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The study of scattering encounters continues to provide new insights into the general relativistic two-
body problem. The local-in-time conservative dynamics of an aligned-spin binary, for both unbound and
bound orbits, is fully encoded in the gauge-invariant scattering-angle function, which is most naturally
expressed in a post-Minkowskian (PM) expansion, and which exhibits a remarkably simple dependence on
the masses of the two bodies (in terms of appropriate geometric variables). This dependence links the PM
and small-mass-ratio approximations, allowing gravitational self-force results to determine new post-
Newtonian (PN) information to all orders in the mass ratio. In this paper, we exploit this interplay between
relativistic scattering and self-force theory to obtain the third-subleading (4.5PN) spin-orbit dynamics for
generic spins, and the third-subleading (5PN) spin1-spin2 dynamics for aligned spins. We further
implement these novel PN results in an effective-one-body framework and demonstrate the improvement
in accuracy by comparing against numerical-relativity simulations.
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I. INTRODUCTION

The burgeoning field of gravitational-wave (GW)
astronomy has already shown its potential to revolutionize
our understanding of our universe [1], gravity [2], and the
nature of compact objects [3,4], such as black holes (BHs)
and neutron stars. The detection of compact-binary GW
sources and the accurate inference of their parameters is
contingent on having accurate theoretical predictions for
their coalescence. As a result of this, a variety of tech-
niques, both analytical and numerical, have been developed
to understand the coalescence of binary compact objects,
with the final goal of providing faithful waveform models
that can be used in GW data analysis.
Post-Newtonian (PN) theory, the best known of the

analytical techniques, has provided the foundation for the
analytical studies of the two-body problem in general
relativity which are most directly useful for gravitational-
wave astronomy [5–12]. In this approximation, most
applicable to bound systems, one simultaneously assumes
weak gravitational potential and small velocities, i.e.,
GM=rc2 ∼ v2=c2 ≪ 1. The PN expansion is thus a powerful

tool for describing the early inspiral of the binaries observed
by LIGO and Virgo [4,13]. PN studies have been carried
out at high orders both in the nonspinning [14–27] and in the
spinning sectors, including spin-orbit (SO) [28–33],
bilinear-in-spin (spin1-spin2, S1S2) [34–37], and spin-
squared (S2) [37–40] couplings, as well as cubic and
higher-in-spin corrections [41–45]. PN information on the
spin dynamics has also been included in effective-one-body
(EOB) waveform models [46–54].
In parallel to PN formalisms, the small-mass-ratio

approximation, based on gravitational self-force (GSF)
theory, has also seen rapid development (see Ref. [55]
and references therein for a review). As suggested by the
name, the expansion parameter in this limit is the mass ratio
of the two bodies q ¼ m1=m2 ≪ 1. The leading order in
this approximation is given by the geodesic motion of a test
body in a Schwarzschild or Kerr background. Successive
corrections, which can be interpreted as a force moving the
body away from geodesic motion, are due to the perturba-
tion of the background sourced by the small body’s nonzero
stress-energy tensor. This self-force effect on the motion of
a nonspinning body has currently been numerically calcu-
lated to first order in q for generic orbits in Kerr spacetime
[56]. In a recent breakthrough [57], the second-order-in-q
binding energy in a Schwarzschild background has been
calculated and compared to predictions from the first law of
binary black-hole mechanics [58]. Meanwhile, much
activity has led to the analytic calculation at very high
PN orders (but at first order in q) of gauge-invariant
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quantities, such as the Detweiler redshift [59–68] and the
precession frequency [67,69–74], including effects of the
smaller body’s spin. This has quite naturally led to related
activity in confronting and validating the PN and GSF
approximations [58,75,76] in the domain which both are
valid, i.e., for large orbital separations and small mass
ratios, as well as in constructing EOBmodels based on both
approximations [77–80].
Recently, there has also been rapid advance in under-

standing and employing post-Minkowskian (PM) techniques,
using a weak-field approximation GM=rc2 ≪ 1 in a back-
ground Minkowski spacetime, with no restriction on the
relative velocity of the two bodies [81–86]. This approxima-
tion most naturally applies to the weak-field scattering of
compact objects, in which possibly relativistic velocities can
be reached. Recent advances in PM gravity and in our
understanding of the scattering of compact objects have been
spearheaded by modern on-shell scattering-amplitude tech-
niques, developed originally in the context of quantum
particle physics (see, e.g., Ref. [86] and references therein).
Scattering amplitudes were used in Ref. [83] to calculate

the nonspinning 2PM (OðG2Þ, one-loop) scattering angle,
reproducing with astonishing efficiency the decades-old
results of Westpfhal [87,88] obtained by classical methods;
an equivalent canonical Hamiltonian at 2PM order was
derived from amplitudes in Ref. [84]. The scattering angle
plays a key role in PM gravity: it encodes the complete
local-in-time conservative dynamics of the system (at least
in a perturbative sense) and it can be used to specify a
Hamiltonian in a given unique gauge [82], which can in
turn be used for unbound as well as bound systems (with
potential relevance for improving waveform models [89]);
see in particular Refs. [90,91]. In Refs. [85,86], the
scattering angle and a corresponding Hamiltonian have
been obtained at 3PM (two-loop) order for nonspinning
systems, and the results have been confirmed and
expounded upon in Refs. [24,92–94].
The PM approximation for two-spinning-body systems

was first tackled only very recently, with the SO dynamics
at the 1PM and 2PM levels first derived by classical means
in Refs. [95,96]. These results have since been confirmed
by amplitudes methods in Ref. [97], which also gave the
1PM and 2PM dynamics for the S1S2 sector, rounding out
the current state of the art for generic-spin PM results
beyond tree level. Several other works have also considered
amplitudes methods in relation to spinning two-body
systems, also beyond the SO and S1S2 sectors (beyond
the dipole level in the bodies’ multipole expansions), in
particular for special cases such as bodies with black-hole-
like spin-induced multipole structure and/or for the aligned-
spin configuration (in which the bodies’ spins are [anti-]
parallel to the orbital angular momentum); see, e.g.,
[45,98,99] and references reviewed therein.
These works demonstrate that the study of gravitational

scattering continues to provide novel results and useful

insights on the relativistic two-body problem, with impli-
cations for precision gravitational-wave astronomy yet to
be explored. A particularly powerful example of such an
insight concerns the nontrivially simple dependence of the
scattering-angle function on the masses [100] (see also
[86,90,101]). This was exploited in Refs. [23,24] to
obtain almost all the 5PN dynamics (with the exception
of 2 of 36 coefficients in the EOB Hamiltonian; see also
Refs. [18,21]) from first-order self-force calculations (while
appropriately dealing with nonlocal-in-time tail terms).
This approach has also been used in Refs. [26,27] to
obtain most of the 6PN dynamics. An extension of this
approach to spinning systems was used by the current
authors in Ref. [102] to obtain the next-to-next-to-next-to-
leading order (N3LO) SO PN dynamics.
In this paper, we provide details for the calculation of the

N3LO-PN SO dynamics presented in Ref. [102], which
completes the PN knowledge at 4.5PN order together with
the NLO S3 dynamics from Ref. [41] (see also [45]).
Furthermore, we extend our analysis to include a derivation
of the N3LO S1S2 effects, contributing at 5PN order, for the
case of spins aligned with the orbital angular momentum.
We note that partial results of the N3LO-PN SO and
N3LO S1S2 dynamics have previously been presented in
Refs. [33,37], where all terms at G4 were calculated within
the powerful effective field theory framework using
Feynman integral calculus. The latter of these references
give further results for all quadratic-in-spin terms at N3LO.
Our derivations are organized in the following procedure:
(1) We argue that the scattering angle for an aligned-

spin binary has a simple dependence on the masses
(when expressed in terms of appropriate geometrical
variables), which extends the result of Ref. [100] for
nonspinning binaries. This mass dependence implies
that the 4PM part of the scattering angle, which
encodes the N3LO PN dynamics, is determined by
terms up to linear order in the mass ratio. We use
analytic results for the test-spin scattering angle to
fix all terms at zeroth order in the mass ratio, leaving
the linear terms to be fixed by first-order GSF
results.

(2) Assuming the existence of a PN Hamiltonian at the
desired 4.5PN SO and 5PN S1S2 orders, and making
use of its associated mass-shell constraint with
undetermined coefficients, we calculate the scatter-
ing angle and match it to the constrained form from
step 1. This procedure fixes its lower orders in
velocity at 3PM and 4PM orders, leaving but half of
the linear-in-mass-ratio coefficients to be determined
by GSF calculations. We construct the bound-orbit
radial action from the scattering angle (via the
Hamiltonian dynamics), noting its simple depend-
ence on the bodies’ masses.

(3) From the radial action, we calculate the redshift and
spin-precession invariants and compare them with
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GSF results available in the literature to determine
the remaining coefficients of the scattering angle.
Vital to this step is the first law of spinning binary
mechanics [58,103,104], which is used to relate the
radial action to the redshift and precession fre-
quency, and for which we herein discuss an exten-
sion to arbitrary-mass-ratio aligned-spin eccentric
orbits.

(Although we work with aligned spins throughout, we note
that the aligned SO result actually fixes the SO Hamiltonian
also for precessing spins [102].)
The paper is organized as follows. Sections II, III, and IV

discuss points 1, 2, and 3, respectively. In Sec. V, we
implement the new PN results in the scattering angle in an
EOB model and use it to compare our results against NR
simulations. We conclude in Sec. VI with a discussion of
results and potential future work. Finally, Appendix A
contains expressions for tail terms in the radial action,
while Appendix B contains explicit expressions for a
certain mapping between variables used to connect redshift
and precession-invariant results from the radial action to
GSF results in the literature, which have been previously
erroneously (yet innocuously) reported in the literature.

A. Notation

We use the metric signature ð−;þ;þ;þÞ, and use units
in which the speed of light is c ¼ 1. For a binary of
compact objects with masses m1 and m2, we use the
following combinations of the masses:

M ¼ m1 þm2; μ ¼ m1m2

M
; ν ¼ μ

M
;

q ¼ m1

m2

; δ ¼ m2 −m1

M
; ð1:1Þ

with m1 < m2. We often make use of the rescaled versions
of the canonical spins S1 and S2, i.e.,

a1 ¼
S1
m1

; a2 ¼
S2
m2

; ð1:2Þ

and define the following combinations of spins:

S ¼ S1 þ S2; S� ¼
m2

m1

S1 þ
m1

m2

S2;

ab ¼
S
M

; at ¼
S�
M

: ð1:3Þ

The relative position and momentum three-vectors are
denoted by r and p, respectively. Using an implicit
Euclidean background, it holds that

p2 ¼ p2
r þ

L2

r2
; pr ¼ n · p; L ¼ r × p; ð1:4Þ

where n ¼ r=r with r ¼ jrj, and L is the orbital angular
momentum with magnitude L.

II. THE MASS DEPENDENCE OF THE
SCATTERING ANGLE

Here we argue that the structure of the PM expansion,
applied to the conservative orbital dynamics of a two-
massive-body system, leads to simple constraints on the
dependence of the scattering-angle function on the bodies’
masses, at fixed geometric quantities characterizing the
incoming state. We closely follow the arguments given in
Sec. II of Ref. [100] for the nonspinning case, considering
only the local-in-time, conservative part of the dynamics,
while generalizing to the case of spinning bodies, finally, in
the aligned-spin configuration.
The motion of a two-point-mass system (the nonspin-

ning case) is effectively governed by the coupled system of
(i) geodesic equations for the worldlines of the two point
masses, using the full two-body spacetime metric (with
a suitable regularization or renormalization procedure)
and (ii) Einstein’s equations for the metric, sourced by
effective point-mass energy-momentum tensors. In the
case of spinning bodies, to dipolar order in the bodies’
multipole expansions, the geodesic equations are replaced
by the pole-dipole Mathisson-Papapetrou-Dixon (MPD)
equations [105–107],

Dpiμ

dτi
¼ −

1

2
Rμνρσ _xνi S

ρσ
i ; ð2:1aÞ

DSμνi
dτi

¼ 2p½μ
i _x

ν�
i ; ð2:1bÞ

0 ¼ piμS
μν
i ; ð2:1cÞ

where, for the ith body (i ¼ 1, 2), pμ
i ðτiÞ is the linear

momentum vector, Sμνi ðτiÞ is the antisymmetric spin
(intrinsic angular momentum) tensor, and _xμi ðτiÞ is the
tangent to the body’s worldline xiðτiÞ. The constraint (2.1c),
the “covariant” or Tulczyjew-Dixon spin supplementary
condition [108–111], combined with (2.1a) and (2.1b),
uniquely determines a first-order equation of motion for the
worldline, _xμi ¼ _xμi ðxi; pi; SiÞ½g�. The corresponding effec-
tive energy-momentum tensor,

