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The study of scattering encounters continues to provide new insights into the general relativistic
two-body problem. The local-in-time conservative dynamics of an aligned-spin binary, for both un-
bound and bound orbits, is fully encoded in the gauge-invariant scattering-angle function, which is
most naturally expressed in a post-Minkowskian (PM) expansion, and which exhibits a remarkably
simple dependence on the masses of the two bodies (in terms of appropriate geometric variables).
This dependence links the PM and small-mass-ratio approximations, allowing gravitational self-
force results to determine new post-Newtonian (PN) information to all orders in the mass ratio.
In this paper, we exploit this interplay between relativistic scattering and self-force theory to ob-
tain the third-subleading (4.5PN) spin-orbit dynamics for generic spins, and the third-subleading
(5PN) spin1-spin2 dynamics for aligned spins. We further implement these novel PN results in an
effective-one-body framework, and demonstrate the improvement in accuracy by comparing against
numerical-relativity simulations.

I. INTRODUCTION

The burgeoning field of gravitational-wave (GW) as-
tronomy has already shown its potential to revolutionize
our understanding of our universe [1], gravity [2], and
the nature of compact objects [3, 4], such as black holes
(BHs) and neutron stars. The detection of compact-
binary GW sources and the accurate inference of their
parameters is contingent on having accurate theoretical
predictions for their coalescence. As a result of this, a va-
riety of techniques, both analytical and numerical, have
been developed to understand the coalescence of binary
compact objects, with the final goal of providing faithful
waveform models that can be used in GW data analysis.

Post-Newtonian (PN) theory, the best known of the
analytical techniques, has provided the foundation for
the analytical studies of the two-body problem in general
relativity which are most directly useful for gravitational-
wave astronomy [5–12]. In this approximation, most ap-
plicable to bound systems, one simultaneously assumes
weak gravitational potential and small velocities, i.e.,
GM/rc2 ∼ v2/c2 � 1. The PN expansion is thus a
powerful tool for describing the early inspiral of the bi-
naries observed by LIGO and Virgo [4, 13]. PN stud-
ies have been carried out at high orders both in the
nonspinning [14–27] and in the spinning sectors, includ-
ing spin-orbit (SO) [28–33], bilinear-in-spin (spin1-spin2,
S1S2) [34–37] and spin-squared (S2) [37–40] couplings, as
well as cubic and higher-in-spin corrections [41–45]. PN
information on the spin dynamics has also been included
in effective-one-body (EOB) waveform models [46–54].

In parallel to PN formalisms, the small-mass-ratio ap-
proximation, based on gravitational self-force (GSF) the-
ory, has also seen rapid development (see Ref. [55] and
references therein for a review). As suggested by the
name, the expansion parameter in this limit is the mass
ratio of the two bodies q = m1/m2 � 1. The lead-

ing order in this approximation is given by the geodesic
motion of a test-body in a Schwarzschild or Kerr back-
ground. Successive corrections, which can be interpreted
as a force moving the body away from geodesic motion,
are due to the perturbation of the background sourced by
the small body’s nonzero stress-energy tensor. This self-
force effect on the motion of a nonspinning body has cur-
rently been numerically calculated to first order in q for
generic orbits in Kerr spacetime [56]. In a recent break-
through [57], the second-order-in-q binding energy in a
Schwarzschild background has been calculated and com-
pared to predictions from the first law of binary black-
hole mechanics [58]. Meanwhile, much activity has led
to the analytic calculation at very high PN orders (but
at first order in q) of gauge-invariant quantities, such
as the Detweiler redshift [59–68] and the precession fre-
quency [67, 69–74], including effects of the smaller body’s
spin. This has quite naturally led to related activity in
confronting and validating the PN and GSF approxima-
tions [58, 75, 76] in the domain which both are valid,
i.e., for large orbital separations and small mass ratios,
as well as in constructing EOB models based on both
approximations [77–80].

Recently, there has also been rapid advance in under-
standing and employing post-Minkowskian (PM) tech-
niques, using a weak-field approximation GM/rc2 � 1
in a background Minkowski spacetime, with no restric-
tion on the relative velocity of the two bodies [81–86].
This approximation most naturally applies to the weak-
field scattering of compact objects, in which possibly rel-
ativistic velocities can be reached. Recent advances in
PM gravity and in our understanding of the scattering
of compact objects have been spearheaded by modern
on-shell scattering-amplitude techniques, developed orig-
inally in the context of quantum particle physics (see,
e.g., Ref. [86] and references therein).

Scattering amplitudes were used in Ref. [83] to cal-
culate the nonspinning 2PM (O(G2), one-loop) scatter-
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ing angle, reproducing with astonishing efficiency the
decades-old results of Westpfhal [87, 88] obtained by clas-
sical methods; an equivalent canonical Hamiltonian at
2PM order was derived from amplitudes in Ref. [84]. The
scattering angle plays a key role in PM gravity: it en-
codes the complete local-in-time conservative dynamics
of the system (at least in a perturbative sense) and it
can be used to specify a Hamiltonian in a given unique
gauge [82], which can in turn be used for unbound as well
as bound systems (with potential relevance for improving
waveform models [89]); see in particular Refs. [90, 91]. In
Refs. [85, 86], the scattering angle and a corresponding
Hamiltonian have been obtained at 3PM (two-loop) or-
der for nonspinning systems, and the results have been
confirmed and expounded upon in Refs. [24, 92–94].

The PM approximation for two-spinning-body systems
was first tackled only very recently, with the SO dynam-
ics at the 1PM and 2PM levels first derived by classical
means in Refs. [95, 96]. These results have since been
confirmed by amplitudes methods in Ref. [97], which also
gave the 1PM and 2PM dynamics for the S1S2 sector,
rounding out the current state of the art for generic-spin
PM results beyond tree level. Several other works have
also considered amplitudes methods in relation to spin-
ning two-body systems, also beyond the SO and S1S2 sec-
tors (beyond the dipole level in the bodies’ multipole ex-
pansions), in particular for special cases such as bod-
ies with black-hole-like spin-induced multipole structure
and/or for the aligned-spin configuration (in which the
bodies’ spins are [anti-]parallel to the orbital angular mo-
mentum); see, e.g., [45, 98, 99] and references reviewed
therein.

These works demonstrate that the study of gravita-
tional scattering continues to provide novel results and
useful insights on the relativistic two-body problem, with
implications for precision gravitational-wave astronomy
yet to be explored. A particularly powerful example of
such an insight concerns the nontrivially simple depen-
dence of the scattering-angle function on the masses [100]
(see also [86, 90, 101]). This was exploited in Refs. [23, 24]
to obtain almost all the 5PN dynamics (with the ex-
ception of 2 out of 36 coefficients in the EOB Hamil-
tonian; see also Refs. [18, 21]) from first-order self-force
calculations (while appropriately dealing with nonlocal-
in-time tail terms). This approach has also been used in
Ref. [26, 27] to obtain most of the 6PN dynamics. An
extension of this approach to spinning systems was used
by the current authors in Ref. [102] to obtain the next-to-
next-to-next-to-leading order (N3LO) SO PN dynamics.

In this paper, we provide details for the calculation
of the N3LO-PN SO dynamics presented in Ref. [102],
which completes the PN knowledge at 4.5PN order to-
gether with the NLO S3 dynamics from Ref. [41] (see also
[45]). Furthermore, we extend our analysis to include a
derivation of the N3LO S1S2 effects, contributing at 5PN
order, for the case of spins aligned with the orbital an-
gular momentum. We note that partial results of the
N3LO-PN SO and N3LO S1S2 dynamics have previously

been presented in Refs. [33, 37], where all terms at G4

were calculated within the powerful effective field theory
framework using Feynman integral calculus. The latter
of these references gives further results for all quadratic-
in-spin terms at N3LO.

Our derivations are organized in the following proce-
dures.

1. We argue that the scattering angle for an aligned-
spin binary has a simple dependence on the masses
(when expressed in terms of appropriate geometri-
cal variables), which extends the result of Ref. [100]
for nonspinning binaries. This mass dependence
implies that the 4PM part of the scattering angle,
which encodes the N3LO PN dynamics, is deter-
mined by terms up to linear order in the mass ratio.
We use analytic results for the test-spin scattering
angle to fix all terms at zeroth-order in the mass
ratio, leaving the linear terms to be fixed by first-
order GSF results.

2. Assuming the existence of a PN Hamiltonian at the
desired 4.5PN SO and 5PN S1S2 orders, and mak-
ing use of its associated mass-shell constraint with
undetermined coefficients, we calculate the scat-
tering angle and match it to the constrained form
from step 1. This procedure fixes its lower orders
in velocity at 3PM and 4PM orders, leaving but
half of the linear-in-mass-ratio coefficients to be de-
termined by GSF calculations. We construct the
bound-orbit radial action from the scattering angle
(via the Hamiltonian dynamics), noting its simple
dependence on the bodies’ masses.

3. From the radial action, we calculate the redshift
and spin-precession invariants and compare them
with GSF results available in the literature to de-
termine the remaining coefficients of the scattering
angle. Vital to this step is the first law of spinning
binary mechanics [58, 103, 104], which is used to
relate the radial action to the redshift and preces-
sion frequency, and for which we herein discuss an
extension to arbitrary-mass-ratio aligned-spin ec-
centric orbits.

(Although we work with aligned spins throughout, we
note that the aligned SO result actually fixes the SO
Hamiltonian also for precessing spins [102].)

The paper is organized as follows. Sections II, III
and IV discuss points 1, 2 and 3, respectively. In Sec. V,
we implement the new PN results in the scattering an-
gle in an EOB model, and use it to compare our results
against NR simulations. We conclude in Sec. VI with
a discussion of results and potential future work. Fi-
nally, Appendix A contains expressions for tail terms in
the radial action, while Appendix B contains explicit ex-
pressions for a certain mapping between variables used to
connect redshift and precession-invariant results from the
radial action to GSF results in the literature, which have



3

been previously erroneously (yet innocuously) reported
in the literature.

Notation

We use the metric signature (−,+,+,+), and use units
in which the speed of light is c = 1. For a binary of
compact objects with masses m1 and m2, we use the
following combinations of the masses

M = m1 +m2, µ =
m1m2

M
, ν =

µ

M
,

q =
m1

m2
, δ =

m2 −m1

M
, (1.1)

with m1 < m2. We often make use of the rescaled ver-
sions of the canonical spins S1 and S2, i.e.,

a1 =
S1

m1
, a2 =

S2

m2
, (1.2)

and define the following combinations of spins

S = S1 + S2, S∗ =
m2

m1
S1 +

m1

m2
S2,

ab =
S

M
, at =

S∗
M
. (1.3)

The relative position and momentum 3-vectors are de-
noted by r and p, respectively. Using an implicit Eu-
clidean background, it holds that

p2 = p2
r +

L2

r2
, pr = n · p, L = r × p, (1.4)

where n = r/r with r = |r|, and L is the orbital angular
momentum with magnitude L.

II. THE MASS DEPENDENCE OF THE
SCATTERING ANGLE

Here we argue that the structure of the PM expan-
sion, applied to the conservative orbital dynamics of a
two-massive-body system, leads to simple constraints on
the dependence of the scattering-angle function on the
bodies’ masses, at fixed geometric quantities characteriz-
ing the incoming state. We closely follow the arguments
given in Sec. II of Ref. [100] for the nonspinning case,
considering only the local-in-time, conservative part of
the dynamics, while generalizing to the case of spinning
bodies, finally, in the aligned-spin configuration.

The motion of a two-point-mass system (the nonspin-
ning case) is effectively governed by the coupled system of
(i) geodesic equations for the worldlines of the two point
masses, using the full two-body spacetime metric (with
a suitable regularization or renormalization procedure),
and (ii) Einstein’s equations for the metric, sourced by
effective point-mass energy-momentum tensors. In the

case of spinning bodies, to dipolar order in the bodies’
multipole expansions, the geodesic equations are replaced
by the pole-dipole Mathisson-Papapetrou-Dixon (MPD)
equations [105–107],

Dpiµ

dτi
= −1

2
Rµνρσẋ

ν
i S

ρσ
i , (2.1a)

DSµνi

dτi
= 2p

[µ
i ẋ

ν]
i , (2.1b)

0 = piµS
µν
i , (2.1c)

where, for the ith body (i = 1, 2), pµi (τi) is the linear
momentum vector, Sµνi (τi) is the antisymmetric spin (in-
trinsic angular momentum) tensor, and ẋµi (τi) is the tan-
gent to the body’s worldline xi(τi). The constraint (2.1c),
the “covariant” or Tulczyjew-Dixon spin supplementary
condition [108–111], combined with (2.1a) and (2.1b),
uniquely determines a first-order equation of motion for
the worldline, ẋµi = ẋµi (xi, pi, Si)[g]. The corresponding
effective energy-momentum tensor,

Tµν(x) =
∑

i

∫
dτi

[
p

(µ
i ẋ

ν)
i

δ4(x− xi)√
−g

+∇λ
(
S
λ(µ
i ẋ

ν)
i

δ4(x− xi)√
−g

)]
,

(2.2)

sources Einstein’s equations,

Rµν −
1

2
Rgµν = 8πGTµν . (2.3)

In the PM scheme, an iterative solution to these equa-
tions is obtained as an expansion in G of the worldlines,
momenta and spins,

xµi (τi) = xµi0(τi) +Gxµi1(τi) +G2xµi2(τi) + · · · ,
pµi (τi) = pµi0(τi) +Gpµi1(τi) +G2pµi2(τi) + · · · , (2.4)

Sµνi (τi) = Sµνi0 (τi) +GSµνi1 (τi) +G2Sµνi2 (τi) + · · · ,

and of the metric,

gµν(x) = ηµν +Gh1µν(x) +G2h2µν(x) + · · · , (2.5)

where ηµν is the Minkowski metric, which we henceforth
use instead of the full metric gµν for all 4-vector manip-
ulations (index raising and lowering, dot products and
squares of vectors, etc.).

At the leading orders in (2.4), given by the solutions
to (2.1) with g = η, each body moves inertially in flat
spacetime,

xµi0(τi) = yµi + uµi τi,

pµi0(τi) = miu
µ
i ,

Sµνi0 (τi) = miε
µν
ρσu

ρ
i a
σ
i .

(2.6)

Here, yµi are constant displacements from the origin at
τi = 0, and uµi are constant 4-velocities, with u2

i = −1, so
that τi are the (Minkowski) proper times, and p2

i = −m2
i
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where mi are the constant rest masses. The zeroth-order
spin tensors Sµνi0 are also constant, and, being orthogonal
to uiµ, have been parametrized in terms of a constant
mass-rescaled (Pauli-Lubanski, “covariant”) spin vector,

aµi = − 1

2mi
εµνρσu

ν
i S

ρσ
i0 , (2.7)

with dimensions of length, the magnitude of which would
measure the radius of the ring singularity of a correspond-
ing (linearized) Kerr black hole. We identify the zeroth-
order geometric (mass-independent) quantities, yµi , uµi
and aµi , with those characterizing the asymptotic incom-
ing state, along with the masses m1 and m2.

