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We investigate few- and many-body states in half-filled maximally symmetric topological insulator
flat bands realized by two degenerate Landau levels which experience opposite magnetic fields. This
serves as a toy model of flat bands in moiré materials in which valleys have Chern numbers C' = +1.
We argue that although the spontaneously polarized Ising Chern magnet is a natural ground state for
repulsive Coulomb interactions, it can be in reasonable energetic competition with correlated states
which can be viewed as Laughlin states of excitons when short distance corrections to the interaction
are included. This is because charge neutral excitons in these bands behave effectively as charged
particles in ordinary Landau levels. In particular, the Ising Chern magnet is no longer the ground
state once the strength of a short range intra-valley repulsion is about 30% larger than the inter-valley
repulsion. Remarkably, these excitonic Laughlin states feature valley number fractionalization but
no charge fractionalization and a quantized charge Hall conductivity identical to the Ising magnet,
0zy = £€?/h, and thus cannot be distinguished from it by ordinary charge transport measurements.
The most compact excitonic Laughlin state that can be constructed in these bands is an analogue of
v = 1/4 bosonic Laughlin state and has no valley polarization even though it spontaneously breaks

Excitonic Laughlin States in Ideal Topological Insulator Flat Bands and Possible

time reversal symmetry with a charge Hall conductivity o, = +e?/h.

I. INTRODUCTION

The most experimentally generous platform to realize
fractionalized phases of matter to this date are partially
filled low Landau levels of clean two-dimensional electron
systems subjected to strong quantizing magnetic fields.
Landau levels are essentially flat bands with a non-zero
Chern number [1]. The facility towards fractionalization
in Landau levels is intimately tied to such band topol-
ogy which obstructs the construction of a complete set
of localized orbitals [2, 3]. The latter forbids the exis-
tence of a meaningful Hubbard-type limit in which in-
teractions are diagonal in the orbital position basis and
devoid from quantum fluctuations, forcing any physically
realistic model of interactions to always lead to strong
quantum fluctuations in the location of the particles even
in the flat band limit, and ultimately leading to the melt-
ing of charge-density-wave states in favor of correlated
Laughlin-type states over a wide range of conditions.

Recently a new platform for the appearance of ex-
tremely flat bands with non-trivial topology has emerged
in the form moiré super-lattices of two-dimensional ma-
terials. Following the prediction of the appearance
flat bands at small twist-angle in graphene moir super-
lattices [4, 5], experiments have observed a variety of su-
perconducting and correlated insulating states in these
[6-13] and other moir superlattice materials [14-20]. The
mechanisms behind these phenomena have been strongly
debated [21-36]. Moreover super-lattices aligned with
a hexagonal boron nitride (hBN) substrate can harbour
valleys with opposite Berry curvatures [37] and can lead
to moiré mini-bands in which the two valleys have flats
bands with opposite Chern numbers [38-42] and wave-
functions of the continuum model have been argued to
be reminiscent of those in Landau levels [40, 43, 44]. In
fact, experiments have observed hysteretic [45] and quan-
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FIG. 1: (a) Shaded region of optimal conditions for excitonic
Laughlin states for interactions with range a and intra- and
inter-valley strengths V44 and V3. Above blue line: excitons
proliferate and repel. Below purple line: exciton binding en-
ergy is larger than inter-exciton interaction. (b) Schematic
of the most compact exciton Laughlin state with zero valley
polarization but Hall conductivity identical to Chern magnet
Ozy = +e? /h. Charge neutral valley fractionalized quasipar-
ticles are depicted. Red and blue line are electron densities
of each valley and dotted line is the total density.

tized anomalous Hall effect in twisted bilayer graphene
[46] and trilayer graphene [47] moiré super-lattices on
hBN substrates. These states have been theoretically
rationalized as spontaneously valley polarized magnetic
Chern insulators [38, 41, 48-54].

In the present study, we take an idealized limit of these
systems in which the valleys are literally viewed as two
Landau levels experiencing opposite magnetic fields, and
the physical spin is taken to be fully polarized. This
can also be viewed as a maximally symmetric model of
a topological insulator flat band [55]. We advance sev-
eral results on the few- and the many-body problems
in these systems. We show that pairs of electrons with
opposite valleys behave like excitons in the usual quan-



tum Hall context, in the sense that their momentum is
locked to be proportional and orthogonal to the relative
distance between the particles. Conversely charge neu-
tral inter-valley excitons will be shown to behave like a
pair of charged particles in a magnetic field. We will
also demonstrate that the Chern magnet is a stable ex-
act ground state for a large class of repulsive Hamiltoni-
ans and study its stability against single particle, exci-
ton and exciton pair proliferation instabilities. In spite
of its stability, we will argue that there are competing
correlated states in the form of Laughlin states of ex-
citons, which could be stabilized with moderate modifi-
cations of the relative strength of short-distance intra-
and inter-valley repulsive interactions. Specifically, these
states are expected to be energetically competitive once
the following three conditions are satisfied: (a) The Ising
Chern magnet is unstable against exciton proliferation,
(b) the excitons remain strongly bound, and (c) the inter-
exciton interactions are repulsive. In the shaded region
in Fig.1(a) all these three conditions are satisfied for a
toy model with Gaussian repulsive interactions described
in Eq. (32). Remarkably, these states have only valley
fractionalization but no charge fractionalization and their
Hall conductivity is expected to be identical to that of
the ordinary Ising Chern magnet (0., = +e?/h), as de-
picted in Fig.1(b) making it hard to distinguish them
via conventional charge transport experiments. In par-
ticular, we will show that the most compact excitonic
Laughlin state, which is presumably also the most stable
one, has zero valley polarization in spite of spontaneously
breaking the time reversal symmetry with a charge Hall
conductivity of o,, = +e?/h. Notice that the excitonic
Laughlin states are sharply distinct from the more con-
ventional analogues of Laughlin states studied in frac-
tionally filled chern bands of moir materials [56-58].