TμνðxÞ ¼
X
i

Z
dτi

�
pðμ
i _xνÞi

δ4ðx − xiÞffiffiffiffiffiffi−gp

þ∇λ

�
Sλðμi _xνÞi

δ4ðx − xiÞffiffiffiffiffiffi−gp
��

; ð2:2Þ

sources Einstein’s equations,

Rμν −
1

2
Rgμν ¼ 8πGTμν: ð2:3Þ
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In the PM scheme, an iterative solution to these equations is
obtained as an expansion in G of the worldlines, momenta
and spins,

xμi ðτiÞ ¼ xμi0ðτiÞ þGxμi1ðτiÞ þ G2xμi2ðτiÞ þ � � � ;
pμ
i ðτiÞ ¼ pμ

i0ðτiÞ þGpμ
i1ðτiÞ þ G2pμ

i2ðτiÞ þ � � � ;
Sμνi ðτiÞ ¼ Sμνi0 ðτiÞ þGSμνi1 ðτiÞ þ G2Sμνi2 ðτiÞ þ � � � ; ð2:4Þ

and of the metric,

gμνðxÞ ¼ ημν þ Gh1μνðxÞ þ G2h2μνðxÞ þ � � � ; ð2:5Þ

where ημν is the Minkowski metric, which we henceforth
use instead of the full metric gμν for all four-vector
manipulations (index raising and lowering, dot products
and squares of vectors, etc.).
At the leading orders in (2.4), given by the solutions to

(2.1) with g ¼ η, each body moves inertially in flat
spacetime,

xμi0ðτiÞ ¼ yμi þ uμi τi;

pμ
i0ðτiÞ ¼ miu

μ
i ;

Sμνi0 ðτiÞ ¼ miϵ
μν

ρσu
ρ
i a

σ
i : ð2:6Þ

Here, yμi are constant displacements from the origin at
τi ¼ 0, and uμi are constant four-velocities, with u2i ¼ −1,
so that τi are the (Minkowski) proper times, and p2

i ¼ −m2
i

where mi are the constant rest masses. The zeroth-order
spin tensors Sμνi0 are also constant, and, being orthogonal to
uiμ, have been parametrized in terms of a constant mass-
rescaled (Pauli-Lubanski, covariant) spin vector,

aμi ¼ −
1

2mi
ϵμνρσuνi S

ρσ
i0 ; ð2:7Þ

with dimensions of length, the magnitude of which would
measure the radius of the ring singularity of a correspond-
ing (linearized) Kerr black hole. We identify the zeroth-
order geometric (mass-independent) quantities, yμi , u

μ
i , and

aμi , with those characterizing the asymptotic incoming
state, along with the masses m1 and m2.
Inserting (2.6) into (2.2) (with g ¼ η) yields the zeroth-

order stress-energy tensor, which serves as a source for
the first-order metric perturbation h1μν in the linearization
of (2.3). The solution for the trace-reversed h̄μν1 ¼
hμν1 − 1

2
ημνh1ρρ, in harmonic gauge (∂μh̄

μν
1 ¼ 0), reads

h̄μν1 ðxÞ ¼ 4
X
i

miðuμi uνi þ uðμi ϵ
νÞ
ρσλu

ρ
i a

σ
i ∂λÞ 1

ri
; ð2:8Þ

where ri¼fðx−yiÞ2þ½ui ·ðx−yiÞ�2g1=2 is the (Minkowski)
distance of the field point x from the (zeroth-order, flat

geodesic) worldline xi0 ¼ yi þ uiτi in its rest frame, and ∂μ

is the flat covariant derivative. (Note that the result for
the first-order field (2.8) would be the same whether we
used the physical retarded Green’s function or the time-
symmetric Green’s function, given the nature of the
zeroth-order source, constant momentum and spin along
a flat-spacetime geodesic.) A key property to be noted here
is that h1 is linear in the masses mi, while having a more
intricate dependence on the geometric quantities yμi , u

μ
i , and

aμi . (It is linear in the spins aμi here only because we are
working to linear order in the spins, to dipolar order in the
multipole expansions.)
In the next step of the iterative scheme, one uses g ¼

ηþ h1 in the bodies’ equations of motion (2.1) to solve for
the first-order perturbations in (2.4) [for which it is
sufficient to integrate the right-hand sides of (2.1a) and
(2.1b) along the zeroth-order motion (2.6), and to regular-
ize by simply dropping the divergent self-field contribu-
tion]. Importantly, one finds that xμi1, p

μ
i1=mi, and S

μν
i1 =mi are

each linear functionals of h1μνðxÞ, and are thus linear in the
masses. From Poincaré symmetry, it follows that these
results can depend on the positions yi only through the
vectorial impact parameter bμ ¼ yμ1 − yμ2, where the y

μ
i here

is chosen along the two zeroth-order worldlines by the
conditions u1 · b ¼ u2 · b ¼ 0 (at mutual closest approach).
For example, the impulse (net change in momentum) for
body 1, Δpμ

1 ¼ Gpμ
11ðτ1 → ∞Þ þOðG2Þ, is given by1

Δpμ
1 ¼

2Gm1m2ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p �
−ð2γ2 − 1Þ b

μ

b2

þ 2γ

b4
ð2bμbν − b2ημνÞϵνρσλuρ1uσ2ðaλ1 þ aλ2Þ

þ 2
2γ2 − 1

b6
ð4bμbνbρ − 3b2bðμΠνρÞÞa1νa2ρ

�
þOðG2Þ; ð2:9Þ

where

γ ¼ −u1 · u2 ð2:10Þ

is the asymptotic relative Lorentz factor, and Πμ
ν ¼

ϵμραβϵνργδu1αu2βu
γ
1u

δ
2=ðγ2 − 1Þ is the projector into the

plane orthogonal to both u1 and u2. Here, as below, we
work to linear order in each spin, a1 and a2, keeping the
cross term. We note again in (2.9) the simple dependence
on the masses, with an overall factor of m1m2, at fixed
geometric quantities bμ, uμi , and aμi .

1Results equivalent to the first two lines of Eq. (2.9) were first
derived in Ref. [95], and the last line results from an expansion in
spins of the all-orders-in-spin results for black holes from
Ref. [112], both references having worked from purely classical
considerations; see also [113,114] for derivations from quantum
scattering amplitudes.
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In continuing the iterative PM solution, theOðGnÞ terms
in the bodies’ degrees of freedom (2.4) correct the source
(2.2) for the field equation (2.3), determining the OðGnþ1Þ
metric perturbation in (2.5); the latter, via the bodies’
equations of motion (2.1), determines the OðGnþ1Þ cor-
rections in (2.4). As in Ref. [100] we are assuming here a
systematic use of the time-symmetric Green’s function, to
pick out the conservative sector of the dynamics. It
becomes evident from the structure of these expansions
that the OðGnÞ metric perturbation hμνn in (2.5) can be
expressed as a homogeneous polynomial of degree n in the
masses,

hμν1 ðxÞ ¼ m1h
μν
m1
ðxÞ þm2h

μν
m2
ðxÞ;

hμν2 ðxÞ ¼ m2
1h

μν
m2

1

ðxÞ þm2
2h

μν
m2

2

ðxÞ þm1m2h
μν
m1m2

ðxÞ;
� � � ð2:11Þ

where the hμν��� on the right-hand sides are functions only of
the (asymptotic incoming) geometric quantities ðyμi ; uμi ; aμi Þ
and the field point x. The first line of (2.11) matches (2.8).
Similarly, theOðGnÞ corrections xμin, pμ

in=mi, S
μν
in =mi for the

body degrees of freedom (2.4) will be homogeneous
polynomials of degree n in the masses; this is the crucial
point for the following analysis (and for its conceivable
extensions beyond the aligned-spin case). The zeroth-order
quantities xμi0 ¼ yμi þ uμi τi, pμ

i0=mi ¼ uμi , and Sμνi0 =mi ¼
ϵμνρσu

ρ
i a

σ
i from (2.6) are (taken to be) independent of

the masses, as is the zeroth-order metric h0 ¼ η; they, along
with the masses, both (i) fully parametrize the asymptotic
incoming state and (ii) can be used to parametrize all the
higher-order corrections.
Let us now specialize to the case of aligned spins, inwhich

both spin vectors aμi are (anti-)parallel to the orbital angular
momentum, all of which remain constant throughout the
scattering, while the orbital motion is confined to the fixed
plane orthogonal to the angular momenta (just as for the
nonspinning case). This entails u1 · ai ¼ u2 · ai ¼ 0 and
b · ai ¼ 0. Choosing ẑμ (with ẑ2 ¼ 1) to be the direction
of the orbital angular momentum (∝ −ϵμνρσuν1u

ρ
2b

σ), let us
write aμi ¼ aiẑμ for the constant rescaled spin vectors (equal
to their incoming values), where the scalars ai are positive for
spins aligned with ẑμ and negative for antialigned. Crucially,
in this case, the only nontrivial independent Lorentz-
invariant scalars that can be constructed from the vectors
uμi , a

μ
i , and bμ are the magnitude b ¼ ðb2Þ1=2 of the impact

parameter and the two spin lengths a1 and a2, all three with
dimensions of length, and the dimensionless Lorentz
factor γ ¼ −u1 · u2.
Now consider the extension to higher orders in G of

the impulse Δpμ
1 (2.9), which equals −Δpμ

2 (under the
conservative dynamics) as the total momentum pμ

1 þ pμ
2 is

conserved. Its magnitude Q ≔ ðΔp1μΔp
μ
1Þ1=2 must be a

Lorentz-invariant scalar. In the aligned-spin case, given the

previous discussion, and due to Poincaré symmetry and
dimensional analysis, it must be a function only of the
dimensionless scalar γ and the dimension-length scalars b,
a1, a2, Gm1, and Gm2. Given also the conclusion from
above that, in (2.4) with i ¼ 1, pμ

1n=m1 is a homogeneous
polynomial of degree n in the masses, with the leading
n ¼ 1 result seen in (2.9), it follows that the magnitude Q
of the impulse must take the following form through fourth
order in G (through 4PM order):

Q ¼ 2Gm1m2

b

�
Q1PM þG

b
ðm1Q2PM

m1
þm2Q2PM

m2
Þ

þG2

b2
ðm2

1Q
3PM
m2

1

þm2
2Q

3PM
m2

2

þm1m2Q3PM
m1m2

Þ

þG3

b3
ðm3

1Q
4PM
m3

1

þm3
2Q

4PM
m3

2

þm2
1m2Q4PM

m2
1
m2

þm1m2
2Q

4PM
m1m2

2

Þ
�
þOðG5Þ; ð2:12aÞ

where the Q’s on the rhs are functions of the dimensionless
scalars γ, a1=b, and a2=b,

QnPM
mi

1
mj

2

¼ QnPM
mi

1
mj

2

�
γ;
a1
b
;
a2
b

�
¼ QnPM

mi
1
mj

2
a0
ðγÞ þ a1

b
QnPM

mi
1
mj

2
a1
ðγÞ þ a2

b
QnPM

mi
1
mj

2
a2
ðγÞ

þ a1a2
b2

QnPM
mi

1
mj

2
a1a2

ðγÞ ð2:12bÞ

(with iþ j ¼ n − 1). In the second equality, we have
expanded to linear order in each spin (assuming regular
limits as the spins go to zero), and we are finally left with a
set of undetermined functions depending only on the
Lorentz factor γ.
Furthermore, Q must be invariant under an exchange of

the two bodies’ identities, ðm1; a1Þ ↔ ðm2; a2Þ. At 1PM
order, this tells us that Q1PMðγ; a1=b; a2=bÞ is symmetric
under a1 ↔ a2, and thus Q1PM

a1 ¼ Q1PM
a2 , so that the third

line of (2.12b) in this case is proportional to a1 þ a2.
Indeed, the explicit expression for Q1PM is given by the
magnitude of the aligned-spin specialization of (2.9)
(divided by 2Gm1m2=b),

2

Q1PM ¼ 2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p �
1þ 2

a1a2
b2

�
− 2γ

a1 þ a2
b

: ð2:14Þ

2Note that this is the expansion to linear order in the spins of
the result (80) from [112] for a two-black-hole system,

Q1PM ¼
�
2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p − 2γ
a1 þ a2

b

��
1 −

ða1 þ a2Þ2
b2

�
−1
; ð2:13Þ

to all orders in the spin-multipole expansion at 1PM order.
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At 2PM order, the 1 ↔ 2 symmetry tells us that each of the
two functions in the second line of (2.12a) determines the
other,

Q2PM
m1

�
γ;
a1
b
;
a2
b

�
¼ Q2PM

m2

�
γ;
a2
b
;
a1
b

�
: ð2:15Þ

This function, like Q1PM, is in fact fully determined by the
(extended) test-body limit of Q=ðm1m2Þ—the limit where
one of the masses, say, m1, goes to zero, while keeping
fixed m2, a2, and a1 (and γ and b). The result for Q=m1 in
this limit can be consistently determined by solving the
pole-dipole MPD equations (2.1) for a spinning test body in
a stationary Kerr background; we will present explicit
results from this procedure below in terms of the scattering-
angle function. This test-body limit, with m1 → 0, deter-
mines all of the functions QnPM

mn−1
2

with no powers of m1, for

all n, and the 1 ↔ 2 symmetry also tells us that

QnPM
mn−1

1

�
γ;
a1
b
;
a2
b

�
¼ QnPM

mn−1
2

�
γ;
a2
b
;
a1
b

�
: ð2:16Þ

The only remaining functions in (2.12a), those not deter-
mined by the test-body limit and exchange symmetry, are
Q3PM

m1m2
, Q4PM

m2
1
m2
, and Q4PM

m1m2
2

. They are however still con-

strained by the exchange symmetry as follows. First,

Q3PM
m1m2

�
γ;
a1
b
;
a2
b

�
¼ Q3PM

m1m2

�
γ;
a2
b
;
a1
b

�
; ð2:17Þ

which implies that the third line of (2.12b) for Q3PM
m1m2

(like
for Q1PM above) is proportional to a1 þ a2. Second,

Q4PM
m2

1
m2

�
γ;
a1
b
;
a2
b

�
¼ Q4PM

m1m2
2

�
γ;
a2
b
;
a1
b

�
; ð2:18Þ

so that one of these two functions determines the other.
Taking all of these constraints from exchange symmetry,

we can eliminate all of the Q’s with more m1’s in the
subscript for those with more m2’s, while those with the
same number of m1 ’s and m2’s must be symmetric under
a1 ↔ a2. First, focusing on the nonspinning (a0) part of
(2.12a), this becomes