Inserting (2.6) into (2.2) (with g = η) yields the zeroth-
order stress-energy tensor, which serves as a source for
the first-order metric perturbation h1µν in the lineariza-
tion of (2.3). The solution for the trace-reversed h̄µν1 =
hµν1 − 1

2η
µνh1ρ

ρ, in harmonic gauge (∂µh̄
µν
1 = 0), reads

h̄µν1 (x) = 4
∑

i

mi

(
uµi u

ν
i + u

(µ
i ε

ν)
ρσλu

ρ
i a
σ
i ∂

λ
) 1

ri
, (2.8)

where ri = {(x−yi)
2+[ui·(x−yi)]

2}1/2 is the (Minkowski)
distance of the field point x from the (zeroth-order, flat
geodesic) worldline xi0 = yi + uiτi in its rest frame, and
∂µ is the flat covariant derivative. (Note that the result
for the first-order field (2.8) would be the same whether
we used the physical retarded Green’s function or the
time-symmetric Green’s function, given the nature of the
zeroth-order source, constant momentum and spin along
a flat-spacetime geodesic.) A key property to be noted
here is that h1 is linear in the masses mi, while having
a more intricate dependence on the geometric quantities
yµi , uµi and aµi . (It is linear in the spins aµi here only
because we are working to linear order in the spins, to
dipolar order in the multipole expansions.)

In the next step of the iterative scheme, one uses
g = η + h1 in the bodies’ equations of motion (2.1) to
solve for the first-order perturbations in (2.4) [for which
it is sufficient to integrate the RHSs of (2.1a) and (2.1b)
along the zeroth-order motion (2.6), and to regularize
by simply dropping the divergent self-field contribution].
Importantly, one finds that xµi1, pµi1/mi and Sµνi1 /mi are
each linear functionals of h1µν(x), and are thus linear
in the masses. From Poincaré symmetry, it follows that
these results can depend on the positions yi only through
the vectorial impact parameter bµ = yµ1 − y

µ
2 , where the

yµi here are chosen along the two zeroth-order worldlines
by the conditions u1 · b = u2 · b = 0 (at mutual closest
approach). For example, the impulse (net change in mo-
mentum) for body 1, ∆pµ1 = Gpµ11(τ1 → ∞) +O(G2), is
given by1

∆pµ1 =
2Gm1m2√
γ2 − 1

[
−(2γ2 − 1)

bµ

b2
(2.9)

1 Results equivalent to the first two lines of Eq. (2.9) were first

+
2γ

b4
(2bµbν − b2ηµν)ενρσλu

ρ
1u
σ
2 (aλ1 + aλ2 )

+ 2
2γ2 − 1

b6
(4bµbνbρ − 3b2b(µΠνρ))a1νa2ρ

]
+O(G2),

where

γ = −u1 · u2 (2.10)

is the asymptotic relative Lorentz factor, and Πµ
ν =

εµραβενργδu1αu2βu
γ
1u

δ
2/(γ

2 − 1) is the projector into the
plane orthogonal to both u1 and u2. Here, as below, we
work to linear order in each spin, a1 and a2, keeping the
cross term. We note again in (2.9) the simple dependence
on the masses, with an overall factor of m1m2, at fixed
geometric quantities bµ, uµi and aµi .

In continuing the iterative PM solution, the O(Gn)
terms in the bodies’ degrees of freedom (2.4) correct
the source (2.2) for the field equation (2.3), determin-
ing the O(Gn+1) metric perturbation in (2.5); the latter,
via the bodies’ equations of motion (2.1), determines the
O(Gn+1) corrections in (2.4). As in Ref. [100] we are
assuming here a systematic use of the time-symmetric
Green’s function, to pick out the conservative sector of
the dynamics. It becomes evident from the structure of
these expansions that theO(Gn) metric perturbation hµνn
in (2.5) can be expressed as a homogeneous polynomial
of degree n in the masses,

hµν1 (x) = m1h
µν
m1

(x) +m2h
µν
m2

(x),

hµν2 (x) = m2
1h
µν
m2

1
(x) +m2

2h
µν
m2

2
(x) +m1m2h

µν
m1m2

(x),

· · · (2.11)

where the hµν··· on the RHSs are functions only of the
(asymptotic incoming) geometric quantities (yµi , u

µ
i , a

µ
i )

and the field point x. The first line of (2.11) matches
(2.8). Similarly, the O(Gn) corrections xµin, pµin/mi,
Sµνin /mi for the body degrees of freedom (2.4) will be
homogeneous polynomials of degree n in the masses; this
is the crucial point for the following analysis (and for
its conceivable extensions beyond the aligned-spin case).
The zeroth-order quantities xµi0 = yµi +uµi τi, p

µ
i0/mi = uµi

and Sµνi0 /mi = εµνρσu
ρ
i a
σ
i from (2.6) are (taken to be)

independent of the masses, as is the zeroth-order met-
ric h0 = η; they, along with the masses, both (i) fully
parametrize the asymptotic incoming state and (ii) can
be used to parametrize all the higher-order corrections.

Let us now specialize to the case of aligned spins, in
which both spin vectors aµi are (anti-)parallel to the or-
bital angular momentum, all of which remain constant
throughout the scattering, while the orbital motion is

derived in Ref. [95], and the last line results from an expan-
sion in spins of the all-orders-in-spin results for black holes from
Ref. [112], both references having worked from purely classical
considerations; see also [113, 114] for derivations from quantum
scattering amplitudes.
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confined to the fixed plane orthogonal to the angular
momenta (just as for the nonspinning case). This en-
tails u1 ·ai = u2 ·ai = 0 and b ·ai = 0. Choosing ẑµ (with
ẑ2 = 1) to be the direction of the orbital angular momen-
tum (∝ −εµνρσuν1u

ρ
2b
σ), let us write aµi = aiẑ

µ for the
constant rescaled spin vectors (equal to their incoming
values), where the scalars ai are positive for spins aligned
with ẑµ and negative for anti-aligned. Crucially, in this
case, the only nontrivial independent Lorentz-invariant
scalars that can be constructed from the vectors uµi , aµi
and bµ are the magnitude b = (b2)1/2 of the impact pa-
rameter and the two spin lengths a1 and a2, all three with
dimensions of length, and the dimensionless Lorentz fac-
tor γ = −u1 · u2.

Now consider the extension to higher orders in G of
the impulse ∆pµ1 (2.9), which equals −∆pµ2 (under the
conservative dynamics) as the total momentum pµ1 + pµ2
is conserved. Its magnitude Q := (∆p1µ∆pµ1 )1/2 must
be a Lorentz-invariant scalar. In the aligned-spin case,
given the previous discussion, and due to Poincaré sym-
metry and dimensional analysis, it must be a function
only of the dimensionless scalar γ and the dimension-
length scalars b, a1, a2, Gm1 and Gm2. Given also the
conclusion from above that, in (2.4) with i = 1, pµ1n/m1

is a homogeneous polynomial of degree n in the masses,
with the leading n = 1 result seen in (2.9), it follows that
the magnitude Q of the impulse must take the following
form through fourth order in G (through 4PM order),

Q =
2Gm1m2

b

[
Q1PM (2.12a)

+
G

b

(
m1Q

2PM
m1

+m2Q
2PM
m2

)
+
G2

b2

(
m2

1Q
3PM
m2

1
+m2

2Q
3PM
m2

2
+m1m2Q

3PM
m1m2

)
+
G3

b3

(
m3

1Q
4PM
m3

1
+m3

2Q
4PM
m3

2

+m2
1m2Q

4PM
m2

1m2
+m1m

2
2Q

4PM
m1m2

2

)]
+O(G5),

where the Q’s on the RHS are functions of the dimen-
sionless scalars γ, a1/b and a2/b,

QnPM
mi

1m
j
2

= QnPM
mi

1m
j
2

(γ,
a1

b
,
a2

b
) (2.12b)

= QnPM
mi

1m
j
2a

0(γ)

+
a1

b
QnPM
mi

1m
j
2a1

(γ) +
a2

b
QnPM
mi

1m
j
2a2

(γ)

+
a1a2

b2
QnPM
mi

1m
j
2a1a2

(γ)

(with i + j = n − 1). In the second equality, we have
expanded to linear order in each spin (assuming regular
limits as the spins go to zero), and we are finally left with
a set of undetermined functions depending only on the
Lorentz factor γ.

Furthermore, Q must be invariant under an exchange
of the two bodies’ identities, (m1, a1) ↔ (m2, a2). At
1PM order, this tells us that Q1PM(γ, a1/b, a2/b) is sym-
metric under a1 ↔ a2, and thus Q1PM

a1 = Q1PM
a2 , so that

the third line of (2.12b) in this case is proportional to
a1 +a2. Indeed, the explicit expression for Q1PM is given
by the magnitude of the aligned-spin specialization of
(2.9) (divided by 2Gm1m2/b),

2

Q1PM =
2γ2 − 1√
γ2 − 1

(
1 + 2

a1a2

b2

)
− 2γ

a1 + a2

b
. (2.14)

At 2PM order, the 1↔ 2 symmetry tells us that each of
the two functions in the second line of (2.12a) determines
the other,

Q2PM
m1

(γ,
a1

b
,
a2

b
) = Q2PM

m2
(γ,

a2

b
,
a1

b
). (2.15)

This function, like Q1PM, is in fact fully determined by
the (extended) test-body limit of Q/(m1m2) — the limit
where one of the masses, say, m1, goes to zero, while
keeping fixed m2, a2 and a1 (and γ and b). The result
for Q/m1 in this limit can be consistently determined
by solving the pole-dipole MPD equations (2.1) for a
spinning test body in a stationary Kerr background; we
will present explicit results from this procedure below
in terms of the scattering-angle function. This test-body
limit, withm1 → 0, determines all of the functions QnPM

mn−1
2

with no powers of m1, for all n, and the 1↔ 2 symmetry
also tells us that

QnPM
mn−1

1
(γ,

a1

b
,
a2

b
) = QnPM

mn−1
2

(γ,
a2

b
,
a1

b
). (2.16)

The only remaining functions in (2.12a), those not deter-
mined by the test-body limit and exchange symmetry, are
Q3PM
m1m2

, Q4PM
m2

1m2
and Q4PM

m1m2
2
. They are however still con-

strained by the exchange symmetry as follows. Firstly,

Q3PM
m1m2

(γ,
a1

b
,
a2

b
) = Q3PM

m1m2
(γ,

a2

b
,
a1

b
), (2.17)

which implies that the third line of (2.12b) for Q3PM
m1m2

(like for Q1PM above) is proportional to a1+a2. Secondly,

Q4PM
m2

1m2
(γ,

a1

b
,
a2

b
) = Q4PM

m1m2
2
(γ,

a2

b
,
a1

b
), (2.18)

so that one of these two functions determines the other.

2 Note that this is the expansion to linear order in the spins of the
result (80) from [112] for a two-black-hole system,

Q1PM =

(
2γ2 − 1√
γ2 − 1

− 2γ
a1 + a2

b

)(
1−

(a1 + a2)2

b2

)−1

, (2.13)

to all orders in the spin-multipole expansion at 1PM order.
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Taking all of these constraints from exchange symme-
try, we can eliminate all of the Q’s with more m1’s in the
subscript for those with more m2’s, while those with the
same number of m1’s and m2’s must be symmetric under
a1 ↔ a2. First focusing on the nonspinning (a0) part of
(2.12a), this becomes

Qa0 =
2Gm1m2

b

[
Q1PM
a0 +

G

b
(m1 +m2)Q2PM

m2a0

+
G2

b2

(
(m2

1 +m2
2)Q3PM

m2
2a

0 +m1m2Q
3PM
m1m2a0

)
(2.19)

+
G3

b3

(
(m3

1 +m3
2)Q4PM

m3
2a

0 +m1m2(m1 +m2)Q4PM
m1m2

2a
0

)]
,

recalling that all the Q’s on the right-hand side are func-
tions only of γ [henceforth dropping +O(G5)]. Introduc-
ing the total rest mass M = m1 +m2 and the symmetric
mass ratio ν = m1m2/M

2 = µ/M as in (1.1), and noting

m1 +m2 = M,

m2
1 +m2

2 = M2(1− 2ν), (2.20)

m3
1 +m3

2 = M3(1− 3ν),

this becomes

Qa0 =
2Gm1m2

b

[
Q1PM
a0 +

GM

b
Q2PM
m2a0

+
(GM

b

)2
(
Q3PM
m2

2a
0 + νQ̃3PM

m1m2a0

)
(2.21)

+
(GM

b

)3
(
Q4PM
m3

2a
0 + νQ̃4PM

m1m2
2a

0

)]
,

where we defined Q̃3PM
m1m2a0

:= Q3PM
m1m2a0

− 2Q3PM
m2

2a
0 and

Q̃4PM
m1m2

2a
0 := Q4PM

m1m2
2a

0 − 3Q4PM
m3

2a
0 , still functions only of γ.

Remarkably, through 4PM order, this is just linear in the
mass ratio ν at fixed M . Precisely the same manipula-
tions go through for the a1a2 terms, replacing a0 with
a1a2 in all the subscripts and with an overall factor of
a1a2/b

2 on the right-hand side.
Next consider just the 1PM and 2PM terms of the

SO (a1) part of (2.12a), after accounting for the ex-
change symmetry in the same way as in the previous
paragraph (with Q1PM

a1 = Q1PM
a2 , Q2PM

m1a1 = Q2PM
m2a2 and

Q2PM
m1a2 = Q2PM

m2a1); we find

Qa1 +O(G3) =
2Gm1m2

b

[
a1 + a2

b
Q1PM
a2 (2.22)

+
G

b

(
m1a1 +m2a2

b
Q2PM
m2a2 +

m2a1 +m1a2

b
Q2PM
m2a1

)]
.

We recognize in the second line the following spin com-
binations often used in the PN and EOB literature,

S := m1a1 +m2a2 = S1 + S2,

S∗ := m2a1 +m1a2 =
m2

m1
S1 +

m1

m2
S2.

(2.23)

We will find it convenient to rescale each of these by the
total rest mass M , defining

ab :=
S

M
=
m1a1 +m2a2

m1 +m2
,

at :=
S∗
M

=
m2a1 +m1a2

m1 +m2
,

(2.24)

where b stands for background (or big) and t stands for
test (or tiny). The (first) reason for these labels is that,
in the extended test-body limit [m1 → 0 at fixed m2

(or M) and fixed a1 and a2], we see that ab → a2 be-
comes the spin-per-mass of the big background object
with mass M = m2, and at → a1 becomes the spin-
per-mass of the tiny spinning test body with negligible
mass (with a further reason explained below). Note that
ab + at = a1 + a2. Now extending (2.22) to 4PM order,
from (2.12a) accounting for exchange symmetry, using
our new notation, we find

Qa1 =
2Gm1m2

b2

[
Q1PM
a2 (ab + at) (2.25)

+
GM

b

(
Q2PM
m2a2ab + Q2PM

m2a1at

)
+
(GM

b

)2
(
Q3PM
m2

2a2
ab + Q3PM

m2
2a1
at + νQ̃3PM

m1m2a2(ab + at)

)
+
(GM

b

)3
(
Q4PM
m3

2a2
ab + Q4PM

m3
2a1
at

+ ν
[
Q̃4PM
m1m2

2a2
ab + Q̃4PM

m1m2
2a2
at

])]
,

where we defined Q̃3PM
m1m2a2 = Q3PM

m1m2a2 −Q3PM
m2

2a2
−Q3PM

m2
2a1

,

Q̃4PM
m1m2

2a2
:= Q4PM

m1m2
2a2
−2Q4PM

m3
2a2
−Q4PM

m3
2a1

and Q̃4PM
m1m2

2a2
:=

Q4PM
m1m2

2a2
−Q4PM

m3
2a2
− 2Q4PM

m3
2a1

, all still functions only of γ.

We see that (2.25), like (2.21), is linear in the symmetric
mass ratio ν (at fixed M , ab and at).