II. MAXIMALLY SYMMETRIC 2D
TOPOLOGICAL INSULATORS

Our primary interest is to study the ground states of
electrons partially filling the flat bands of a time-reversal
invariant topological insulator that interact via repulsive
forces. To do so it is convenient to consider the largest
symmetry that is compatible with such topological in-
sulator band topology. This will allow us to simplify
substantially the understanding and the construction of
correlated states, and it is a natural starting point before
adding realistic perturbations that break these symme-
tries, such as the band dispersion. In a sense, to not
follow this path would be like trying to understand cor-
related states in Chern bands before understanding them
in the ideal isolated Landau levels.

A maximally symmetric realization of a topological in-
sulator band is comprised of two Landau levels with op-
posite Chern numbers, C' = +1 [55]. We can view them
as the n = 0 Landau level of a Hamiltonian for particles

in two valleys that experience opposite magnetic fields:
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here 0, = +1 would be the valley index of two bands
with opposite Chern number in the corresponding moiré
super-lattice material, A is the vector potential for a uni-
form perpendicular magnetic field: V x A = Bz, and the
magnetic field would be interpreted simply as the scale
that controls the area of the moiré super-lattice unit cell,
ayc = 2rl? = 27/B. In addition we will take the parti-
cles to experience valley dependent interactions that sep-
arately preserve the number of particles in each valley, of
the form:

V = Z VTT(ri — I‘j)tsaziJ” + VTi(ri — I‘j)tsgzh_gzj, (2)

i<j

where V44 and V4 denote intra- and inter-valley inter-
actions respectively. The physical Hamiltonian is under-
stood to be the interaction from Eq. (2) projected onto
one of the doubly degenerate Landau levels defined by
Eq. (1) which we will take to be the n = 0 for concrete-
ness.

The projected Hamiltonian enjoys a large symmetry
group. In particular, it has three spatially local sym-
metries that will be crucial in our subsequent analysis.
These are the U(1) x U(1) valley resolved particle num-
ber conservation:

Uch U = ei®eNol 7 = ¢t 20 o No (3)
where ¢/  is the electron creation operator for valley
o and intra-Landau level index m, and ¢, is a valley
dependent U(1) phase. The anti-unitary time reversal
symmetry (72 = —1):
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And a unitary charge conjugation symmetry, that maps
particles into holes of the opposite valley, and can be
chosen as:

Cel CtT = 10 41 Cmo - (5)

We note that the valley conservation and time reversal
can be enforced in systems with and without boundaries,
but the particle-hole conjugation can only be strictly
enforced in geometries without boundaries, such as the
sphere or the torus, and boundaries will induce particle-
hole symmetry breaking terms. Additionally, the pro-
jected Hamiltonian has a rich space symmetry group,
which is larger than an ordinary lattice Hamiltonian.
For example, in infinite space, it is endowed with a con-
tinuous magnetic translational algebra, analogous to the
magnetic translation algebra of Landau levels, and whose
single particle generators can be written as:

Q=7m+0,B%Zxr, (6)



where m = p — 0, A is the mechanical momentum oper-
ator, which satisfies the commutation relations:

Qi, Q;] = —io.Be;;. (7)

The closely related projected position operator defines
an analogue of the guiding center operators of Landau
levels, and are given by:

Oy . g
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The translation operator satisfies therefore a non-
commutative algebra that encodes a valley dependent
Aharonov-Bohm effect of the form:

taty = tbtaeiaz Bi-(axb)7 (9)

where t, = ¢e7®Q and a is 2D vector.

In fact, this many body translational magnetic sym-
metry can be used to rigorously prove that valley unpo-
larized states and time reversal invariant states do not
have exact topological degeneracies, in contrast to usual
Landau levels [59], as we demonstrate in the Appendix

A.

III. TWO-PARTICLE PROBLEM

Before tackling the fully fledged complexities of the
many-body problem, we will begin by analyzing the two-
particle problem. This problem is of great significance
in conventional Landau levels, because it can be solved
essentially by exhausting the symmetries of the problem,
and in particular, the center of mass position and the
relative angular momentum serve to label unique two-
body states and their energy defines the useful notion of
Haldane pseudopotentials [60]. As we will see, however,
the two-body problem for flat topological insulator bands
can also be fully solved by employing symmetries, but its
structure is very different from that of usual Landau lev-
els and will resemble rather the problem of two particle
of opposite charge (neutral exciton) in conventional Lan-
dau levels [61, 62], as it is intuitively clear from the form
of the Hamiltonian in Eq. (1).