Qa0 ¼
2Gm1m2

b

�
Q1PM

a0 þG
b
ðm1þm2ÞQ2PM

m2a0

þG2

b2
ððm2

1þm2
2ÞQ3PM

m2
2
a0
þm1m2Q3PM

m1m2a0
Þ

þG3

b3
ððm3

1þm3
2ÞQ4PM

m3
2
a0 þm1m2ðm1þm2ÞQ4PM

m1m2
2
a0Þ

�
;

ð2:19Þ
recalling that all theQ’s on the right-hand side are functions
only of γ [henceforth dropping þOðG5Þ]. Introducing the

total rest massM ¼ m1 þm2 and the symmetric mass ratio
ν ¼ m1m2=M2 ¼ μ=M as in (1.1), and noting

m1 þm2 ¼ M;

m2
1 þm2

2 ¼ M2ð1 − 2νÞ;
m3

1 þm3
2 ¼ M3ð1 − 3νÞ; ð2:20Þ

this becomes

Qa0 ¼
2Gm1m2

b

�
Q1PM

a0 þGM
b

Q2PM
m2a0

þ
�
GM
b

�
2

ðQ3PM
m2

2
a0
þ νQ̃3PM

m1m2a0
Þ

þ
�
GM
b

�
3

ðQ4PM
m3

2
a0 þ νQ̃4PM

m1m2
2
a0Þ

�
; ð2:21Þ

where we defined Q̃3PM
m1m2a0

≔ Q3PM
m1m2a0

− 2Q3PM
m2

2
a0

and

Q̃4PM
m1m2

2
a0 ≔ Q4PM

m1m2
2
a0 − 3Q4PM

m3
2
a0 , still functions only of γ.

Remarkably, through 4PM order, this is just linear in the
mass ratio ν at fixed M. Precisely, the same manipulations
go through for the a1a2 terms, replacing a0 with a1a2 in all
the subscripts and with an overall factor of a1a2=b2 on the
right-hand side.
Next, consider just the 1PM and 2PM terms of the SO

(a1) part of (2.12a), after accounting for the exchange
symmetry in the same way as in the previous paragraph
(with Q1PM

a1 ¼ Q1PM
a2 , Q2PM

m1a1 ¼ Q2PM
m2a2 and Q2PM

m1a2 ¼ Q2PM
m2a1);

we find

Qa1 þOðG3Þ ¼ 2Gm1m2

b

�
a1 þ a2

b
Q1PM

a2

þ G
b

�
m1a1 þm2a2

b
Q2PM

m2a2

þm2a1 þm1a2
b

Q2PM
m2a1

��
: ð2:22Þ

We recognize in the second line the following spin
combinations often used in the PN and EOB literature:

S ≔ m1a1 þm2a2 ¼ S1 þ S2;

S� ≔ m2a1 þm1a2 ¼
m2

m1

S1 þ
m1

m2

S2: ð2:23Þ

We will find it convenient to rescale each of these by the
total rest mass M, defining

ab ≔
S
M

¼ m1a1 þm2a2
m1 þm2

;

at ≔
S�
M

¼ m2a1 þm1a2
m1 þm2

; ð2:24Þ
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where b stands for background (or big) and t stands for test
(or tiny). The (first) reason for these labels is that, in the
extended test-body limit [m1 → 0 at fixed m2 (or M) and
fixed a1 and a2], we see that ab → a2 becomes the spin-
per-mass of the big background object with massM ¼ m2,
and at → a1 becomes the spin-per-mass of the tiny spin-
ning test body with negligible mass (with a further reason
explained below). Note that ab þ at ¼ a1 þ a2. Now
extending (2.22) to 4PM order, from (2.12a) accounting
for exchange symmetry, using our new notation, we find

Qa1 ¼
2Gm1m2

b2

�
Q1PM

a2 ðabþatÞþ
GM
b

ðQ2PM
m2a2abþQ2PM

m2a1atÞ

þ
�
GM
b

�
2

ðQ3PM
m2

2
a2
abþQ3PM

m2
2
a1
atþνQ̃3PM

m1m2a2ðabþatÞÞ

þ
�
GM
b

�
3

ðQ4PM
m3

2
a2
abþQ4PM

m3
2
a1
at

þν½Q̃4PM
m1m2

2
a2
abþ Q̃4PM

m1m2
2
a2
at�Þ

�
; ð2:25Þ

where we defined Q̃3PM
m1m2a2 ¼ Q3PM

m1m2a2 −Q3PM
m2

2
a2
−Q3PM

m2
2
a1
,

Q̃4PM
m1m2

2
a2
≔ Q4PM

m1m2
2
a2
− 2Q4PM

m3
2
a2
−Q4PM

m3
2
a1

and Q̃4PM
m1m2

2
a2
≔

Q4PM
m1m2

2
a2
−Q4PM

m3
2
a2
− 2Q4PM

m3
2
a1
, all still functions only of γ.

We see that (2.25), like (2.21), is linear in the symmetric
mass ratio ν (at fixed M, ab and at).
Now, just as in Eq. (2.14) of [100]—following from

conservation of the total momentum pμ
1 þ pμ

2 and simple
geometry and kinematics (which is identical for the non-
spinning and aligned-spin cases)—the scattering angle χ,
by which both bodies are deflected in the system’s center-
of-mass (cm) frame, is related to the magnitude Q of the
impulse by

sin
χ

2
¼ Q

2p∞
; ð2:26Þ

where p∞ (called “Pc:m:” by Damour) is the magnitude of
the bodies’ equal and opposite spatial momenta in the cm
frame, at infinity,

p∞ ¼ m1m2

E

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
: ð2:27Þ

Here, E is the total energy in the cm frame,

E2 ¼ m2
1 þm2

2 þ 2m1m2γ ¼ M2ð1þ 2νðγ − 1ÞÞ; ð2:28Þ
determined by the asymptotic Lorentz factor γ and the rest
masses. Note also the definition of the asymptotic relative
velocity v as used, e.g., in [45,101,102],

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
γ

⇔ γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð2:29Þ

We will find it convenient to define yet another variable
equivalent to γ or v, namely,

ε ≔ γ2 − 1 ¼ γ2v2 ¼
�
p∞E
m1m2

�
2

; ð2:30Þ

which, like v2, can serve as a PN expansion parameter, and
unlike v, is real for both unbound and bound orbits,

Unbound∶ E > M ⇔ ε > 0;

Bound∶ E < M ⇔ ε < 0; ð2:31Þ

noting that v ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
=γ and p∞ are imaginary for

bound orbits. (Note that our ε ¼ γ2v2 is Damour’s
“p2

∞ ¼ p2
eob” [the squared momentum per mass of the

effective test body], while our p∞ is Damour’s Pc:m:.) We
will also find it convenient to define a notation for the
dimensionless ratio Γ (Damour’s “h”) between the total
energy and the total rest mass,

Γ ≔
E
M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
; ð2:32Þ

with Γ > 1 (γ > 1) for unbound orbits and Γ < 1 (γ < 1)
for bound orbits. Then p∞ ¼ μγv=Γ ¼ μ

ffiffiffi
ε

p
=Γ.

With this notation in order, we can take our simplified
result for the impulse magnitudeQ (2.12a) [namely the sum
of (2.21), its analogous a1a2 version, and the SO part
(2.25)], insert it into (2.26), and solve for the aligned-spin
scattering angle χ. After this process, χ=Γ turns out to be
linear in ν in the same way thatQ is, thanks to the facts that
the sine function is odd in its argument and that Γ2 is linear
in ν. The result can be expressed as follows:

χ

Γ
¼ GM

b
ffiffiffi
ε

p Xν0

G1 þ
�
GM
b

ffiffiffi
ε

p
�

2

Xν0

G2 þ
�
GM
b

ffiffiffi
ε

p
�

3

½Xν0

G3 þ νXν1

G3 �

þ
�
GM
b

ffiffiffi
ε

p
�

4

½Xν0

G4 þ νXν1

G4 � þO
�
GM
b

�
5

; ð2:33aÞ

where each Xνm

Gk takes the form

Xνm

Gk ¼ Xm
k ðεÞ þ

ab
b

ffiffiffi
ε

p Xmb
k ðεÞ þ at

b
ffiffiffi
ε

p Xmt
k ðεÞ

þ a1a2
b2ε

Xm×
k ðεÞ; ð2:33bÞ

with × standing for the “cross term” a1a2, and with the
special constraints

X0b
1 ¼ X0t

1 ; X1b
3 ¼ X1t

3 ; ð2:34Þ
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recalling from (2.24) thatMab ¼ m1a1 þm2a2 andMat ¼
m2a1 þm1a2.

3 All the X’s on the right-hand side of (2.33b)
are dimensionless and are functions only of the dimension-
less ε ¼ γ2 − 1; they can be expressed in terms of the above
QðγÞ’s alone.
We see that the 1PM and 2PM terms in (2.33) are

independent of the symmetric mass ratio ν and are thus fully
preserved in the (extended) test-body limit ν → 0 (at fixedM,
or equivalentlym1 → 0 at fixedM, and at fixed a1, a2, b, and
γ), while the 3PM and 4PM terms are linear in ν. This allows
us to deduce the complete 1PMand 2PM results for χ=Γ from
its test-body limit and the complete 3PM and 4PM results
from first-order self-force (linear-in-mass-ratio) calculations.
The special constraints (2.34) are consequences of the

1 ↔ 2 symmetry, as seen in theG1ν0 andG3ν1 SO terms in
(2.25). This is a prediction of the above arguments which
our considerations below will be able to test, rather than to
rely on. For the case of the G3ν1 SO terms, which we will
determine (in a PN expansion) below from matching to
first-order self-force calculations, we will allow X1

3b and X
1
3t

to be independent—in fact, X1
3b will be determined by the

redshift invariant in a Kerr background and X1
3t by the spin-

precession invariant in a Schwarzschild background—and
we will find from the matching procedure that they are
indeed equal through the considered PN orders. The fact
that the complete content of Eq. (2.33) holds through N2LO
in the PN expansion can be seen in Eq. (4.32) of Ref. [101].
The ν0 terms in (2.33) can be determined by solving the

MPDequationsofmotion(2.1) foraspinning(pole-dipole) test
body in a stationary backgroundKerr spacetime.An integrand
for the test-spin-in-Kerr aligned-spin scattering-angle func-
tion, to all PMorders, was derived inRef. [115]; see, e.g., their
Eq. (66) (which also includes pole-dipole-quadrupole terms
for a test black hole). The results of the integration are as
follows, to all orders in ε (to all PN orders at each PM order),
extendingEq. (5.5) ofRef. [101] to4PMorder in the spin-orbit
and bilinear-in-spin terms. The nonspinning parts are

X0
1 ¼ 2

1þ 2εffiffiffi
ε

p ¼ 2
2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ¼ 2
1þ v2

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ;

X0
2 ¼

3π

4
ð4þ 5εÞ ¼ 3π

4
ð5γ2 − 1Þ;

X0
3 ¼ 2

−1þ 12εþ 72ε2 þ 64ε3

3ε3=2
;

X0
4 ¼

105π

64
ð16þ 48εþ 33ε2Þ; ð2:36aÞ

the SO parts are

X0b
1 ab þ X0t

1 at ¼ −4γ
ffiffiffi
ε

p ðab þ atÞ;
X0b
2 ab þ X0t

2 at ¼ −
π

2
γð2þ 5εÞð4ab þ 3atÞ;

X0b
3 ab þ X0t

3 at ¼ −4γ
1þ 12εþ 16ε2ffiffiffi

ε
p ð3ab þ 2atÞ;

X0b
4 ab þ X0t

4 at ¼ −
21π

16
γð8þ 36εþ 33ε2Þð8ab þ 5atÞ;

ð2:36bÞ

and the bilinear-in-spin parts are

X0×
1 ¼ 4

ffiffiffi
ε

p ð1þ 2εÞ;

X0×
2 ¼ 3π

2
ð2þ 19εþ 20ε2Þ;

X0×
3 ¼ 8

1þ 38εþ 128ε2 þ 96ε3ffiffiffi
ε

p ;

X0×
4 ¼ 105π

16
ð24þ 212εþ 447ε2 þ 264ε3Þ ð2:36cÞ

with γ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ ε

p
.4

The ν1 terms in (2.33), at 3PM and 4PM orders, can be
determined in a PN expansion (here, an expansion in ε)
from first-order self-force results (as well as from consis-
tency with lower orders), as we will explicitly demonstrate
below for the spin parts. We will use the known non-
spinning coefficients through 4PM-3PN order [101],

X1
3 ¼ −

8þ 94εþ 313ε2 þOðε3Þ
12

ffiffiffi
ε

p ;

X1
4 ¼ π

�
−
15

2
þ
�
123

128
π2 −

557

8

�
εþOðε2Þ

�
; ð2:37aÞ

noting the transcendental ζð2Þ contribution in the last
term (the 4PM-3PN term). We will parametrize the SO
coefficients as