Now, just as in Eq. (2.14) of [100] — following from
conservation of the total momentum pµ1 + pµ2 and simple
geometry and kinematics (which is identical for the non-
spinning and aligned-spin cases) — the scattering angle
χ, by which both bodies are deflected in the system’s
center-of-mass (cm) frame, is related to the magnitude Q
of the impulse by

sin
χ

2
=

Q

2p∞
, (2.26)

where p∞ (called “Pc.m.” by Damour) is the magnitude
of the bodies’ equal and opposite spatial momenta in the
cm frame, at infinity,

p∞ =
m1m2

E

√
γ2 − 1. (2.27)

Here, E is the total energy in the cm frame,

E2 = m2
1 +m2

2 + 2m1m2γ
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= M2(1 + 2ν(γ − 1)), (2.28)

determined by the asymptotic Lorentz factor γ and the
rest masses. Note also the definition of the asymptotic
relative velocity v as used e.g. in [45, 101, 102],

v =

√
γ2 − 1

γ
⇔ γ =

1√
1− v2

. (2.29)

We will find it convenient to define yet another variable
equivalent to γ or v, namely

ε := γ2 − 1 = γ2v2 =
( p∞E
m1m2

)2

, (2.30)

which, like v2, can serve as a PN expansion parameter,
and unlike v, is real for both unbound and bound orbits,

unbound: E > M ⇔ ε > 0,

bound: E < M ⇔ ε < 0,
(2.31)

noting that v = i
√

1− γ2/γ and p∞ are imaginary for
bound orbits. (Note that our ε = γ2v2 is Damour’s
“p2
∞ = p2

eob” [the squared momentum per mass of the
effective test body], while our p∞ is Damour’s “Pc.m.”.)
We will also find it convenient to define a notation for the
dimensionless ratio Γ (Damour’s “h”) between the total
energy and the total rest mass,

Γ :=
E

M
=
√

1 + 2ν(γ − 1), (2.32)

with Γ > 1 (γ > 1) for unbound orbits, and Γ < 1 (γ < 1)
for bound orbits. Then p∞ = µγv/Γ = µ

√
ε/Γ.

With this notation in order, we can take our simplified
result for the impulse magnitude Q (2.12a) [namely the
sum of (2.21), its analogous a1a2 version, and the SO part
(2.25)], insert it into (2.26), and solve for the aligned-spin
scattering angle χ. After this process, χ/Γ turns out to
be linear in ν in the same way that Q is, thanks to the
facts that the sine function is odd in its argument and
that Γ2 is linear in ν. The result can be expressed as
follows,

χ

Γ
=
GM

b
√
ε
Xν

0

G1 (2.33a)

+
(GM
b
√
ε

)2

Xν
0

G2

+
(GM
b
√
ε

)3[
Xν

0

G3 + νXν
1

G3

]
+
(GM
b
√
ε

)4[
Xν

0

G4 + νXν
1

G4

]
+O

(GM
b

)5

,

where each Xν
m

Gk takes the form

Xν
m

Gk = Xmk (ε) (2.33b)

+
ab

b
√
ε
Xmb
k (ε) +

at

b
√
ε
Xmt
k (ε)

+
a1a2

b2ε
Xm×k (ε),

with × standing for the “cross term” a1a2, and with the
special constraints

X0b
1 = X0t

1 , X1b
3 = X1t

3 , (2.34)

recalling from (2.24) that Mab = m1a1 + m2a2 and
Mat = m2a1 + m1a2.3 All the X’s on the right-hand
side of (2.33b) are dimensionless and are functions only
of the dimensionless ε = γ2− 1; they can be expressed in
terms of the above Q(γ)’s alone.

We see that the 1PM and 2PM terms in (2.33) are
independent of the symmetric mass ratio ν and are thus
fully preserved in the (extended) test-body limit ν → 0
(at fixed M , or equivalently m1 → 0 at fixed M , and at
fixed a1, a2, b and γ), while the 3PM and 4PM terms
are linear in ν. This allows us to deduce the complete
1PM and 2PM results for χ/Γ from its test-body limit,
and the complete 3PM and 4PM results from first-order
self-force (linear-in-mass-ratio) calculations.

The special constraints (2.34) are consequences of the
1 ↔ 2 symmetry, as seen in the G1ν0 and G3ν1 SO
terms in (2.25). This is a prediction of the above ar-
guments which our considerations below will be able to
test, rather than to rely on. For the case of the G3ν1

SO terms, which we will determine (in a PN expansion)
below from matching to first-order self-force calculations,
we will allow X1

3b and X1
3t to be independent — in fact,

X1
3b will be determined by the redshift invariant in a Kerr

background and X1
3t by the spin-precession invariant in a

Schwarzschild background — and we will find from the
matching procedure that they are indeed equal through
the considered PN orders. The fact that the complete
content of Eqs. (2.33) holds through N2LO in the PN
expansion can be seen in Eqs. (4.32) of Ref. [101].

The ν0 terms in (2.33) can be determined by solving
the MPD equations of motion (2.1) for a spinning (pole-
dipole) test body in a stationary background Kerr space-
time. An integrand for the test-spin-in-Kerr aligned-spin
scattering angle function, to all PM orders, was derived
in Ref. [115]; see, e.g., their Eq. (66) (which also includes
pole-dipole-quadrupole terms for a test black hole). The
results of the integration are as follows, to all orders in ε
(to all PN orders at each PM order), extending Eq. (5.5)
of Ref. [101] to 4PM order in the spin-orbit and bilinear-

3 In Ref. [102], the expression of the result (2.33) for the mass
dependence of the scattering angle differed in that (i) we did not
pull a factor of 1/

√
ε out of the X’s for every factor of 1/b, (ii)

we used v instead of ε, and (iii) we used a+ and δ a− in place
of ab and at, with a± := a2 ± a1 and δ := (m2 −m1)/M ; the
equivalence of the two expressions is apparent since

a+ + δ a− = 2ab,

a+ − δ a− = 2at.
(2.35)
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in-spin terms. The nonspinning parts are

X0
1 = 2

1 + 2ε√
ε

= 2
2γ2 − 1√
γ2 − 1

= 2
1 + v2

v
√

1− v2
, (2.36a)

X0
2 =

3π

4
(4 + 5ε) =

3π

4
(5γ2 − 1),

X0
3 = 2

−1 + 12ε+ 72ε2 + 64ε3

3ε3/2
,

X0
4 =

105π

64
(16 + 48ε+ 33ε2),

the SO parts are

X0b
1 ab + X0t

1 at = −4γ
√
ε(ab + at), (2.36b)

X0b
2 ab + X0t

2 at = −π
2
γ(2 + 5ε)(4ab + 3at),

X0b
3 ab + X0t

3 at = −4γ
1 + 12ε+ 16ε2

√
ε

(3ab + 2at),

X0b
4 ab + X0t

4 at = −21π

16
γ(8 + 36ε+ 33ε2)(8ab + 5at),

and the bilinear-in-spin parts are

X0×
1 = 4

√
ε(1 + 2ε), (2.36c)

X0×
2 =

3π

2
(2 + 19ε+ 20ε2),

X0×
3 = 8

1 + 38ε+ 128ε2 + 96ε3

√
ε

,

X0×
4 =

105π

16
(24 + 212ε+ 447ε2 + 264ε3)

with γ =
√

1 + ε.4

The ν1 terms in (2.33), at 3PM and 4PM orders, can
be determined in a PN expansion (here, an expansion in
ε) from first-order self-force results (as well as from con-
sistency with lower orders), as we will explicitly demon-
strate below for the spin parts. We will use the known
nonspinning coefficients through 4PM-3PN order [101],

X1
3 = −8 + 94ε+ 313ε2 +O(ε3)

12
√
ε

, (2.37a)

X1
4 = π

[
−15

2
+

(
123

128
π2 − 557

8

)
ε+O(ε2)

]
,

4 Note that, through 2PM order and up through the SO terms,
the first two lines of the right-hand side of (2.33a), with (2.36a)
and (2.36b) plugged into the first two lines of (2.33b), correctly
give either (i) the aligned-spin scattering angle for a spinning test
body with rescaled spin at in a Kerr background with mass M
and rescaled spin ab, or (ii) the rescaled aligned-spin scattering
angle χ/Γ for the arbitrary-mass two-spinning-body system, us-
ing the “spin maps” (2.24); this is a further reason for the labels
at and ab. This gives a different “EOB scattering-angle map-
ping,” an alternative to Eq. (3.16) of [101], which produces the
1PM and 2PM SO terms in the two-body scattering angle from
its extended test-body limit. [Note however that this different
mapping fails at quadratic order in the spins, while Eq. (3.16) of
[101] still holds, according to all known results.]

noting the transcendental ζ(2) contribution in the last
term (the 4PM-3PN term). We will parametrize the SO
coefficients as

X1i
3 =

γ√
ε

(
X1i

30 + X1i
31ε+ X1i

32ε
2 + X1i

33ε
3 +O(ε4)

)
,

X1i
4 = πγ

(
X1i

41 + X1i
42ε+ X1i

43ε
2 +O(ε3)

)
, (2.37b)

with i = b, t, and the bilinear-in-spin coefficients as

X1×
3 =

1√
ε

(
X1×

30 + X1×
31 ε+ X1×

32 ε
2 + X1×

33 ε
3 +O(ε4)

)
,

X1×
4 = π

(
X1×

41 + X1×
42 ε+ X1×

43 ε
2 +O(ε3)

)
. (2.37c)

We have included all the same powers of ε present in
the ν0 coefficients (2.36), up to the orders in ε which will
contribute at the N3LO PN level. (We have also factored
out γ =

√
1 + ε in the SO terms and π in the 4PM terms,

following the patterns at ν0.) For these X1···
kn , which are

all pure numbers, k gives the PM order, and n gives the
maximum PN order (NnLO) which determines that coef-
ficient. This labeling and the consistency and sufficiency
of this ansatz for the scattering angle will become evi-
dent in the matching between the scattering angle and a
canonical Hamiltonian described in the following section.

Finally, it is important to note that the impact param-
eter b appearing everywhere in this section is the distance
orthogonally separating the two spinning bodies’ asymp-
totic incoming worldlines as defined by the “covariant” or
Tulczyjew-Dixon condition [108–111], Eq. (2.1c) above,
for each body—the so-called “proper” or “covariant” im-
pact parameter b ≡ bcov [45, 101, 116]. This is crucial
to the above argument because only with the covariant
condition (2.1c) (or something equivalent to it at 0PM or-
der) does it hold that the first-order field (2.8) is linear in
the masses. Below, we will also work with the canonical
orbital angular momentum L ≡ Lcan = p∞bcan, where
bcan is the impact parameter orthogonally separating
the asymptotic incoming worldlines defined by cm-frame
Newton-Wigner conditions [117, 118] for each body. This
coincides with the conserved canonical orbital angular
momentum L appearing in a canonical Hamiltonian for-
mulation of aligned-spin two-body dynamics [119, 120].
[Note that, for the aligned-spin case, the covariant/Pauli-
Lubanski spin vectors mia

µ
i used above coincide with

the canonical spin vectors Sµi (spatial vectors in the cm
frame) which would be associated with the cm-frame
Newton-Wigner conditions, and thus so do the aligned-
spin (signed) magnitudes, Si = miai.] As shown in
[101, 112], the canonical L =: Lcan is related to the co-
variant b by

L = Lcov + ∆L, (2.38)

Lcov = p∞b =
µ

Γ
γvb =

µ

Γ

√
εb,

∆L =
(√

m2
1 + p2

∞ −m1

)
a1 +

(√
m2

2 + p2
∞ −m2

)
a2

= M
Γ− 1

2

(
ab + at −

ab − at

Γ

)
.
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Solving this for b, inserting the result into (2.33)
[or (2.39)], and re-expanding to bilinear order in the
(mass-rescaled) spins a1 and a2, one obtains the final
parametrized form for the aligned-spin scattering angle
function χ(E,L;mi, ai) used in the following matching
calculations.

Let us finally rewrite the scattering angle to include
both the ν0 and ν1 terms in single coefficients (or which
could allow mass-dependence differing from that de-
duced above), and which would accommodate general
quadratic-in-spin terms, with sums over i and j implied,

χ

Γ
=
∑
k≥1

(GM
b
√
ε

)k[
Xk(ε, ν)+

ai

b
√
ε
Xk

i(ε, ν)+
aiaj

b2ε
Xk

ij(ε, ν)

]
(2.39)

+O(a3), with

aiXk
i = abXk

b + atXk
t, (2.40)

aiajXk
ij = a1a2Xk

× +O(a2
1, a

2
2).

Our prediction for the mass-ratio dependence of the kPM
coefficients Xk

A = {Xk,Xkb,Xk
t,Xk

×} is that

Xk
A(ε, ν) =

{
X0A
k (ε), k = 1, 2

X0A
k (ε) + νX1A

k (ε), k = 3, 4
. (2.41)

The ν0 coefficients X0A
k (ε) from the extended test-body

limit are given explicitly in (2.36), and the ν1 coefficients
X1A
k (ε) which we will determine from self-force results are

parametrized in a PN expansion in (2.37). Note that we
will also be able to use the self-force results to test the
fact that there are no ν1 terms at 1PM and 2PM orders
in this parametrization of the scattering angle. The fact
that there are no ν2 or higher terms through 4PM order
cannot be probed with first-order self-force results, but
has already been confirmed by arbitrary-mass PN results
through N2LO. Our prediction for the mass-dependence
will yield new arbitrary-mass results at the N3LO PN
level once we have fixed the PN expansions of the coeffi-
cients X1A

k from first-order self-force calculations.

III. FROM THE UNBOUND SCATTERING
ANGLE TO THE BOUND RADIAL ACTION VIA

CANONICAL HAMILTONIAN DYNAMICS

Besides the mass dependence of the scattering angle
function established in the previous section, and the in-
puts of test-body results (discussed above) and first-order
self-force results (discussed below), the other central in-
gredient in our derivation is the assumption of the ex-
istence of a (local-in-time) canonical Hamiltonian gov-
erning the aligned-spin conservative dynamics in the cm
frame, for generic (both bound and unbound) orbits,
with the Hamiltonian having well-defined (regular, poly-
nomial) PN and PM expansions. Through the desired
4.5PN order in the SO sector and 5PN S1S2 one, we can
safely ignore nonlocal-in-time (tail) contributions in the

final dynamics/scattering angle. While these do appear
at the 4PN level in the nonspinning sector [14] (see e.g.,
Ref. [121] for a translation into a nonlocal-in-time scat-
tering angle), they only start appearing at 5.5PN order in
the spinning one. This can most easily be seen in the first
line of Eq.(68a) in Ref. [122], where the linear-in-spin tails
are a relative 1.5PN order from the leading quadrupolar
contributions to the tail. [As mentioned at the very end
of this section, we find it necessary to include tail terms
at 4PN order in the nonspinning sector to make contact
with available results in the GSF literature.]

Our ultimate goal in this section is to take the gauge-
invariant scattering-angle function χ for unbound orbits,
parametrized in the previous section, and derive from it
a parametrized expression for the gauge-invariant radial-
action function Ir which characterizes bound orbits, from
which we can derive all the bound-orbit gauge invariants
to be compared with self-force results in Sec. IV B below.

We do this by passing through the gauge-dependent
canonical Hamiltonian dynamics. It is to some extent
true that this process (as we implement it here) can be
bypassed by using relationships between gauge invariants
for unbound and bound orbits found in [91], but not en-
tirely. Those relationships yield Ir through O(G4) from
χ through O(G4), but the complete PN expansion of Ir
through N3LO extends to O(G8) (for the spin terms).
The extra terms in Ir are obtained here via the canoni-
cal Hamiltonian dynamics, which determines them from
(the PN re-expansion of) χ through O(G4). Note that
χ through O(G4) does not contain the complete PN ex-
pansion of χ through N3LO, nor through LO, since even
the Newtonian scattering angle has contributions at all
orders in G. But the PN expansion of the 4PM scatter-
ing angle, χ through O(G4), does contain the complete
information of the N3LO PN Hamiltonian (contained in
its O(G4) truncation), which determines the N3LO PN
radial action Ir (contained in its O(G8) truncation).

