ Ȳ >);
8: Define Ψ̄i as the i-th column of Ψ and λi = Λii for 1 ≤ i ≤ `;
9: Set Ψi = W−1/2Ψ̄i for i = 1, . . . , `;

10: else if flag = 2 then
11: Compute eigenvalue decomposition [Φ,Λ] = eig (Ȳ >Ȳ );
12: Define φ̄i as the i-th column of Φ and λi = Λii for 1 ≤ i ≤ `;
13: Set Ψi = Y D1/2φ̄i/

√
λi for i = 1, . . . , `;

14: end if
15: return Ψ = [Ψ1 | . . . |Ψ`] and Λ = [λ1 | . . . |λ`];

2.3. The POD method for nonlinear evolution problems. In this subsection we explain the
POD method for abstract nonlinear evolution problems. We focus on the numerical realization. For
detailed theoretical investigations we refer the reader to [42, 50, 51, 57, 58]; for instance.

2.3.1. The nonlinear evolution problems. Let us formulate the nonlinear evolution problem. For that
purpose we suppose the following hypotheses.

Assumption 1. Suppose that T > 0 holds, where [0, T ] is the considered finite time horizon.

1) V and H are real, separable Hilbert spaces and suppose that V is dense in H with compact
embedding. By 〈· , ·〉H and 〈· , ·〉V we denote the inner products in H and V , respectively. We
identify H with its dual (Hilbert) space H ′ by the Riesz isomorphism so that we have the
Gelfand triple

V ↪→ H ' H ′ ↪→ V ′,

where each embedding is continuous and dense. The last embedding is understood as follows:
For every element h ∈ H ′ and v ∈ V , we also have v ∈ H by the embedding V ↪→ H, so we
can define 〈h′, v〉V ′,V = 〈h′, v〉H′,H .

2) For almost all t ∈ [0, T ] we define a time-dependent bilinear form a(t; · , ·) : V × V → R
satisfying∣∣a(t;ϕ, φ)

∣∣ ≤ γ ‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V, t ∈ [0, T ] a.e., (15a)

a(t;ϕ,ϕ) ≥ γ1 ‖ϕ‖2V − γ2 ‖ϕ‖2H for all ϕ ∈ V, t ∈ [0, T ] a.e. (15b)

for time-independent constants γ, γ2 ≥ 0, γ1 > 0 and where a.e. stands for almost everywhere.
3) Assume that y◦ ∈ V , f ∈ L2(0, T ;H) holds. Here we refer to [27, pp. 469-472] for vector-

valued function spaces.

Recall the function space

W (0, T ) =
{
ϕ ∈ L2(0, T ;V )

∣∣ϕt ∈ L2(0, T ;V ′)
}

which is a Hilbert space endowed with the standard inner product; cf. [27, pp. 472-479]. Furthermore,
we have

d

dt
〈ϕ(t), φ〉H = 〈ϕt(t), φ〉V ′,V for ϕ ∈W (0, T ), φ ∈ V



POD MODEL ORDER REDUCTION 7

in the sense of distributions in [0, T ]. Here, 〈· , ·〉V ′,V stands for the dual pairing between V and its
dual V ′.
Now the evolution problem is given as follows: Find the state y ∈W (0, T ) ∩ C([0, T ];V ) such that

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) + 〈N (y(t)), ϕ〉V ′,V = 〈f(t), ϕ〉H

∀ϕ ∈ V, t ∈ (0, T ] a.e.,

〈y(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ H.

(16)

Throughout we assume that (16) admits a unique solution y ∈ W (0, T ) ∩ C([0, T ];V ). Of course,
this requires some properties for the nonlinear mapping N which we will not specify here.

Example 1 (Semilinear heat equation). Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded open domain with
Lipschitz-continuous boundary ∂Ω and let T > 0 be a fixed end time. We set Q := (0, T )× Ω and
Σ := (0, T )× ∂Ω and c ≥ 0. For a given forcing term f ∈ L2(Q) and initial condition y◦ ∈ L2(Ω),
we consider the semilinear heat equation with homogeneous Dirichlet boundary condition:

yt(t,x)−∆y(t,x) + cy3(t,x) = f(t,x) in Q,

y(t,x) = 0 on Σ,

y(0,x) = y◦(x) in Ω.

 (17)

The existence of a unique solution to (17) is proved in [83], for example. We can write (17) as
an abstract evolution problem of type (16) by deriving a variational formulation for (17) with
V = H1

0 (Ω) as the space of test functions, H = L2(Ω) and integrating over the space Ω. The bilinear
form a : V × V → R is introduced by

a(ϕ, φ) =

∫
Ω
∇ϕ · ∇φ dx for ϕ, φ ∈ V

and the operator N : V → V ′ is defined as N (ϕ) = cϕ3 for ϕ ∈ V . For c ≡ 0, the heat equation (17)
is linear. ♦

Example 2 (Cahn-Hilliard equations). Let Ω, T , Q and Σ be defined as in Example 1. The Cahn-
Hilliard system was proposed in [21] as a model for phase separation in binary alloys. Introducing
the chemical potential w, the Cahn-Hilliard equations can be formulated in the common setting as a
coupled system for the phase field c and the chemical potential w:

ct(t,x) + y · ∇c(t,x) = m∆w(t,x) in Q,

w(t,x) = −σε∆c(t,x) +
σ

ε
W ′
(
c(t,x)

)
in Q,

∇c(t,x) · νΩ = ∇w(t,x) · νΩ = 0 on Σ,

c(0, x) = c◦(x) in Ω.


(18)

By νΩ we denote the outward normal on ∂Ω, m ≥ 0 is a constant mobility, σ > 0 denotes the surface
tension and 0 < ε � 1 represents the interface parameter. Note that the convective term y · ∇c
describes the transport with (constant) velocity y. The transport term represents the coupling to
the Navier-Stokes equations in the context of multiphase flow, see e.g. [52] and [2]. The phase field
function c describes the phase of a binary material with components A and B and takes the values
c ≡ −1 in the pure A-phase and c ≡ +1 in the pure B-phase. The interfacial region is described
by c ∈ (−1, 1) and admits a thickness of order O(ε), see e.g. Fig. 5, left column, where the binary
phases are colored in blue and red, respectively, and the interfacial region is depicted in white. The
function W (c) represents the free energy and is of double well-type. A typical choice for W is the
polynomial free energy function

W p(c) = (1− c2)2/4 (19)
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with two minima at c = ±1, which describe the energetically favorable states. It is infinitely often
differentiable. Another choice for W is the C1 relaxed double obstacle free energy

W rel
s (c) =

1

2
(1− c2) +

s

2
(max(c− 1, 0)2 + min(c+ 1, 0)2), (20)

with relaxation parameter s� 0, which is introduced in [43] as the Moreau-Yosida relaxation of the
double obstacle free energy

W∞(c) =

{
1
2(1− c2), if c ∈ [−1, 1],

+∞, otherwise.

The energies W p(c) and W rel
s (c) later will be used to compare the performance of POD on systems

with smooth and less smooth nonlinearities. For more details on the choices for W we refer to [1]
and [19], for example. Concerning existence, uniqueness and regularity of a solution to (18), we refer
to [19]. In order to derive a variational form of type (16), we rewrite (18) as a single fourth-order
parabolic equation for c by

ct(t,x) + y · ∇c(t,x) = m∆

(
− σε∆c(t,x) +

σ

ε
W ′(c(t,x))

)
in Q,

0 = ∇c(t,x) · νΩ = ∇
(
− σε∆c(t,x) +

σ

ε
W ′(c(t,x))

)
· νΩ on Σ,

c(0,x) = c◦(x) in Ω.


(21)

We choose V = {v ∈ H1(Ω) : 1
|Ω|
∫

Ω v = 0} equipped with the inner product (u, v)V :=
∫

Ω∇u∇v,

so that the dual space of V is given by V ′ = {f ∈ (H1(Ω))′ : 〈f, 1〉 = 0} such that V ↪→ H = V ′

and 〈., .〉 denotes the duality pairing. We note that (V, (., .)V ) is a Hilbert space. We define the
V ′−inner product for f, g ∈ V ′ as (f, g)V ′ :=

∫
Ω∇(−∆)−1f · ∇(−∆)−1g where (−∆)−1 denotes

the inverse of the negative Laplacian with zero Neumann boundary data. Note that (f, g)V ′ =
(f, (−∆)−1g)L2(Ω) = ((−∆)−1f, g)L2(Ω). We introduce the bilinear form a : V × V → R by

a(u, v) = σε(∇u,∇v)L2(Ω) +
1

m
(y · ∇u, v)V ′

and define the nonlinear operator N by N (c) = σ
εW

′(c). The evolution problem can be written in
the form

1

m
(ct(t), v)V ′ + a(c(t), v) + 〈N (c(t)), v〉 = 0 ∀v ∈ V and a.a. t ∈ (0, T ].1 (22)

We note that this fits our abstract setting formulated in (16) with the Gelfand triple V ↪→ H ≡
V ′ ↪→ V ′. ♦

2.3.2. Temporal discretization and POD method. Let 0 = t1 < . . . < tnt = T be a given time grid
with step sizes ∆tj = tj − tj−1 for j = 2, . . . , nt. Suppose that for any j ∈ {1, . . . , nt} the element
yj ∈ V ⊂ H is an approximation of y(tj) computed by applying a temporal integration method (e.g.,
the implicit Euler method) to (16). Then we consider the snapshot ensemble

V = span
{
yj
∣∣ 1 ≤ j ≤ n} ⊂ V ⊂ H

with n = nt and r = dimV ≤ n. In the context of (P`) we choose K = 1 and n = n1 = nt. Moreover,
X can be either V or H. For the weighting parameters we take the trapezoidal weights

α1 =
∆t1

2
, αj =

∆tj + ∆tj−1

2
for j = 2, . . . , nt − 1, αnt =

∆tnt
2

. (23)

1We acknowledge a hint of Harald Garcke who pointed this form of the weak formulation of (21) to us.
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Of course, other quadrature weights are also possible. Now, instead of (P`) we consider the
minimization problem

max
∑̀
i=1

n∑
j=1

αj
∣∣〈yj ,Ψi〉X

∣∣2
s.t. {Ψi}`i=1 ⊂ X and 〈Ψi,Ψj〉X = δij , 1 ≤ i, j ≤ `

 (24)

with either X = V or X = H.

Remark 2. In [42, Sections 1.2.2 and 1.3.2] a continuous variant of the POD method is considered.
In that case the trapezoidal approximation in (24) is replaced by integrals over the time interval
[0, T ]. More precisely, we consider

max
∑̀
i=1

∫ T

0

∣∣〈y(t),Ψi〉X
∣∣2 dt

s.t. {Ψi}`i=1 ⊂ X and 〈Ψi,Ψj〉X = δij , 1 ≤ i, j ≤ `

 (25)

with either X = V or X = H. For the relationship between solutions to (24) and (25) we refer to
[58] and [42, Section 1.2.3]. ♦

To compute the POD basis {Ψi}`i=1 of rank ` we have to evaluate the inner products 〈yj ,Ψi〉X , where
either X = V or X = H hold. In typical applications the space X is usually infinite dimensional.
Therefore, a discretization of X is required in order to get a POD method that can be realized on a
computer. This is the topic of the next subsection.