3In Ref. [102], the expression of the result (2.33) for the mass
dependence of the scattering angle differed in that (i) we did not
pull a factor of 1=

ffiffiffi
ε

p
out of the X’s for every factor of 1=b, (ii) we

used v instead of ε, and (iii) we used aþ and δa− in place of ab
and at, with a� ≔ a2 � a1 and δ ≔ ðm2 −m1Þ=M; the equiv-
alence of the two expressions is apparent since

aþ þ δa− ¼ 2ab; aþ − δa− ¼ 2at: ð2:35Þ

4Note that, through 2PM order and up through the SO terms,
the first two lines of the right-hand side of (2.33a), with (2.36a)
and (2.36b) plugged into the first two lines of (2.33b), correctly
give either (i) the aligned-spin scattering angle for a spinning test
body with rescaled spin at in a Kerr background with massM and
rescaled spin ab, or (ii) the rescaled aligned-spin scattering angle
χ=Γ for the arbitrary-mass two-spinning-body system, using the
“spin maps” (2.24); this is a further reason for the labels at and ab.
This gives a different “EOB scattering-angle mapping,” an
alternative to Eq. (3.16) of [101], which produces the 1PM
and 2PM SO terms in the two-body scattering angle from its
extended test-body limit. [Note however that this different
mapping fails at quadratic order in the spins, while Eq. (3.16)
of [101] still holds, according to all known results.]
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X1i
3 ¼ γffiffiffi

ε
p ðX1i

30 þ X1i
31εþ X1i

32ε
2 þ X1i

33ε
3 þOðε4ÞÞ;

X1i
4 ¼ πγðX1i

41 þ X1i
42εþ X1i

43ε
2 þOðε3ÞÞ; ð2:37bÞ

with i ¼ b; t, and the bilinear-in-spin coefficients as

X1×
3 ¼ 1ffiffiffi

ε
p ðX1×

30 þ X1×
31 εþ X1×

32 ε
2 þ X1×

33 ε
3 þOðε4ÞÞ;

X1×
4 ¼ πðX1×

41 þ X1×
42 εþ X1×

43 ε
2 þOðε3ÞÞ: ð2:37cÞ

We have included all the same powers of ε present in the ν0

coefficients (2.36), up to the orders in ε which will
contribute at the N3LO PN level. (We have also factored
out γ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ ε
p

in the SO terms and π in the 4PM terms,
following the patterns at ν0.) For these X1���

kn , which are all
pure numbers, k gives the PM order, and n gives the
maximum PN order (NnLO) which determines that coef-
ficient. This labeling and the consistency and sufficiency of
this ansatz for the scattering angle will become evident in
the matching between the scattering angle and a canonical
Hamiltonian described in the following section.
Finally, it is important to note that the impact parameter b

appearing everywhere in this section is the distance
orthogonally separating the two spinning bodies’ asymp-
totic incoming worldlines as defined by the covariant or
Tulczyjew-Dixon condition [108–111], Eq. (2.1c) above,
for each body—the so-called “proper” or covariant impact
parameter b≡ bcov [45,101,116]. This is crucial to the
above argument because only with the covariant condition
(2.1c) (or something equivalent to it at 0PM order) does it
hold that the first-order field (2.8) is linear in the masses.
Below, we will also work with the canonical orbital angular
momentum L≡ Lcan ¼ p∞bcan, where bcan is the impact
parameter orthogonally separating the asymptotic incoming
worldlines defined by cm-frame Newton-Wigner condi-
tions [117,118] for each body. This coincides with the
conserved canonical orbital angular momentum L appear-
ing in a canonical Hamiltonian formulation of aligned-spin
two-body dynamics [119,120]. [Note that, for the aligned-
spin case, the covariant/Pauli-Lubanski spin vectors mia

μ
i

used above coincide with the canonical spin vectors Sμi
(spatial vectors in the cm frame) which would be associated
with the cm-frame Newton-Wigner conditions, and thus so
do the aligned-spin (signed) magnitudes, Si ¼ miai.] As
shown in [101,112], the canonical L≕Lcan is related to the
covariant b by

L ¼ Lcov þ ΔL;

Lcov ¼ p∞b ¼ μ

Γ
γvb ¼ μ

Γ
ffiffiffi
ε

p
b;

ΔL ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ p2

∞

q
−m1

�
a1 þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
∞

q
−m2

�
a2

¼ M
Γ − 1

2

�
ab þ at −

ab − at
Γ

�
: ð2:38Þ

Solving this for b, inserting the result into (2.33) [or (2.39)],
and reexpanding to bilinear order in the (mass-rescaled)
spins a1 and a2, one obtains the final parametrized form for
the aligned-spin scattering-angle function χðE; L;mi; aiÞ
used in the following matching calculations.
Let us finally rewrite the scattering angle to include both

the ν0 and ν1 terms in single coefficients (or which could
allow mass dependence differing from that deduced above),
and which would accommodate general quadratic-in-spin
terms, with sums over i and j implied,

χ

Γ
¼
X
k≥1

�
GM
b

ffiffiffi
ε

p
�

k
�
Xkðε;νÞþ

ai
b

ffiffiffi
ε

p Xk
iðε;νÞþaiaj

b2ε
Xk

ijðε;νÞ
�

þOða3Þ; with ð2:39Þ

aiXk
i ¼ abXk

b þ atXk
t;

aiajXk
ij ¼ a1a2Xk

× þOða21; a22Þ: ð2:40Þ

Our prediction for the mass-ratio dependence of the kPM
coefficients Xk

A ¼ fXk;Xk
b;Xk

t;Xk
×g is that

Xk
Aðε; νÞ ¼

	
X0A
k ðεÞ; k ¼ 1; 2

X0A
k ðεÞ þ νX1A

k ðεÞ; k ¼ 3; 4:
ð2:41Þ

The ν0 coefficients X0A
k ðεÞ from the extended test-body

limit are given explicitly in (2.36), and the ν1 coefficients
X1A
k ðεÞ which we will determine from self-force results are

parametrized in a PN expansion in (2.37). Note that we will
also be able to use the self-force results to test the fact that
there are no ν1 terms at 1PM and 2PM orders in this
parametrization of the scattering angle. The fact that there
are no ν2 or higher terms through 4PM order cannot be
probed with first-order self-force results, but has already
been confirmed by arbitrary-mass PN results through
N2LO. Our prediction for the mass dependence will yield
new arbitrary-mass results at the N3LO PN level once we
have fixed the PN expansions of the coefficients X1A

k from
first-order self-force calculations.

III. FROM THE UNBOUND SCATTERING
ANGLE TO THE BOUND RADIAL ACTION

VIA CANONICAL HAMILTONIAN DYNAMICS

Besides the mass dependence of the scattering-angle
function established in the previous section, and the inputs
of test-body results (discussed above) and first-order self-
force results (discussedbelow), the other central ingredient in
our derivation is the assumption of the existence of a (local-
in-time) canonical Hamiltonian governing the aligned-spin
conservative dynamics in the cm frame, for generic (both
bound and unbound) orbits, with the Hamiltonian having
well-defined (regular, polynomial) PN and PM expansions.
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Through the desired 4.5PN order in the SO sector and 5PN
S1S2 one, we can safely ignore nonlocal-in-time (tail)
contributions in the final dynamics/scattering angle. While
these do appear at the 4PN level in the nonspinning sector
[14] (see, e.g., Ref. [121] for a translation into a nonlocal-in-
time scattering angle), they only start appearing at 5.5PN
order in the spinning one. This can most easily be seen in the
first line of Eq. (68a) in Ref. [122], where the linear-in-spin
tails are a relative 1.5PN order from the leading quadrupolar
contributions to the tail. (Asmentioned at the very end of this
section,we find it necessary to include tail terms at 4PNorder
in the nonspinning sector to make contact with available
results in the GSF literature.)
Our ultimate goal in this section is to take the gauge-

invariant scattering-angle function χ for unbound orbits,
parametrized in the previous section, and derive from it a
parametrized expression for the gauge-invariant radial-
action function Ir which characterizes bound orbits, from
which we can derive all the bound-orbit gauge invariants to
be compared with self-force results in Sec. IV B below.
We do this by passing through the gauge-dependent

canonical Hamiltonian dynamics. It is to some extent true
that this process (as we implement it here) can be bypassed
by using relationships between gauge invariants for
unbound and bound orbits found in [91], but not entirely.
Those relationships yield Ir throughOðG4Þ from χ through
OðG4Þ, but the complete PN expansion of Ir through N3LO
extends toOðG8Þ (for the spin terms). The extra terms in Ir
are obtained here via the canonical Hamiltonian dynamics,
which determines them from (the PN reexpansion of) χ
through OðG4Þ. Note that χ through OðG4Þ does not
contain the complete PN expansion of χ through N3LO,
nor through LO, since even the Newtonian scattering angle
has contributions at all orders in G. But the PN expansion
of the 4PM scattering angle, χ throughOðG4Þ, does contain
the complete information of the N3LO PN Hamiltonian
(contained in its OðG4Þ truncation), which determines
the N3LO PN radial action Ir (contained in its OðG8Þ
truncation).
We begin in Sec. III A by discussing canonical

Hamiltonians for aligned-spin binaries, the resultant equa-
tions of motion, and their gauge freedom under canonical
transformations, in a PM-PN expansion. We fix a unique
gauge by imposing simplifying conditions not on the
Hamiltonian function H itself, but on its corresponding
“mass-shell constraint” (or “impetus formula” [90]), which
is simply a rearrangement of the expression of the
Hamiltonian, in which the squared momentum is given
as a function of the Hamiltonian H (of the energy E ¼ H).
In Sec. III B, we describe how the scattering-angle function
can be derived from the canonical mass-shell constraint, or
vice versa (with our gauge-fixing for the mass shell), and
derive the explicit relationships between the scattering-
angle coefficients and the mass-shell coefficients. Finally,
in Sec. III C, we compute the radial action Ir, and point out

a hidden simplicity in its dependence on the mass ratio,
when expressed in terms of appropriate (covariant rather
than canonical) variables, which is a simple consequence of
the mass dependence of the scattering angle χ and the
relationship between χ and Ir discovered in [91].

A. The canonical Hamiltonian and/or
the mass-shell constraint

For an aligned-spin binary canonical Hamiltonian

Hðr;ϕ; pr; L;mi; aiÞ ¼ Hðr; pr; L;mi; aiÞ; ð3:1Þ

the dynamical variables (depending on a time parameter t)
are polar coordinates ðr;ϕÞ in the orbital plane, with r
being the orbital separation, and their conjugate momenta
ðpr; pϕ ≡ LÞ. The Hamiltonian does not depend on the
angular coordinate ϕ due to the system’s axial symmetry,
and it otherwise depends only on the constant masses and
spins ðmi; aiÞ ¼ ðm1; m2; a1; a2Þ. The Hamiltonian equa-
tions of motions read

_r ¼ ∂H
∂pr

; _pr ¼ −
∂H
∂r ;

_ϕ ¼ ∂H
∂L ; _L ¼ −

∂H
∂ϕ ¼ 0; ð3:2Þ

where we note that the canonical orbital angular momen-
tum L is a constant of motion.
Such a Hamiltonian is not unique, but is subject to

a type of gauge freedom, namely, under canonical trans-
formations: diffeomorphisms of the phase space which
preserve the canonical form (3.2) of the equations of
motion. In a quite general gauge (one which encompasses
all gauges encountered in previous PN or PM aligned-spin
Hamiltonians), the Hamiltonian takes the following form
through quadratic order in the spins, through 4PM order:

H ¼ H0ðp2;miÞ þ
X4
k¼1

Gk

rk

�
ck

�
p2;

L2

r2
;mi

�

þ Lai
r2

cik

�
p2;

L2

r2
;mj

�
þ aiaj

r2
cijk

�
p2;

L2

r2
;mk

��
þOðG5Þ; ð3:3Þ

where

p2 ¼ p2
r þ

L2

r2
ð3:4Þ

is the total squared canonical linear momentum. Here,H0 is
the 0PM (free) Hamiltonian, and the functions ck, cik, and
cijk encode, respectively, the nonspinning, spin-orbit, and
quadratic-in-spin gravitational couplings at the kPM orders.
The c’s are assumed to have regular Taylor series around
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L2 ¼ 0 and p2 ¼ 0. We will work here with the standard
(gauge) choice for the free Hamiltonian in the cm frame,

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
q

; ð3:5Þ

such that, as r → ∞, the magnitude
ffiffiffiffiffi
p2

p
of the canonical

linear momentum corresponds to the two bodies’ physical
equal and opposite spatial momenta in the cm frame.
The expression (3.3) of the Hamiltonian can be solved,

working perturbatively in G, for p2ðr; E; L;mi; aiÞ, where
E≡Hðr; pr; L;mi; aiÞ is the total energy; one finds

p2 ¼ p2
∞ðE;miÞþ

X
k≥1

Gk

rk

�
fk

�
E;

L2

r2
;mi

�

þLai
r2

fik

�
E;

L2

r2
;mj

�
þaiaj

r2
fijk

�
E;