Let us define guiding center relative distance (d) and
center of mass position (R) for particles 1 and 2 as fol-
lows:

_ Ry +Ro

R 2

, d=R; — Ra, (10)

where Ry, Ry are defined in Eq. (8). These operators
satisfy the following commutation relations:

i, d;] = 4[R;, R;] = _%’
(1)
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The closely related magnetic center of mass (Q) and rel-
ative momentum (q), can be defined as:

Q=Qi+Qs q= T2, (12)
where Qq 2 are defined in Eq. (6), and satisfy the follow-

ing commutation relations:

[Qi, Q5] = 4[ai, qj] = —i(021 + 022) Beyj,
0y, —02,)Beij
(R, Q;] = [d;, qj] = 1645,

Let us now exploit the symmetries of the Hamiltonian
in Eq. (1) for the case of two particles. First the val-
ley pseudo-spin of each particle, 0,,,0,, is a conserved
number. In the case of valley polarized states in which
the two-particles have the same pseudo-spin, 0,, = 0.,,
the algebra reduces to that of conventional Landau lev-
els and the problem can be solved following the stan-
dard approach via Haldane pseudo-potentials [60]. We
will therefore focus on the case of valley un-polarized
states: o0, = —o,,. We will take the particles to be
distinguishable and the desired wavefunctions of bosons
and fermions can be obtained from our results by per-
forming the corresponding symmetrization or antisym-
metrization. Now, in this case the Hamiltonian between
the two particles is only a function of the relative coor-
dinate variable:

Vi = PyVy(r1 — 12) P, (14)

where P, denotes projection onto the valley degenerate
Landau levels. From Eq. (11) we see that for o,, = —0,,
the relative coordinates along both directions commute
and can be simultaneously diagonalized:

[de,dy] =0, for ., = —0,. (15)

Therefore the eigenfunctions can be parametrized by a
vector of two real numbers d = (d,,d,) € R?, and can
be written formally as:

[¥10(Q)) = das dy) 1y @ |02)y [=02), - (16)

These states will have an eigen-energy which is simply a
convolution of the unprojected interaction potential and
the form factor squared of the Landau level of interest:
d?q 2 iqd
Epy(d) = WVN(QNF(QN et (17)

For example, if the unprojected interaction is a delta
function V4, = g¢4,6(r), and we project into the n = 0

21q)?
2= e 5

Landau level of Galilean fermions, |Fy(q)|* = e ,

la® .
then the energy will be Ey(d) = g4 e 22 /2m. Notice
that although the two particles have a well defined sepa-
ration vector d, they do not have a well average or center



of mass position R, since Eq. (11) implies that these two
sets of variables cannot be simultaneously specified when
0, = —0,,. The particles, however, have a well defined
total or center of mass magnetic momentum Q, which can
be simultaneously specified together with d, according to
Eq. (13). However, this is not an independent variable
but it is locked to be proportional and orthogonal to d,
as follows:

Q=-0,,Bzxd, foro,, =—0,,. (18)

Therefore, we see that the behavior of a pair of charged
particles in the flat topological insulator band resembles
that of a neutral particle-hole pair in ordinary Landau
levels.

IV. ISING CHERN MAGNETS: IDEAL
HAMILTONIANS AND EXACT GROUND
STATES

In this section we will exploit the individual valley par-
ticle number conservation to demonstrate that the spon-
taneous Ising Chern magnetic insulator that appears at
total filling v = 1 is the exact many-body ground state
for a wide class of repulsive Hamiltonians.

The valley conservation described in Eq. (3) allows
to separate the Hilbert into subspaces labeled by the
number of particles in each valley (N4, N;). Let us
consider the system to be placed in a finite geome-
try, such as torus, which restricts 0 < Ny < Ng.
Then, there are four subspaces that have a single state,
and therefore are automatically guaranteed to be exact
eigenstates of any Hamiltonian with valley number con-
servation, namely (0,0), (0, Ny), (Ng,0), (Ng, Ng). The
states ¥(0,0), ¥(Ng, Ng) are the completely empty and
the completely filled topological insulator band, whereas
U(0,Ng), U(Ny,0) represent fully polarized magnetic
Chern insulators.

Although enforcing valley conservation is a useful the-
oretical device, this is never an exact symmetry in ex-
periments. Additionally, even though it is easy to fix the
total particle number, N4+ N, experimentally it is much
harder to imagine a experimental knob that would con-
trol the valley polarization Ny — N|. Therefore, it is nat-
ural to consider the problem of the absolute ground state
of the problem at fixed total particle number, N4+ N, for
the various allowed valley polarizations. In particular, in
this section we will concentrate in determining when the
fully polarized Ising magnets W(0, Ny), ¥(Ny,0) are the
absolute ground states at total particle Ny + N = Ny.
These two states are exchanged either by the time rever-
sal symmetry or the charge conjugation symmetry 7" and
C' defined in Egs. (4), (5) and are therefore degenerate
whenever one of these symmetries is enforced, in which
case they would break either of these symmetries spon-
taneously. We will now introduce a set of ideal Hamilto-
nians for which these states are the exact ground states
at Ny + N, = Ng. Consider the following interacting

Hamiltonian:
Vo= Vipl?6®) (v = 15)06., 0., + Viy(rs = 15)00., 0., -
1<j

(19)
The above Hamiltonian is understood to be projected
onto one of the doubly degenerate Landau levels of
Egs. (1). Here we demand the interactions to be strictly
repulsive, namely:

Vit >0, Vi (r) >0Vr. (20)

The above Hamiltonian is a positive semidefinite oper-
ator, namely its exact eigenstates have energies £ > 0.
Now, we can see that the Ising magnets are exact zero
energy ground states of this Hamiltonian:

