日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Dynamic Imaging of Nanostructures in an Electrolyte with a Scanning Electron Microscope

MPS-Authors
/persons/resource/persons244720

Yoon,  Aram
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons232519

Herzog,  Antonia
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227599

Grosse,  Philipp
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons244748

Chee,  See Wee
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Interface Science, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
付随資料 (公開)
There is no public supplementary material available
引用

Yoon, A., Herzog, A., Grosse, P., Alsem, D. H., Chee, S. W., & Roldan Cuenya, B. (2021). Dynamic Imaging of Nanostructures in an Electrolyte with a Scanning Electron Microscope. Microscopy and Microanalysis, 27(1), 121-128. doi:10.1017/S1431927620024769.


引用: https://hdl.handle.net/21.11116/0000-0007-75D4-6
要旨
The development of microfabricated liquid cells has enabled dynamic studies of nanostructures within a liquid environment with electron
microscopy.While such setups are most commonly found in transmission electron microscope (TEM) holders, their implementation in a scanning
electron microscope (SEM) offers intriguing potential for multi-modal studies where the large chamber volume allows for the integration
of multiple detectors. Here, we describe an electrochemical liquid cell SEM platform that employs the same cells enclosed by silicon nitride
membrane windows found in liquid cell TEM holders and demonstrate the imaging of copper oxide nanoparticles in solution using both backscattered
and transmitted electrons. In particular, the transmitted electron images collected at high scattering angles show contrast inversion at
liquid layer thicknesses of several hundred nanometers, which can be used to determine the presence of liquid in the cell, while maintaining
enough resolution to image nanoparticles that are tens of nanometers in size. Using Monte Carlo simulations, we show that both imaging