L2

r2
;mk

��
; ð3:6Þ

where the 0PM part p2
∞ is found by (exactly) inverting

(3.5), H0ðp2Þ ¼ E ⇔ p2
∞ðEÞ ¼ p2,

p2
∞ ¼ ðE2 −m2

1 −m2
2Þ2 − 4m2

1m
2
2

4E2
¼ μ2

γ2 − 1

Γ2
; ð3:7Þ

which we recognize as the same p∞ from (2.27). The
functions fk, fik, and f

ij
k are determined by (and carry all of

the information of) the c���k coefficients in the Hamiltonian
(3.3). Importantly, the f���k functions will have regular limits
as γ2 − 1 ¼ ε → 0 (as p∞ → 0) and as L2 → 0, given our
assumption that the c���k functions were regular as p2 → 0

and L2 → 0. The quantities γ, ε, and Γ are all defined in
terms of the energy E and the rest masses just as in the
previous section.
As discussed in Ref. [101] (through N2LO in the PN

expansion, and as we have explicitly verified through
N3LO), it is possible to find a perturbative canonical
transformation which brings the Hamiltonian (3.3) into a
“quasi-isotropic” form, i.e., a form in which the c’s depend
only p2 and not on L2=r2. Furthermore, the freedom in
canonical transformations [among Hamiltonians of the
form (3.3)] is completely fixed once one imposes this
quasi-isotropic-Hamiltonian condition and uniquely spec-
ifies a 0PM Hamiltonian H0, as we have done in (3.5). For
such a quasi-isotropic Hamiltonian, one finds that the
corresponding mass-shell constraint, the expression for
p2 (3.6), has nonspinning and SO coefficients fk fik which
are independent of L2=r2, but its quadratic-in-spin coef-
ficients fijk have terms at zeroth and first orders in L2=r2.
However, there also exists a different (non-quasi-isotropic)
gauge for the Hamiltonian (3.3) (one with L2=r2 terms in
cijk) such that its mass-shell constraint (3.6) is quasi-

isotropic, with the fk, fik, and fijk all depending only on
E (and the masses) and not on L2=r2. Because both the

scattering angle and the radial action are more directly
related to the f coefficients in the mass shell, we will find it
convenient to adopt this quasi-isotropic-mass-shell gauge
(which is also unique with a given choice for H0),
specializing (3.6) to the form

p2 ¼ p2
∞ðE;miÞ þ

X
k≥1

Gk

rk

�
fkðE;miÞ

þ Lai
r2

fikðE;mjÞ þ
aiaj
r2

fijkðE;mkÞ
�
: ð3:8Þ

Regrouping in terms of powers of r instead of powers of G,
we have

p2
r þ

L2

r2
¼ p2 ¼ p2

∞ þ
X
k≥1

Gk

rk
f̃k; ð3:9Þ

where we define

f̃k ¼ fk þ
Lai
G2

fik−2 þ
aiaj
G2

fijk−2; ð3:10Þ

with f���−1¼f���0 ¼0, and we need to extend the sum to k ¼ 6

(while dropping the nonspinning f5 and f6). Our starting
point for the following calculations will be this ansatz for
the mass-shell constraint, which is fully equivalent to an
ansatz for a Hamiltonian of the form (3.3) modulo gauge
freedom. Our fundamental assumption is the existence of
such a canonical Hamiltonian. We will find that the
coefficients f���k ðE;miÞ are uniquely determined by the
expansion of the scattering-angle function to kPM order.

B. The scattering angle

As shown in [82], the scattering angle χðE;L;mi; aiÞ for
an unbound orbit can be found directly from the canonical
mass-shell constraint as follows. The constraint (3.9) can be
solved for the radial momentum prðr; E; L;mi; aiÞ, and
then the scattering angle is given by the integral

π þ χðE;LÞ ¼ −
Z

∞

∞
dr

∂
∂Lprðr; E; LÞ

¼ −2
Z

∞

rmin

dr
∂
∂L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ −

L2

r2
þ
X
k≥1

Gk

rk
f̃k

s
;

ð3:11Þ

where rmin is the largest real root of pr ¼ 0. In the direct
evaluation of this integral, it would matter that the f̃k in
(3.10) depends on L (in the SO terms). But let us define an
antiderivative of π þ χ with respect to L to be “the unbound
radial action,”
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W ¼ −
1

2π

� ∂
∂L

�
−1
ðπ þ χÞ; ð3:12aÞ

which is essentially a partie finie of the radial action
integral for unbound orbits,

WðE;LÞ ¼ 1

2π
Pf

Z
∞

∞
drprðr; E; LÞ: ð3:12bÞ

The eikonal phase [83,97,123,124] is W=ℏ (up to a
constant). For the expression of W in terms of the f̃k, it
does not matter that the f̃k depends on L. That expression
will be identical to the L-antiderivative of the nonspinning
scattering angle expressed in terms of the nonspinning fk,
with fk → f̃k, so this reduces the evaluation of the integral
for the spinning case to the nonspinning problem, using
the coefficient mapping (3.10). The results of the non-
spinning integral (for χ, from which constructing W is
trivial) have been tabulated at high orders, e.g., in [125].
One finds

2πW ¼ −πL −
G lnL
p∞

χ̃1 þ
X
k≥2

Gk

pk
∞Lk−1

χ̃k
k − 1

; ð3:13Þ

where χ̃k are the entries of Table 1 in [125] with fk → f̃k;
the first few read

χ̃1 ¼ f̃1;

χ̃2 ¼
π

2
p2
∞f̃2;

χ̃3 ¼ 2p4
∞f̃3 þ p2

∞f̃1f̃2 −
f̃31
12

;

χ̃4 ¼
3π

8
p4
∞ð2p2

∞f̃4 þ f̃22 þ 2f̃1f̃3Þ;
� � � ð3:14Þ

The scattering angle χ is then given by

π þ χ ¼ −2π
∂W
∂L ; ð3:15Þ

with the L-derivative acting also inside the f̃k in (3.10). To
obtainW or χ through quadratic order in spins and through
4PM order, OðG4Þ, counting both the Gk in (3.13) and the
1=G2 in (3.10), we must include parts of the contributions
up to f̃6 and up to χ̃8. The resultant explicit expression of
the scattering angle χ in terms of the f���k coefficients up to
4PM order and quadratic order in spins is

χ ¼ G
p∞L

f1þ
πG2

2L2
f2þ

G3

p3
∞L3

�
−

1

12
f31þp2

∞f1f2þ 2p4
∞f3

�
þ 3πG4

8L4
½f22þ 2f1f3þ 2p2

∞f4�

þai

	
Gp∞

L2
fi1þ

πG2

2L3
½f1fi1þp2

∞fi2� þ
G3

p∞L4

�
3

4
f21f

i
1þ 3p2

∞ðf2fi1þf1fi2Þþ 2p4
∞fi3

�

þ 3πG4

4L5
½2f1f2fi1þf21f

i
2þ 2p2

∞ðf3fi1þf2fi2þf1fi3Þþp4
∞fi4�




þaiaj

	
2Gp∞

L3
fij1 þ

3πG2

16L4
½4f1fij1 þp2

∞ð3fi1fj1þ 4fij2Þ�þ
G3

p∞L5
½f21fij1 þ 4p2

∞ðf2fij1 þf1fi1f
j
1þ f1f

ij
2Þ

þ 8

3
p4
∞ð2fi1fj2þfij3Þ�þ

15πG4

64L6
½8f1f2fij1 þ 5f21f

i
1f

j
1þ 4f21f

ij
2

þ 2p2
∞ð4f3fij1 þ 5f2fi1f

j
1þ 4f2f

ij
2 þ 10f1fi1f

j
2þ 4f1f

ij
3Þþp4

∞ð5fi2fj2þ 10fi1f
j
3þ 4fij4Þ�



þOða3ÞþOðG5Þ: ð3:16Þ

We see that the kPM coefficients f���k first enter in the Gk

terms; however, they do not enter those terms at the leading
orders in p∞ (in the PN expansion of each PM coefficient).
Recalling that all of the f’s are finite as p∞ → 0 (ε → 0), we
see that, within each set of square brackets multiplying Gk,
the lowest orders in p∞ do not depend on f���k , rather only on
the lower-PM-orderf’s (with some exceptions atG1 andG2).
Similarly, for the scattering-angle coefficients at even higher
orders inG (some ofwhichwill be relevant below), the lower
orders in their PN expansions will be determined by
coefficients from lower orders in G already appearing here.

This gives the scattering angle χ in terms of the mass-
shell coefficients fk, fik, fijk , as an expansion in the
canonical orbital angular momentum L. Equating that
expression to a parametrization of χ of the form (2.39)
in terms of the covariant impact parameter b, using the
translation (2.38) while reexpanding in spins, one can solve
for the f coefficients in the mass shell in terms of the X
coefficients in the scattering angle (or vice versa), order
by order in the PM expansion. Recall p∞ ¼ μ

ffiffiffi
ε

p
=Γ.

Rewriting ΔL ¼ L − p∞b from (2.38) as a sum over
(effective) spins,
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ΔL ¼ μ

Γ
ξiai ¼

μ

Γ
ðξbab þ ξtatÞ; ð3:17aÞ

with

ξb ¼ ðΓ − 1Þ2
2ν

¼ 2ν

�
γ − 1

Γþ 1

�
2

¼ νε2

8
þOðε3Þ;

ξt ¼ Γ2 − 1

2ν
¼ γ − 1 ¼ ε

2
þOðε2Þ; ð3:17bÞ

the results for the f’s through 2PM order are as follows:
nonspinning,

f1 ¼ μ2M
ffiffiffi
ε

p
Γ

X1;

f2 ¼
2μ2M2

πΓ
X2; ð3:18aÞ

spin orbit,

fi1¼
μMffiffiffi
ε

p ðX1
iþX1ξ

iÞ;

fi2¼
μM2

ε

�
2

π
X2

i−ΓX1X1
iþ

�
4

π
X2−ΓðX1Þ2

�
ξi
�
; ð3:18bÞ

and quadratic in spin,

fij1 ¼
μ2M
2Γ

ffiffiffi
ε

p ðX1
ij þ 2X1X1

iξj þ X1ξ
iξjÞ;

fij2 ¼
μ2M2

Γε

�
4

3π
X2

ij −
1

2
ΓX1X1

ij −
3

4
ΓX1

iX1
j

þ
�
4

π
X2

i −
5

2
ΓX1X1

i

�
ξj þ

�
4

π
X2 −

5

2
ΓðX1Þ2

�
ξiξj

�
;

ð3:18cÞ

with symmetrization over i and j understood. These 1PM
and 2PM results are exact (to all orders in ε). With our
predicted mass-ratio dependence from the previous section,
we have, for k ¼ 1, 2, Xkðε; νÞ ¼ X0

kðεÞ, aiXk
iðε; νÞ ¼

abX0b
k ðεÞ þ atX0t

k ðεÞ, and aiajXk
ijðε; νÞ ¼ a1a2X0×

k ðεÞ þ
Oða21; a22Þ, all independent of ν, and the X0���

k ðεÞ from the
extended test-body limit are given explicitly by (2.36).
Though it is not immediately obvious here, each of these
f’s has a finite limit as ε → 0, as is required by our
Hamiltonian ansatz. We will need the expansions of the f���1
up toOðε3Þ and of the f���2 up toOðε2Þ. Along with f���3 up to
Oðε1Þ and f���4 atOðε0Þ, we will then have a complete mass-
shell constraint (3.8) up to N3LO in the PN expansion,
which could be solved for the corresponding canonical
Hamiltonian (3.3).
At 3PM and 4PM orders, one can also solve for the f’s in

terms of the X’s, obtaining exact expressions analogous to

the above. But we will now work in a PN expansion, an
expansion in ε, while enforcing our predicted mass-ratio
dependence [which (3.18) did not]. For the nonspinning
coefficients, using the known results (2.36a) and (2.37a) for
the X’s, we find

f3
μ2M3

¼ 17 − 10ν

2
þ 36 − 91νþ 13ν2

4
εþOðε2Þ;

f4
μ2M4

¼ 8þ
�
41

32
π2 −

160

3

�
νþ 7

2
ν2 þOðεÞ ð3:19Þ

through the orders that contribute to the N3LO PN level.
Here again we note the finite limits as ε → 0. For the
spinning contributions, we must enforce that all the f’s
have finite limits as ε → 0, which will fix some of the
unknown coefficients in our parametrization (2.37) of the
ν1 parts of the scattering angle, or relationships between
them, from consistency with the lower-order f’s and X’s
[recall the discussion following (3.16)]. At the SO level,
this determines or constrains the lower-PN-order scattering-
angle coefficients,

X1i
30ai ¼ 0;

X1i
31ai ¼ 10ðab þ atÞ;

X1i
41ai ¼

21

2
ab þ 9at;

X1i
42ai ¼

3

4
ð68ab þ 49at þ 2X1i

32aiÞ; ð3:20Þ

and expressions for fi3 and fi4 which are explicitly regular
as ε → 0 and depend on the remaining unknowns X1i

32, X
1i
33,

and X1i
43, with i ¼ b; t,

fi3ai
μM3

¼ −6þ 4ν − 5ν2

2
ab þ

−3 − 31ν − 9ν2

4
at þ

ν

2
X1i
32ai

þ
�
−24þ 172ν − 276ν2 þ 21ν3

16
ab

þ −166ν − 90ν2 þ 9ν3

8
at þ

ν

4
ðX1i

32 þ 2X1i
33Þai

�
ε

þOðε2Þ ð3:21aÞ

and

fi4ai
μM4

¼
�
−2−

811

8
ν−4ν2þ13

8
ν3
�
ab

þ
�
1

8
−
1577

12
νþ41

16
π2νþ35

4
ν2þ3

2
ν3
�
at

þν

�
ð4þνÞX1i

32−2X1i
33þ

4

3
X1i
43

�
aiþOðεÞ: ð3:21bÞ
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Similarly, for the bilinear-in-spin coefficients, we find

X1×
30 ¼ 0; X1×

31 ¼ 8; X1×
41 ¼ 15

2
;

X1×
42 ¼ 45

32
ð−22þ X1×

32 Þ; ð3:22Þ

while fijkaiaj ¼ f×k a1a2 þOða21; a22Þ with f×3 and f×4 given
in terms of the remaining unknowns X1×

32 , X
1×
33 , and X1×

43

(and remaining unknowns from the SO level) by

f×3
μ2M3

¼ 5

2
þ
�
9

2
þ 3

8
X1×
32

�
ν − ν2

þ 3

8
½4 − 15ν − 16ν2 þ 4ν3 þ 2νð1 − 2νÞX1b

32

þ 4ν2X1t
32 −

ν2

2
X1×
32 þ νX1×

33 �εþOðε2Þ ð3:23aÞ

and

f×4
μ2M4

¼ 2þ 187

4
ν − 21ν2 þ 13

8
ν3

þ ν

4
ð19þ 2νÞX1b

32 þ
ν

2
ð10 − νÞX1t

32

−
3

4
νð4þ νÞX1×

32 þ 3

2
νX1×

33 þ 16

15
νX1×

43

þOðεÞ: ð3:23bÞ

We now have a complete expression of the mass-shell
constraint (3.8) through N3LO in the PN expansion and
through bilinear order in spins, which could be solved for the
corresponding canonical Hamiltonian. It depends on the
remaining unknown (dimensionless, numerical) coefficients
X1A
32 , X

1A
33 , and X

1A
43 with A ¼ fb; t;×g, from (2.37). Recall,

for X1A
kn , k is the PM order, and n is the relative PN order.