2.3.3. Galerkin discretization. We discretize the state equation by applying any spatial approximation
scheme. Let us consider here a Galerkin scheme for (16). For this reason we are given linearly
independent elements ϕ1, . . . , ϕm ∈ V and define the m-dimensional subspace

V h = span
{
ϕ1, . . . , ϕm

}
⊂ V

endowed with the V topology. Then a Galerkin scheme for (16) is given as follows: find yh ∈
W (0, T ) ∩ C([0, T ];V h) satisfying

d

dt
〈yh(t), ϕh〉H + a(t; yh(t), ϕh) + 〈N (yh(t)), ϕ〉V ′,V

= 〈f(t), ϕh〉H ∀ϕh ∈ V h, t ∈ (0, T ] a.e.,

〈yh(0), ϕh〉H = 〈y◦, ϕh〉H ∀ϕh ∈ V h.

(26)

Inserting the representation yh(t) =
∑m

i=1 yhi (t)ϕi ∈ V h, t ∈ [0, T ], in (26) and choosing ϕh = ϕi for
i = 1, . . . ,m we derive the following m-dimensional initial value problem

Mhẏh(t) + Ah(t)yh(t) + Nh(yh(t)) = Fh(t) for t ∈ (0, T ],

Mhyh(0) = yh◦ ,
(27)

where we have used the matrices and vectors

Mh =
((
〈ϕj , ϕi〉H

))
1≤i,j≤m, yh(t) =

(
yhi
)

1≤i≤m for t ∈ [0, T ] a.e.,

Ah(t) =
((
a(t;ϕj , ϕi)

))
1≤i,j≤m, yh◦ =

(
〈y◦, ϕi〉H

)
1≤i≤m,

Nh(v) =

(〈
N
(∑m

j=1vjϕj
)
, ϕi

〉
V ′,V

)
1≤i≤m

for v =
(
vj
)

1≤j≤m,

Fh(t) =
(
〈f(t), ϕi〉H

)
1≤i≤m for t ∈ [0, T ].



10 GRÄSSLE, HINZE & VOLKWEIN

In the pseudo code function [Y ]= StateSol(yh◦) we present a solution method for (27) using the
implicit Euler method.

function [Y ]= StateSol
(
yh◦
)

Require: Initial condition yh◦ ;
1: Compute yh1 ∈ Rm solving Mhyh1 = yh◦ ;
2: for j = 2 to nt do
3: Set Ah

j = Ah(tj) ∈ Rm×m and Fhj = Fh(tj) ∈ Rm;

4: Solve (e.g., by applying Newton’s method) for yhj ∈ Rm(
Mh + ∆tjA

h
j

)
yhj + ∆tjN

h(yhj ) = Mhyhj−1 + ∆tjF
h
j ;

5: end for
6: return matrix Y = [yh1 | . . . | yhnt ] ∈ Rm×nt ;

In the next subsection we discuss how a POD basis {Ψj}`j=1 of rank ` ≤ r can be computed from

numerical approximations for the solution yh to (27).

2.3.4. POD method for the fully discretized nonlinear evolution problem. Recall that we have
introduced the temporal grid {tj}ntj=1 ⊂ [0, T ] and set n = nt. Let yh1 , . . . , y

h
n ∈ V h be numerical

approximations to the solution yh(t) to (27) at time instances t = tj , j = 1 . . . , nt. Then, a coefficient
matrix Y ∈ Rm×n is defined by the elements Yij given by

yhj =

m∑
i=1

Yijϕi ∈ V h for 1 ≤ j ≤ n.

The j-th column of Y (denoted by yj = Y·,j) contains the Galerkin coefficients of the snapshot

yhj ∈ V h. We set r = rankY ≤ min(m,n) and

Vh = span
{
yhj
∣∣ 1 ≤ j ≤ n} ⊂ V h.

Due to Vh ⊂ V h we have Ψj ∈ V h for 1 ≤ j ≤ `. Therefore, there exists a coefficient matrix

Ψ ∈ Rm×` that is defined by the elements Ψij satisfying

Ψj =

m∑
i=1

Ψijϕi ∈ V h for 1 ≤ j ≤ `,

where the j-th column Ψ·,j of the matrix Ψ consists of the Galerkin coefficients of the element Ψj .
Notice that

〈vh, wh〉H = (vh)>Mhwh, 〈vh, wh〉H = (vh)>Shwh

hold for vh =
∑m

i=1 vhi ϕi, w
h =

∑m
i=1 wh

i ϕi ∈ V h and for the symmetric, positive definite stiffness
matrix

Sh =
((
〈ϕj , ϕi〉V

))
1≤i,j≤m.

Then, we have for X = H

〈yhj ,Ψi〉X = y>j MhΨ·,i = Y >·,jM
hΨ·,i for 1 ≤ j ≤ n, 1 ≤ i ≤ `,

and for X = V

〈yhj ,Ψi〉X = y>j ShΨ·,i = Y >·,jS
hΨ·,i for 1 ≤ j ≤ n, 1 ≤ i ≤ `.

Thus, we can apply the approach presented in Section 2.2 choosing W = Mh for X = H and W = Sh

for X = V . Moreover, we set K = 1, n1 = nt = n and α1
j = αj defined in (23). Now a POD basis

of rank ` for (27) can be computed by the pseudo code function [Y ,Ψ]= PODState
(
yh◦ , W , D, `,

flag
)
.
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function [Y , Ψ]= PODState
(
yh◦ , W , D, `, flag

)
Require: Initial condition yh◦ , weighting matrices W , D, number

` of POD functions and flag for the solver;
1: Call [Y ]= StateSol

(
yh◦
)
;

2: Call [Ψ,Λ]= POD(Y , W , D, `, flag);
3: return Y = [yh1 | . . . | yhnt ] and Ψ = [Ψ1 | . . . |Ψ`];

In the next subsection we will discuss in detail how the POD method has to be applied in that case
if we have – instead of V h – different spaces V hj for each j = 1, . . . , n.

2.4. The POD method with snapshots generated by spatially adaptive finite element
methods. In practical applications it often is desirable to provide POD models for time-dependent
PDE systems, whose numerical treatment requires adaptive numerical techniques in space and/or
time. Snapshots generated by those methods are not directly amenable to the POD procedure
described in Section 2.3.4, since the application of spatial adaptivity means, that the snapshots
at each time instance may have different lengths due to their different spatial resolutions. In fact,
there is not one single discrete Galerkin space V h for all snapshots generated by the fully discrete
evolution, but at every time instance tj the adaptive procedure generates a discrete Galerkin space

V hj ⊂ X, so that in this case yhj ≡ y
hj
j ∈ V hj . For this reason, no snapshot matrix Y can be formed

with columns containing the basis coefficient vectors of the snapshots.
To obtain also a POD basis in this situation we inspect the operator K of (8) and observe that its
action can be computed if the inner products 〈ykj , yli〉X can be evaluated for all 1 ≤ i ≤ nl, 1 ≤ j ≤ nk
and 1 ≤ k, l ≤ K.
Let us next demonstrate how to compute a POD basis for snapshots residing in arbitrary finite
element (FE) spaces. To begin with we drop the superindex h and set Vj := V hj . For each time
instant j = 1, . . . , n of our time discrete PDE system the snapshots {yj}nj=1 are taken from different

finite element spaces Vj ⊆ X (j = 1, . . . , n), where X denotes a common (real) Hilbert space. Let

Vj = span {ϕj1, . . . , ϕ
j
mj}. Then we have the expansions

yj =

mj∑
i=1

yijϕ
j
i for j = 1, . . . , n (28)

with coefficient vectors

yj =
(
yij
)
∈ Rmj for j = 1, . . . , n

containing the finite element coefficients. The inner product of the associated functions can thus be
computed as

〈yi, yj〉X =

mi∑
k=1

mj∑
l=1

yki ylj 〈ϕik, ϕ
j
l 〉X for i, j = 1, . . . , n,

so that the evaluation of the action KΦ only relies on the evaluation of the inner products 〈ϕik, ϕ
j
l 〉X

(1 ≤ i, j ≤ n, 1 ≤ k ≤ mi, 1 ≤ l ≤ mj). In other words, once we are able to compute those inner
products we are in the position to set up the eigensystem {(λi,Φi)}ri=1 of K from (8). The POD
modes {Ψi}ri=1 can then be computed according to (9) by

Ψi =
1√
λi
YΦi for i = 1, . . . , r.

Details on this procedure can be found in [62, 39].
To illustrate how this procedure can be implemented we summarize Examples 6.1-6.3 from [39],
which deal with nested and non-nested meshes. All coding was done in C++ with using FEniCS
[8, 66] for the solution of the differential equations and ALBERTA [87] for dealing with hierarchical
meshes. The numerical tests were run on a compute server with 512 GB RAM.
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Run 1 ([39, Example 6.1]). We consider the Example 1 with homogeneous Dirichlet boundary
condition and vanishing nonlinearity, i.e. we set c ≡ 0 so that the equation becomes linear. The
spatial domain is chosen as Ω = (0, 1)×(0, 1) ⊂ R2, the time interval is [0, T ] = [0, 1.57]. Furthermore,
we choose X = L2(Ω). For the temporal discretization we introduce the uniform time grid by

tj = (j − 1)∆t for j = 1, . . . , nt = 1571

with ∆t = 0.001. For the spatial discretization we use h-adapted piecewise linear, continuous finite
elements on hierarchical and nested meshes. Snapshots of the analytical solution at three different
time points are shown in Figure 1. Details on the construction of the analytical solution and the
corresponding right hand side f are given in [39, Example 6.1].

Figure 1. Run 1. Surface plot (top) and view from above (bottom) of the analytical
solution of (17) at t = t1 (left), t = T/2 (middle) and t = T (right).

Due to the steep gradients in the neighborhood of the minimum and maximum, respectively, the use
of an adaptive finite element discretization is justified. The resulting computational meshes as well
as the corresponding finest mesh (reference mesh at the end of the simulation which is the union of
all adaptive meshes generated during the simulation) are shown in Figure 2.

Figure 2. Run 1. Adaptive finite element meshes at t = t1 (left), t = T/2 (middle
left), t = T (middle right) and finest mesh (right).