We begin in Sec. III A by discussing canonical Hamilto-
nians for aligned-spin binaries, the resultant equations of
motion, and their gauge freedom under canonical trans-
formations, in a PM-PN expansion. We fix a unique
gauge by imposing simplifying conditions not on the
Hamiltonian function H itself, but on its correspond-
ing “mass-shell constraint” (or “impetus formula”[90]),
which is simply a rearrangement of the expression of
the Hamiltonian, in which the squared momentum is
given as a function of the Hamiltonian H (of the energy
E = H). In Sec. III B, we describe how the scattering-
angle function can be derived from the canonical mass-
shell constraint, or vice versa (with our gauge-fixing for
the mass shell), and derive the explicit relationships be-
tween the scattering-angle coefficients and the mass-shell
coefficients. Finally, in Sec. III C, we compute the radial
action Ir, and point out a hidden simplicity in its de-
pendence on the mass ratio, when expressed in terms of
appropriate (covariant rather than canonical) variables,
which is a simple consequence of the mass dependence
of the scattering angle χ and the relationship between χ
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and Ir discovered in [91].

A. The canonical Hamiltonian and/or the
mass-shell constraint

For an aligned-spin binary canonical Hamiltonian,

H(r, φ, pr, L;mi, ai)

= H(r, pr, L;mi, ai) (3.1)

the dynamical variables (depending on a time parameter
t) are polar coordinates (r, φ) in the orbital plane, with
r being the orbital separation, and their conjugate mo-
menta (pr, pφ ≡ L). The Hamiltonian does not depend
on the angular coordinate φ due to the system’s axial
symmetry, and it otherwise depends only on the con-
stant masses and spins (mi, ai) = (m1,m2, a1, a2). The
Hamiltonian equations of motions read

ṙ =
∂H

∂pr
, ṗr = −∂H

∂r
, (3.2)

φ̇ =
∂H

∂L
, L̇ = −∂H

∂φ
= 0,

where we note that the canonical orbital angular momen-
tum L is a constant of motion.

Such a Hamiltonian is not unique, but is subject to
a type of gauge freedom, namely under canonical trans-
formations: diffeomorphisms of the phase space which
preserve the canonical form (3.2) of the equations of mo-
tion. In a quite general gauge (one which encompasses
all gauges encountered in previous PN or PM aligned-
spin Hamiltonians), the Hamiltonian takes the following
form through quadratic order in the spins, through 4PM
order,

H = H0(p2;mi) +

4∑
k=1

Gk

rk

[
ck(p2,

L2

r2
;mi) (3.3)

+
Lai

r2
cik(p2,

L2

r2
;mj) +

aiaj

r2
cijk(p2,

L2

r2
;mk)

]
+O(G5),

where

p2 = p2
r +

L2

r2
, (3.4)

is the total squared canonical linear momentum. Here,
H0 is the 0PM (free) Hamiltonian, and the functions

ck, cik and cijk encode respectively the nonspinning, spin-
orbit, and quadratic-in-spin gravitational couplings at
the kPM orders. The c’s are assumed to have regular
Taylor series around L2 = 0 and p2 = 0. We will work
here with the standard (gauge) choice for the free Hamil-
tonian in the cm frame,

H0 =
√
m2

1 + p2 +
√
m2

2 + p2, (3.5)

such that, as r →∞, the magnitude
√

p2 of the canonical
linear momentum corresponds to the two bodies’ physical
equal and opposite spatial momenta in the cm frame.

The expression (3.3) of the Hamiltonian can be solved,
working perturbatively in G, for p2(r, E, L;mi, ai), where
E ≡ H(r, pr, L;mi, ai) is the total energy; one finds

p2 = p2
∞(E;mi) +

∑
k≥1

Gk

rk

[
fk(E,

L2

r2
;mi) (3.6)

+
Lai

r2
f i
k(E,

L2

r2
;mj) +

aiaj

r2
f ij
k (E,

L2

r2
;mk)

]
,

where the 0PM part p2
∞ is found by (exactly) inverting

(3.5), H0(p2) = E ⇔ p2
∞(E) = p2,

p2
∞ =

(E2 −m2
1 −m2

2)2 − 4m2
1m

2
2

4E2
= µ2 γ

2 − 1

Γ2
, (3.7)

which we recognize as the same p∞ from (2.27). The

functions fk, f i
k and f ij

k are determined by (and carry all
of the information of) the c···k coefficients in the Hamilto-
nian (3.3). Importantly, the f ···k functions will have regu-
lar limits as γ2 − 1 = ε→ 0 (as p∞ → 0) and as L2 → 0,
given our assumption that the c···k functions were regular
as p2 → 0 and L2 → 0. The quantities γ, ε and Γ are
all defined in terms of the energy E and the rest masses
just as in the previous section.

As discussed in Ref. [101] (through N2LO in the PN
expansion, and as we have explicitly verified through
N3LO), it is possible to find a perturbative canonical
transformation which brings the Hamiltonian (3.3) into
a “quasi-isotropic” form, i.e., a form in which the c’s
depend only p2 and not on L2/r2. Furthermore, the
freedom in canonical transformations [among Hamilto-
nians of the form (3.3)] is completely fixed once one
imposes this quasi-isotropic-Hamiltonian condition and
uniquely specifies a 0PM Hamiltonian H0, as we have
done in (3.5). For such a quasi-isotropic Hamiltonian,
one finds that the corresponding “mass shell constraint,”
the expression for p2 (3.6), has nonspinning and SO co-
efficients fk f

i
k which are independent of L2/r2, but its

quadratic-in-spin coefficients f ij
k have terms at zeroth and

first orders in L2/r2. However, there also exists a differ-
ent (non-quasi-isotropic) gauge for the Hamiltonian (3.3)

(one with L2/r2 terms in cijk) such that its mass shell

constraint (3.6) is quasi-isotropic, with the fk, f i
k and f ij

k
all depending only on E (and the masses) and not on
L2/r2. Because both the scattering angle and the radial
action are more directly related to the f coefficients in the
mass shell, we will find it convenient to adopt this quasi-
isotropic-mass-shell gauge (which is also unique with a
given choice for H0), specializing (3.6) to the form

p2 = p2
∞(E;mi) +

∑
k≥1

Gk

rk

[
fk(E;mi) (3.8)

+
Lai

r2
f i
k(E;mj) +

aiaj

r2
f ij
k (E;mk)

]
.
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Regrouping in terms of powers of r instead of powers of
G, we have

p2
r +

L2

r2
= p2 = p2

∞ +
∑
k≥1

Gk

rk
f̃k, (3.9)

where we define

f̃k = fk +
Lai

G2
f i
k−2 +

aiaj

G2
f ij
k−2, (3.10)

with f ···−1 = f ···0 = 0, and we need to extend the sum to
k = 6 (while dropping the nonspinning f5 and f6). Our
starting point for the following calculations will be this
ansatz for the mass shell constraint, which is fully equiv-
alent to an ansatz for a Hamiltonian of the form (3.3)
modulo gauge freedom. Our fundamental assumption is
the existence of such a canonical Hamiltonian. We will
find that the coefficients f ···k (E;mi) are uniquely deter-
mined by the expansion of the scattering-angle function
to kPM order.

B. The scattering angle

As shown in [82], the scattering angle χ(E,L;mi, ai)
for an unbound orbit can be found directly from the
canonical mass-shell constraint as follows. The con-
straint (3.9) can be solved for the radial momentum
pr(r, E, L;mi, ai), and then the scattering angle is given
by the integral

π + χ(E,L) = −
∫ ∞
∞

dr
∂

∂L
pr(r, E, L) (3.11)

= −2

∫ ∞
rmin

dr
∂

∂L

√√√√p2
∞ −

L2

r2
+
∑
k≥1

Gk

rk
f̃k,

where rmin is the largest real root of pr = 0. In the direct
evaluation of this integral, it would matter that the f̃k in
(3.10) depend on L (in the SO terms). But let us define
an antiderivative of π + χ with respect to L to be “the
unbound radial action,”

W = − 1

2π

( ∂

∂L

)−1

(π + χ), (3.12a)

which is essentially a partie finie of the radial action in-
tegral for unbound orbits,

W (E,L) =
1

2π
Pf

∫ ∞
∞

dr pr(r, E, L). (3.12b)

The eikonal phase [83, 97, 123, 124] is W/~ (up to a con-

stant). For the expression of W in terms of the f̃k, it does

not matter that the f̃k depend on L. That expression will
be identical to the L-antiderivative of the nonspinning
scattering angle expressed in terms of the nonspinning
fk, with fk → f̃k, so this reduces the evaluation of the
integral for the spinning case to the nonspinning prob-
lem, using the coefficient mapping (3.10). The results of
the nonspinning integral (for χ, from which constructing
W is trivial) have been tabulated at high orders, e.g., in
[125]. One finds

2πW = −πL− G lnL

p∞
χ̃1 +

∑
k≥2

Gk

pk∞L
k−1

χ̃k
k − 1

, (3.13)

where χ̃k are the entries of Table 1 in [125] with fk → f̃k;
the first few read

χ̃1 = f̃1, (3.14)

χ̃2 =
π

2
p2
∞f̃2,

χ̃3 = 2p4
∞f̃3 + p2

∞f̃1f̃2 −
f̃3

1

12
,

χ̃4 =
3π

8
p4
∞(2p2

∞f̃4 + f̃2
2 + 2f̃1f̃3),

· · ·

The scattering angle χ is then given by

π + χ = −2π
∂W

∂L
, (3.15)

with the L-derivative acting also inside the f̃k in (3.10).
To obtain W or χ through quadratic order in spins and
through 4PM order, O(G4), counting both the Gk in
(3.13) and the 1/G2 in (3.10), we must include parts of

the contributions up to f̃6 and up to χ̃8. The resultant
explicit expression of the scattering angle χ in terms of
the f ···k coefficients up to 4PM order and quadratic order
in spins is

χ =
G

p∞L
f1 +

πG2

2L2
f2 +

G3

p3
∞L

3

[
− 1

12
f3

1 + p2
∞f1f2 + 2p4

∞f3

]
+

3πG4

8L4

[
f2

2 + 2f1f3 + 2p2
∞f4

]
(3.16)
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+ ai

{
Gp∞
L2

f i
1 +

πG2

2L3

[
f1f

i
1 + p2

∞f
i
2

]
+

G3

p∞L4

[
3

4
f2

1 f
i
1 + 3p2

∞

(
f2f

i
1 + f1f

i
2

)
+ 2p4

∞f
i
3

]

+
3πG4

4L5

[
2f1f2f

i
1 + f2

1 f
i
2 + 2p2

∞

(
f3f

i
1 + f2f

i
2 + f1f

i
3

)
+ p4
∞f

i
4

]}

+ aiaj

{
2Gp∞
L3

f ij
1 +

3πG2

16L4

[
4f1f

ij
1 + p2

∞

(
3f i

1f
j
1 + 4f ij

2

)]
+

G3

p∞L5

[
f2

1 f
ij
1 + 4p2

∞

(
f2f

ij
1 + f1f

i
1f

j
1 + f1f

ij
2

)
+

8

3
p4
∞

(
2f i

1f
j
2 + f ij

3

)]
+

15πG4

64L6

[
8f1f2f

ij
1 + 5f2

1 f
i
1f

j
1 + 4f2

1 f
ij
2

+ 2p2
∞

(
4f3f

ij
1 + 5f2f

i
1f

j
1 + 4f2f

ij
2 + 10f1f

i
1f

j
2 + 4f1f

ij
3

)
+ p4
∞

(
5f i

2f
j
2 + 10f i

1f
j
3 + 4f ij

4

)]}
+O(a3) +O(G5).

We see that the kPM coefficients f ···k first enter in the
Gk terms; however, they do not enter those terms at the
leading orders in p∞ (in the PN expansion of each PM
coefficient). Recalling that all of the f ’s are finite as
p∞ → 0 (ε → 0), we see that, within each set of square
brackets multiplying Gk, the lowest orders in p∞ do not
depend on f ···k , rather only on the lower-PM-order f ’s
(with some exceptions at G1 and G2). Similarly, for the
scattering-angle coefficients at even higher orders in G
(some of which will be relevant below), the lower orders
in their PN expansions will be determined by coefficients
from lower orders in G already appearing here.

This gives the scattering angle χ in terms of the mass-
shell coefficients fk, f i

k, f ij
k , as an expansion in the canon-

ical orbital angular momentum L. Equating that expres-
sion to a parametrization of χ of the form (2.39) in terms
of the covariant impact parameter b, using the transla-
tion (2.38) while re-expanding in spins, one can solve for
the f coefficients in the mass shell in terms of the X co-
efficients in the scattering angle (or vice versa), order by
order in the PM expansion. Recall p∞ = µ

√
ε/Γ. Rewrit-

ing ∆L = L− p∞b from (2.38) as a sum over (effective)
spins,

∆L =
µ

Γ
ξiai =

µ

Γ

(
ξbab + ξtat

)
, (3.17a)

with

ξb =
(Γ− 1)2

2ν
= 2ν

(γ − 1

Γ + 1

)2

=
νε2

8
+O(ε3),

ξt =
Γ2 − 1

2ν
= γ − 1 =

ε

2
+O(ε2), (3.17b)

the results for the f ’s through 2PM order are as follows:
nonspinning,

f1 = µ2M

√
ε

Γ
X1, (3.18a)

f2 =
2µ2M2

πΓ
X2,

spin-orbit,

f i
1 =

µM√
ε

(
X1

i + X1ξ
i
)
, (3.18b)

f i
2 =

µM2

ε

[
2

π
X2

i − ΓX1X1
i +
( 4

π
X2 − Γ(X1)2

)
ξi

]
and quadratic in spin,

f ij
1 =

µ2M

2Γ
√
ε

(
X1

ij + 2X1X1
iξj + X1ξ

iξj
)
, (3.18c)

f ij
2 =

µ2M2

Γε

[
4

3π
X2

ij − 1

2
ΓX1X1

ij − 3

4
ΓX1

iX1
j

+
( 4

π
X2

i − 5

2
ΓX1X1

i
)
ξj +

( 4

π
X2 −

5

2
Γ(X1)2

)
ξiξj

]
,

with symmetrization over i and j understood. These
1PM and 2PM results are exact (to all orders in ε).
With our predicted mass-ratio dependence from the pre-
vious section, we have, for k = 1, 2, Xk(ε, ν) = X0

k(ε),
aiXk

i(ε, ν) = abX
0b
k (ε) + atX

0t
k (ε), and aiajXk

ij(ε, ν) =

a1a2X
0×
k (ε) + O(a2

1, a
2
2), all independent of ν, and the

X0···
k (ε) from the extended test-body limit are given ex-

plicitly by (2.36). Though it is not immediately obvious
here, each of these f ’s has a finite limit as ε → 0, as is
required by our Hamiltonian ansatz. We will need the
expansions of the f ···1 up to O(ε3), and of the f ···2 up to
O(ε2). Along with f ···3 up to O(ε1) and f ···4 at O(ε0), we
will then have a complete mass-shell constraint (3.8) up
to N3LO in the PN expansion, which could be solved for
the corresponding canonical Hamiltonian (3.3).