Vol (0, Ny) = Vo' (Ny, 0) = 0. (21)

The above follows from the fact that the Pauli exclusion
principle guarantees that particles of the same valley are
never at the same spatial location and therefore the delta
function part of the intra-valley interaction is always
identically zero for any fermionic wavefunction [63]. Now
let us consider a partially polarized eigenstate (N4, N ).
This state will have an inter-valley correlation function of
the form g4} (rs,ry), which we take to measure the prob-
ability density of finding a particle of valley pseudo-spin
o0 at position r| and a particle of valley pseudo-spin —o,
at position r|, given by:

gri(ry,ry) =
U N (D08 (E = e)8% (8 — 1) o)) WG V).
3] (22)

Now the above quantity is always non-negative gy, but
moreover, if the state U(Ny4, N|) is partially valley po-
larized, this function will be strictly positive at least for
some region of finite measure. This is because if there is
a particle of say valley o, = 1 at ry there is some finite
probability to find another particle at some other loca-
tion r| with o0, = —1. Now, because the energy of the
eigenstate in question can be written as:

1
By =3 / drydrygry(re,ry) Ve (re,r)),  (23)

it is clear that the condition stated in Eq. (20) guarantees
the energy of any partially polarized state ¥(Ny, N|) to
be strictly positive Ey > 0. In fact, due to the inabil-
ity to make fully localized single-particle wavefunctions
on a Landau level, it is highly likely that for partially
polarized wavefunction W(Ny, N|) the function g4 can
only be made zero in a subset of measure zero, for ex-
ample one could have very high degree zero in a corre-
lated wavefunction when particles approach each other
g11(ry, v — r)) — 0. Therefore, to guarantee the strict
positivity of the energies of partially polarized states,
Eg > 0, it is sufficient to demand that V4 (r) > 0 only for



r belonging to some region of the 2D plane with non-zero
measure, for example simply by being non-zero inside a
finite radius defining a hard-core. With this we conclude
the rigorous arguments showing that the spontaneously
polarized Ising Chern magnets are exact unique zero en-
ergy ground states of the class of Hamiltonians intro-
duced in Eq. (19).

Now, when the intra-valley interactions are not delta
functions, the Ising magnets ¥(0, Ny), ¥(Ny,0) can still
be the absolute ground states, even though it is harder
to make rigorous statements in this case. Of particular
interest for moiré superlattice materials is the case when
intra-valley interactions and inter-valley interactions are
identical. The reason is that because the orbitals at dif-
ferent valleys are related by the microscopic physical time
reversal symmetry, which is local in real space. Therefore
the probability amplitude of orbitals in both valleys will
have the same space structure, and the leading density-
density interactions between particles in the same and
opposite valleys are therefore expected to be the same.
As we will see in the coming sections, there are good
reasons to expect that the Ising Chern magnets remain
as robust unique ground states for a larger class of such
repulsive Hamiltonians, even though it is harder to make
rigorous proofs.

V. EXCITONS AND STABILITY OF ISING
CHERN MAGNETS

Having established that the Ising Chern magnet is an
exact and unique ground state for a wide class of repulsive
Hamiltonians, we will now study the excitations on these
states. To do so, it is convenient to perform a partial
particle-hole transformation of the fully occupied flavor,
which we take to be 1, as follows:

PCIMPT = Cm1, Pc:erJr = Cjni' (24)

This transformation reverses the sign of the Chern num-
ber of valley 1, allowing to view the system as a type
quantum Hall bilayer in which both flavors experience
the same magnetic field at the expense of reversing the
sign of the inter-valley interaction and making it effec-
tively attractive [64]. We will refer to the representation
of the problem after this transformation as the quantum
Hall picture, whereas the original representation will be
referred to as the topological insulator or physical pic-
ture.

Upon performing this transformation on Eq. (2), the
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FIG. 2: Spectrum of exciton states on the Ising Chern mag-
net. m labels the relative angular momentum. If the exciton
gap AEgc vanishes the state becomes unstable.

Hamiltonian becomes:
PVP' = By +V 4+ e;Ny + ¢, N,
V=> Vit(ti = 15)00. 0., — ViL(vi = 13)00. 0.,

i<j
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(25)

Here Ey is the energy of the Ising Chern Magnet and
Voor(q) is the Fourier transform of Vy,/(r). We have
kept global Hartree terms, V,,/(q = 0), but these could
be absent if a neutralizing background is assumed. Notice
that the role of total particle number, N = N+ + N, and
valley polarization, Sz = Ny — N}, are swapped in the
quantum Hall picture relative to the topological insulator
picture:

PNP' =Ny —S,, PS.P"= N4 — N. (26)

If a state has valley occupation in the physical picture
(N4, N,), we will denote its occupation in the quantum
Hall picture by (N%Ni)P = (N¢ — Ny, Nl)' The physi-
cal quasi-electron and quasi-hole excitations have respec-
tively (NT7 N¢) = (N¢, 1)7 (N¢ — 17()), or (NTﬂ Ni)p =
(0,1),(1,0). Their energies relative to the Ising Chern
magnet can be read from Eq. (25) and are respectively
er, €). Therefore, the bulk charge gap of the Ising Chern
magnet is:

AQ =€+t €. (27)