The number of nodes of the adaptive meshes varies between 3637 and 7071 points. The finest mesh
has 18628 degrees of freedom. A uniform mesh with grid size of order of the diameter of the smallest
triangles in the adaptive grids (hmin = 0.0047) would have 93025 degrees of freedom. This clearly
reveals the benefit of using adaptive meshes for snapshot generation which is also well reflected in
the comparison of the computational times needed for the snapshot generation on the adaptive mesh
taking 944 seconds compared to 8808 seconds on the uniform mesh, see Table 4) for the speedup
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factors obtained by spatial adaptation. In Figure 3, the resulting normalized eigenspectrum of the
correlation matrix K is shown for snapshots obtained by uniform spatial discretization (“uniform FE
mesh”), for snapshots obtained by interpolation on the finest mesh (“adaptive FE mesh”), and for
snapshots without interpolation (“infPOD”), where K is associated to the operator K from (8), see
also (30).
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Figure 3. Run 1. Comparison of the normalized eigenvalues using an adaptive and
a uniform spatial mesh, respectively. Left: all eigenvalues, middle: first 200 largest
eigenvalues, right: first 200 largest eigenvalues with different error tolerances for the
adaptivity (1.5 times bigger and smaller error tolerances, respectively).

We observe that the eigenvalues for both adaptive approaches coincide. This numerically validates
what we expect from theory: the information content which is contained in the matrix K when we
explicitly compute the entries without interpolation is the same as the information content contained
within the eigenvalue problem which is formulated when using the finest mesh. No information is
added or lost. Moreover, we recognize that about the first 28 eigenvalues computed corresponding
to the adaptive simulation coincide with the simulation on a uniform mesh. From index 29 on, the
methods deliver different results: for the uniform discretizations, the normalized eigenvalues fall
below machine precision at around index 100 and stagnate. In contrary, the normalized eigenvalues
for both adaptive approaches flatten in the order around 10−10. If the error tolerance for the spatial
discretization error is chosen larger (or smaller), the stagnation of the eigenvalues in the adaptive
method takes place at a higher (or lower) order (see Figure 3, right). Concerning dynamical systems,
the magnitude of the eigenvalue corresponds to the characteristic properties of the underlying
dynamical system: the larger the eigenvalue, the more information is contained in the corresponding
eigenfunction. Since all adaptive meshes are contained in the uniform mesh, the difference in the
amplitude of the eigenvalues is due to the interpolation errors during refinement and coarsening.
This is the price we have to pay for faster snapshot generation using adaptive methods. A further
aspect gained from the decay behavior of the eigenvalues in the adaptive case is the following; the
adaptive approach filters out the noise in the system which is related to the modes corresponding
to the singular values that are not matched by the eigenvalues of the adaptive approach. This in
the language of frequencies means that the overtones in the systems which get lost in the adaptive
computations live in the space which is neglected by the POD method based on adaptive finite
element snapshots. From this point of view, adaptivity can be interpreted as a smoother.
The first, second and fifth POD modes of Run 1 obtained by the adaptive approach are depicted in
Figure 4. We observe the classical appearance of the basis functions. The initial condition is reflected
by the first POD basis function. The next basis functions admit a number of minima and maxima
corresponding to the index in the basis: Ψ2 has two minima and two maxima etc. This behavior
is similar to the increasing oscillations in higher frequencies in trigonometric approximations. The
POD basis functions corresponding to the uniform spatial discretization have a similar appearance.♦
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Figure 4. Run 1. Surface plot (top) and view from above (bottom) of the POD basis
functions Ψ1 (left), Ψ2 (middle) and Ψ5 (right).

Run 2 ([39, Example 6.2]). (Cahn-Hilliard system.) We consider Example 2 in the form (18) with
Ω = (0, 1.5) × (0, 0.75), T = 0.025, constant mobility m ≡ 0.00002, and constant surface tension
σ ≡ 24.5. The interface parameter ε is set to ε = 0.02, with resulting interface thickness π ·ε ≈ 0.0628.
We use the relaxed double obstacle free energy W rel

s from (20) with s = 104. As initial condition, we
choose a circle with radius r = 0.25 and center (0.375, 0.375). The initial condition is transported
horizontally with constant velocity v = (30, 0)T . We set

tj = (j − 1)∆t for j = 1, . . . , nt = 1001,

so that ∆t = 2.5 · 10−5. The numerical computations are performed with the semi-implicit Euler
scheme. For this purpose let cj−1 ∈ V and cj ∈ V denote the time-discrete solution at tj−1 and tj ,
respectively. Based on the variational formulation (22) we tackle the time discrete version of (18) in
the form: given cj−1, find cj , wj solving

1

∆t
〈cj − cj−1, ϕ1〉L2 + 〈v · ∇cj−1, ϕ1〉L2 + m 〈∇wj ,∇ϕ1〉L2 = 0,

−〈wj , ϕ2〉L2 + σε 〈∇cj ,∇ϕ2〉L2 +
σ

ε
〈W ′+(cj) +W ′−(cj−1), ϕ2〉L2 = 0

 (29)

for all ϕ1, ϕ2 ∈ V and j = 2, . . . , nt with c1 = c◦. According to (22), here it is V = {v ∈
H1(Ω), 1

|Ω|
∫

Ω vdx = 0}. Note that the free energy function W is split into a convex part W+ and a

concave part W−, such that W = W+ +W− and W ′+ is treated implicitly, whereas W ′− is treated
explicitly with respect to time. This leads to an unconditionally energy stable time marching scheme,
compare [33]. The system (29) is discretized in space using piecewise linear and continuous finite
elements. The resulting nonlinear equation systems are solved using a semi-smooth Newton method.

Figure 5 shows the phase field (left) and the chemical potential (right) for the finite element simula-
tion using adaptive meshes. The initial condition c◦ is transported horizontally with constant velocity.
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Figure 5. Run 2. Phase field c (left) and chemical potential w (right) computed on
adaptive finite element meshes at t = t1 (top), t = T/2 (middle) and t = T (bottom).

The adaptive finite element meshes as well as the finest mesh which is generated during the adaptive
finite element simulation are shown in Figure 6. The number of degrees of freedom in the adaptive
meshes varies between 6113 and 8795. The finest mesh (overlay of all adaptive meshes) has 54108
degrees of freedom, whereas a uniform mesh with discretization fineness as small as the smallest
triangle in the adaptive meshes has 88450 degrees of freedom.

Figure 6. Run 2. Adaptive finite element meshes at t = t1 (top left), t = T/2 (top
right) and t = T (bottom left) together with the finest mesh (bottom right).
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Figure 7 shows the first, second and fifth POD mode for the phase field c and the chemical potential
w. Analogously to Run 1, we observe a periodicity in the POD basis functions corresponding to
their basis index numbers.

Figure 7. Run 2. First, second and fifth POD modes for c (left) and w (right).

In the present example we only compare the POD procedure for two kinds of snapshot discretizations,
namely the adaptive approach with using a finest mesh, and the uniform mesh approach, where the
gridsize is chosen to be of the same size as the smallest triangle in the adaptive meshes. We choose
X = L2(Ω) and compute a separate POD basis for each of the variables c and w.
In Figure 8, a comparison is visualized concerning the normalized eigenspectrum for the phase field
c and the chemical potential w using uniform and adaptive finite element discretization. We note
for the phase field c that about the first 180 eigenvalues computed corresponding to the adaptive
simulation coincide with the eigenvalues of the simulation on the finest mesh. Then, the eigenvalues
corresponding to the uniform simulation decay faster. Similar observations apply for the chemical
potential w.
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Figure 8. Run 2. Comparison of the normalized eigenvalues for the phase field c
(left) and the chemical potential w (right) using an adaptive and a uniform spatial
mesh, respectively.

We use the criterion (11) to determine the basis length ` which is required to represent a prescribed
information content with the respective POD space. We will choose the POD basis length `c for the
phase field c and the number of POD modes `w for the chemical potential, such that

`min = arg min
{
E(`) : E(`) > 1− p}, with ` = `c and `w, respectively,

for a given value p representing the loss of information. Alternatively, the POD basis length could be
chosen in alignment with the POD projection error (10) with the expected spatial and/or temporal
discretization error, compare e.g. [39, Theorem 5.1]. Let us also refer, e.g., to the recent paper [12],
where different adaptive POD basis extension techniques are discussed. Table 1 summarizes how
to choose `c and `w in order to capture a desired amount of information. Moreover, it tabulates
the POD projection error (10) depending on the POD basis length, where λci and λwi denote the
eigenvalues for the phase field c and the chemical potential w, respectively. The results in Table
1 agree with our expectations: the smaller the loss of information p is, the more POD modes are
needed and the smaller is the POD projection error. ♦

p `ad
c

∑
i>` λ

c
i `ad

w

∑
i>` λ

w
i `uni

c

∑
i>` λ

c
i `uni

w

∑
i>` λ

w
i

10−1 3 2.0 · 10−3 4 156.9 · 100 3 2.0 · 10−3 4 157.6 · 100

10−2 10 2.1 · 10−4 13 15.8 · 100 10 2.1 · 10−4 13 15.6 · 100

10−3 19 2.5 · 10−5 26 1.8 · 100 19 2.5 · 10−5 25 1.8 · 100

10−4 29 2.0 · 10−6 211 1.8 · 10−1 28 2.6 · 10−6 160 1.9 · 10−1

10−5 37 2.5 · 10−7 644 1.1 · 10−2 37 2.4 · 10−7 419 2.5 · 10−2

Table 1. Run 2. Number of needed POD bases in order to achieve a loss of
information below the tolerance p using adaptive finite element meshes (columns 2-5)
and uniform finite element discretization (columns 6-9) and POD projection error.

Run 3 ([39, Example 6.3]). (Linear heat equation revisited). We again consider Example 1 with
c ≡ 0 . The purpose of this example is to confirm that our POD approach also is applicable in the
case of non-nested meshes like it appears in the case of r-adaptivity, for example. We set up the
matrix K for snapshots generated on sequences of non-nested spatial discretizations. This requires
the integration over cut elements, see [39]. We choose Ω = (0, 1)× (0, 1) ⊂ R2, [0, T ] = [0, 1], and we
apply a uniform temporal discretization with time step size ∆t = 0.01. The analytical solution in
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the present example is given by

y(t,x) = sin(πx0) · sin(πx1) · cos(2πtx0),

with x = (x0, x1), source term f := yt − ∆y and the initial condition g := y(0, ·). The initial
condition is discretized using piecewise linear and continuous finite elements on a uniform spatial
mesh which is shown in Figure 9 (left). Then, at each time step, the mesh is disturbed by relocating
each mesh node according to the assignment

x0 ← x0 + θ · x0 · (x0 − 1) · (∆t/10),
x1 ← x1 + θ · 0.5 · x1 · (x1 − 1) · (∆t/10),

where θ ∈ R+ is sufficiently small such that all coordinates of the interior nodes fulfill 0 < x0 < 1
and 0 < x1 < 1. After relocating the mesh nodes, the heat equation is solved on this mesh for the
next time instance. We use Lagrange interpolation to transfer the finite element solution of the
previous time step onto the new mesh. The disturbed meshes at t = 0.5 and t = 1.0 as well as an
overlap of two meshes are shown in Figure 9. To compute the matrix K from (30) we have to eval-
uate the corresponding inner products of the snapshots, where we need to integrate over cut elements.

Figure 9. Run 3. Uniform mesh (left), disturbed meshes at t = 0.5 and t = 1.0
(middle left, middle right), overlap of the mesh at t = 0 with the mesh at t = 1.0
(right). Here, we use θ = 10.