At 3PM and 4PM orders, one can also solve for the f ’s
in terms of the X’s, obtaining exact expressions analogous
to the above. But we will now work in a PN expansion, an
expansion in ε, while enforcing our predicted mass-ratio
dependence [which (3.18) did not]. For the nonspinning
coefficients, using the known results (2.36a) and (2.37a)
for the X’s, we find

f3

µ2M3
=

17− 10ν

2
+

36− 91ν + 13ν2

4
ε+O(ε2),

f4

µ2M4
= 8 +

(41

32
π2 − 160

3

)
ν +

7

2
ν2 +O(ε), (3.19)

through the orders that contribute to the N3LO PN level.
Here again we note the finite limits as ε → 0. For
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the spinning contributions, we must enforce that all the
f ’s have finite limits as ε → 0, which will fix some of
the unknown coefficients in our parametrization (2.37)
of the ν1 parts of the scattering angle, or relationships
between them, from consistency with the lower-order f ’s
and X’s [recall the discussion following (3.16)]. At the SO
level, this determines or constrains the lower-PN-order
scattering-angle coefficients,

X1i
30ai = 0, (3.20)

X1i
31ai = 10(ab + at),

X1i
41ai =

21

2
ab + 9at,

X1i
42ai =

3

4

(
68ab + 49at + 2X1i

32ai

)
,

and expressions for f i
3 and f i

4 which are explicitly regular
as ε → 0 and depend on the remaining unknowns X1i

32,
X1i

33, and X1i
43, with i = b, t,

f i
3ai

µM3
=
−6 + 4ν − 5ν2

2
ab +

−3− 31ν − 9ν2

4
at +

ν

2
X1i

32ai

+

[
−24 + 172ν − 276ν2 + 21ν3

16
ab (3.21a)

+
−166ν − 90ν2 + 9ν3

8
at +

ν

4

(
X1i

32 + 2X1i
33

)
ai

]
ε+O(ε2),

and

f i
4ai

µM4
=

(
−2− 811

8
ν − 4ν2 +

13

8
ν3

)
ab (3.21b)

+

(
1

8
− 1577

12
ν +

41

16
π2ν +

35

4
ν2 +

3

2
ν3

)
at

+ ν
[
(4 + ν)X1i

32 − 2X1i
33 +

4

3
X1i

43

]
ai +O(ε).

Similarly, for the bilinear-in-spin coefficients, we find

X1×
30 = 0, X1×

31 = 8, X1×
41 =

15

2
,

X1×
42 =

45

32

(
−22 + X1×

32

)
, (3.22)

while f ij
k aiaj = f×k a1a2 +O(a2

1, a
2
2) with f×3 and f×4 given

in terms of the remaining unknowns X1×
32 , X1×

33 , and X1×
43

(and remaining unknowns from the SO level) by

f×3
µ2M3

=
5

2
+
(9

2
+

3

8
X1×

32

)
ν − ν2 (3.23a)

+
3

8

[
4− 15ν − 16ν2 + 4ν3 + 2ν(1− 2ν)X1b

32

+ 4ν2X1t
32 −

ν2

2
X1×

32 + νX1×
33

]
ε+O(ε2),

and

f×4
µ2M4

= 2 +
187

4
ν − 21ν2 +

13

8
ν3 (3.23b)

+
ν

4
(19 + 2ν)X1b

32 +
ν

2
(10− ν)X1t

32

− 3

4
ν(4 + ν)X1×

32 +
3

2
νX1×

33 +
16

15
νX1×

43 +O(ε).

We now have a complete expression of the mass-shell
constraint (3.8) through N3LO in the PN expansion and
through bilinear order in spins, which could be solved for
the corresponding canonical Hamiltonian. It depends on
the remaining unknown (dimensionless, numerical) co-
efficients X1A

32 , X1A
33 , and X1A

43 with A = {b, t,×}, from
(2.37). Recall, for X1A

kn , k is the PM order, and n is the
relative PN order.

C. The radial action

For a bound orbit (γ2 − 1 = γ2v2 = ε < 0), the
same canonical mass-shell constraint (3.8) governs the
motion. The (gauge-dependent) radial momentum func-
tion pr(r, E, L;mi, ai) is still given by

pr = ±
√
p2
∞ −

L2

r2
+
∑
k

Gk

rk

[
fk +

Lai

r2
f i
k +

aiaj

r2
f ij
k

]
,

(3.24)
but now p2

∞ = (µ/Γ)2ε is negative. As a result, p2
r(r)

has two positive real roots r = r± between which p2
r

is positive, with r+ being the largest real root, and the
trajectory oscillates between these radial turning points
r±. The canonical radial action function Ir(E,L,mi, ai)
is defined as the integral of prdr over one period of the
radial motion,

2πIr :=

∮
dr pr =

∫ r+

r−

dr
(

+
√
p2
r

)
+

∫ r−

r+

dr
(
−
√
p2
r

)
= 2

∫ r+

r−

dr
√
p2
r, (3.25)

and it is a gauge-invariant function, from which one can
derive several other gauge-invariant functions physically
characterizing bound orbits [90, 91]. Like the “unbound
radial action” W (the L-antiderivative of the scattering-
angle χ) (3.12), the bound radial action Ir(E,L,mi, ai)
encodes the complete gauge-invariant information con-
tent of the canonical Hamiltonian (governing both un-
bound and bound orbits) (at least up to the N3LO PN
level) — though in a subtly different way, concerning or-
ders in the PM-PN expansion of Ir versus that of W .

It was shown in [91] that the periastron-advance angle,
Φ = 2π + ∆Φ = −2π∂Ir/∂L, the angle swept out by a
bound orbit during one period of the radial motion, is
related to the scattering angle, π + χ = −2π∂W/∂L, by

Φ(E,L,mi, ai) = 2π + χ(E,L,mi, ai) (3.26)

+ χ(E,−L,mi,−ai),

where the right-hand side requires an analytic continu-
ation from E > M (unbound, for which χ is real) to
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E < M (bound, for which χ is complex), as detailed be-
low. It follows from a straightforward extension of their
argument that a particular L-antiderivative of this rela-
tion holds, giving the bound radial action Ir in terms of
the unbound radial action W ,

Ir(E,L,mi, ai) = W (E,L,mi, ai) (3.27)

−W (E,−L,mi,−ai),

as can also be verified by explicit calculation.
Consider the unbound radial action in the form (3.13),

after replacing χ̃1 using (3.14) and (3.18a),

W = −L
2
−GMµ

1 + 2ε√
ε

lnL

π
+

1

2π

∑
k≥2

Gk

pk∞L
k−1

χ̃k
k − 1

.

(3.28)
In continuing this from the unbound case, ε > 0, p2

∞ > 0,
to the bound case, ε < 0, p2

∞ < 0, the second term with
1/
√
ε becomes imaginary, as do all of the terms in the

sum with k odd, having odd powers of p∞ = (µ/Γ)
√
ε.

Note, from (3.14) and (3.10), and from the fact that all of
the f ’s have regular Taylor series in ε about ε = 0, that
all of the χ̃k are still real for the bound case, and that the
χ̃k are unchanged by (L, ai) → (−L,−ai). Thus, plug-
ging the continuation of (3.28), with

√
ε = i

√
−ε, into

(3.27), we see that all of the odd-k terms are canceled;
after using lnL− ln(−L) = ln(−1) = −iπ (choosing the
branch which yields the physically sensible result), we are
left with

Ir = −L+GMµ
1 + 2ε√
−ε

+
1

π

∑
l≥1

G2l

p2l
∞L

2l−1

χ̃2l

2l − 1
, (3.29)

which is real for bound orbits. Only the χ̃k with k even
(k = 2l) remain, and those with k odd are gone (ex-
cept for χ̃1). This may make it seem as though we have
lost information in passing from W to Ir, but in fact we
have not, as long as we are sure to keep all terms in the
consistent PN expansion of Ir (at least up to the N3LO
PN level); this is due to relationships between the χ̃k as
discussed below (3.16).

As we will make clearer below, the complete PN expan-
sion of Ir up to N3LO is contained in its PM expansion
up to O(G6) for the nonspinning terms and up to O(G8)
for the spin-orbit and quadratic-in-spin terms. This can
be computed directly from (3.29), recalling that the χ̃k
are the entries of Table 1 of [125] with fk → f̃k, as in

(3.16) above, with the f̃k given by (3.10). We need again

the contributions from fk, f i
k, f ij

k up to k = 4, contained

in the f̃k = fk + f i
k−2Lai/G

2 + f ij
k−2aiaj/G

2 up to k = 6.

To reach the all the G8 quadratic-in-spin terms, we must
take the sum in (3.29) up to l = 6, involving parts of χ̃12.

This process yields the radial action Ir through the
N3LO PN level as an expansion in the inverse canonical
orbital angular momentum L ≡ Lcan. To express the
results of that process, it will be advantageous to use
the covariant orbital angular momentum Lcov, which we

define for the bound-orbit case by

Lcov := L−∆L, (3.30)

with ∆L(E, ai) still given by the last two lines of (2.38)
or by (3.17), in which we note that everything is still
real for bound orbits [unlike in the second line of (2.38),
where we would need to continue to imaginary b to keep
Lcov = p∞b real].

In fact, the expression of the radial action (mostly) in
terms of Lcov is simply related to the expression of the
scattering angle in terms of Lcov, as follows. Taking the
form (2.39) for the scattering angle and eliminating b in
favor of Lcov = (µ/Γ)

√
εb,

χ = Γ
∑
k≥1

(GM
b
√
ε

)k[
Xk +

ai

b
√
ε
Xk

i +
aiaj

b2ε
Xk

ij

]
(3.31)

= Γ
∑
k≥1

(GMµ

ΓLcov

)k[
Xk +

µai

ΓLcov
Xk

i +
µ2aiaj

Γ2L2
cov

Xk
ij

]
,

and then using (3.12a), being sure to match up the con-
stant of integration with (3.28), we find

W = −L
2
−GMµX1

lnLcov

2π
+

1

2π

∑
k≥2

(GMµ)k

(ΓLcov)k−1

Xk
k − 1

+
1

2π

∑
k≥1

(GMµ

ΓLcov

)k[
µai

Xk
i

k
+
µ2aiaj

ΓLcov

Xk
ij

k + 1

]
.

(3.32)

Then applying (3.27), as we did between (3.28) and
(3.29), noting Lcov → −Lcov under (L, ai) → (−L,−ai),
we are left with

Ir = −L+GMµ
1 + 2ε√
−ε

+
1

π

∑
l≥1

(GMµ)2l

(ΓLcov)2l−1

[
X2l

2l − 1

+
µai

ΓLcov

X2l
i

2l
+

µ2aiaj

(ΓLcov)2

X2l
ij

2l + 1

]
, (3.33)

where these Xk
···(ε, ν) are precisely the same coefficients

from the scattering angle in (3.31). These coefficients up
through k = 2l = 4 are those we gave or parametrized
above in (2.36) and (2.37), with (2.41). Recollecting
them here, while using the constraints (3.20) and (3.22)
obtained in matching between the scattering angle and
the canonical mass shell, we have the G2 coefficients
which are independent of ν and are known exactly,

X2 =
3π

4
(4 + 5ε), (3.34a)

X2
iai = −π

2
γ(2 + 5ε)(4ab + 3at),

X2
× =

3π

2
(2 + 19ε+ 20ε2),

and the G4 coefficients which are linear in ν,

X4 =
105π

64
(16 + 48ε+ 33ε2) (3.34b)



15

+ π

[
−15

2
+

(
123

128
π2 − 557

8

)
ε+O(ε2)

]
ν,

X4
iai = −21π

16
γ(8 + 36ε+ 33ε2)(8ab + 5at)

+ πγ

[
21

2
ab + 9at +

3

4

(
68ab + 49at + 2X1i

32ai

)
ε

+ X1i
43aiε

2 +O(ε3)

]
ν,

X4
× =

105π

16
(24 + 212ε+ 447ε2 + 264ε3)

+ π

[
15

2
+

45

32

(
−22 + X1×

32

)
ε+ X1×

43 ε
2 +O(ε3)

]
ν.

As mentioned above, for the complete expression of the
radial action at the N3LO PN level, we need the low
orders in the PN expansions of X6

··· and (for the spin
terms) X8

···. We have obtained these from the procedure
to compute the radial action described in the paragraph
containing (3.29) and the following paragraph, in which
the inputs are the f ···k up to k = 4 found in the previ-
ous subsection, finally changing variables using (3.30) to
bring the result into the form (3.31). At G6, we find the
nonspinning

X6

5π
=

231

4
+
(123

128
π2 − 125

2

)
ν +

21

8
ν2 +O(ε), (3.34c)

spin-orbit,

X6
iai

15π
=
(
−99 +

127

4
ν − 5

4
ν2
)
ab (3.34d)

+
(
−231

4
+

167

8
ν − 9

8
ν2
)
at +

1

4
νX1i

32ai

+

[(
−693 +

4989

16
ν − 123

32
π2ν − 225

16
ν2
)
ab

+
(
−1617

4
+

733

4
ν − 123

64
π2ν − 182

16
ν2
)
at

+ ν
(7− 3ν

8
X1i

32 −
5

4
X1i

33 + X1i
43

)
ai

]
ε+O(ε2),

and bilinear-in-spin,

X6
×

35π
=

495

4
− 123ν

16
− 9

8
ν2 +

3

32
νX1×

32 (3.34e)

+

[
10197

8
− 4835

32
ν +

123

128
π2ν − 399

32
ν2

− 3

8
ν(1 + 2ν)X1b

32 −
3

4
ν(1− ν)X1t

32

+
9

64
ν(2− ν)X1×

32 −
15

32
νX1×

33 +
2

5
νX1×

43

]
ε+O(ε2).

At G8, spin-orbit,

X8
iai

35π
=
(
−715 +

23947

48
ν − 41

8
π2ν − 97

2
ν2 +

13

16
ν3
)
ab

+
(
−6435

16
+

6883

24
ν − 41

16
π2ν − 277

8
ν2 +

3

4
ν3
)
at

+ ν
(2− ν

2
X1i

32 − X1i
33 +

2

3
X1i

43

)
ai +O(ε),

(3.34f)

and bilinear-in-spin

X8
×

315π
=

5005

16
− 6599

96
ν +

41

128
π2ν − 199

32
ν2 +

5

16
ν3

− 1

8
ν(1 + 2ν)X1b

32 −
1

4
ν(1− ν)X1t

32

+
3

64
ν(2− ν)X1×

32 −
3

32
νX1×

33 +
1

15
νX1×

43 +O(ε).

(3.34g)

Note that the X6
··· coefficients in (3.34d) and (3.34e)

are exactly quadratic in ν, in spite of the fact that the
f ’s from which they are constructed, in (3.21) and (3.23),
are cubic in ν. Less surprisingly, the X6

··· are cubic in
ν, and more surprisingly the X4

··· are linear in ν and the
X2
··· are independent of ν. This is all in fact a simple

consequence of (i) the link (3.33) between the scattering-
angle coefficients Xk

··· and the radial-action coefficients,
and (ii) the (straight-forward) extension of the predicted
mass-ratio dependence (2.41) to kPM order: Xk

··· is a
polynomial of degree bk−1

2 c in ν. This is the spinning
analog of the “hidden simplicity” of the mass dependence
of (the local-in-time part of) the radial action (which is
the complete radial action through the N3LO PN level)
emphasized in Ref. [24]; here in the spin terms, this is
crucially dependent on expressing Ir in (3.33) in terms
the covariant Lcov rather than the canonical L.