The stability of the Ising Chern magnet requires Ag > 0.
When V44 (r; —rj) is chosen to be a delta-function €4 = 0
(since Hartree and exchange exactly cancel each other,
reflecting the inability of electrons to be at the same po-
sition), and €, > 0 for repulsive interactions, and thus
Ag > 0, in agreement with the more general arguments
of the previous section. Notice also that when the spatial



average of the inter and intra-valley interactions is the
same, namely Vi4+(q = 0) = V4 (q = 0) and the inter-
valley interaction is repulsive [ d*q|F(q)|*V4+(q) > 0,
then the charge gap is also positive. The latter crite-
rion encompasses the case of pure Coulomb interactions
since the neutralizing background demands Vi4(q = 0) =
V41 (g = 0). A more stringent criterion on the stability of
the Ising Chern magnet is obtained by studying its prob-
lem of particle-hole excitations. The simplest particle-
hole excitation has valley numbers (N3, N}) = (Ng—1,1)
or (Ny,N,)p = (1,1). Therefore, in the quantum Hall
picture these excitons behave as a pair of charged parti-
cles in a magnetic field, and their states can be simply
obtained by exhausting the symmetries of the problem,
in analogy to how the two-body problem in conventional
Landau levels is solved [60]. These states can be labeled
by two integers, a center of mass angular momentum,
M, and a relative angular momentum, m. Their energy
depends only on the relative angular momentum, and
this defines the notion of an exciton Haldane pseudo-
potential. The energy of the excitonic state |M,m) can
therefore be read then directly from Eq. (25) and it is:

AEwC(m) = AQ = Vin1ys (28)

where V,,, 1, is the Haldane pseudo-potential associated
with the inter-valley interaction:

Vir = / 4dqViy (@ Lm(Pe . (29)

V41 can be interpreted as the exciton binding energy
which measures the attraction of the electron and the
hole as depicted in Fig. 2. The stability of the Ising Chern
magnet also requires the exciton energy to be positive
Agzc.(m), namely that its binding energy is smaller than
the charge gap Vi, 4, < Ag, Vm, to prevent spontaneous
exciton proliferation on top of the Ising magnet vacuum.
A schematic depiction of these energies is shown in Fig. 2.

We will discuss now the stability of the Ising Chern
magnet against exciton proliferation for two concrete mi-
croscopic interactions. For moiré super-lattice materi-
als it is likely that the density-density interactions are
roughly the same for inter- and intra-valley interactions,
since these degrees of freedom are related by a spatially
local time reversal symmetry. Bringing a metallic gate
near the bilayer produces a modified Coulomb interac-
tion of the form:

e? e?

Vip(r) = Viu(r) = PR S o

(30)
where d is twice the distance to the metal gate (distance
to the image charges). This strategy has been success-
fully employed recently to induce non-trivial changes in
the physics of moiré super-lattice materials [65]. The
charge and the exciton gap for these interactions are

#(3)

given by:
T e? 242 d
Aq = \/Lz(l‘e ’ ErfC[ﬁZD’
e2\/m 1 a2 d
AEmc('rn 0) - \@el [ ﬁ (1 — el ET‘fC |:li|>

+ <1 — eQ%Erfc [\@Cﬂ)

(31)

These quantities are depicted in Fig. 3 and therefore we
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FIG. 3: Charge and exciton gaps for Coulomb interactions
screened by a metallic gate at distance d/2.

see that although these quantities decrease as the metallic
gate becomes closer to the system, they remain positive
and reveal no instability of the Ising Chern magnet for
any finite d. This provides further evidence of the ro-
bust stability of the Ising Chern magnet, and is in broad
agreement with experiments that have advocated its ob-
servation under diverse circumstances [46, 65]. However,
there is a possibility, as we will see, that certain corre-
lated states that we will call excitonic Laughlin states
become viable energetic competitors to the Ising Chern
magnet after short distance valley-dependent modifica-
tions to the Coulomb interactions are added. With this
motivation, we consider a toy model of finite ranged in-
teractions modeled as Gaussians:

2 2
1 Tz 1 a2,
Vip(r) = WVﬁez i, Vay(r) = WVW?Z i (32)
T ™

We restrict to the case of repulsive interactions:
Vir, Vpp = 0. The charge gap and the exciton gap in
this case are:

VNVTT( a4 )

QT o T or \ 24 a%T
2, 2 2
Apao(m = 0) = b (L0 ) Vig (0
e 2r \ 212 + oz%T 2r \ 12 + a%T '

(33)



Fig. 1(a) and Fig. 4 depict the boundary where these
gaps vanish indicating an instability of the Ising Chern
magnet, where a different state takes over as the ground
state. Although this is a sufficient criterion for the in-
stability of the Ising Chern magnet, it is not necessary.
As we will see explicitly in the next section multi-exciton
processes can sometimes destabilize the state before the
single exciton instability appears.
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FIG. 4: Shaded region of optimal conditions for excitonic
Laughlin states for a model of intra-valley and inter-valley re-
pulsions of range att = 3at, and strengths Vi4+ and V3. At
the red line their interaction changes from attractive to repul-
sive. At the purple line the exciton binding energy is compara-
ble to the inter-exciton interaction. The dashed line indicates
the exciton-pair proliferation instability which is lower than
the single-exciton proliferation instability, in contrast to the
case with a4+ = aqy shown in Fig.1(a).