We compute the eigenvalue decomposition of the matrix representation K of the operator K (cf.
(30)) for different values of θ and compare the results with a uniform mesh (i.e. θ = 0) in Figure 10.
We note that the eigenvalues of the disturbed mesh are converging to the eigenvalues of the uniform
mesh for θ → 0. As expected, the eigenvalue spectrum depends only weakly on the underlying mesh
given that the mesh size is sufficiently small. Concerning the computational complexity of POD
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Figure 10. Run 3: Decay of eigenvalues of matrix K with different meshes.
with non-nested meshes let us note that solving the heat equation takes 2.1 seconds on the disturbed
meshes and 1.8 seconds on the uniform mesh. The computational time needed to compute each
entry of the matrix K is 0.022 seconds and computing the eigenvalue decomposition for K takes
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0.0056 seconds. Note that the cut element integration problem for each matrix entry takes a fraction
of time required to solve the finite element problem. ♦

3. The POD Galerkin procedure

Once the POD basis is generated it can be used to set up a POD-Galerkin approximation of the
original dynamical system. This is discussed in the present section. In this context we recall that the
space spanned by the POD basis is used with a Galerkin method to approximate the original system
for e.g. other inputs and/or parameters than those used to generate the snapshots for constructing
the POD basis. A typical application is given by PDE-constrained optimization, where the PDE
system during the optimization is substituted by POD Galerkin surrogates, see Section 6 for more
details.

3.1. The POD Galerkin procedure. Suppose that for given snapshots yhj ∈ V hj ⊂ X, 1 ≤ j ≤ n,
we have computed the symmetric matrix

K =
((√

αi
√
αj 〈yhi , yhj 〉X

))
1≤i,j≤n

with rank K = r ≤ n (30)

associated to the operator K from (8) together with its eigensystem. Its ` ∈ {1, . . . , r} largest
eigenvalues are {λi}`i=1 with corresponding eigenvectors {Φi}`i=1 ⊂ Rn. The POD basis {Ψi}`i=1 is
then given by (9), i.e.,

Ψi =
1√
λi
YΦi for i = 1, . . . , `.

This POD basis is utilized in order to compute a reduced-order model for (16) along the lines of
Section 2.3.3, where the space V h is replaced by the space V ` = span {Ψ1, . . . ,Ψ`} ⊂ V . More
precisely we make the POD Galerkin ansatz

y`(t) =
∑̀
i=1

ηi(t)Ψi =
∑̀
i=1

ηi(t)
1√
λi
YΦi for all t ∈ [0, T ], (31)

as an approximation for y(t), with the Fourier coefficients

ηi(t) = 〈y`(t),Ψi〉X =

〈
y`(t),

1√
λi
YΦi

〉
X

for 1 ≤ i ≤ `.

Inserting y` into (16) and choosing V ` ⊂ V as the test space leads to the system

d

dt
〈y`(t),Ψ〉H + a(y`(t),Ψ) + 〈N (y`(t)),Ψ〉V ′,V = 〈f(t),Ψ〉V ′,V

〈y`(0),Ψ〉H = 〈y◦,Ψ〉H

 (32)

for all Ψ ∈ V ` and for almost all t ∈ (0, T ]. The system (32) is called POD reduced-order model
(POD-ROM). Using the ansatz (31), we can write (32) as an `-dimensional ordinary differential
equation system for the POD mode coefficients η(t) = (ηi(t))1≤i≤`, t ∈ (0, T ], as follows:

∑̀
j=1

η̇j(t) 〈Ψi,Ψj〉H +
∑̀
j=1

ηj(t) a(Ψj ,Ψi) = 〈f(t)−N (y`(t)),Ψi〉V ′,V

∑̀
j=1

ηj(0) 〈Ψi,Ψj〉H = 〈y◦,Ψi〉H


(33)
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for i = 1, . . . , `. Note that 〈Ψi,Ψj〉H = δij if we choose X = H in the context of Section 2.3. In a
next step we rewrite this system using relation between Ψi and Φi given in (9). This leads to

∑̀
j=1

η̇j(t)
〈YΦi,YΦj〉H√

λiλj
+
∑̀
j=1

ηj(t)
a(YΦj ,YΦi)√

λiλj
=
〈f(t)−N (y`(t)),YΦi〉V ′,V√

λi

for t ∈ (0, T ],∑̀
j=1

ηj(0)
〈YΦi,YΦj〉H√

λiλj
=
〈y◦,YΦi〉H√

λi


(34)

for i = 1, . . . , `. In order to write (34) in a compact matrix-vector form, let us introduce the diagonal
matrix

Λ := diag

(
1√
λ1
, . . . ,

1√
λ`

)
∈ R`×`.

From the first ` eigenvectors {Φi}`i=1 of K we build the matrix

Φ =
[
Φ1

∣∣ . . . ∣∣Φ`] ∈ Rn×`.

Then, the system (34) can be written as the system(
ΛΦ>KΦΛ

)
η̇(t) +

(
ΛA`Λ

)
η(t) + ΛN`(η(t)) = ΛF`(t) for t ∈ (0, T ],

ΛΦ>KΦΛη(0) = Λη◦

}
(35)

for the vector-valued mapping η = (η1, . . . , η`)
> : [0, T ]→ R`, for the nonlinearity N` = (N`

i(·))1≤i≤` :
R` → R` with

N`
i(v) =

〈
N
(∑`

j=1vjΨj

)
, ϕi

〉
V ′,V

=
〈
N
(∑`

j=1vjYΦj/
√
λj
)
, ϕi

〉
V ′,V

and for the stiffness matrix A` = ((A`
ij)) ∈ R`×` given as

A`
ij = a(YΦj ,YΦi) for 1 ≤ i, j ≤ `.

Note that the right hand side F`(t) = (F`i(t))1≤i≤` and the initial condition η◦ = (η◦i)1≤i≤` are given
by

F`i(t) = 〈f(t),YΦi〉V ′,V = 〈Y∗f(t),Φi〉Rn , t ∈ [0, T ] a.e.,

and

η◦i = 〈y◦,YΦi〉H = 〈Y∗y◦,Φi〉Rn ,
for i = 1, . . . , `, respectively. Their calculation can be done explicitly for any arbitrary finite element
discretization. For a given function w ∈ V (for example w = f(t) or w = y◦) with finite element
discretization w =

∑mw
i=1 wiχi, nodal basis {χi}mwi=1 ⊂ V and appropriate mode coefficients {wi}mwi=1

we can compute

(
Y∗w

)
j

= 〈w, yj〉X =

〈 mw∑
i=1

wiχi,

mj∑
k=1

yjkϕ
j
k

〉
X

=

mw∑
i=1

mj∑
k=1

wiy
j
k 〈χi, ϕ

j
k〉X

for j = 1, . . . , n where yhj =
∑mj

k=1 yjkϕ
j
k ∈ V hj denotes the j-th snapshot. Again, for any i =

1, . . . ,mw and k = 1, . . . ,mj , the computation of the inner product 〈χi, ϕjk〉X can be done explicitly.
Obviously, for linear evolution equations the POD reduced-order model (35) can be set up and solved
using snapshots with arbitrary finite element discretizations. The computation of the nonlinear
component N`(η(t)) needs particular attention. In Section 3.3 we discuss the options to treat the
nonlinearity.
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3.2. Time-discrete reduced-order model. In order to solve the reduced-order system (32) nu-
merically, we apply the implicit Euler method for time discretization and use for simplicity the same
temporal grid {tj}nj=1 as for the snapshots. It is also possible to use a different time grid, cf. [58].
The time-discrete reduced-order model reads

〈y`j − y`j−1,Ψ〉H
∆tj

+ a(y`j ,Ψ) + 〈N (y`j),Ψ〉V ′,V =

∫ tj

tj−1

〈f(τ),Ψ〉V ′,V
∆tj

dτ,

〈y`1,Ψ〉H = 〈y◦,Ψ〉H

 (36)

for all Ψ ∈ V ` and j = 2, . . . , n. Equivalently the following system holds for the coefficient vector
η(t) ∈ R` (cf. (35)):

(
ΛΦ>KΦΛ

)(ηj − ηj−1

∆tj

)
+
(
ΛA`Λ

)
ηj + ΛN`(ηj) = ΛF`j , j = 2, . . . , n

ΛΦ>KΦΛη1 = Λη◦

 (37)

with the inhomogeneity F`j = (F`ji)1≤i≤`, j = 2, . . . , n, given as

F`ji =

∫ tj

tj−1

〈f(τ),YΦi〉V ′,V
∆tj

dτ =

∫ tj

tj−1

〈Y∗f(τ),Φi〉Rn
∆tj

dτ.

3.3. Discussion of the computation of the nonlinear term. Let us now consider the compu-
tation of the nonlinear term ΛN`(ηj) ∈ R` of the POD-ROM (35). It holds true(

ΛN`(ηj)
)
k

= 〈N (y`(t)),Ψk〉V ′,V =
〈
N
(∑`

i=1 ηi(t)Ψi

)
,Ψk

〉
V ′,V

for k = 1, . . . , `. It is well known that the evaluation of nonlinearities in the reduced-order modeling
context is computationally expensive. To make this clear, let us assume, we are given a uniform
finite element discretization with m degrees of freedom. Then, in the fully discrete setting, the
nonlinear term has the form

Ψ>WNh(Ψη(t)) ∈ R`, t ∈ [0, T ] a.e.,

where Ψ = [Ψ1 | . . . |Ψ`] ∈ Rm×` is the matrix in which the POD modes are stored columnwise
and W ∈ Rm×m is a weighting matrix related to the utilized inner product (cf. (3)). Hence, the
treatment of the nonlinearity requires the expansion of Ψη(t) ∈ Rm in the full space for t ∈ [0, T ]
a.e. Then the nonlinearity can be evaluated and finally the result is projected back to the POD
space. Obviously, this means that the reduced-order model is not fully independent of the high-order
dimension m and efficient simulation cannot be guaranteed. Therefore, it is convenient to seek for
hyper reduction, i.e., for a treatment of the nonlinearity, where the model evaluation cost is related
to the low dimension `. Common choices are empirical interpolation methods like, e.g., EIM ([14]),
DEIM ([24]), and QDEIM ([31]). Another option is dynamic mode decomposition for nonlinear
model order reduction, see e.g. [7]. Furthermore, in [99] nonlinear model reduction is realized by
replacing the nonlinear term by its interpolation in the finite element space. An alternative approach
for the treatment of the nonlinearity is missing point estimation [10], or best points interpolation
[70].
Most of these methods need a common reference mesh for the computations. To overcome this
restriction we propose different paths which allow for more general discrete settings like r-adaptivity
discussed in Run 3.
One option is to use EIM [14]. Alternatively, we can linearize and project the nonlinearity onto the
POD space. For this approach, let us consider the linear reduced-order system for a fixed given state
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ȳ, which takes the form

d

dt
〈y`(t),Ψ〉H + a(y`(t),Ψ) + 〈N (ȳ(t)),Ψ〉V ′,V = 〈f(t),Ψ〉V ′,V ,

〈y`(0),Ψ〉H = 〈y◦,Ψ〉H

 (38)

for all Ψ ∈ V ` and for almost all t ∈ (0, T ]. The linear evolution problem (38) can be set up and
solved explicitly without spatial interpolation. In the numerical examples in Section 6, we take the
finite element solution as given state in each time step, i.e., ȳ(tj) = yj for j = 2, . . . , n.
Furthermore, the linearization of the reduced-order model (32) can be considered:

d

dt
〈y`(t),Ψ〉H + a(y`(t),Ψ) + 〈N ′(ȳ(t))y`(t),Ψ〉V ′,V ,

= 〈f(t)−N (ȳ(t)) +N ′(ȳ(t)))ȳ(t),Ψ〉V ′,V
〈y`(0),Ψ〉H = 〈y◦,Ψ〉H ,

 (39)

for all Ψ ∈ V ` and for almost all t ∈ (0, T ], where N ′ denotes the Fréchet derivative of the nonlinear
operator N . This linearized problem is of interest e.g. in the context of optimal control, where it
occurs in each iteration level within sequential quadratic programming (SQP) methods; see [49], for
example. Choosing the finite element solution as given state in each time instance and using (9)
leads to