C. The radial action

For a bound orbit (γ2 − 1 ¼ γ2v2 ¼ ε < 0), the
same canonical mass-shell constraint (3.8) governs the
motion. The (gauge-dependent) radial momentum function
prðr; E; L;mi; aiÞ is still given by

pr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ −

L2

r2
þ
X
k

Gk

rk

�
fk þ

Lai
r2

fik þ
aiaj
r2

fijk

�s
;

ð3:24Þ

but now p2
∞ ¼ ðμ=ΓÞ2ε is negative. As a result, p2

rðrÞ has
two positive real roots r ¼ r� between which p2

r is
positive, with rþ being the largest real root, and the
trajectory oscillates between these radial turning points
r�. The canonical radial action function IrðE;L;mi; aiÞ is
defined as the integral of prdr over one period of the radial
motion,

2πIr ≔
I

drpr ¼
Z

rþ

r−

dr
�
þ

ffiffiffiffiffi
p2
r

q �
þ
Z

r−

rþ
dr
�
−

ffiffiffiffiffi
p2
r

q �
¼ 2

Z
rþ

r−

dr
ffiffiffiffiffi
p2
r

q
; ð3:25Þ

and it is a gauge-invariant function, from which one can
derive several other gauge-invariant functions physically
characterizing bound orbits [90,91]. Like the unbound
radial action W (the L-antiderivative of the scattering
angle χ) (3.12), the bound radial action IrðE; L;mi; aiÞ
encodes the complete gauge-invariant information content
of the canonical Hamiltonian (governing both unbound and
bound orbits) (at least up to the N3LO PN level)—though in
a subtly different way, concerning orders in the PM-PN
expansion of Ir versus that of W.
It was shown in [91] that the periastron-advance angle,

Φ ¼ 2π þ ΔΦ ¼ −2π∂Ir=∂L, the angle swept out by a
bound orbit during one period of the radial motion, is
related to the scattering angle, π þ χ ¼ −2π∂W=∂L, by

ΦðE;L;mi; aiÞ ¼ 2π þ χðE;L;mi; aiÞ
þ χðE;−L;mi;−aiÞ; ð3:26Þ

where the right-hand side requires an analytic continuation
from E > M (unbound, for which χ is real) to E < M
(bound, for which χ is complex), as detailed below. It
follows from a straightforward extension of their argument
that a particular L-antiderivative of this relation holds,
giving the bound radial action Ir in terms of the unbound
radial action W,

IrðE;L;mi; aiÞ ¼ WðE;L;mi; aiÞ
−WðE;−L;mi;−aiÞ; ð3:27Þ

as can also be verified by explicit calculation.
Consider the unbound radial action in the form (3.13),

after replacing χ̃1 using (3.14) and (3.18a),

W¼−
L
2
−GMμ

1þ2εffiffiffi
ε

p lnL
π

þ 1

2π

X
k≥2

Gk

pk
∞Lk−1

χ̃k
k−1

: ð3:28Þ

In continuing this from the unbound case, ε > 0, p2
∞ > 0,

to the bound case, ε < 0, p2
∞ < 0, the second term with

1=
ffiffiffi
ε

p
becomes imaginary, as do all of the terms in the sum

with k odd, having odd powers of p∞ ¼ ðμ=ΓÞ ffiffiffi
ε

p
. Note,

from (3.14) and (3.10), and from the fact that all of the f’s
have regular Taylor series in ε about ε ¼ 0, that all of
the χ̃k are still real for the bound case, and that the χ̃k are
unchanged by ðL; aiÞ → ð−L;−aiÞ. Thus, plugging the
continuation of (3.28), with

ffiffiffi
ε

p ¼ i
ffiffiffiffiffiffi
−ε

p
, into (3.27),

we see that all of the odd-k terms are canceled; after
using lnL − lnð−LÞ ¼ lnð−1Þ ¼ −iπ (choosing the branch
which yields the physically sensible result), we are left with
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Ir ¼ −Lþ GMμ
1þ 2εffiffiffiffiffiffi

−ε
p þ 1

π

X
l≥1

G2l

p2l
∞L2l−1

χ̃2l
2l − 1

; ð3:29Þ

which is real for bound orbits. Only the χ̃k with k even
(k ¼ 2l) remain, and those with k odd are gone (except
for χ̃1). This may make it seem as though we have lost
information in passing from W to Ir, but in fact we have
not, as long as we are sure to keep all terms in the consistent
PN expansion of Ir (at least up to the N3LO PN level);
this is due to relationships between the χ̃k as discussed
below (3.16).
As we will make clearer below, the complete PN

expansion of Ir up to N3LO is contained in its PM
expansion up to OðG6Þ for the nonspinning terms and
up to OðG8Þ for the spin-orbit and quadratic-in-spin terms.
This can be computed directly from (3.29), recalling that
the χ̃k are the entries of Table 1 of [125] with fk → f̃k, as in
(3.16) above, with the f̃k given by (3.10). We need again
the contributions from fk, fik, f

ij
k up to k ¼ 4, contained in

the f̃k ¼ fk þ fik−2Lai=G
2 þ fijk−2aiaj=G

2 up to k ¼ 6. To
reach the all the G8 quadratic-in-spin terms, we must take
the sum in (3.29) up to l ¼ 6, involving parts of χ̃12.
This process yields the radial action Ir through the N3LO

PN level as an expansion in the inverse canonical orbital
angular momentum L≡ Lcan. To express the results of that
process, it will be advantageous to use the covariant orbital
angular momentum Lcov, which we define for the bound-
orbit case by

Lcov ≔ L − ΔL; ð3:30Þ

with ΔLðE; aiÞ still given by the last two lines of (2.38) or
by (3.17), in which we note that everything is still real for
bound orbits [unlike in the second line of (2.38), where we
would need to continue to imaginary b to keep Lcov ¼
p∞b real].
In fact, the expression of the radial action (mostly) in

terms of Lcov is simply related to the expression of the
scattering angle in terms of Lcov, as follows. Taking the
form (2.39) for the scattering angle and eliminating b in
favor of Lcov ¼ ðμ=ΓÞ ffiffiffi

ε
p

b,

χ¼Γ
X
k≥1

�
GM
b

ffiffiffi
ε

p
�

k
�
Xkþ

ai
b

ffiffiffi
ε

p Xk
iþaiaj

b2ε
Xk

ij

�

¼Γ
X
k≥1

�
GMμ

ΓLcov

�
k
�
Xkþ

μai
ΓLcov

Xk
iþ μ2aiaj

Γ2L2
cov

Xk
ij

�
; ð3:31Þ

and then using (3.12a), being sure to match up the constant
of integration with (3.28), we find

W¼−
L
2
−GMμX1

lnLcov

2π
þ 1

2π

X
k≥2

ðGMμÞk
ðΓLcovÞk−1

Xk

k−1

þ 1

2π

X
k≥1

�
GMμ

ΓLcov

�
k
�
μai

Xk
i

k
þμ2aiaj
ΓLcov

Xk
ij

kþ1

�
: ð3:32Þ

Then applying (3.27), as we did between (3.28) and (3.29),
noting Lcov → −Lcov under ðL; aiÞ → ð−L;−aiÞ, we are
left with

Ir ¼ −Lþ GMμ
1þ 2εffiffiffiffiffiffi

−ε
p þ 1

π

X
l≥1

ðGMμÞ2l
ðΓLcovÞ2l−1

�
X2l

2l − 1

þ μai
ΓLcov

X2l
i

2l
þ μ2aiaj
ðΓLcovÞ2

X2l
ij

2lþ 1

�
; ð3:33Þ

where these Xk
���ðε; νÞ are precisely the same coefficients

from the scattering angle in (3.31). These coefficients up
through k ¼ 2l ¼ 4 are those we gave or parametrized
above in (2.36) and (2.37), with (2.41). Recollecting them
here, while using the constraints (3.20) and (3.22) obtained
in matching between the scattering angle and the canonical
mass shell, we have the G2 coefficients which are inde-
pendent of ν and are known exactly,

X2 ¼
3π

4
ð4þ 5εÞ;

X2
iai ¼ −

π

2
γð2þ 5εÞð4ab þ 3atÞ;

X2
× ¼ 3π

2
ð2þ 19εþ 20ε2Þ; ð3:34aÞ

and the G4 coefficients which are linear in ν,

X4 ¼
105π

64
ð16þ 48εþ 33ε2Þ

þ π

�
−
15

2
þ
�
123

128
π2 −

557

8

�
εþOðε2Þ

�
ν;

X4
iai ¼ −

21π

16
γð8þ 36εþ 33ε2Þð8ab þ 5atÞ

þ πγ

�
21

2
ab þ 9at þ

3

4
ð68ab þ 49at þ 2X1i

32aiÞε

þ X1i
43aiε

2 þOðε3Þ
�
ν;

X4
× ¼ 105π

16
ð24þ 212εþ 447ε2 þ 264ε3Þ

þ π

�
15

2
þ 45

32
ð−22þ X1×

32 Þεþ X1×
43 ε

2 þOðε3Þ
�
ν:

ð3:34bÞ

As mentioned above, for the complete expression of the
radial action at the N3LO PN level, we need the low orders
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in the PN expansions of X6
��� and (for the spin terms) X8

���.
We have obtained these from the procedure to compute the
radial action described in the paragraph containing (3.29)
and the following paragraph, in which the inputs are the f���k
up to k ¼ 4 found in the previous subsection, finally
changing variables using (3.30) to bring the result into
the form (3.31). At G6, we find the nonspinning

X6

5π
¼ 231

4
þ
�
123

128
π2 −

125

2

�
νþ 21

8
ν2 þOðεÞ; ð3:34cÞ

spin orbit

X6
iai

15π
¼
�
−99þ127

4
ν−

5

4
ν2
�
ab

þ
�
−
231

4
þ167

8
ν−

9

8
ν2
�
atþ

1

4
νX1i

32ai

þ
��

−693þ4989

16
ν−

123

32
π2ν−

225

16
ν2
�
ab

þ
�
−
1617

4
þ733

4
ν−

123

64
π2ν−

182

16
ν2
�
at

þν

�
7−3ν

8
X1i
32−

5

4
X1i
33þX1i

43

�
ai

�
εþOðε2Þ; ð3:34dÞ

and bilinear in spin

X6
×

35π
¼ 495

4
−
123ν

16
−
9

8
ν2 þ 3

32
νX1×

32

þ
�
10197

8
−
4835

32
νþ 123

128
π2ν −

399

32
ν2

−
3

8
νð1þ 2νÞX1b

32 −
3

4
νð1 − νÞX1t

32

þ 9

64
νð2 − νÞX1×

32 −
15

32
νX1×

33 þ 2

5
νX1×

43

�
ε

þOðε2Þ: ð3:34eÞ

At G8, spin orbit

X8
iai

35π
¼
�
−715þ 23947

48
ν−

41

8
π2ν−

97

2
ν2 þ 13

16
ν3
�
ab

þ
�
−
6435

16
þ 6883

24
ν−

41

16
π2ν−

277

8
ν2 þ 3

4
ν3
�
at

þ ν

�
2− ν

2
X1i
32 −X1i

33 þ
2

3
X1i
43

�
ai þOðεÞ ð3:34fÞ

and bilinear in spin

X8
×

315π
¼ 5005

16
−
6599

96
νþ 41

128
π2ν −

199

32
ν2 þ 5

16
ν3

−
1

8
νð1þ 2νÞX1b

32 −
1

4
νð1 − νÞX1t

32

þ 3

64
νð2 − νÞX1×

32 −
3

32
νX1×

33 þ 1

15
νX1×

43

þOðεÞ: ð3:34gÞ

Note that the X6
��� coefficients in (3.34d) and (3.34e) are

exactly quadratic in ν, in spite of the fact that the f’s from
which they are constructed, in (3.21) and (3.23), are cubic
in ν. Less surprisingly, the X6