VI. EXCITON INTERACTIONS AND
EXCITONIC LAUGHLIN STATES

The fact that excitons in topological insulating bands
behave as charged particles in a magnetic field leads to
the natural possibility that once the Ising Chern mag-
net is no longer the ground state and excitons proliferate
they could form correlated states that appear typically
in partially filled Landau levels. A natural possibility are
states with broken translational symmetry which have
been considered in [41, 50] and which we will discuss
in a forthcoming publication [66]. Here we would like
to discuss another possibility, namely that of excitonic
Laughlin-type states. Once they proliferate, it is rea-
sonable to expect the excitons to form bosonic Laugh-
lin states, provided the following two criteria are satis-
fied: (a) the excitons are well bound, namely the exciton
ionization energy is large compared to the typical inter-
exciton interactions and (b) the excitons have repulsive
interactions. Under these conditions, a Laughlin state of
Nx excitons can form at (N3, N}) = (N, — Nx,Nx) or
(N4, N,)p = (Nx, Nx) provided that the exciton filling
factor, defined as vx = Nx /2N, satisfies:

1
Vx = %7 m = 2,37... (34)

This exciton filling factor is 1/4 of the filling factor in
the quantum Hall picture defined from Eq. (24) and dis-
cussed in section V. This is because the exciton number
equals half the number of particles in this picture and
the excitons experience twice the magnetic field strength
of the particles, and hence twice the number of effective
flux quanta. In defining the Laughlin states of excitons
and the exciton filling factors one has in mind a pic-
ture of tightly bound excitons. However, we would like
to mention that the limit of tightly bound excitons and
the limit defining the Landau level projection have cer-
tain degree of conflict. For example, if the excitons have
filling vx = 1/2, we would conclude that particles would
have valley numbers (N4, N}) = (0, Ny ), namely it would
correspond to the Ising Chern magnet with opposite po-
larization to our reference vacuum, (N4, Ny ) = (Ng,0).
Clearly it is impossible to have a topologically ordered
state at such filling if Landau levels are infinitely far away
in energy. We believe, however, that the universal prop-
erties of tightly bound excitonic states can be recovered
under strict Landau level projection for states with exci-
ton fillings 0 < vx < 1/2 and this is the reason we have
excluded m = 1 as a possibility in Eq. (34).

Now, in order to verify the two criteria that make
amenable the appearance of excitonic Laughlin states,
we are led to consider the problem of short-distance
inter-exciton interactions. For concreteness we will fo-
cus on the model with Gaussian interactions introduced
in Eq. (32). To study the short distance interactions
we consider s four-particle state with valley numbers
(NT7 Ni) = (N¢ —2, 2) or (NT7 Ni)p = (2, 2), correspond—
ing to two-excitons, Nx = 2, that describes the case of
closest approach between these particles allowed by the
Pauli exclusion principle:

>ilzil?

a2 [T Todsly),  (35)

Uox = (2] = 2])(55 — 2p)e”

here the state is written in the symmetric gauge in the
quantum Hall picture defined in Eq. (24) and normal-
ization and full antisymmetrization are implicit. In the
physical picture, the 1 particles are the holes in the Ising
magnet vacuum and the | particles are added to the
empty valley. This state can be viewed as a quantum Hall
droplet of v = 2 constructed on top of the Ising Chern
magnet. Because this is the most compact two-exciton
state, the energy of this state can be viewed as character-
izing the analogue of the Haldane pseudo-potential V3 for
the excitons, and due to their underlying fermionic con-
stituents the excitons behave as hard-core bosons with in-
finite V. States in which the excitons are farther apart
are expected to have lower interaction energy, because
their interaction decays with distance for simple mod-
els of microscopic interactions such as the Gaussian one.
More specifically, the energy of ¥, x measured relative to
the Ising Chern magnet, can be decomposed into exciton
gap and exciton interaction parts as follows:

Eox = (U|Vp|¥) — By = 2Ax + Vax,  (36)



where Vp is given in Eq. (25), Fy is the energy of the Ising
Chern Magnet, and Ax is the single exciton gap defined
in Eq. (28) and given in Eq. (33) for the Gaussian model.
For this Gaussian model the explicit expression for the
exciton interaction is found to be:

2 2 4
Vgxzﬂl 1 _1—&-ozu_12—i-2ozm—i-aN
T [224a3; 2403, 2 (2+af)?
2
L
T (2+a3,)?
(37)

The boundary separating the region of effective inter-
exciton attraction and repulsion is shown as a blue line
in Fig. 1(a) for the case in which inter-valley and intra-
valley interactions have the same range (at+ = a4y ) and
as a red line in Fig. 4 for the case in which the ranges are
different (a4 = 3aqy). We have also added a purple line
that qualitatively determines the region where the exci-
tons are strongly bound from those in which they are not
by determining when the exciton binding energy given by
Vin=0,4; in Eq. (29) becomes equal to the magnitude of
the exciton interaction Vox from Eq. (37). The intersec-
tion of the regions in which the Ising magnet is unstable,
the excitons are strongly bound, and the excitons have
repulsive interactions, is expected to be a fertile ground
for the appearance of excitonic Laughlin states and it is
shown as a shaded region in Fig. 1(a) and Fig. 4.