〈N (yj),Ψi〉V ′,V =
1√
λi

n∑
k=1

√
αk(Φi)k 〈N (yj), yk〉V ′,V ,

〈N ′(yj)y`(tj),Ψi〉V ′,V =

〈
N ′(yj)

(∑̀
k=1

ηk(tj)Ψk

)
,Ψi

〉
V ′,V

,

=
∑̀
k=1

ηk(tj)
1√
λkλi

n∑
ν=1

n∑
µ=1

√
αναµ(Φk)ν(Φi)µ 〈N ′(yj)yν , yµ〉V ′,V ,

〈N ′(yj)yj ,Ψi〉V ′,V =
1√
λi

n∑
k=0

√
αk(Φi)k 〈N ′(yj)yj , yk〉V ′,V

for j = 2, . . . , n and i = 1, . . . , `. Finally, we approximate the nonlinearity ΛN`(ηj) ∈ R` in (37) by(
ΛN`(ηj)

)
i
≈ 〈N (yj) +N ′(yj)(y`(tj)− yj),Ψi〉V ′,V

for j = 2, . . . , n and i = 1, . . . , `, which can be written as

ΛN`(ηj) ≈ ΛΦ>Nj + ΛΦ>NjyΦΛηj −ΛΦ>Njy,

where

Nj =

〈N (yj),
√
α1y1〉V ′,V
...

〈N (yj),
√
αnyn〉V ′,V

 ∈ Rn, Njy =

〈N
′(yj)yj ,

√
α1y1〉V ′,V

...
〈N ′(yj)yj ,

√
αnyn〉V ′,V

 ∈ Rn,

and with ỹj =
√
αjyj , j = 1, . . . , n,

Njy =

〈N
′(yj)ỹ1, ỹ1〉V ′,V . . . 〈N ′(yj)ỹn, ỹ1〉V ′,V

...
...

〈N ′(yj)ỹ1, ỹ1〉V ′,V . . . 〈N ′(yj)ỹn, ỹn〉V ′,V

 ∈ Rn×n.

For weakly nonlinear systems this approximation may be sufficient, depending on the problem and its
goal. A great advantage of linearizing the semilinear partial differential equation is that only linear
equations need to be solved which leads to a further speedup, see Table 6. However, if a more precise
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approximation is desired or necessary, we can think of approximations including higher order terms,
like quadratic approximation, see, e.g., [25] and [84], or Taylor expansions, see, e.g., [73, 74] and [35].
Nevertheless, the efficiency of higher order approximations is limited due to growing memory and
computational costs.

3.4. Expressing the POD solution in the full spatial domain. Having determined the solution
η(t) to (35), we can set up the reduced solution y`(t) in a continuous framework:

y`(t) =
∑̀
i=1

ηi(t)

(
1√
λi

n∑
j=1

√
αj(Φi)jyj

)
. (40)

Now, let us turn to the fully discrete formulation of (40). For a time-discrete setting, we introduce
for simplicity the same temporal grid {tj}nj=1 as for the snapshots. The snapshots (28) admit the
expansion

yj =

mj∑
i=1

yijϕ
j
i for j = 1, . . . , n.

Let {Qjr}
lj
r=1 denote an arbitrary set of grid points for the reduced system at time level tj . The fully

discrete POD solution can be computed by evaluation:

y`(tj , Q
j
r) =

∑̀
i=1

ηi(tj)

(
1√
λi

n∑
ν=1

√
αν(Φi)ν

( mν∑
k=1

yνkϕ
ν
k(Qjr)

))
(41)

for r = 1, . . . , lj and j = 1, . . . , n. This allows us to use any grid for expressing the POD solution
in the full spatial domain. For example, we can use the same nodes at time level j for the POD

simulation as we have used for the snapshots, i.e., for j = 1, . . . , n it holds lj = mj and Qjr = P jk for
all r, k = 1, . . . ,mj . Another option can be to choose

{
Qjr
}lj
r=1

=
n⋃
j=1

mj⋃
k=1

{
P jk
}

for j = 1, . . . , n,

i.e., the common finest grid. Obviously, a special and probably the easiest case concerning the
implementation is to choose snapshots which are expressed with respect to the same finite element
basis functions and utilize the common finest grid for the simulation of the reduced-order system,
which is proposed by [95]. After expressing the adaptively sampled snapshots with respect to a
common finite element space, the subsequent steps coincide with the common approach of taking
snapshots which are generated without adaptivity. Then, expression (41) simplifies to

y`(tj , Pr) =
∑̀
i=1

ηi(tj)

(
1√
λi

n∑
ν=1

√
αν(Φi)νyν

)
for j = 1, . . . , n, (42)

where {Pr}mr=1 are the nodes of the common finite element space.

Run 4 ([39, Example 6.1]). Let us revisit Run 1 and consider its POD Galerkin solutions. The
POD solutions for ` = 10 and ` = 50 POD basis functions using spatial adaptive snapshots which
are interpolated onto the finest mesh are shown in Figure 11. As expected, the more POD basis
functions we use (until stagnation of the corresponding eigenvalues), the less oscillations appear in
the POD solution and the better the approximation is.
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Figure 11. Run 4. Surface plot of the POD solution using ` = 10 (top) and ` = 50
(bottom) POD basis functions at t = t1 (left), t = T/2 (middle) and t = T (right).

Table 2 compares the approximation quality in the relative L2(0, T ;L2(Ω))-norm of the POD solution
using adaptively generated snapshots which are interpolated onto the finest mesh with snapshots
of uniform spatial discretization depending on different POD basis lengths. Then, for ` = 20 we
obtain a relative L2(0, T ;L2(Ω))-error between the POD solution and the finite element solution of
size εad

FE = 3.08 · 10−2, and a relative L2(0, T ;L2(Ω))-error between the POD solution and the true

solution of size εad
true = 2.17 · 10−2.

` εad
FE εuni

FE εad
true εuni

true

1 1.30 · 100 1.30 · 100 1.28 · 100 1.30 · 100

3 7.49 · 10−1 7.58 · 10−1 7.46 · 10−1 7.60 · 10−1

5 4.39 · 10−1 4.45 · 10−1 4.39 · 10−1 4.46 · 10−1

10 1.37 · 10−1 1.37 · 10−1 1.36 · 10−1 1.38 · 10−1

20 3.08 · 10−2 1.56 · 10−2 2.17 · 10−2 1.60 · 10−2

30 2.59 · 10−2 2.04 · 10−3 1.49 · 10−2 3.00 · 10−3

50 2.63 · 10−2 5.67 · 10−5 1.41 · 10−2 2.07 · 10−3

100 2.61 · 10−2 6.48 · 10−8 1.40 · 10−2 2.06 · 10−3

150 2.61 · 10−2 8.13 · 10−7 1.39 · 10−2 2.07 · 10−3

Table 2. Run 4. Relative L2(0, T ;L2(Ω))-error between the POD solution and the
finite element solution (columns 2-3) and the true solution (columns 4-5), respectively,
using adaptive finite element snapshots which are interpolated onto the finest mesh
and using a uniform mesh.

We note that εuni
FE decays down to 10−8 (` = 100) and then stagnates if using a uniform mesh.

This behavior is clear, since the more POD basis elements we include (up to stagnation of the
corresponding eigenvalues), the better is the POD solution an approximation for the finite element
solution. On the other hand, both εuni

true and εad
true start to stagnate after ` = 30 in Table 2, columns

4 and 5. This is due to the fact that at this point the spatial (and temporal) discretization error
dominates the modal error. This is in accordance with the decay of the eigenvalues shown in
Figure 3 and is accounted for e.g. in the error estimation presented in [39, Theorem 5.1]. Similar
observations hold true for the relative L2(0, T ;H1(Ω))-error listed in Table 3 with the difference that
the L2(0, T ;H1(Ω))-error is larger than the respective L2(0, T ;L2(Ω))-error.
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` εad
FE εuni

FE εad
true εuni

true

1 1.46 · 100 1.46 · 100 1.46 · 100 1.47 · 100

3 1.21 · 100 1.22 · 100 1.22 · 100 1.22 · 100

5 9.39 · 10−1 9.45 · 10−1 9.47 · 10−1 9.51 · 10−1

10 4.22 · 10−1 4.25 · 10−1 4.33 · 10−1 4.31 · 10−1

20 7.76 · 10−2 7.27 · 10−2 1.02 · 10−1 8.19 · 10−2

30 2.92 · 10−2 1.22 · 10−2 7.26 · 10−2 3.52 · 10−2

50 2.61 · 10−2 4.74 · 10−4 7.05 · 10−2 3.27 · 10−2

100 2.79 · 10−2 4.78 · 10−7 6.94 · 10−2 3.27 · 10−2

150 2.93 · 10−2 2.84 · 10−7 6.87 · 10−2 3.27 · 10−2

Table 3. Run 4. Relative L2(0, T ;H1(Ω))-error between the POD solution and the
finite element solution (columns 2-3) and the true solution (columns 4-5), respectively,
using adaptive finite element snapshots which are interpolated onto the finest mesh
and using a uniform mesh.

The computational times for the full and the low order simulation using uniform finite element
discretizations and adaptive finite element snapshots, which are interpolated onto the finest mesh,
respectively, are listed in Table 4.

adaptive FE mesh uniform FE mesh speedup factor

FE simulation 944 sec 8808 sec 9.3
POD offline computations 264 sec 1300 sec 4.9
POD simulation 0.07 sec –

speedup factor 13485 125828 –

Table 4. Run 4. CPU times for FE and POD simulation using uniform finite
element meshes and adaptive finite element snapshots which are interpolated onto the
finest mesh, respectively, and using ` = 50 POD modes.