��� are cubic in ν, and more
surprisingly the X4

��� are linear in ν and the X2
��� are

independent of ν. This is all in fact a simple consequence
of (i) the link (3.33) between the scattering-angle coef-
ficients Xk

��� and the radial-action coefficients, and (ii) the
(straightforward) extension of the predicted mass-ratio
dependence (2.41) to kPM order: Xk

��� is a polynomial
of degree bk−1

2
c in ν. This is the spinning analog of the

“hidden simplicity” of the mass dependence of (the local-
in-time part of) the radial action (which is the complete
radial action through the N3LO PN level) emphasized in
Ref. [24]; here in the spin terms, this is crucially dependent
on expressing Ir in (3.33) in terms the covariant Lcov rather
than the canonical L.
Finally, we can make the PN order counting explicit by

restoring factors of 1=c. Through N3LO, (3.33) reads

Ir ¼
�
−LþGMμ

1þ 2ε

c
ffiffiffiffiffiffi
−ε

p þ 1

c2
ðGMμÞ2
πΓLcov

X2 þ
1

c4
ðGMμÞ4

3πðΓLcovÞ3
X4 þ

1

c6
ðGMμÞ6

5πðΓLcovÞ5
X6 þO

�
1

c8

��

þ μ

c
ai

� ðGMμÞ2
2πðΓLcovÞ2

X2
i þ 1

c2
ðGMμÞ4

4πðΓLcovÞ4
X4

i þ 1

c4
ðGMμÞ6

6πðΓLcovÞ6
X6

i þ 1

c6
ðGMμÞ8

8πðΓLcovÞ8
X8

i þO
�
1

c8

��

þ μ2aiaj

� ðGMμÞ2
3πðΓLcovÞ3

X2
ij þ 1

c2
ðGMμÞ4

5πðΓLcovÞ5
X4

ij þ 1

c4
ðGMμÞ6

7πðΓLcovÞ7
X6

ij þ 1

c6
ðGMμÞ8

9πðΓLcovÞ9
X8

ij þO
�
1

c8

��
; ð3:35Þ

with all the coefficients, to the orders in ε ¼ γ2 − 1 ¼ Oðc−2Þ contributing here at N3LO, relative Oðc−6Þ, given explicitly
by (3.34). These depend on the remaining unknowns X1A

kn from the parametrization of the scattering angle at kPM order and
relative nPN order.
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In all the above manipulations, it was consistent to keep
the nonspinning, spin-orbit, and bilinear-in-spin terms all
through the same relative PN orders, here relative 3PN
order, N3LO. However, in matching to self-force results,
due to certain changes of variables discussed below, the
treatment of the N3LO spin-orbit and bilinear-in-spin terms
will require the inclusion of the 4PN nonspinning terms.
We thus need to add to (3.35) the 4PN nonspinning part of
the radial action for bound orbits, which includes contri-
butions from the nonlocal-in-time tail integrals. We present
in Appendix A the additional terms at 4PN order, which
have been computed from (3.25) applied to the 4PN EOB
Hamiltonian derived in [15], valid in an expansion in
eccentricity (about the circular orbit limit) to sixth order.
Replacing the first two lines of (3.35) with (A1) yields the
final form of the radial-action function which we will use to
compute the gauge-invariant quantities to be compared
with self-force calculations.

IV. THIRD-SUBLEADING POST-NEWTONIAN
SPIN-ORBIT AND SPIN1-SPIN2 COUPLINGS

The remaining unknowns in the parametrization of the
scattering-angle function (2.37) can be fixed with available
self-force results. The key feature here is the existence of a
Hamiltonian/radial action allowing us to connect the
scattering angle to the redshift and spin-precession invar-
iants that, in the small-mass-ratio limit, can be matched to
expressions independently calculated in GSF literature.
A vital step in this calculation is the first law of BBH
mechanics, which we extend to aligned-spins and eccentric
orbits.

A. The first law of BBH mechanics

The first law of BBH mechanics [58] was first derived
for nonspinning point particles in circular orbits in
Ref. [58], then generalized to spinning particles on circular
orbits in Ref. [103], to nonspinning particles in eccentric
orbits in Refs. [104,126], and to precessing eccentric orbits
of a point mass in the small mass-ratio approximation
[127]. In the following, we briefly review the arguments
leading to these incarnations of the first law for binaries,
making explicit how they apply to generic mass-ratio
aligned-spin systems on eccentric orbits.
Let us follow Ref. [103] and start out with an action S for

the binary,

S ¼ Sgrav þ S1 þ S2; ð4:1Þ

where the compact objects are approximated by effective
point-particles moving along worldlines xμi ðτiÞ,

Si¼
Z

dτi

�
−miþ

1

2
SiμνΛic

μDΛcν
i

dτ
þλμi Siμν _x

ν
i þ…

�
; ð4:2Þ

and the gravitational action Sgrav is given by the Einstein-
Hilbert one with appropriate gauge-fixing and boundary
terms. Here Λcμ

i are frame transformations between the
coordinate frame and a body-fixed frame (labeled by c ¼ 0,
1, 2, 3) that is Lorentz orthonormal (Λic

μΛidμ ¼ ηcd).
We take τi to be the (full-metric) proper times from now
on. The equations of motion are obtained by varying
the action with respect to the dynamical variables
XA ¼ fxi; Sμν;Λcμ

i ; λμi ; gμνg, leading to Eqs. (2.1)–(2.3);
see, e.g., Refs. [109,120]. The dots in Eq. (4.2) represent
nonminimal (curvature) couplings to the worldline that may
carry undetermined coefficients. These terms also include
couplings of quadratic and higher orders in spin related to
spin-induced multipole moments of the body [109].
Let us write the action as an integral of a Lagrangian L

over coordinate time t as

S ¼
Z

dtL: ð4:3Þ

We can vary the Lagrangian L not only with respect to the
dynamical variables XA, but also vary certain constants
appearing in the action, e.g., the masses CB ¼ fm1; m2g.
Furthermore, taking the dynamical variables XA on shell
(fulfilling their equations of motion) after variation, we
arrive at (using summation convention for A, B)

δL ¼ ∂L
∂CB

δCB þ δL
δXA|{z}

¼0 ðon-shellÞ

δXA þ ðtdÞ; ð4:4Þ

with a total time derivative (td). Now, if one performs a
transformation of the dynamical variables XA → X0

A0 ,
which may depend on the CB, then on shell it holds

δL ¼ ∂L
∂CB

δCB þ
�
δL
δXA|{z}
0

δXA

δX0
A0

∂X0
A0

∂CB
þ ðtdÞ

�
δCB

þ δL
δXA|{z}
0

δXA

δX0
A0
δX0

A0 þ ðtdÞ: ð4:5Þ

Also allowing for changes of the Lagrangian of the form
L ¼ L0 þ ðtdÞ, we arrive at��∂L0

∂CB

�
X0
A0

�
¼

�� ∂L
∂CB

�
XA

�
ðon shellÞ; ð4:6Þ

where the subscripts indicate quantities that are kept fixed
during differentiation and with h…i an appropriate on shell
averaging that removes the total time derivatives.
For generic bound orbits, one can average the con-

servative motion in Eq. (4.6) over an infinite time in order
to remove total time derivatives, which can be traded
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for a phase-space average in regions where the motion is
ergodic; see, e.g., Refs. [127,128]. For the aligned-spin
case where the motion is confined to a plane, all oscillatory
behavior can be removed by an average over a single
orbit [104] (defined as an oscillation cycle of the radial
distance r); this is the averaging used in the present paper.
Further specializing to circular orbits, the radial distance is
constant and hence the average becomes trivial [103].
Finally, note that another benefit of the averaging in
Eq. (4.6) is that it helps to make expressions manifestly
gauge invariant [127], which is important when matching
PN Hamiltonians to (eccentric-orbit) self-force results.
It is straightforward to generalize the discussion from

Lagrangians L0 to Hamiltonians H0. Hamilton’s dynamical
equations for some pairs of canonical variables ðqc; pcÞ are
equivalently encoded by Hamilton’s action principle,

0 ¼ δS ¼ δ

Z
dt

�X
c

pc
dqc

dt
−H0

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
L0

�
: ð4:7Þ

Noting that the dynamical variables are now X0
A0 ¼fqc;pcg,

and that the kinematic p _q-terms in L0 are independent of
the CB, we see that either Lagrangian in Eq. (4.6) can be
replaced byminus a Hamiltonian (i.e., it can be applied also
to canonical transformations between two Hamiltonians).
The rather general on-shell relation (4.6) is interesting on its
own, aside from facilitating the derivation of the first law of
binary dynamics as demonstrated below.
We are now in a position to elaborate on the redshift

variables zi [58,103,104],

zi ≡
�
dτi
dt

�
¼ −

� ∂L
∂mi

�
; ð4:8Þ

where the first equality is the definition of zi adopted by us
and the second equality is a consequence of the definition
of L (4.3) together with the original point-particle action
(4.2),

R
dtL ∼ −mi

R
dtdτi=dt. We note that this relation

holds to all orders in spin if the coefficients in the
nonminimal couplings (the dots) in Eq. (4.2) are normal-
ized such that no further explicit dependence on the masses
mi arises [68]. Now, several nontrivial transformations of
the original action (4.1) are performed to arrive at a PN
Hamiltonian (see, e.g., Refs. [39,103,126]): a transforma-
tion to SO(3)-canonical (Newton-Wigner) variables for the
spin degrees of freedom, integrating out the orbital/near-
zone metric or tetrad field (calculating the “Fokker action”),
reduction of higher-order time derivatives via further
variable transformations, a Legendre transform to the
Hamiltonian H, specialization to the cm system, and
eventually reducing nonlocal-in-time tail contributions to
local ones. However, all of these transformations fall into
the class of transformations ðXA; LÞ → ðX0

A0 ; L0Þ discussed
above, so we may apply Eq. (4.6) (with L0 → −H) to

Eq. (4.8) and conclude that the redshift variables zi can be
obtained from a PN Hamiltonian H via

zi ¼
�∂H
∂mi

�
: ð4:9Þ

Beside the redshift, let us introduce the (averaged)
spin precession frequency Ωi as another important
observable [103],

Ωi ≡ hjΩ⃗inst
i ji: ð4:10Þ

The (instantaneous, directed) precession frequency Ω⃗inst
Si

can be read off from the equations of motion for the SO(3)-
canonical spin vectors Sii generated by the Hamiltonian H,

dS⃗i
dt

¼ Ω⃗inst
i × S⃗i; Ω⃗inst

i ≡ ∂H
∂S⃗i

: ð4:11Þ

Indeed, this describes a precession of the spin vector; it is
straightforward to see that the spin length Si ≡ ðS⃗i · S⃗iÞ1=2 is
constant,

dðS⃗i · S⃗iÞ
dt

¼ 2S⃗i · Ω⃗
inst
i × S⃗i ¼ 0: ð4:12Þ

From now on, as in previous sections, we simplify the
discussion to nonprecessing (aligned or antialigned) spins,
so that Ω⃗inst

i kS⃗i and dS⃗i=dt ¼ 0. That is, the spin degrees of
freedom become nondynamical and can be dropped from
the set of dynamical variables.5 We can now include the
spin lengths into our set of constants, CB ¼ fmi; Sig.
Furthermore, the spin-direction component of the defining
relation for Ω⃗inst

i (4.11) reads jΩ⃗inst
i j ¼ ∂H=∂Si. Hence

Eq. (4.10) becomes

ΩSi ¼
�∂H
∂Si

�
ðnonprecessingÞ: ð4:13Þ

We have now arrived at the important Eqs. (4.9) and (4.13)
for the (gauge-invariant) observables zi and Ωi, that could
be used to relate a PN Hamiltonian H to self-force results
[67,129]. But here, for the purpose of matching to self-
force, we perform a canonical transformation to different
phase-space variables that simplify explicit calculations and
connects to the radial action introduced above.
As a first step in that direction, we choose the (non-

precessing) motion to be in the equatorial plane θ ¼ π=2,
removing the polar angle θ and its canonical conjugate
momentum pθ from the phase space; the Hamiltonian is

5More precisely, their contribution to the kinematic terms in
Hamilton’s principle (4.7) (have to) vanish or turn into total time
derivatives.
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now of the form discussed in Sec. III A. Furthermore, since
we consider a system where the Hamilton-Jacobi equation
is separable, one can construct a special canonical trans-
formation (for bound orbits) where the constant action
variables

Ir ¼
1

2π

I
drpr; Iϕ ¼ 1

2π

I
dϕpϕ ¼ L ð4:14Þ

are the new momenta [130], with the cm orbital angular
momentum of the binary pϕ ≡ L ¼ const conjugate to the
azimuthal angle ϕ. The advantage of these variables for our
purpose is that the averaging h…i over one radial period
becomes trivial due to the integral over one radial period

H
in

their definition. The canonical conjugates to Ir, Iϕ are the so-
called angle variables qr, qϕ and evolve linear in time, i.e.,
their angular frequencies Ωr ¼ _qr, Ωϕ ¼ _qϕ are constant
[130]; overall Hamilton’s equations of motion for the new,
canonically transformed, Hamiltonian H0ðIr; Iϕ ¼ L;CBÞ
read

Ωr ¼
∂H0

∂Ir ¼ const; Ωϕ ¼ ∂H0

∂L ¼ const; ð4:15Þ

_Ir ¼ −
∂H0

∂qr ¼ 0; _L ¼ −
∂H0

∂qϕ ¼ 0: ð4:16Þ

Recalling that CB ¼ fmi; Sig, we can apply Eq. (4.6) (with
both Lagrangians replaced by Hamiltonians) for the canoni-
cal transformation to action-angle variables as well.
Equations (4.9) and (4.13) then turn into

zi ¼
∂H0

∂mi
; Ωi ¼

∂H0

∂Si ; ð4:17Þ

where the averaging over one radial period is inconsequen-
tial and can be dropped. Collecting Eqs. (4.15) and (4.17),
we see that the differential of the cm energy E≡H0 can be
written as

dE ¼ ΩrdIr þ ΩϕdLþ
X
i

ðzidmi þ ΩidSiÞ: ð4:18Þ

In analogy to the first law of thermodynamics for the
differential of the internal energy, this can be called the
first law of conservative spinning binary dynamics for
nonprecessing bound orbits (covering eccentric orbits and
generic mass ratios). It also resembles the first law of BH
thermodynamics, which provides a relation for the differ-
ential of the Arnowitt-Deser-Misner (ADM) energy dmi of
an isolated BH and can be generalized to other compact
objects as well [131]. Recall that Eq. (4.18) is valid to all
orders in spin, if the coefficients of possible nonminimal
coupling terms denoted by dots in Eq. (4.2) are normalized
such that no additional dependence on mi arises. It would
be interesting to consider these coefficients as part of the
constants CB in future work.