Importantly, the stability of the Ising Chern magnet
also demands E5x > 0, otherwise the state would be un-
stable to exciton-pair proliferation processes. Fig. 4 also
shows the line of exciton pair proliferation Fox = 0, as a
dashed black line. We have found that when intra and in-
tervalley interactions have different range a4y # a4y the
boundary of the single exciton proliferation instability,
Asx = 0, generally differs from the boundary of the ex-
citon pair proliferation instability, Fox = 0, and, in fact,
the exciton pair production instability provides a more
stringent criterion for the stability of the Ising Chern
magnet as seen in Fig. 4. However, when interactions
have the same range, the single exciton and exciton-pair
proliferation lines coincide, and this is the reason there
is no dashed line in Fig. 1(a).

Let us now discuss the properties of the excitonic
Laughlin states. These states break spontaneously the
time reversal symmetry of the topological insulator band.
For the cases with m > 3 in Eq. (34), this is evident be-
cause they have a net valley polarization:

1 1

(NT,Ni)_N¢<1 m’m>' (38)
These states with m > 3 will have therefore some amount
of orbital magnetism although it will tend to be smaller
than that of the Ising Chern magnet. Notably, the state
corresponding to m = 2 in Eq. (36) which corresponds
to exciton filling vx = 1/4 has equal occupation of both
valleys (N3, N|) = Ng(1/2,1/2). However, in spite of

having zero valley polarization, this state breaks time
reversal symmetry spontaneously as we will demonstrate
next.

To show that this state breaks time reversal symmetry
we begin by noting that the physical time reversal opera-
tor, T from Eq. (4), acts as an anti-unitary particle-hole
conjugation in the quantum Hall picture defined by the
transformation P from Eq. (24). Namely, the operator
Tp = PTP~! acts as:

TPCInTTI;I = Cm}, Tpcfngl = Cmt- (39)

Once combined with the charge conjugation defined in
Eq. (5), this symmetry is equivalent to the anti-unitary
particle-hole symmetry that plays an important role in
conventional quantum Hall bilayers [67]. Now we con-
sider the vy = 1/4 excitonic Laughlin state placed in the
surface of the sphere [68]. The sphere induces a finite
size shift in the proportion between particles and fluxes,
and this shift is a topological invariant of the state [69].
For a tightly bound vy = 1/4 excitonic Laughlin state
this proportion is:

2N, = 4(Nx —1). (40)

Where we are using the fact that tightly bound exci-
tons experience twice the magnetic flux of the particles.
Therefore the exciton number would be Nx = (Ng+2)/2,
and thus requires an even number of flux quanta to be
realized in the sphere. On the other hand, because the
number of single particle orbitals in the sphere is Ny + 1
a two-valley fermion state that is particle-hole invariant
(i.e. time reversal invariant in the physical picture) must
satisfy (N4, Ny)p = ((Ng +1)/2,(Ng + 1)/2) and thus
would have an exciton number, Nx = (N, + 1)/2, and
thus requires an odd number of flux quanta to be re-
alized in the sphere. The inconsistency between these
conditions implies that the vy = 1/4 excitonic Laugh-
lin state breaks spontaneously time reversal symmetry,
and therefore the state constructed by adding excitons
to valley 1 is distinct from the one obtained by adding
excitons to valley |, even though both have zero valley
polarization.

We will now describe the nature of bulk excitations of
the Excitonic Laughlin states. These will have fraction-
alized quasi-particles with exciton number quantized in
units of 6Nx = 1/2m. Therefore the fractionalized ex-
citations will be charge neutral but contain an excess of
valley numbers of the form éNy = —0N| = ¢/2m, q € Z.
As it is customary with Laughlin states, quasihole and
quasi-electrons will have a different spatial profile. The
quasi-holes will typically have smaller spatial extend and
their core will essentially be a small bubble of fully po-
larized the parent Ising Chern magnet state. The quasi-
electrons will typically be more spatially spread, and at
its core will try to recover the opposite valley polariza-
tion. An illustration appears in Fig. 1. Due to their
local valley polarization, these quasi-particles will have
therefore a non-trivial profile of local orbital magnetiza-
tion relative to the background, specially in the m = 2



Laughlin state, since the background has vanishing val-
ley polarization and this might allow the detection of the
states should they occur in moir superlattice materials.
On the other hand, charged quasiparticles will be ordi-
nary quasi-electrons and quasi-holes with integer quan-
tized charges.

Finally, although the edge states can be fairly complex
in realistic systems, at least in the limit of strong exci-
ton binding, one expects the excitonic Laughlin states to
have the same charge edge channel as the parent Ising
magnet on which it is constructed, and therefore the
same charge Hall conductivity o,, = +e?/h. This is
because the excitons are added to a filling factor one
parent state, but they are charge neutral particles and
one expects them to have a charged edge mode together
with a counter-propagating neutral mode, as depicted in
Fig. 1(b). This property makes it hard to distinguish the
excitonic Laughlin states from ordinary Ising Chern In-
sulators in usual charge transport experiments. In this
sense one could say that it is hard to rule out that they
might already be present even in the experiments so far
reporting the occurrence of spontaneous anomalous Hall
effect [46].

VII. SUMMARY AND DISCUSSION

We have studied the few- and many-body physics
of ideal maximally symmetric topological insulator flat
bands with repulsive interactions. We have found that
charged particle-particle pairs behave in a similar fash-
ion to neutral particle-hole pairs in conventional Lan-
dau levels, displaying a form of locking of relative dis-
tance and center of mass momentum degrees of freedom.
Conversely, neutral particle-hole pairs in topological in-
sulator flat bands behave similarly to charged particle-
particle pairs in Landau levels, having a flat dispersion
for their center of mass degrees of freedom that exhibit an
analogue of cyclotron motion while their relative angular
momentum allows to define a notion of exciton Haldane
pseudo-potentials.