Once the POD basis is computed in the offline phase, the POD simulation corresponding to adaptive
snapshots is 13485 times faster than the FE simulation using adaptive finite element meshes. This
speedup factor is important when one considers e.g. optimal control problems with time-dependent
PDEs, where the POD-ROM can be used as surrogate model in repeated solution of the underlying
PDE model. In the POD offline phase, the most expensive task is to express the snapshots with
respect to the common finite element space, which takes 226 seconds. Since K (30) is symmetric, it
suffices to calculate the entries on and above the diagonal, which are

∑n
k=1 k = (n2 + n)/2 entries.

Thus, the computation of each entry in the correlation matrix K using a common finite element
space takes around 0.00018 seconds. We note that in the approach explained in Sections 2.4 and 3,
the computation of the matrix K is expensive. For each entry the calculation time is around 0.03
seconds, which leads to a computation time of around 36997 seconds for the matrix K. The same
effort is needed to build A` = a(YΦj ,YΦi). In this case, the offline phase takes therefore around
88271 seconds. For this reason, the approach to interpolate the adaptively generated snapshots
onto the finest mesh is computationally more favorable. But since the computation of K can be
parallelized, the offline computation time can be reduced provided that the appropriate hardware is
available. ♦

Run 5 (Cahn-Hilliard equations). Now let us revisit Run 2, where we in the following run the
numerical simulations for different combinations of numbers for `c and `w of Table 1. The approx-
imation quality of the POD solution using adaptive meshes is compared to the use of a uniform
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mesh in Table 5. As expected, Table 5 shows that the error between the POD surrogate solution
and the high-fidelity solution gets smaller for an increasing number of utilized POD basis functions.
Moreover, a larger number of POD modes is needed for the chemical potential w than for the phase
field c in order to get an error in the same order which is in accordance to the fact that the decay of
the eigenvalues for w is slower than for c as seen in Figure 8.

`c `w c : εad
FE w : εad

FE c : εuni
FE w : εuni

FE

3 4 8.44 · 10−3 3.00 · 100 8.44 · 10−3 3.75 · 100

10 13 3.30 · 10−3 3.77 · 10−1 3.30 · 10−3 4.32 · 10−1

19 26 1.57 · 10−3 2.12 · 10−1 1.57 · 10−3 2.39 · 10−1

29 26 7.34 · 10−4 1.09 · 10−1 7.32 · 10−4 1.16 · 10−1

37 26 3.57 · 10−4 4.82 · 10−2 3.55 · 10−4 5.04 · 10−2

50 50 1.88 · 10−4 2.17 · 10−2 1.86 · 10−4 2.33 · 10−2

65 26 9.74 · 10−5 1.11 · 10−2 9.56 · 10−5 1.15 · 10−2

100 100 3.37 · 10−5 3.56 · 10−3 3.22 · 10−5 3.42 · 10−3

Table 5. Run 5. Relative L2(0, T ;L2(Ω))-error between the POD solution and the
finite element solution using adaptive meshes (columns 3-4) and using a uniform
mesh (columns 5-6), respectively.

We now discuss the treatment of the nonlinearity and also investigate the influence of non-smoothness
of the model equations to the POD procedure. Using the convex-concave splitting for W , we obtain
for the Moreau-Yosida relaxed double obstacle free energy the concave part W rel

− (c) = 1
2(1− c2) and

the convex part W rel
+ (c) = s

2(max(c− 1, 0)2 + min(c+ 1, 0)2). This means that the first derivative
of the concave part is linear with respect to the phase field variable c. The challenging part is the
convex term with non-smooth first derivative. For a comparison, we consider the smooth polynomial
free energy with concave part W p

−(c) = 1
4(1− 2c2) and convex part W p

+(c) = 1
4c

4.
Figure 12 shows the decay of the normalized eigenspectrum for the phase field c (left) and the first
derivative of the convex part W ′+(c) (right) for the polynomial and the relaxed double obstacle free
energy. Obviously, in the non-smooth case more POD modes are needed for a good approximation
than in the smooth case. This behavior is similar to the decay of the Fourier coefficients in the
context of trigonometric approximation, where the decay of the Fourier coefficients depends on the
smoothness of the approximated object.
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Figure 12. Run 5. Comparison of the normalized eigenvalues for c (left) and the
first derivative of the convex part W ′+ of the free energy (right) using polynomial and
relaxed double obstacle energy, respectively.
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Table 6 summarizes computational times for different finite element runs as well as reduced-order
simulations using the polynomial and the relaxed double obstacle free energy, respectively. In
addition, the approximation quality is compared. The computational times are rounded averages
from various test runs. It turns out that the finite element simulation (row 1) using the smooth
potential is around two times faster than using the non-smooth potential. This is due to the fact that
in the smooth case, two to three Newton steps are needed for convergence in each time step, whereas
in the non-smooth case six to eight iterations are needed in the semismooth Newton method.

W p W rel
s

FE 1644 s 3129 s

`c = 3 `c = 19 `c = 3 `c = 19
`w = 4 `w = 26 `w = 4 `w = 26

POD offline 355 s 355 s 350 s 349 s
DEIM offline 8 s 8 s 9 s 10 s
ROM 183 s 191 sec 2616 s 3388 s
ROM-DEIM 0.05 s 0.1 s 0.04 s no conv.
ROM-proj 0.008 s 0.03 s 0.01 s 0.03 s

speedup FE-ROM 8.9 8.6 1.1 none
speedup FE-ROM-DEIM 32880 16440 78225 –
speedup FE-ROM-proj 205500 54800 312900 104300

rel L2(Q) error ROM 5.46 · 10−3 3.23 · 10−4 8.44 · 10−3 1.57 · 10−3

rel L2(Q) error ROM-DEIM 1.46 · 10−2 3.83 · 10−4 8.84 · 10−3 –
rel L2(Q) error ROM-proj 4.70 · 10−2 4.18 · 10−2 8.72 · 10−3 9.80 · 10−3

Table 6. Run 5. Computational times, speedup factors and approximation quality
for different POD basis lengths and using different free energy potentials.

Using the smooth polynomial free energy, the reduced-order simulation is 8-9 times faster than
the finite element simulation, whereas using the relaxed double obstacle free energy only delivers a
very small speedup. The inclusion of DEIM (we use `deim = `c) in the reduced-order model leads
to immense speedup factors for both free energy functions (row 8). This is due to the fact that
the evaluation of the nonlinearity in the reduced-order model is still dependent on the full spatial
dimension and hyper reduction methods are necessary for useful speedup factors. Note that the
speedup factors are of particular interest in the context of optimal control problems. At the same
time, the relative L2(0, T ;L2(Ω))-error between the finite element solution and the ROM-DEIM
solution is close to the quality of the reduced-order model solution (row 10-11).
However, in the case of the non-smooth free energy function using `c = 19 POD modes for the phase
field and `w = 26 POD modes for the chemical potential, the inclusion of DEIM has the effect that
the semismooth Newton method does not converge. For this reason, we treat the nonlinearity by
applying the technique explained in Section 3.1, i.e. we project the finite element snapshots for W ′+(c)
(which are interpolated onto the finest mesh) onto the POD space. Since this leads to linear systems,
the computational times are very small (row 6). The error between the finite element solution and
the reduced-order solution using projection of the nonlinearity is of the magnitude 10−02/10−03.
Depending on the motivation, this approximation quality might be sufficient. Nevertheless, we note
that for large numbers of POD modes, using the projection of the nonlinearity onto the POD space
leads to a large increase of the error. ♦

To summarize, a POD reduced-order model construction approach is proposed which can be set
up and solved for snapshots originating from arbitrary FE (and also other) spaces. The method
is applicable for h-, p- and r-adaptive finite elements. It is motivated from an infinite-dimensional
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perspective. Using the method of snapshots we are able to set up the correlation matrix K from
(30) by evaluating the inner products of snapshots which live in different FE spaces. For non-nested
meshes, this requires the detection of cell collision and integration over cut finite elements. A
numerical strategy how to implement this practically is elaborated and numerically tested. Using
the eigenvalues and eigenvectors of this correlation matrix, we are able to set up and solve a POD
surrogate model that does not need the expression of the snapshots with respect to the basis of a
common FE space or the interpolation onto a common reference mesh. Moreover, an error bound
for the error between the true solution and the solution to the POD-ROM using spatially adapted
snapshots is available in [39, Theorem 5.1]. The numerical tests show that the POD projection
error decreases if the number of utilized POD basis functions is increased. However, the error
between the POD solution and the true solution stagnates when the spatial discretization error
dominates. Moreover, the numerics show that using the correlation matrix calculated explicitly
without interpolation in order to build a POD-ROM gives the same results as the approach where
the snapshots are interpolated onto the finest mesh. From a computational point of view, sufficient
hardware should be available in order to compute the correlation matrix in parallel and make the
offline computational time competitive. For semilinear evolution problems, the nonlinearity is treated
by linearization. This is of interest in view of optimal control problems, in which a linearized state
equation has to be solved in each SQP iteration level. An appropriate treatment of the nonlinearity
in our applications gains significant speedup of the ROM in computational times when compared to
the full simulations. This makes POD-MOR with adaptive finite elements an ideal approach for the
construction of surrogate models in e.g. optimal control with nonlinear PDE systems as they arise
e.g. in the context of multi-phase flow control problems.

4. Certification with a priori and a posteriori error estimates

As we have seen in Section 3 POD provides a method for deriving low order models of dynamical
systems. It can be thought of as a Galerkin approximation in the spatial variable, built from
functions corresponding to the solution of the physical system at prespecified time instances. After
carrying out a singular value decomposition the leading ` generalized eigenfunctions are chosen
as the POD basis {Ψj}`j=1 of rank `. As soon as one uses POD, questions concerning the quality
of the approximation properties, convergence, and rate of convergence become relevant. Let us
refer, e.g., to the literature [22, 42, 56, 58, 57, 85, 88, 89, 80] for a priori error analysis for POD
Galerkin approximations. It turns out that the error depends on the decay of the sum

∑
i>` λi, the

error ∆tβ (with an appropriate β ≥ 1) due to the used time integration method, the used Galerkin
spaces {V hj}nj=1 and the choice X = H or X = V . In particular, best approximation properties

hold provided the time differences ẏh(tj) (or the finite difference discretizations) are included in the
snapshot ensembles; cf. [56, 58, 89].
Let us recall numerical test examples from [42, Section 1.5]. The programs are written in Matlab
using the Partial Differential Equation Toolbox for the computation of the piecewise linear
FE discretization. For the temporal integration the implicit Euler method is applied based on the
equidistant time grid tj = (j − 1)∆t, j = 1, . . . , n and ∆t = T/(n− 1).

Run 6 (POD for the heat equation; cf. [42, Run 1]). We choose the final time T = 3, the spatial
domain Ω = (0, 2) ⊂ R, the Hilbert spaces H = L2(Ω), V = H1

0 (Ω), the source term f(t,x) = t3−x2

for (t,x) ∈ Q = (0, T )× Ω and the discontinuous initial value y◦(x) = χ(0.5,1.0) − χ(1,1.5) for x ∈ Ω,
where, e.g., χ(0.5,1) denotes the characteristic function on the subdomain (0.5, 1) ⊂ Ω, χ(0.5,1)(x) = 1
for x ∈ (0.5, 1) and χ(0.5,1)(x) = 0 otherwise. We consider a discretization of the linear heat equation
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Figure 13. Run 6 (cf. [42, Figure 1.1]). The FE solution yh (left) and the residuals
corresponding to the POD basis rank ` (right).