Finally, we can make the PN order counting explicit
by restoring factors of 1/c. Through N3LO, (3.33) reads

Ir =

[
−L+GMµ

1 + 2ε

c
√
−ε

+
1

c2
(GMµ)2

πΓLcov
X2 (3.35)

+
1

c4
(GMµ)4

3π(ΓLcov)3
X4 +

1

c6
(GMµ)6

5π(ΓLcov)5
X6 +O(

1

c8
)

]

+
µ

c
ai

[
(GMµ)2

2π(ΓLcov)2
X2

i +
1

c2
(GMµ)4

4π(ΓLcov)4
X4

i

+
1

c4
(GMµ)6

6π(ΓLcov)6
X6

i +
1

c6
(GMµ)8

8π(ΓLcov)8
X8

i +O(
1

c8
)

]

+ µ2aiaj

[
(GMµ)2

3π(ΓLcov)3
X2

ij +
1

c2
(GMµ)4

5π(ΓLcov)5
X4

ij

+
1

c4
(GMµ)6

7π(ΓLcov)7
X6

ij +
1

c6
(GMµ)8

9π(ΓLcov)9
X8

ij +O(
1

c8
)

]
,

with all the coefficients, to the orders in ε = γ2 − 1 =
O(c−2) contributing here at N3LO, relativeO(c−6), given
explicitly by (3.34). These depend on the remaining un-
knowns X1A

kn from the parametrization of the scattering
angle, at kPM order and relative nPN order.

In all the above manipulations, it was consistent to
keep the nonspinning, spin-orbit, and bilinear-in-spin
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terms all through the same relative PN orders, here rela-
tive 3PN order, N3LO. However, in matching to self-force
results, due to certain changes of variables discussed be-
low, the treatment of the N3LO spin-orbit and bilinear-
in-spin terms will require the inclusion of the 4PN non-
spinning terms. We thus need to add to (3.35) the 4PN
nonspinning part of the radial action for bound orbits,
which includes contributions from the nonlocal-in-time
tail integrals. We present in Appendix A the additional
terms at 4PN order, which have been computed from
(3.25) applied to the 4PN EOB Hamiltonian derived in
[15], valid in an expansion in eccentricity (about the cir-
cular orbit limit) to sixth order. Replacing the first two
lines of (3.35) with (A1) yields the final form of the radial-
action function which we will use to compute the gauge-
invariant quantities to be compared with self-force calcu-
lations.

IV. THIRD-SUBLEADING POST-NEWTONIAN
SPIN-ORBIT AND SPIN1-SPIN2 COUPLINGS

The remaining unknowns in the parametrization of the
scattering-angle function (2.37) can be fixed with avail-
able self-force results. The key feature here is the ex-
istence of a Hamiltonian/radial action allowing us to
connect the scattering-angle to the redshift and spin-
precession invariants that, in the small-mass-ratio limit,
can be matched to expressions independently calculated
in GSF literature. A vital step in this calculation is the
first law of BBH mechanics, which we extend to aligned-
spins and eccentric orbits.

A. The first law of BBH mechanics

The first law of BBH mechanics [58] was first de-
rived for nonspinning point particles in circular orbits in
Ref. [58], then generalized to spinning particles on circu-
lar orbits in Ref. [103], to nonspinning particles in eccen-
tric orbits in Refs. [104, 126], and to precessing eccentric
orbits of a point-mass in the small mass-ratio approx-
imation [127]. In the following, we briefly review the
arguments leading to these incarnations of the first law
for binaries, making explicit how they apply to generic
mass-ratio aligned-spin systems on eccentric orbits.

Let us follow Ref. [103] and start out with an action S
for the binary,

S = Sgrav + S1 + S2 , (4.1)

where the compact objects are approximated by effective
point-particles moving along worldlines xµi (τi),

Si =

∫
dτi

[
−mi +

1

2
SiµνΛic

µDΛcνi
dτ

+ λµi Siµν ẋ
ν
i + . . .

]
,

(4.2)
and the gravitational action Sgrav is given by the
Einstein-Hilbert one with appropriate gauge-fixing and

boundary terms. Here Λcµi are frame transformations
between the coordinate frame and a body-fixed frame
(labeled by c = 0, 1, 2, 3) that is Lorentz-orthonormal
(Λic

µΛidµ = ηcd). We take τi to be the (full-metric)
proper times from now on. The equations of motion
are obtained by varying the action with respect to the
dynamical variables XA = {xi, Sµν ,Λ

cµ
i , λµi , gµν}, lead-

ing to Eqs. (2.1)–(2.3), see, e.g., Refs. [109, 120]. The
dots in Eq. (4.2) represent nonminimal (curvature) cou-
plings to the worldline that may carry undetermined coef-
ficients. These terms also include couplings of quadratic
and higher orders in spin related to spin-induced multi-
pole moments of the body [109].

Let us write the action as an integral of a Lagrangian
L over coordinate time t as

S =

∫
dt L . (4.3)

We can vary the Lagrangian L not only with respect to
the dynamical variables XA, but also vary certain con-
stants appearing in the action, e.g., the masses CB =
{m1,m2}. Furthermore, taking the dynamical variables
XA on-shell (fulfilling their equations of motion) after
variation, we arrive at (using summation convention for
A, B)

δL =
∂L

∂CB
δCB +

δL

δXA︸ ︷︷ ︸
=0 (on-shell)

δXA + (td) , (4.4)

with a total time derivative (td). Now, if one performs
a transformation of the dynamical variables XA → X ′A′ ,
which may depend on the CB , then on-shell it holds

δL =
∂L

∂CB
δCB +

[
δL

δXA︸ ︷︷ ︸
0

δXA

δX ′A′

∂X ′A′

∂CB
+ (td)

]
δCB

+
δL

δXA︸ ︷︷ ︸
0

δXA

δX ′A′
δX ′A′ + (td) . (4.5)

Also allowing for changes of the Lagrangian of the form
L = L′ + (td), we arrive at〈(

∂L′

∂CB

)
X′

A′

〉
=

〈(
∂L

∂CB

)
XA

〉
(on-shell) , (4.6)

where the subscripts indicate quantities that are kept
fixed during differentiation and with 〈. . . 〉 an appropri-
ate on-shell averaging that removes the total time deriva-
tives.

For generic bound orbits, one can average the conser-
vative motion in Eq. (4.6) over an infinite time in order
to remove total time derivatives, which can be traded for
a phase-space average in regions where the motion is er-
godic; see, e.g., Refs. [127, 128]. For the aligned-spin case
where the motion is confined to a plane, all oscillatory
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behavior can be removed by an average over a single or-
bit [104] (defined as an oscillation cycle of the radial dis-
tance r); this is the averaging used in the present paper.
Further specializing to circular orbits, the radial distance
is constant and hence the average becomes trivial [103].
Finally, note that another benefit of the averaging in
Eq. (4.6) is that it helps to make expressions manifestly
gauge-invariant [127], which is important when matching
PN Hamiltonians to (eccentric-orbit) self-force results.

It is straightforward to generalize the discussion from
Lagrangians L′ to Hamiltonians H ′. Hamilton’s dynami-
cal equations for some pairs of canonical variables (qc, pc)
are equivalently encoded by Hamilton’s action principle,

0 = δS = δ

∫
dt

[∑
c

pc
dqc

dt
−H ′︸ ︷︷ ︸

L′

]
. (4.7)

Noting that the dynamical variables are now X ′A′ =
{qc, pc}, and that the kinematic pq̇-terms in L′ are in-
dependent of the CB , we see that either Lagrangian in
Eq. (4.6) can be replaced by minus a Hamiltonian (i.e.,
it can be applied also to canonical transformations be-
tween two Hamiltonians). The rather general on-shell
relation (4.6) is interesting on its own, aside from facili-
tating the derivation of the first law of binary dynamics
as demonstrated below.

We are now in a position to elaborate on the redshift
variables zi [58, 103, 104],

zi ≡
〈

dτi
dt

〉
= −

〈
∂L

∂mi

〉
, (4.8)

where the first equality is the definition of zi adopted by
us and the second equality is a consequence of the defi-
nition of L (4.3) together with the original point-particle
action (4.2),

∫
dt L ∼ −mi

∫
dtdτi/dt. We note that this

relation holds to all orders in spin if the coefficients in
the nonminimal couplings (the dots) in Eq. (4.2) are nor-
malized such that no further explicit dependence on the
masses mi arises [68]. Now, several nontrivial transfor-
mations of the original action (4.1) are performed to ar-
rive at a PN Hamiltonian (see, e.g., Refs. [39, 103, 126]):
a transformation to SO(3)-canonical (Newton-Wigner)
variables for the spin degrees of freedom, integrating
out the orbital/near-zone metric or tetrad field (calculat-
ing the “Fokker action”), reduction of higher-order time
derivatives via further variable transformations, a Leg-
endre transform to the Hamiltonian H, specialization to
the COM system, and eventually reducing nonlocal-in-
time tail contributions to local ones. However, all of
these transformations fall into the class of transforma-
tions (XA, L) → (X ′A′ , L

′) discussed above, so we may
apply Eq. (4.6) (with L′ → −H) to Eq. (4.8) and con-
clude that the redshift variables zi can be obtained from
a PN Hamiltonian H via

zi =

〈
∂H

∂mi

〉
. (4.9)

Beside the redshift, let us introduce the (averaged)
spin precession frequency Ωi as another important ob-
servable [103],

Ωi ≡
〈∣∣∣~Ωinst

i

∣∣∣〉 . (4.10)

The (instantaneous, directed) precession frequency ~Ωinst
Si

can be read off from the equations of motion for the
SO(3)-canonical spin vectors Sii generated by the Hamil-
tonian H,

d~Si

dt
= ~Ωinst

i × ~Si , ~Ωinst
i ≡ ∂H

∂~Si

. (4.11)

Indeed, this describes a precession of the spin vector; it is

straightforward to see that the spin length Si ≡ (~Si·~Si)
1/2

is constant,

d(~Si · ~Si)

dt
= 2~Si · ~Ωinst

i × ~Si = 0 . (4.12)

From now on, as in previous sections, we simplify
the discussion to nonprecessing (aligned or anti-aligned)

spins, so that ~Ωinst
i ‖ ~Si and d~Si/dt = 0. That is, the

spin degrees of freedom become nondynamical and can
be dropped from the set of dynamical variables.5 We
can now include the spin lengths into our set of con-
stants, CB = {mi, Si}. Furthermore, the spin-direction

component of the defining relation for ~Ωinst
i (4.11) reads

|~Ωinst
i | = ∂H/∂Si. Hence Eq. (4.10) becomes

ΩSi =

〈
∂H

∂Si

〉
(nonprecessing). (4.13)

We have now arrived at the important Eqs. (4.9)
and (4.13) for the (gauge-invariant) observables zi and
Ωi, that could be used to relate a PN Hamiltonian H
to self-force results [67, 129]. But here, for the purpose
of matching to self force, we perform a canonical trans-
formation to different phase-space variables that simplify
explicit calculations and connects to the radial action in-
troduced above.

As a first step in that direction, we choose the (non-
precessing) motion to be in the equatorial plane θ = π/2,
removing the polar angle θ and its canonical conjugate
momentum pθ from the phase space; the Hamiltonian
is now of the form discussed in Sec. III A. Furthermore,
since we consider a system where the Hamilton-Jacobi
equation is separable, one can construct a special canon-
ical transformation (for bound orbits) where the constant
action variables

Ir =
1

2π

∮
dr pr, Iφ =

1

2π

∮
dφ pφ = L , (4.14)

5 More precisely, their contribution to the kinematic terms in
Hamilton’s principle (4.7) (have to) vanish or turn into total
time derivatives.
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are the new momenta [130], with the COM orbital angu-
lar momentum of the binary pφ ≡ L = const conjugate to
the azimuthal angle φ. The advantage of these variables
for our purpose is that the averaging 〈. . . 〉 over one radial
period becomes trivial due to the integral over one radial
period

∮
in their definition. The canonical conjugates to

Ir, Iφ are the so-called angle variables qr, qφ and evolve
linear in time, i.e., their angular frequencies Ωr = q̇r,
Ωφ = q̇φ are constant [130]; overall Hamilton’s equations
of motion for the new, canonically transformed, Hamil-
tonian H ′(Ir, Iφ = L;CB) read

Ωr =
∂H ′

∂Ir
= const , Ωφ =

∂H ′

∂L
= const , (4.15)

İr = −∂H
′

∂qr
= 0 , L̇ = −∂H

′

∂qφ
= 0 . (4.16)

Recalling that CB = {mi, Si}, we can apply Eq. (4.6)
(with both Lagrangians replaced by Hamiltonians) for
the canonical transformation to action-angle variables as
well. Equations (4.9) and (4.13) then turn into

zi =
∂H ′

∂mi
, Ωi =

∂H ′

∂Si
, (4.17)

where the averaging over one radial period is inconse-
quential and can be dropped. Collecting Eqs. (4.15)
and (4.17), we see that the differential of the COM energy
E ≡ H ′ can be written as

dE = ΩrdIr + ΩφdL+
∑

i

(zidmi + ΩidSi). (4.18)

In analogy to the first law of thermodynamics for the dif-
ferential of the internal energy, this can be called the first
law of conservative spinning binary dynamics for non-
precessing bound orbits (covering eccentric orbits and
generic mass ratios). It also resembles the first law of
BH thermodynamics, which provides a relation for the
differential of the Arnowitt-Deser-Misner (ADM) energy
dmi of an isolated BH and can be generalized to other
compact objects as well [131]. Recall that Eq. (4.18) is
valid to all orders in spin, if the coefficients of possible
nonminimal coupling terms denoted by dots in Eq. (4.2)
are normalized such that no additional dependence on
mi arises. It would be interesting to consider these coef-
ficients as part of the constants CB in future work.

Since the fundamental function introduced in the last
section that generates observables for bound orbits is
the radial action Ir(E,L;mi, Si), we consider the first
law (4.18) in the form

2π dIr = TrdE − ΦdL−
∑

i

(Tidmi + ΦidSi) , (4.19)

where we have introduced

Tr =
2π

Ωr
=

∮
dt , Φ = ΩφTr =

∮
dφ , (4.20)

Ti = ziTr =

∮
dτi , Φi = ΩiTr . (4.21)

As a consequence of the first law, we hence obtain

Tr
2π

=

(
∂Ir
∂E

)
L,mi,Si

, (4.22a)

Φ

2π
= −

(
∂Ir
∂L

)
E,mi,Si

, (4.22b)

Ti

2π
= −

(
∂Ir
∂mi

)
E,L,mj,Si

, (4.22c)

Φi

2π
= −

(
∂Ir
∂Si

)
E,L,mi,Sj

. (4.22d)

Now the redshift variables can be calculated, from a given
radial action Ir, as the ratio of proper and coordinate
times,

zi =
Ti

Tr
, (4.23)

which manifestly agrees with the (inverse of the)
Detweiler-Barack-Sago redshift invariant calculated in
GSF literature [59, 132]. The spin-precession frequency
Ωi is given by Ωi = Φi/Tr from which we obtain the
spin-precession invariant [69]

ψi =
Ωi

Ωφ
=

Φi

Φ
. (4.24)

B. Comparison with self-force results

Starting from the radial action (3.33), we calculate the
redshift z1 and spin-precession invariants ψ1 of the small
body using Eqs. (4.23) and (4.24). To compare with re-
sults available in the literature, we express them in terms
of the gauge-invariant variables 6

x = (GMΩφ)2/3, ι =
3x

Φ/(2π)− 1
. (4.25)

which are linked to (ε, L) via Eqs. (4.15) and (4.22). The
expressions we obtain for z1(x, ι) and ψ(x, ι) agree up to
N2LO with those in Eq. (50) of Ref. [67] and Eq. (83) of
Ref. [129]. The full expressions up to N3LO are lengthy,
which is why we provide them as a Mathematica file in
the Supplemental Material [133].