We have constructed ideal Hamiltonians for which it
can be rigorously argued that the ground state at to-
tal filling 1 is the spontaneously polarized Ising Chern
magnet and studied its stability to single exciton and
exciton-pair proliferation processes. We have also stud-
ied the short range inter-exciton interactions, and demon-
strated that once excitons proliferate they are repulsive
for a model of short range interactions in which intra- and
inter-valley interactions have the same range as shown
in Fig. 1(a). Taking this range to be comparable to
the inter-particle distance (a ~ [), we have found that
the Ising Chern magnet is no longer the ground state
when the intra-valley repulsions are about 30% larger
than the intra-valley repulsions. We have argued that
Laughlin states of excitons are energetically compete-
tive ground states once the Ising Chern magnet is desta-
bilized. Remarkably, these states display only valley

fractionalized charge-neutral quasiparticles, namely, the
charge of all quasiparticles is quantized in units of the
electron charge. These excitonic Laughlin states have a
charge Hall conductivity that is identical to Ising Chern
magnet, o5y = +e?/h, and thus are hard to distinguish
from them in conventional charge transport experiments.
In particular, the most compact excitonic Laughlin state
is an analogue of the v = 1/4 bosonic Laughlin state,
and has no valley polarization in spite of breaking spon-
taneously the time reversal symmetry with a Hall con-
ductivity gy = +e2?/h. Due to the orbital magnetism of
the valley polarized states [70], the valley fractionalized
quasiparticles of these states could display substantial lo-
cal orbital magnetic moments, and local magnetometry
probes could be used to image these quasi-particles.

Note added— During the completion of our work, other
studies with overlapping ideas and results appeared in
[71, 72].

Appendix A: Absence of exact topological
degeneracy for unpolarized states

We will now demonstrate that in contrast to the or-
dinary quantum Hall Landau levels, there is no generic
exact topological degeneracy for time reversal invariant
states in the Torus, by extending the classic analysis of
Haldane [59] to our topological insulating flat bands. To
place the system in a torus requires the ability to simul-
taneously diagonalize translations for two non-collinear
vectors Ly,L, that define the principal axes of the torus,
and thus the system must enclose an integer number flux
quanta: BA = 2mN,. Similar to what happens in ordi-
nary Landau levels, the torus induces a weak breaking
of translational symmetry, in the sense that only a finite
subgroup of the magnetic translation algebra is compat-
ible with any given torus with a specific choice of twist
of boundary conditions. More specifically, one can show
that only the following subset of single particle transla-
tions commutes with the translations ty,, ,tr, defining the
torus:

n m
t(n,m) = t(—L + mLy),n,m €Z. (A1)

Ny,
The many-body or center-of-mass translation operators
are defined as:

N,
T(n,m) = Hti(n, m), (A2)

where ¢ labels the particles in the system. The small-
est allowed translations of the center of mass are T'(1,0)
and T'(0,1). Both of these operators commute with the
Hamiltonian, but do not necessarily commute with each
other, but instead obey the following algebra:

=i

P27 =

TLOT(O.1) = 2" ¥ T(0, )T(L0).  (A3)



Thus we are lead to introduce the notion of the polariza-
tion filling factor:

Ne

v, = Ny (A4)
This is a rational number that in general differs from
the ordinary filling factor v = N./Ny, and which can be
decomposed as v, = p./q., with p,,q, relative primes.
Then, one can show that algebra of Eq. (A2) implies
an exact ¢,-fold degeneracy of all the eigenstates of the
Hamiltonian, and in particular its ground state. All other
translation operators with larger n, m can be constructed
as powers of the two smallest translations T'(1,0),7(0,1)
and therefore are not independent and do not lead to ex-
tra degeneracies. This generalizes the criterion by Hal-
dane that guarantees a g-fold degeneracy for a state in a
Landau level with filling factor v = p/q [59].

States that are valley un-polarized have v, = p, = 0,
and therefore do not have exact degeneracies enforced
by the many-body translation algebra. In particular,
time-reversal invariant states are a subset of valley un-
polarized states (any time-reversal invariant is valley un-
polarized, but the converse is not necessarily true). Val-
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ley unpolarized states have necesarilly an even number of
particles and therefore the many body time reversal sym-
metry squares to T2 = 1 and does not imply extra degen-
eracies. Thus, as a corollary, we conclude also that any
time reversal invariant state in a partially filled flat T1
band has no generic exact topological degeneracies. This
should also hold in a realistic partially filled TI bands,
because these can be seen as a problem in which some
of the symmetries we have enforced exactly are explicitly
broken, and therefore this can only result in splitting of
the degeneracies that are present in our situation of ideal
flat bands.

It is important to emphasize that the lack of exact
ground state degeneracy does not imply the absence of
topological order, but only that if the latter exists its
degeneracy will only appear asymptotically in the ther-
modynamic limit. We also note that an alternative quick
way to recover the results of this supplementary can be
achieved by performing a partial particle-hole transfor-
mation in one of the flavors as described in the Section
V since the valley polarization is mapped into the total
filling factor, as shown in Eq. (26).
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