(compare (17) with c ≡ 0)

yt(t,x)−∆y(t,x) = f(t,x) for (t,x) ∈ Q,
y(t,x) = 0 for (t,x) ∈ Σ = (0, T )× ∂Ω,

y(0,x) = y◦(x) for x ∈ Ω.

(43)

To obtain an accurate approximation of the exact solution we choose n = 4000 so that ∆t ≈ 7.5 ·10−4

holds. For the FE discretization we choose m = 500 spatial grid points and the equidistant mesh size
h = 2/(m+ 1) ≈ 4 · 10−3. Thus, the FE error – measured in the H-norm – is of the order 10−4. In
the left graphic of Figure 13, the FE solution yh to the state equation (43) is visualized. To compute
a POD basis {Ψi}`i=1 of rank ` we utilize the multiple discrete snapshots y1

j = yh(tj) for 1 ≤ j ≤ nt
as well y2

1 = 0 and y2
j = (yh(tj)− yh(tj−1)/∆t, j = 2, . . . , nt, i.e., we include the temporal difference

quotients in the snapshot ensemble and K = 2, n1 = n2 = nt. We choose X = H and utilize the
(stable) SVD to determine the POD basis of rank `; compare Section 2.2. We address this issue in a
more detail in Run 9. Since the snapshots are FE functions, the POD basis elements are also FE
functions. In the right plot of Figure 13, the projection and reduced-order error given by

PROJ Error(`) =

( nt∑
j=1

αj

∥∥∥yh(tj)−
∑̀
i=1

〈yh(tj), ψi〉H ψi
∥∥∥2

H

)1/2

,

ROM Error(`) =

( nt∑
j=1

αj
∥∥yh(tj)− y`(tj)

∥∥2

H

)1/2

are plotted for different POD basis ranks `. The chosen trapezoidal weights αj have been introduced
in (23). We observe that both errors decay rapidly and coincide until the accuracy 10−12, which is
already significant smaller than the FE discretization error. These numerical results reflect the a
priori error estimates presented in [42, Theorem 1.29]. ♦

Run 7 (POD for a convection dominated heat equation; cf. [42, Run 2]). Now we consider a more
challenging example. We study a convection-reaction-diffusion equation with a source term which is
close to being singular: Let T , Ω, y◦, H and V be given as in Run 6. The parabolic problem reads
as follows

yt(t,x)− cyxx(t,x) + βyx(t,x) + ay(t,x) = f(t,x) for (t,x) ∈ Q,
y(t,x) = 0 for (t,x) ∈ Σ,

y(0,x) = y◦(x) for x ∈ Ω.

We choose the diffusivity c = 0.025, the velocity β = 1.0 that determines the speed in which the
initial profile y◦ is shifted to the boundary and the reaction rate a = −0.001. Finally, f(t,x) =
P( 1

1−t) cos(πx) for (t,x) ∈ Q, where (Pz)(t) = min(+l,max(−l, z(t))) restricts the image of z on a
bounded interval. In this situation, the state solution y develops a jump at t = 1 for l→∞; see the
left plot of Figure 14. The right plot of Figure 14 demonstrates that in this case, the decay of the
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Figure 14. Run 7 (cf. [42, Figure 1.2]. The FE solution yh (left) and the residuals
corresponding to the POD basis rank ` (right).
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Figure 15. Run 8 (cf. [42, Figure 1.3]. The ROM errors with respect to the true
solution (left) and the exact one (right).

reconstruction residuals and the decay of the errors are much slower as in the right plot of Figure 13.
The manifold dynamics of the state solution require an inconvenient large number of POD basis
elements. Since the supports of these ansatz functions in general cover the whole domain Ω, the
corresponding system matrices of the reduced model are not sparse. This is different for the matrices
arising in the FE Galerkin framework. Model order reduction is not effective for this example if
a good accuracy of the solution function y` is required. Strategies to improve the accuracy and
robustness of the POD-ROM in those situations are discussed in e.g. [18, 100] ♦

Run 8 (True and exact approximation error; cf. [42, Run 3]). We consider the setting introduced in
Run 6 again. The exact solution to (43) does not possess a representation by elementary functions.
Hence, the presented reconstruction and reduction errors actually are the residuals with respect to a
high-order FE solution yh. To compute an approximation y of the exact solution yex we apply a Crank-
Nicolson method (with Rannacher smoothing [77]) ensuring ‖y−yex‖L2(0,T ;H) = O(∆t2 +h2) ≈ 10−5.
In the context of model reduction, such a state is sometimes called the “true” solution. To compute
the FE state yh we apply the Euler method. In the left plot of Figure 15 we compare the true
solution yex with the associated POD approximation for different values nt ∈ {64, 128, 256, ..., 8192}
of the time integration and for the spatial mesh size h = 4 · 10−3. For the norm we apply a discrete
L2(0, T ;H)-norm as in Run 6. Let us mention that we compute for every nt a corresponding FE
solution yh. We observe that the residuals ignore the errors arising by the application of time and
space discretization schemes for the full-order model. The errors decay below the discretization
error 10−5. If these discretization errors are taken into account, the residuals stagnate at the level of
the full-order model accuracy instead of decaying to zero; cf. right plot of Figure 15. Due to the
implicit Euler method we have ‖yh − yex‖L2(0,T ;H) = O(∆t+ h2) with the mesh-size h = 4 · 10−3. In

particular, from nt ∈ {64, 128, 256, ..., 8192} it follows that ∆t > 3 ·10−4 > h2 = 1.6 ·10−5. Therefore,
the spatial error is dominated by the time error for all values of nt. We can observe that the exact
residuals do not decay below a limit of the order ∆t. One can observe that for fixed POD basis rank
`, the residuals with respect to the true solution increase if the high-order accuracy is improved by
enlarging nt, since the reduced-order model has to approximate a more complex system in this case,
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Figure 16. Run 9 (cf. [42, Figure 1.4]. Singular values σi using the SVD (SVD
Vals) or the eigenvalue decomposition (EIG Vals) and the associated ROM errors
(SVD error and EIG Error, respectively) (left); ROM errors for different the choices
for X, the error norm and the snapshot ensembles (right).

where the residuals with respect to the exact solution decrease due to the lower limit of stagnation
∆t = 3/(nt − 1). ♦

Run 9 (Different strategies for a POD basis computation; cf. [42, Run 4]). As we have explained
in Section 2.2, let Y ∈ Rm×n denote the matrix of snapshots with rank r, W ∈ Rm×m be the
(sparse) spatial weighting matrix consisting of the elements 〈ϕj , ϕi〉X (introduced Section 2.3.3)

and D ∈ Rn×n be the diagonal matrix containing the nonnegative weighting parameters αkj . As

we have explained in Section 2.2, the POD basis {Ψi}`i=1 of rank ` ≤ r can be determined by

providing an eigenvalue decomposition of the matrix Ȳ Ȳ > = W 1/2Y DY >W 1/2 ∈ Rm×m, one of
Ȳ >Ȳ = D1/2Y >WYD1/2 ∈ Rn×n, or a singular value decomposition of Ȳ = W 1/2Y D1/2 ∈ Rm×n.
Since n� m in Runs 6-8, the first variant is the cheapest one from a computational point of view.
In case of multiple space dimensions or if a second-order time integration scheme such as some
Crank-Nicolson technique is applied, the situation is converse. On the other hand, a singular value
decomposition is more accurate and stable than an eigenvalue decomposition if the POD elements
corresponding to eigenvalues/singular values which are close to zero are taken into account: Since
λi = σ2

i holds for all eigenvalues λi and singular values σi, the singular values are able to decay to
machine precision, where the eigenvalues stagnate significantly above. This is illustrated in the left
graphic of Figure 16. Indeed, for ` > 20 the EIG-ROM system matrices become singular due to the
numerical errors in the eigenfunctions and the reduced-order system is ill-posed in this case while the
SVD-ROM model remains stable. In the right plot of Figure 16 POD elements are constructed with
respect to different scalar products and the resulting ROM errors are compared: ‖ · ‖H -residuals for
X = H (denoted by POD(H)), ‖ · ‖V -residuals for X = V (denoted by POD(V)), ‖ · ‖V -residuals for
X = H (denoted by POD(H,V)), which also works quite well, the consideration of time derivatives
in the snapshot sample (denoted by POD(H,dt)) which allows to apply the a priori error estimate
given in [42, Theorem 1.29-2)] and the corresponding sums of singular values (denoted by SV(H,dt))
corresponding to the unused eigenfunctions in the latter case which indeed nearly coincide with the
ROM errors. ♦

Notice that in many applications, the quality of the reduced-order model does not vary significantly
if the weights matrix W refers to the space X = H or X = V and if time derivatives of the used
snapshots are taken into account or not. Especially, the ROM residual decays with the same order
as the sum over the remaining singular values, independent of the chosen geometrical framework.

5. Optimal snapshot location for computing POD basis functions

The construction of reduced-order models for nonlinear dynamical systems using proper orthogonal
decomposition (POD) is based on the information carried of the so-called snapshots. These provide
the spatial distribution of the nonlinear system at discrete time instances. Thus, we are interested
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in optimizing the choice of these time instances in such a manner that the error between the POD-
solution and the trajectory of the dynamical system is minimized. This approach was suggested in
[59] and was extended in [64] to parametrized elliptic problems. Let us briefly mention some related
issues of interest. In [26, 32] the situation of missing snapshot data is investigated and gappy POD
is introduced for their reconstruction. An important alternative to POD model reduction is given by
reduced basis approximations; we refer to [72] and references given there. In [37] a reduced model
is constructed for a parameter dependent family of large scale problems by an iterative procedure
that adds new basis variables on the basis of a greedy algorithm. In the Ph.D thesis [20] a model
reduction is sought of a class for a family of models corresponding to different operating stages.
Suppose that we are given the nt snapshots {y(tj)}ntj=1 ⊂ V ⊂ X. The goal is to determine additional

k snapshots at time instances τ = (τ1, . . . , τk) with 0 ≤ τj ≤ T , j = 1, . . . , k. In [59] we propose to
determine τ = (τ1, . . . , τk) by solving the optimization problem

min
0≤τ1,...,τk≤T

∫ T

0
‖y(t)− y`(t)‖2V dt, (44)

where y and y` are the solutions to (16) and its POD Galerkin approximation, respectively. Clearly,
the definition of the operator R given in (6) has to be modified as follows:

RτΨ =

nt∑
j=1

ατj 〈y(tj),Ψ〉X y(tj) +
k∑
j=1

ατnt+j 〈y(τj),Ψ〉X y(τj)

with appropriately modified (trapezoidal) weights ατj , j = 1, . . . , k + nt. Consequently, (44) becomes
an optimization problem subject to the equality constraints

RτΨi = λiΨi, i = 1, . . . , `.