Next, we expand U1 ≡ z−1
1 and ψ1 to first order in the

mass ratio q, first order in the massive body’s spin a2,
and zeroth order in the spin of the smaller companion a1,

U1 = U
(0)
1a0 + â U

(0)
1a + q

(
δUGSF

1a0 + â δUGSF
1a

)
+O(q2, â2) ,

(4.26a)

6 Note that the denominator for ι in Eq. (4.25) is of 1PN order,
which effectively scales down the PN ordering in such a way that
manifestly nonlocal-in-time (4PN nonspinning) terms appear in
the N3LO correction to the spin-precession invariant. For this
reason, we have included the 4PN nonspinning tail terms in the
radial action as discussed at the end of the previous section.
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ψ1 = ψ
(0)
1a0 + â ψ

(0)
1a + q

(
δψGSF

1a0 + â δψGSF
1a

)
+O(q2, â2) ,

(4.26b)

with â = a2/m2. In performing that expansion, we make
use of the gauge-independent variables y and λ, which
are related to x and ι via

y = (Gm2Ωφ)2/3 =
x

(1 + q)2/3
, (4.27a)

λ =
3y

Φ/(2π)− 1
=

ι

(1 + q)2/3
. (4.27b)

To compare the 1SF corrections δUGSF
1··· and δψGSF

1···
with those derived in the literature, we express the red-
shift and spin-precession invariants in terms of the Kerr-
geodesic variables (up, e), where e is the eccentricity and
up is the inverse of the dimensionless semilatus rectum
(see Appendix B for details.) The terms needed to solve
for the N3LO SO unknowns are δUGSF

1a and δψGSF
1 a0 , for

which we obtain

δUGSF
1a =

(
3− 7e2

2
− e4

8

)
u5/2
p +

(
18− 4e2 − 117e4

4

)
u7/2
p +

[
251

4
+

1

2
X1b

32 +
287e2

2
− e4

(
11099

32
+

15

16
X1b

32

)]
u9/2
p

+

[
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− 41π2

8
− 11

4
X1b

32 −
5

2
X1b

33 + 2X1b
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X1b
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33 − 5X1b
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p , (4.28a)
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(4.28b)

These results can be directly compared with the GSF
results in Eq. (4.1) of Ref. [65], Eq. (23) of Ref. [134]
and Eq. (20) of Ref. [67] for the redshift, and Eq. (3.33)
of Ref. [72] for the precession frequency. At N2LO,
as expected, our expressions depend on the scattering-
angle coefficients. Upon matching these with the above-
mentioned equations in the literature, we get the follow-
ing four constraints (at each order in eccentricity):

u9/2
p

[
1

2
X1b

32 −
97

4
+ e4

(
1455

32
− 15

16
X1b

32

)]
= 0 , (4.29a)

u3
p

[
97

8
− 1

4
X1t

32 + e2

(
291

16
− 3

8
X1t

32

)]
= 0 , (4.29b)

which can be consistently solved for the two unknowns

X1b
32 = X1t

32 =
97

2
. (4.30)

Note that the special constraint (2.34), due to symmetry
under interchanging the two bodies’ labels 1↔ 2, is thus
satisfied. Similarly, at N3LO order, after substituting in
the N2LO coefficients, it holds that

u11/2
p

[
− 26881

72
+

241π2

96
− 5

2
X1b

33 +
4

3
X1b

43 (4.31a)

+ e2

(
− 1846

3
+

241π2
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2
X1b

33 + 2X1b
43

)
+ e4

(
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+
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16
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33 − 5X1b
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)]
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u4
p

[
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− 41π2
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+

5

4
X1t

33 −
2

3
X1t

43 (4.31b)

+ e2

(
17647

32
− 123π2

16
+

25

8
X1t

33 − 2X1t
43

)]
= 0 .

These five equations can be consistently solved for the
remaining four unknowns in the N3LO SO scattering an-
gle,

X1b
33 = X1t

33 =
177

4
, (4.32)

X1b
43 =

17423

48
− 241π2

128
, X1t

43 =
2759

8
− 123

32
π2.

Again, the special constraint (2.34) is satisfied by X1b
33

and X1t
33. Considering the S1S2 dynamics, the relevant

constraints can be obtained from the linear-in-spin cor-
rection to the spin-precession invariant, which in terms
of the remaining unknown coefficients X1×

ij reads
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+
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At N2LO, this can be matched to Eqs. (52) and (56) of
Ref. [129] to get the two constraints (at each order in e)

u7/2
p

[
75

8
+

3

16
X1×

32 + e2

(
225

16
+

9

32
X1×

32

)]
= 0 , (4.34)

which can be solved for

X1×
32 = −50 . (4.35)

Similarly, at N3LO it holds that

u9/2
p

[
− 6299

16
+

123π2

32
+

15

16
X1×

33 −
8

15
X1×

43 + (4.36)

e2

(
− 41943

32
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369π2

32
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32
X1×

33 −
8

5
X1×

43

)]
= 0 .

Each order in eccentricity is solved for the remaining S1S2

unknown coefficients

X1×
33 = −1383

5
, X1×

43 = −9795

8
+

1845π2

256
. (4.37)

Combining the solutions obtained in this section with
the results of Sec. II yields the scattering angle contain-
ing the complete local-in-time conservative SO and S1S2

dynamics through the third-subleading PN order

χ
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(
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√
ε

)
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ε
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+
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+
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8ε− 50ε2 − 1383

5
ε3 +O(ε4)
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Importantly, we have checked that all the above results
can be reproduced by starting from a Hamiltonian ansatz
(rather than a radial action), constraining it via the
mass-ratio dependence of the scattering angle (calcu-
lated via (3.11)), and obtaining the redshift and spin-
precession invariants through Eqs. (4.9) and (4.13).

V. EFFECTIVE-ONE-BODY HAMILTONIAN
AND COMPARISON WITH NUMERICAL

RELATIVITY

In this section, we quantify the improvement in accu-
racy from the new N3LO SO and S1S2 corrections using
numerical relativity (NR) simulations as means of com-
parison. We do this using an EOB Hamiltonian, cal-
culated using the scattering angle obtained above, since
the resummation of PN results it grants is expected to
improve the agreement with NR in the high-frequency
regime.

The EOB Hamiltonian is calculated from an effective
Hamiltonian Heff via the energy map

HEOB = M

√
1 + 2ν

(
Heff

µ
− 1

)
, (5.1)

where we use for the effective Hamiltonian an aligned-
spin version of the Hamiltonian for a nonspinning
test mass in a Kerr background (denoted SEOBTM in
Ref. [54]) with SO and S1S2 PN corrections. The effec-
tive Hamiltonian is given by

Heff =

[
A

(
µ2 + p2 +Bprp

2
r +BL

L2a2

r2
+ µ2Q

)]1/2

+
GMr

Λ
L (gSS + gS∗S

∗) , (5.2)

where Λ = (r2 + a2)2 −∆a2 with ∆ = r2 − 2GMr + a2.
The Kerr spin a is mapped to the binary’s spins via a =
a1 + a2, and the potentials are taken to be

A =
∆r2

Λ

(
A0 +ASS

)
, (5.3a)

Bpr =

(
1− 2GM

r
+
a2

r2

)(
A0D0 +BSS

pr

)
− 1, (5.3b)

BL = −r
2 + 2GMr

Λ
, (5.3c)

Q = Q0 +QSS, (5.3d)

i.e., we factorize the PN corrections to the Kerr poten-
tials. The zero-spin corrections A0(r), D0(r) and Q0(r)
are given by Eq. (28) of Ref. [54] and are based on the
4PN nonspinning Hamiltonian derived in Ref. [15]. The
SO corrections are encoded in the gyro-gravitomagnetic
factors gS , and gS∗ , while the S1S2 corrections are added
through ASS, BSS

pr , and QSS.

For those PN corrections, we choose a gauge such that
gS , and gS∗ are independent of L [46, 47, 135]; we write
an ansatz such that, up to N3LO,

gS(r, pr) = 2

3∑
i=0

i∑
j=0

αij
p

2(i−j)
r

c2irj
,

gS∗(r, pr) =
3

2

3∑
i=0

i∑
j=0

α∗ij
p

2(i−j)
r

c2irj
, (5.4)

for some unknown coefficients αij and α∗ij . For the S1S2

corrections, ASS and BSS
pr start at NLO and are indepen-

dent of pr, while QSS starts at NNLO and depends on p4
r

or higher powers of pr, i.e., we use an ansatz of the form

ASS = S1S2

(
αA4
c6r4

+
αA5
c8r5

+
αA6
c10r6

)
,

BSS = S1S2

(
αB3
c4r3

+
αB4
c6r4

+
αB5
c8r5

)
,

QSS = S1S2

(
αQ34

p4
r

c6r3
+ αQ44

p4
r

c8r4
+ αQ36

p6
r

c8r3

)
. (5.5)

To determine those unknowns, we calculate the scatter-
ing angle from such an ansatz using Eq. (3.11) (which
entails inverting the EOB Hamiltonian for pr in a PN
expansion, differentiating with respect to L, and inte-
grating with respect to r). We then match the result of
that calculation to the scattering angle calculated in the
previous section and solve for the unknown coefficients in
the Hamiltonian ansatz. This uniquely determines all the
coefficients of the spinning part of the Hamiltonian since
our choice for the ansatz fixes the gauge dependence of
the Hamiltonian. (See Sec. III A for a discussion of the
gauge freedom in the Hamiltonian.)

We obtain the gyro-gravitomagnetic factors
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and the S1S2 corrections

ASS =
S1S2

G2M2µ2

{
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QSS =
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Importantly, the factors gS and gS∗ , obtained here for the
aligned-spin case, also fix the generic-spin case by simply
writing the odd-in-spin part of the effective Hamiltonian
as

Hodd
eff =

GMr

Λ
L · (gSS + gS∗S

∗) , (5.8)

with gS and gS∗ unmodified since they are independent of
the spins (see Ref. [102] for more details.) However, the
spin1-spin2 corrections in Eq. (5.7) are only for aligned
spins since the generic-spins case has additional contribu-
tions proportional to (n·S1)(n·S2), where n = r/r. Such
terms vanish for aligned spins and cannot be fixed from
aligned-spin self-force results or be removed by canonical
transformations.

For comparison with NR, a particularly good quantity
to consider is the binding energy, since it encapsulates the
conservative dynamics of analytical models, and can be
obtained from accurate NR simulations [136, 137]. The
NR data for binding energy that we use were extracted
in Ref. [138] from the Simulating eXtreme Spacetimes

(SXS) catalog [139]. The binding energy calculated from
NR simulations is defined by

ENR
b = EADM − Erad −Mc2, (5.9)

where Erad is the radiated energy, and EADM is the ADM
energy at the beginning of the simulation. We then cal-
culate the binding energy from the EOB conservative
Hamiltonian using Eb = HEOB −Mc2 for exact circu-
lar orbits at different orbital separations, i.e., we neglect
the radiation-reaction due to the emitted GWs. As a re-
sult of this assumption, the circular-orbit binding energy
we calculate is not expected to agree with NR in the last
few orbits.

To obtain the binding energy from a Hamiltonian in
an analytical PN expansion, we set pr = 0 for circular
orbits and perturbatively solve ṗr = 0 = −∂H/∂r for
the angular momentum L. The orbital frequency ω is
given by ω = ∂H/∂L from which we define the velocity
parameter

vω = (GMω)1/3. (5.10)
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FIG. 1. Binding energy versus the velocity parameter vω for the SO contribution to the EOB (left panels) and PN-expanded
(right panels) binding energies for mass ratios q = 1 (top panels) and q = 1/3 (bottom panels).
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FIG. 2. Binding energy versus the velocity parameter vω for the S1S2 contribution to the EOB (left panels) and PN-expanded
(right panels) binding energies for mass ratios q = 1 (top panels) and q = 1/3 (bottom panels). The NR error is indicated by
the shaded regions.

Expressing the PN-expanded Hamiltonian in terms of vω yields, for the SO part,

ESO
b,PN =

ν

GM

{
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, (5.11)

while for the S1S2 part,
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b,PN =
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G2M3

[
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ω + v8

ω

(
5

6
+

5

18
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)
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)
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16
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(5.12)

The same steps can be performed numerically to obtain
the EOB binding energy without a PN expansion.

To examine the effect of the new N3LO terms on the
binding energy, we isolate the SO and the S1S2 contri-
butions to the binding energy by combining configura-
tions with different spin orientations (parallel or anti-
parallel to the orbital angular momentum), as explained
in Refs. [138, 140]. For the SO contribution, we use

ESO
b (ν, â, â) =

1

2
[Eb(ν, â, â)− Eb(ν,−â,−â)] +O(â3),

(5.13)
while for the S1S2 contribution, we use

ESS
b (ν, â, â) = Eb(ν, â, 0) + Eb(ν, 0,−â)− Eb(ν, â,−â)

− Eb(ν, 0, 0) +O(â3). (5.14)

In Fig. 1, we plot the SO contribution to the EOB
and PN-expanded binding energies versus the velocity
parameter vω for spin magnitudes â = 0.6. We also
plot the NR results by combining the binding energies
of configurations with different spins using results from
Refs. [138, 139]. From the figure, we see that, adding
each PN order improves agreement of the EOB binding
energy with NR, especially in the high-frequency regime,
with better improvement for equal masses than for un-
equal masses. In contrast, the PN binding energy, plotted
using Eq. (5.11), seems not to converge towards NR in
the high-frequency regime, with little difference between
the N2LO and N3LO SO orders. Figure 2 shows the S1S2

contribution to the EOB and PN binding energies. As in
the SO case, adding the new N3LO significantly improves
agreement of the EOB binding energy to NR, especially
for equal masses, but there is little difference between PN
orders for the PN binding energy.

Note that Figs. 1 and 2 should not be interpreted
as a direct comparison between PN and EOB dynamics
since our results were obtained for simplicity using exact
circular-orbits, which leads to a very different behavior
than for an inspiraling binary; Refs. [80, 137, 138], for
example, show that EOB results are significantly better
than PN when taking into account the binary evolution.
Let us also stress that while the EOB and PN curves
are based on the same PN information, the EOB Hamil-
tonian represents a particular resummation of the PN
results. We leave the exploration of other resummations
and a calibration to NR for future work.

VI. CONCLUSIONS

GW astronomy allows a multitude of applications in
fundamental and astrophysics [1–4] that rely on accurate
waveform models for inferring the source parameters. In
this paper, we improved the PN description of spinning
compact binaries using information from relativistic scat-
tering and self-force theory, which is an extension of the
approach introduced and used in Refs. [23, 24, 100] for
the nonspinning case. We started by extending the argu-
ments from Ref. [100] to show that the scattering angle
for an aligned-spin binary has a simple dependence on the
masses. This allowed us to determine the SO and aligned
S1S2 couplings through N3LO in a PN expansion using
GSF results for the redshift and precession frequency of
a small body on an eccentric orbit in a Kerr background.
This result is neatly encapsulated in the gauge-invariant
aligned-spin scattering-angle function, given explicitly in
Eq. (4.38). The derivation presented here provides the
full details for the recently reported result at SO level in
Ref. [102], while extending the analysis to aligned S1S2

couplings.

Using these new PN results, we calculated the circular-
orbit binding energy, the EOB gyro-gravitomagnetic fac-
tors, and implemented these results in an EOB Hamil-
tonian. To illustrate the effect of the new N3LO terms,
we compared the binding energy with NR simulations
(see Figs. 1 and 2,) showing an improvement over the
N2LO. These results could be implemented in state-of-
the-art SEOBNR [48–51] and TEOBResumS [52, 53] wave-
form models used in LIGO-Virgo searches and inference
analyses [4].

While it is arguable whether PM results already pro-
vide a useful resummation of the PN ones [89], the
present work shows that, with the crucial contribution
of GSF theory, advances in PM theory already allow
one to advance the PN knowledge in the spin sector.
We thus beseech further research to explore synergies
between GSF, PM, and PN theory, along the lines of
Refs. [23, 24, 26, 27, 45, 102] and the present paper. One
could, for instance, extend the results in this paper to
N3LO S2 couplings, i.e. at quadratic order in each spin.
This is an important step to complete the aligned-spin
5PN dynamics for BBHs. However, we leave such a cal-
culation for future work, since it would require currently
unavailable GSF results.