Note that no precautions are made in (44) to avoid multiple appearance of a snapshot. In fact, this
would simply imply that a specific snapshot location should be given a higher weight than others.
While the presented approach shows how to choose optimal snapshots in evolution equations, a
similar strategy is applicable in the context of parameter dependent systems.
It turns out in our numerical tests carried out in [59] that the proposed criterion is sensitive with
respect to the choice of the time instances. Moreover, the tests demonstrate the feasibility of the
method in determining optimal snapshot locations for concrete diffusion equations.

Run 10 (cf. [59, Run 1]). For T = 1 let Q = (0, T )× Ω and Ω = (0, 1)× (0, 1) ⊂ R2. For the FE
triangulation we choose a uniform grid with mesh size h = 1/40, i.e., we have 900 degrees of freedom
for the spatial discretization. Then, we consider

yt(t,x)− c∆y(t,x) + β · ∇y(t,x) + y(t,x) = f(x) for (t,x) ∈ Q,

c
∂y

∂x
(t,x) + q(x)y(t,x) = g(x) for (t,x) ∈ Σ,

y(0,x) = y◦(x
¯
) for x ∈ Ω,

where c = 0.1, β = (0.1,−10)> ∈ R2,

f(x) =

{
4 for all x = (x1, x2) with (x1 − 0.25)2 + (x2 − 0.65)2 ≤ 0.05,
0 otherwise,

and y◦(x) = sin(πx1) cos(πx2) for x = (x1, x2) ∈ Ω (see Figure 17, left plot). Furthermore, we have
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Figure 17. Run 10 (cf. [59, Figures 3 and 4]). initial condition y◦ (left plot), FE
solution yh for t = 0.3 (middle) and t = T (right plot).
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Figure 18. Run 10 (cf. [59, Figures 5 and 7]). POD basis Ψ1, Ψ2, Ψ3 for the initial
additional time instances τ0 ∈ R4 (upper three plots) and for the optimal additional
time instances τ̄ ∈ R4 (lower three plots).

q(x) =


1 for x = (x1, 1) with 0 < x1 < 1,
x2 for x = (1, x2) with 0 < x2 < 1,
−2 for x = (x1, 0) with 0 < x1 < 1,
0 for x = (0, x2) with 0 < x2 < 1,

g(x) =


1 for x = (x1, 1) with 0 < x1 < 1,
0 for x = (1, x2) with 0 < x2 < 1, for x = (0, x2) with 0 < x2 < 1,
−1 for x = (x1, 0) with 0 < x1 < 1.

We utilize piecewise linear FE functions. The FE solutions yh = yh(t,x) for t = 0.15 and t = T
are shown in Figure 17. Next we take snapshots on the fixed uniform time grid tj = (j − 1)∆t,
1 ≤ j ≤ nt, with nt = 10 and ∆t = T/nt = 0.1. The goal is to determine four additional time
instances t̄ = (t̄1, . . . , t̄4) ∈ [0, T ] based on a FE approximation for (44). Since the behavior of the
solution exhibits more change during the initial time interval [0, 0.3] than later on, we initialize our
Quasi-Newton method by the starting value τ0 = (0.05, 0.15, 0.25, 0.35) ∈ [0, T ]. The number of POD
ansatz functions is fixed to be ` = 3. The corresponding value of the ROM error is approximately
0.1093. The optimal solution is given as τ̄ = (0.0092, 0.0076, 0.1336, 0.2882) ∈ [0, T ], while the
associated ROM error is approximately 0.0165, which is a reduction of about 85 %. In Figure 18 we
can see that the shapes of the three POD bases changes significantly from the initial time instances
τ0 ∈ R4 to the optimal ones τ̄ ∈ R4. ♦
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6. Optimal control with POD surrogate models

Reduced-order models are used in PDE-constrained optimization in various ways; see, e.g., [50, 86]
for a survey. In optimal control problems it is sometimes necessary to compute a feedback control
law instead of a fixed optimal control. In the implementation of these feedback laws models of
reduced-order can play an important, and very useful role, see [11, 40, 60, 65, 68, 79]. Another
useful application is the use in optimization problems, where a PDE solver is part of the function
evaluation. Obviously, thinking of a gradient evaluation or even a step-size rule in the optimization
algorithm, an expensive function evaluation leads to an enormous amount of computing time. Here,
the reduced-order model can replace the system given by a PDE in the objective function. It is quite
common that a PDE can be replaced by a five- or ten-dimensional system of ordinary differential
equations. This results computationally in a very fast method for optimization compared to the
effort for the computation of a single solution of a PDE. There is a large amount of literature in
engineering applications in this regard, we mention only the papers [67, 71]. Recent applications can
also be found in finance using the reduced models generated with the reduced basis (RB) method
[76] and the POD model [85, 88] in the context of calibration for models in option pricing.
We refer to the survey article [42], where a linear-quadratic optimal control problem in an abstract
setting is considered. Error estimates for the POD Galerkin approximations of the optimal control
are proved. This is achieved by combining techniques from [28, 29, 44] and [56, 58]. For nonlinear
problems we refer the reader to [50, 75, 86]. However, unless the snapshots are generating a sufficiently
rich state space or are computed from the exact (unknown) optimal controls, it is not a priorly clear
how far the optimal solution of the POD problem is from the exact one. On the other hand, the
POD method is a universal tool that is applicable also to problems with time-dependent coefficients
or to nonlinear equations. Moreover, by generating snapshots from the real (large) model, a space
is constructed that inhibits the main and relevant physical properties of the state system. This,
and its ease of use makes POD very competitive in practical use, despite of a certain heuristic
flavor. In this context results for a POD a posteriori analysis are important, see e.g., [94] and
[41, 54, 55, 91, 93, 96, 98]. Using a fairly standard perturbation method it is deduced how far the
suboptimal control, computed on the basis of the POD model, is from the (unknown) exact one.
This idea turned out to be very efficient in our examples. It is able to compensate for the lack of a
priori analysis for POD methods. Let us also refer to the papers [30, 36, 69], where a posteriori error
bounds are computed for linear-quadratic optimal control problems approximated by the reduced
basis method.
Data- and/or simulation-based POD models depend on the data (e.g. initial values, right hand
sides, boundary conditions, oberservations, etc.) which is used to generate the snapshots. If those
models are used as surrogates in e.g. optimization problems with PDE constraints the algorithmical
framework has to account for this fact with providing mechanisms for accordingly updating the
surrogate model during the solution process. Strategies proposed in this context for optimal flow
control can be found in e.g. [3, 4, 9, 34, 17]. One of the most mature methods developed in this
context is Trust-Region POD proposed in [9], which since then has successfully been applied in
many applications. We also refer to the work [38], where strategies for updating the POD bases are
compared.
The quality of the surrogate model highly depends on its information basis, which for snapshot-based
methods is given by the snapshot set, compare Section 5. The location of snapshots and also the
choice of the initial control in surrogate-based optimal control is discussed in [5]. There, techniques
from time-adaptive schemes for optimality systems of parabolic optimal control problems are adjusted
to compute optimal time locations for snapshots generation in POD surrogate modeling for parabolic
optimal control problems.
Concepts for the construction and use of POD surrogate modeling in robust optimal control of
electrical machines are presented in [63, 6]. Those problems are governed by nonlinear partial
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differential equations with uncertain parameters, so that robustness can be achieved by considering
a worst case formulation. The resulting optimization problem then is of bilevel structure and POD
reduced-order models in combination with a posteriori error estimators are used to speed up the
numerical computations.

7. Miscellaneous

POD model order reduction can also be applied to provide surrogate models for high-fidelity
components in networks. The general perspective is discussed in e.g. [48]. Related research for MOR
of electrical networks is reported in e.g. [16, 46, 47]. The basic idea here consists in a decoupling
of MOR approaches for the network and high-fidelity components which in general are modeled
by PDE systems. For the latter, simulation-based POD MOR techniques are used to construct
surrogate models which then are stamped back into the (reduced) electrical network. Details and
performance tests are reported e.g. in [45, 47]. A short lecture series with related topics is presented
under Hinze-Pilsen2. Further contributions to this topic can be found in [15].
Recent trends in data-driven and nonlinear MOR methods are discussed within a YouTube lecture
series under Carlberg-YouTube3.
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[36] M. Grepl and M. Kärcher. A posteriori error estimation for reduced order solutions of parametrized parabolic

optimal control problems. Mathematical Modelling and Numerical Analysis, 48:1615-1638, 2014.

[37] M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. Efficient reduced-basis treatment of nonaffine and nonlinear

partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis, 41:575-605, 2007.

[38] C. Gräßle, M. Gubisch, S. Metzdorf, S. Rogg and S. Volkwein. POD basis updates for nonlinear PDE control. at –

Automatisierungstechnik, 65: 298-307, 2017.
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[94] F. Tröltzsch and S. Volkwein. POD a-posteriori error estimates for linear-quadratic optimal control problems.

Computational Optimization and Applications, 44:83-115, 2009.

[95] S. Ullmann, M. Rotkvic, and J. Lang. POD-Galerkin reduced-order modeling with adaptive finite element

snapshots. Journal of Computational Physics, 325:244-258, 2016.

[96] S. Volkwein. Optimality system POD and a-posteriori error analysis for linear-quadratic problems. Control and

Cybernetics, 40:1109-1125, 2011.

[97] S. Volkwein. Optimal control of a phase-field model using proper orthogonal decomposition. Zeitschrift für

Angewandte Mathematik und Mechanik, 81:83-97, 2001.

[98] G. Vossen and S. Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal

control problems. Numerical Algebra, Control and Optimization, 2:465-485, 2012.



POD MODEL ORDER REDUCTION 39

[99] Z. Whang. Nonlinear model reduction based on the finite element method with interpolated coefficients: semilinear

parabolic equations. Numer. Meth. Partial. Diff. Eqs., 31:1713-1741, 2015.

[100] D. Wells, Z. Wang, X. Xie, T. Iliescu. An Evolve-Then-Filter Regularized Reduced Order Model For Convection-

Dominated Flows. arXiv:1506.07555v2, 2018.

[101] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decomposition. American Institute

of Aeronautics and Astronautics, 40:2323–2330, 2002.

http://arxiv.org/abs/1506.07555

	1. Introduction
	2. Proper Orthogonal Decomposition (POD)
	2.1. The POD method
	2.2. Singular value decomposition and POD
	2.3. The POD method for nonlinear evolution problems
	2.4. The POD method with snapshots generated by spatially adaptive finite element methods

	3. The POD Galerkin procedure
	3.1. The POD Galerkin procedure
	3.2. Time-discrete reduced-order model
	3.3. Discussion of the computation of the nonlinear term
	3.4. Expressing the POD solution in the full spatial domain

	4. Certification with a priori and a posteriori error estimates
	5. Optimal snapshot location for computing POD basis functions
	6. Optimal control with POD surrogate models
	7. Miscellaneous
	References