One can envision further important work at the inter-
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face between the PM and GSF approximations. With
knowledge of first-order GSF theory, one can in principle
determine the full 3PM and 4PM scattering angle in a
completely independent way from techniques employed,
e.g., in Ref. [85]. To this end, one could calculate the PM
expansion of GSF gauge-invariant quantities for bound
orbits directly (e.g., expansions in up valid at all orders
in the eccentricity e). This enterprise would have to take
great care in the inclusion of tail terms in the dynamics,
as well as in the analytical continuation of such results
to scattering systems. Should these quantities be calcu-
lated, one could exploit the method herein presented to
fix the 3PM and 4PM scattering angles without further
PN re-expansions. Even better would be a direct GSF
treatment of scattering orbits and the scattering angle.
This is likely to first come in the form of numerical cal-
culations at first-order in the mass ratio. It will however
be worth exploring whether “experimental mathematics”
techniques can be used to obtain analytic expressions for
the 4PM scattering angle by pushing such numerical cal-
culations to extreme precision (see, e.g., Ref. [62] for an
example along these lines in the GSF literature).

Finally, we stress that it is paramount to check our
results with more established PN calculations (e.g., with
the EFT approach, as was done partially at N3LO in
Refs. [33, 37]), as they have been obtained with a so-
far completely unexplored method in the spinning sector
that is begging to be further scrutinized.
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Appendix A: The nonspinning 4PN terms in the
bound radial action through sixth order in

eccentricity

Here we present the additional 4PN-order terms in the
radial action for bound orbits, computed via (3.25) ap-
plied to the 4PN EOB Hamiltonian given in [15], valid
to sixth order in the orbital eccentricity e. Note that the
expansion in eccentricity has occurred only in the 4PN
terms, at O(c−8), where it is sufficient to use the New-

tonian relation e =
√

1 + ε(L/GMµ)2 + O(c−2). The
complete radial action we employ above, through 4PN
order for the nonspinning terms and through NNNLO
for the spin terms, is obtained by replacing the first two
lines of (3.35) with

Ir = −L+GMµ
1 + 2ε

c
√
−ε

+
1

c2
(GMµ)2

πΓLcov
X2 (A1)

+
1

π

4∑
l=2

1

c2l
(GMµ)2l

(ΓLcov)2l−1

X̄2l

2l − 1
+

1

c8
O(e8) +O(

1

c10
),

where

X̄4
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=
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4
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128
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ν
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+
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24576
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15
γE
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3
ln 2 +

24057

20
ln 3 +
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15
ln
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)
ν

− 81

32
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45

16
ν3

]
ε2 +O(ε3),

X̄6

5π
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ν +

21
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ν2 (A3)
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and
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Appendix B: Kerr-geodesic variables

We provide here the relevant details to compute the
change of variables from (y, λ) to (up, e) needed for com-
parison with the 1SF calculations of the perturbed red-
shift and spin precession invariants. Since we are work-
ing with perturbed quantities we need only compute this
change of variables at the geodesic level.

The geodesic equations in Kerr spacetime when spe-
cialized to the equator θ = π

2 are

ṫ =
1

Σ

[
E

(
(r2 + a2)2

∆
− a2

)
+ aL

(
1− r2 + a2

∆

)]
,

(B1)

ṙ =
1

Σ

√
(E(r2 + a2)− aL)

2 −∆(r2 + (L− aE)2),

(B2)

φ̇ =
1

Σ

[
(L− aE) +

a

∆

(
r2E − a(L− aE)

)]
, (B3)

where ˙ ≡ d
dτ . The radial motion is commonly

parametrized using the Darwin relativistic anomaly χ as
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r =
m2p

(1 + e cosχ)
, (B4)

where e is the eccentricity and p the (dimensionless) semi-
latus rectum. This defines the turning points of the orbit
to be at χ = 0, π. Note that here we use p instead of
up ≡ 1/p from the text since it makes the equations be-
low simpler. To determine the constants of motion E,L
as functions of (p, e) we set ṙ = 0 at the turning points.
While these simultaneous equations can be solved fully,
we give their expansion in a, which will be sufficient for
this work,

E =

√
(p− 2)2 − 4e2

p(p− 3− e2)
− (e2 − 1)2

p(p− 3− e2)3/2
a+O(a2),

(B5)

L =
p√

p− 3− e2
+ (3 + e2)

√
(p− 2)2 − 4e2

p(p− 3− e2)3
a+O(a2).

(B6)

Next, we calculate the radial and azimuthal periods
Tr0 and Φ0 in the Kerr background geometry

Tr0 =

∮
dt =

∫ 2π

0

dt

dχ
dχ , (B7)

Φ0 =

∮
dφ =

∫ 2π

0

dφ

dχ
dχ , (B8)

where

dt

dχ
=
ṫ

ṙ

dr

dχ
,

dφ

dχ
=
φ̇

ṙ

dr

dχ
. (B9)

Further expanding the integrands in eccentricity, and in-
tegrating order by order in a and e gives for the periods
a result of the form

Tr0(p, e) =T 0
r0(p, e) + T 1

r0(p, e)a+O(a2) , (B10)

Φ0(p, e) =Φ0
0(p, e) + Φ1

0(p, e)a+O(a2) , (B11)

with
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T 1
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and
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. (B15)

With these we can use Eq. (4.27a) to obtain (y, λ) to the desired 4.5PN accuracy by expanding about small up = 1/p
as

y(up, e) =y0(up, e) + a ya(up, e) +O(a2, u6
p) , (B16)

λ(up, e) =λ0(up, e) + a λa(up, e) +O(a2, u5
p) , (B17)

with

y0(up, e) =
(
1− e2

)
up − 2e2

(
−1 + e2

)
u2
p +

(
6e2 − 23e4

8

)
u3
p +

(
24e2 − 13e4

4

)
u4
p −

1

4
e2
(
−480 + e2

)
u5
p , (B18)
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Nucl. Phys. B 955, 115041 (2020), arXiv:2003.01692 [gr-
qc].

[23] D. Bini, T. Damour, and A. Geralico, Phys. Rev. Lett.

123, 231104 (2019), arXiv:1909.02375 [gr-qc].
[24] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D

102, 024062 (2020), arXiv:2003.11891 [gr-qc].
[25] D. Bini, T. Damour, and A. Geralico, (2020),

arXiv:2007.11239 [gr-qc].
[26] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D

102, 024061 (2020), arXiv:2004.05407 [gr-qc].
[27] D. Bini, T. Damour, A. Geralico, S. Laporta, and

P. Mastrolia, (2020), arXiv:2008.09389 [gr-qc].
[28] J. Hartung and J. Steinhoff, Ann. Phys. (Berlin) 523,

783 (2011), arXiv:1104.3079 [gr-qc].
[29] J. Hartung, J. Steinhoff, and G. Schafer, Annalen Phys.

525, 359 (2013), arXiv:1302.6723 [gr-qc].
[30] S. Marsat, A. Bohe, G. Faye, and L. Blanchet, Class.

Quant. Grav. 30, 055007 (2013), arXiv:1210.4143 [gr-
qc].

[31] A. Bohe, S. Marsat, G. Faye, and L. Blanchet, Class.
Quant. Grav. 30, 075017 (2013), arXiv:1212.5520 [gr-
qc].

[32] M. Levi and J. Steinhoff, JCAP 1601, 011 (2016),
arXiv:1506.05056 [gr-qc].

[33] M. Levi, A. J. McLeod, and M. von Hippel, (2020),
arXiv:2003.02827 [hep-th].

[34] J. Hartung and J. Steinhoff, Annalen Phys. 523, 919
(2011), arXiv:1107.4294 [gr-qc].

[35] M. Levi, Phys. Rev. D85, 064043 (2012),
arXiv:1107.4322 [gr-qc].

[36] M. Levi and J. Steinhoff, JCAP 12, 003 (2014),
arXiv:1408.5762 [gr-qc].

[37] M. Levi, A. J. Mcleod, and M. Von Hippel, (2020),
arXiv:2003.07890 [hep-th].

[38] M. Levi and J. Steinhoff, JCAP 1601, 008 (2016),
arXiv:1506.05794 [gr-qc].

[39] M. Levi and J. Steinhoff, JHEP 09, 219 (2015),
arXiv:1501.04956 [gr-qc].

[40] M. Levi and J. Steinhoff, (2016), arXiv:1607.04252 [gr-
qc].

[41] M. Levi, S. Mougiakakos, and M. Vieira, (2019),
arXiv:1912.06276 [hep-th].

[42] M. Levi and J. Steinhoff, JHEP 06, 059 (2015),
arXiv:1410.2601 [gr-qc].

[43] M. Levi and F. Teng, (2020), arXiv:2008.12280 [hep-th].
[44] J. Vines and J. Steinhoff, Phys. Rev. D 97, 064010

(2018), arXiv:1606.08832 [gr-qc].
[45] N. Siemonsen and J. Vines, (2019), arXiv:1909.07361

[gr-qc].
[46] A. Nagar, Phys. Rev. D84, 084028 (2011), [Erratum:

Phys. Rev.D88,no.8,089901(2013)], arXiv:1106.4349 [gr-
qc].

[47] E. Barausse and A. Buonanno, Phys. Rev. D84, 104027

http://arxiv.org/abs/1908.06060
http://dx.doi.org/10.1103/PhysRevD.100.104036
http://dx.doi.org/10.1103/PhysRevD.100.104036
http://arxiv.org/abs/1903.04467
http://dx.doi.org/10.3847/2041-8213/ab3800
http://dx.doi.org/10.3847/2041-8213/ab3800
http://arxiv.org/abs/1811.12940
http://dx.doi.org/10.1103/PhysRevX.9.031040
http://dx.doi.org/10.1103/PhysRevX.9.031040
http://arxiv.org/abs/1811.12907
http://dx.doi.org/10.12942/lrr-2014-2
http://arxiv.org/abs/1310.1528
http://dx.doi.org/10.1007/s41114-018-0016-5
http://dx.doi.org/10.1007/s41114-018-0016-5
http://arxiv.org/abs/1805.07240
http://dx.doi.org/10.1007/s10714-014-1726-y
http://www.sciencedirect.com/science/bookseries/09248099/86
http://www.sciencedirect.com/science/bookseries/09248099/86
http://www.sciencedirect.com/science/bookseries/09248099/86
http://arxiv.org/abs/hep-ph/0701129
http://arxiv.org/abs/hep-ph/0701129
http://dx.doi.org/10.12942/lrr-2007-2
http://dx.doi.org/10.1103/PhysRevD.62.124015
http://dx.doi.org/10.1103/PhysRevD.62.124015
http://arxiv.org/abs/gr-qc/0007087
http://dx.doi.org/10.1016/j.physrep.2016.04.003
http://arxiv.org/abs/1601.04914
http://dx.doi.org/10.1088/1361-6633/ab12bc
http://arxiv.org/abs/1807.01699
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1103/PhysRevD.89.064058
http://dx.doi.org/10.1103/PhysRevD.89.064058
http://arxiv.org/abs/1401.4548
http://dx.doi.org/10.1103/PhysRevD.91.084024
http://dx.doi.org/10.1103/PhysRevD.91.084024
http://arxiv.org/abs/1502.07245
http://dx.doi.org/ 10.1103/PhysRevD.95.044026
http://arxiv.org/abs/1610.07934
http://dx.doi.org/ 10.1103/PhysRevD.97.044037
http://arxiv.org/abs/1711.00283
http://arxiv.org/abs/1711.00283
http://dx.doi.org/ 10.1103/PhysRevLett.122.241605
http://arxiv.org/abs/1902.10571
http://dx.doi.org/10.1103/PhysRevD.100.024047
http://dx.doi.org/10.1103/PhysRevD.100.024047
http://arxiv.org/abs/1903.05113
http://dx.doi.org/10.1103/PhysRevD.100.024048
http://arxiv.org/abs/1903.05118
http://arxiv.org/abs/1903.05118
http://dx.doi.org/10.1016/j.physletb.2019.135100
http://dx.doi.org/10.1016/j.physletb.2019.135100
http://arxiv.org/abs/1902.11180
http://dx.doi.org/10.1016/j.nuclphysb.2020.115041
http://arxiv.org/abs/2003.01692
http://arxiv.org/abs/2003.01692
http://dx.doi.org/10.1103/PhysRevLett.123.231104
http://dx.doi.org/10.1103/PhysRevLett.123.231104
http://arxiv.org/abs/1909.02375
http://dx.doi.org/10.1103/PhysRevD.102.024062
http://dx.doi.org/10.1103/PhysRevD.102.024062
http://arxiv.org/abs/2003.11891
http://arxiv.org/abs/2007.11239
http://dx.doi.org/10.1103/PhysRevD.102.024061
http://dx.doi.org/10.1103/PhysRevD.102.024061
http://arxiv.org/abs/2004.05407
http://arxiv.org/abs/2008.09389
http://dx.doi.org/10.1002/andp.201100094
http://dx.doi.org/10.1002/andp.201100094
http://arxiv.org/abs/1104.3079
http://dx.doi.org/10.1002/andp.201200271
http://dx.doi.org/10.1002/andp.201200271
http://arxiv.org/abs/1302.6723
http://dx.doi.org/ 10.1088/0264-9381/30/5/055007
http://dx.doi.org/ 10.1088/0264-9381/30/5/055007
http://arxiv.org/abs/1210.4143
http://arxiv.org/abs/1210.4143
http://dx.doi.org/ 10.1088/0264-9381/30/7/075017
http://dx.doi.org/ 10.1088/0264-9381/30/7/075017
http://arxiv.org/abs/1212.5520
http://arxiv.org/abs/1212.5520
http://dx.doi.org/10.1088/1475-7516/2016/01/011
http://arxiv.org/abs/1506.05056
http://arxiv.org/abs/2003.02827
http://dx.doi.org/10.1002/andp.201100163
http://dx.doi.org/10.1002/andp.201100163
http://arxiv.org/abs/1107.4294
http://dx.doi.org/10.1103/PhysRevD.85.064043
http://arxiv.org/abs/1107.4322
http://dx.doi.org/10.1088/1475-7516/2014/12/003
http://arxiv.org/abs/1408.5762
http://arxiv.org/abs/2003.07890
http://dx.doi.org/10.1088/1475-7516/2016/01/008
http://arxiv.org/abs/1506.05794
http://dx.doi.org/10.1007/JHEP09(2015)219
http://arxiv.org/abs/1501.04956
http://arxiv.org/abs/1607.04252
http://arxiv.org/abs/1607.04252
http://arxiv.org/abs/1912.06276
http://dx.doi.org/10.1007/JHEP06(2015)059
http://arxiv.org/abs/1410.2601
http://arxiv.org/abs/2008.12280
http://dx.doi.org/10.1103/PhysRevD.97.064010
http://dx.doi.org/10.1103/PhysRevD.97.064010
http://arxiv.org/abs/1606.08832
http://arxiv.org/abs/1909.07361
http://arxiv.org/abs/1909.07361
http://dx.doi.org/10.1103/PhysRevD.84.084028, 10.1103/PhysRevD.88.089901
http://arxiv.org/abs/1106.4349
http://arxiv.org/abs/1106.4349
http://dx.doi.org/10.1103/PhysRevD.84.104027


28

(2011), arXiv:1107.2904 [gr-qc].
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[90] G. Kälin and R. A. Porto, JHEP 01, 072 (2020),
arXiv:1910.03008 [hep-th].
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