Since the fundamental function introduced in the last
section that generates observables for bound orbits is the
radial action IrðE; L;mi; SiÞ, we consider the first law
(4.18) in the form

2πdIr ¼ TrdE −ΦdL −
X
i

ðT idmi þΦidSiÞ; ð4:19Þ

where we have introduced

Tr ¼
2π

Ωr
¼

I
dt; Φ ¼ ΩϕTr ¼

I
dϕ; ð4:20Þ

T i ¼ ziTr ¼
I

dτi; Φi ¼ ΩiTr: ð4:21Þ

As a consequence of the first law, we hence obtain

Tr

2π
¼

�∂Ir
∂E

�
L;mi;Si

; ð4:22aÞ

Φ
2π

¼ −
�∂Ir
∂L

�
E;mi;Si

; ð4:22bÞ

T i

2π
¼ −

�∂Ir
∂mi

�
E;L;mj;Si

; ð4:22cÞ

Φi

2π
¼ −

�∂Ir
∂Si

�
E;L;mi;Sj

: ð4:22dÞ

Now the redshift variables can be calculated, from a given
radial action Ir, as the ratio of proper and coordinate times,

zi ¼
T i

Tr
; ð4:23Þ

which manifestly agrees with the (inverse of the) Detweiler-
Barack-Sago redshift invariant calculated in GSF literature
[59,132]. The spin-precession frequency Ωi is given by
Ωi ¼ Φi=Tr from which we obtain the spin-precession
invariant [69]

ψ i ¼
Ωi

Ωϕ
¼ Φi

Φ
: ð4:24Þ

B. Comparison with self-force results

Starting from the radial action (3.33), we calculate the
redshift z1 and spin-precession invariants ψ1 of the small
body using Eqs. (4.23) and (4.24). To compare with results
available in the literature, we express them in terms of the
gauge-invariant variables,6

6Note that the denominator for ι in Eq. (4.25) is of 1PN order,
which effectively scales down the PN ordering in such a way that
manifestly nonlocal-in-time (4PN nonspinning) terms appear in
the N3LO correction to the spin-precession invariant. For this
reason, we have included the 4PN nonspinning tail terms in the
radial action as discussed at the end of the previous section.
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x ¼ ðGMΩϕÞ2=3; ι ¼ 3x
Φ=ð2πÞ − 1

; ð4:25Þ

which are linked to ðε; LÞ via Eqs. (4.15) and (4.22). The
expressions we obtain for z1ðx; ιÞ and ψðx; ιÞ agree up to
N2LO with those in Eq. (50) of Ref. [67] and Eq. (83) of
Ref. [129]. The full expressions up to N3LO are lengthy,
which is why we provide them as aMathematica file in the
Supplemental Material [133].
Next, we expand U1 ≡ z−11 and ψ1 to first order in the

mass ratio q, first order in the massive body’s spin a2, and
zeroth order in the spin of the smaller companion a1,

U1 ¼ Uð0Þ
1a0

þ âUð0Þ
1a þ qðδUGSF

1a0
þ âδUGSF

1a Þ þOðq2; â2Þ;
ð4:26aÞ

ψ1 ¼ ψ ð0Þ
1a0 þ âψ ð0Þ

1a þ qðδψGSF
1a0 þ âδψGSF

1a Þ þOðq2; â2Þ;
ð4:26bÞ

with â ¼ a2=m2. In performing that expansion, we make
use of the gauge-independent variables y and λ, which are
related to x and ι via

y ¼ ðGm2ΩϕÞ2=3 ¼
x

ð1þ qÞ2=3 ; ð4:27aÞ

λ ¼ 3y
Φ=ð2πÞ − 1

¼ ι

ð1þ qÞ2=3 : ð4:27bÞ

To compare the first-order self-force (1SF) corrections
δUGSF

1��� and δψGSF
1��� with those derived in the literature, we

express the redshift and spin-precession invariants in terms
of the Kerr-geodesic variables ðup; eÞ, where e is the
eccentricity and up is the inverse of the dimensionless
semilatus rectum (see Appendix B for details.) The terms
needed to solve for the N3LO SO unknowns are δUGSF

1a and
δψGSF

1a0 , for which we obtain

δUGSF
1a ¼

�
3 −

7e2

2
−
e4

8

�
u5=2p þ

�
18 − 4e2 −

117e4

4

�
u7=2p þ

�
251

4
þ 1

2
X1b
32 þ

287e2

2
− e4

�
11099

32
þ 15

16
X1b
32

��
u9=2p

þ
�
239

2
−
5

4
X1b
32 −

5

2
X1b
33 þ

4

3
X1b
43 þ e2

�
35441

24
−
41π2

8
−
11

4
X1b
32 −

5

2
X1b
33 þ 2X1b

43

�

þ e4
�
−
230497

96
þ 205π2

32
þ 195

32
X1b
32 þ

135

16
X1b
33 − 5X1b

43

��
u11=2p ; ð4:28aÞ

δψGSF
1a0

¼−upþ
�
9

4
þ e2

�
u2pþ

�
933

16
−
123π2

64
−
1

4
X1t
32þ e2

�
79

2
−
123π2

256
−
3

8
X1t
32

��
u3p

þ
�
−
277031

2880
þ 1256γE

15
þ 15953π2

6144
þ 11

8
X1t
32þ

5

4
X1t
33−

2

3
X1t
43þ

296

15
ln2þ 729

5
ln3þ 628

15
lnup

þ e2
�
20557

480
þ 536γE

5
−
55217π2

4096
þ 55

16
X1t
32þ

25

8
X1t
33− 2X1t

43þ
11720

3
ln2−

10206

5
ln3þ 268

5
lnup

��
u4p: ð4:28bÞ

These results can be directly compared with the GSF
results in Eq. (4.1) of Ref. [65], Eq. (23) of Ref. [134] and
Eq. (20) of Ref. [67] for the redshift, and Eq. (3.33) of
Ref. [72] for the precession frequency. At N2LO, as
expected, our expressions depend on the scattering-angle
coefficients. Upon matching these with the above-men-
tioned equations in the literature, we get the following four
constraints (at each order in eccentricity):

u9=2p

�
1

2
X1b
32 −

97

4
þ e4

�
1455

32
−
15

16
X1b
32

��
¼ 0; ð4:29aÞ

u3p

�
97

8
−
1

4
X1t
32 þ e2

�
291

16
−
3

8
X1t
32

��
¼ 0; ð4:29bÞ

which can be consistently solved for the two unknowns

X1b
32 ¼ X1t

32 ¼
97

2
: ð4:30Þ

Note that the special constraint (2.34), due to symmetry
under interchanging the two bodies’ labels 1 ↔ 2, is thus
satisfied. Similarly, at N3LO order, after substituting in the
N2LO coefficients, it holds that

u11=2p

�
−
26881

72
þ241π2

96
−
5

2
X1b
33þ

4

3
X1b
43

þe2
�
−
1846

3
þ241π2

64
−
5

2
X1b
33þ2X1b

43

�

þe4
�
276775

192
−
1205π2

128
þ135

16
X1b
33−5X1b

43

��
¼0; ð4:31aÞ
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u4p

�
8381

48
−
41π2

16
þ 5

4
X1t
33 −

2

3
X1t
43

þ e2
�
17647

32
−
123π2

16
þ 25

8
X1t
33 − 2X1t

43

��
¼ 0:

ð4:31bÞ

These five equations can be consistently solved for
the remaining four unknowns in the N3LO SO scattering
angle,

X1b
33 ¼ X1t

33 ¼
177

4
;

X1b
43 ¼

17423

48
−
241π2

128
; X1t

43 ¼
2759

8
−
123

32
π2: ð4:32Þ

Again, the special constraint (2.34) is satisfied by X1b
33 and

X1t
33. Considering the S1S2 dynamics, the relevant con-

straints can be obtained from the linear-in-spin correction
to the spin-precession invariant, which in terms of the
remaining unknown coefficients X1×

ij reads

δψGSF
1a1

¼−
u3=2p

2
−
�
41

8
þe2

8

�
u5=2p −

�
63

32
þ123π2

64
þ 3

16
X1×
32 þe2

�
71

4
þ123π2

256
þ 9

32
X1×
32

��
u7=2p

þ
�
75841π2

6144
−
4496717

5760
þ1256γE

15
þ39

32
X1×
32 þ

15

16
X1×
33 −

8

15
X1×
43 þ

296

15
ln2þ729

5
ln3þ628

15
lnup

þe2
�
7703π2

4096
−
1016249

640
þ536γE

5
þ195

64
X1×
32 þ

75

32
X1×
33 −

8

5
X1×
43 þ

11720

3
ln2−

10206

5
ln3þ268

5
lnup

��
u9=2p : ð4:33Þ

At N2LO, this can be matched to Eqs. (52) and (56)
of Ref. [129] to get the two constraints (at each order
in e)

u7=2p

�
75

8
þ 3

16
X1×
32 þ e2

�
225

16
þ 9

32
X1×
32

��
¼ 0; ð4:34Þ

which can be solved for

X1×
32 ¼ −50: ð4:35Þ

Similarly, at N3LO, it holds that

u9=2p

�
−
6299

16
þ123π2

32
þ15

16
X1×
33 −

8

15
X1×
43

þe2
�
−
41943

32
þ369π2

32
þ75

32
X1×
33 −

8

5
X1×
43

��
¼ 0: ð4:36Þ

Each order in eccentricity is solved for the remaining S1S2
unknown coefficients

X1×
33 ¼ −

1383

5
; X1×

43 ¼ −
9795

8
þ 1845π2

256
: ð4:37Þ

Combining the solutions obtained in this section with the
results of Sec. II yields the scattering angle containing the
complete local-in-time conservative SO and S1S2 dynamics
through the third-subleading PN order,

χ

Γ
¼

�
GM
b

ffiffiffi
ε

p
�
2
1þ 2εffiffiffi

ε
p þ

�
GM
b

ffiffiffi
ε

p
�

2 3π

4
ð4þ 5εÞ

−
�
GM
b

ffiffiffi
ε

p
�

3 1ffiffiffi
ε

p
�
2
1 − 12ε − 72ε2 − 64ε3

3ε
þ ν

�
8þ 94εþ 313ε2

12
þOðε3Þ

��

þ
�
GM
b

ffiffiffi
ε

p
�

4

π

�
105

64
ð16þ 48εþ 33ε2Þ þ ν

�
−
15

2
þ
�
123

128
π2 −

557

8

�
εþOðε2Þ

��

−
�

ab
b

ffiffiffi
ε

p
�	�

GM
b

ffiffiffi
ε

p
�
4γ

ffiffiffi
ε

p þ
�
GM
b

ffiffiffi
ε

p
�

2

2πγð2þ 5εÞ

þ
�
GM
b

ffiffiffi
ε

p
�

3 γffiffiffi
ε

p
�
12ð1þ 12εþ 16ε2Þ − ν

�
10εþ 97

2
ε2 þ 177

4
ε3 þOðε4Þ

��

þ
�
GM
b

ffiffiffi
ε

p
�

4

πγ

�
21

2
ð8þ 36εþ 33ε2Þ − ν

�
21

2
þ 495

4
εþ

�
17423

48
−
241π2

128

�
ε2 þOðε3Þ

��
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−
�

at
b

ffiffiffi
ε

p
�	�

GM
b

ffiffiffi
ε

p
�
4γ

ffiffiffi
ε

p þ
�
GM
b

ffiffiffi
ε

p
�

2 3π

2
γð2þ 5εÞ

þ
�
GM
b

ffiffiffi
ε

p
�

3 γffiffiffi
ε

p
�
8ð1þ 12εþ 16ε2Þ − ν

�
10εþ 97

2
ε2 þ 177

4
ε3 þOðε4Þ

��

þ
�
GM
b

ffiffiffi
ε

p
�

4

πγ

�
105

16
ð8þ 36εþ 33ε2Þ − ν

�
9þ 219

2
εþ

�
2759

8
−
123

32
π2
�
ε2 þOðε3Þ

��


þ
�
a1a2
b2ε

�	�
GM
b

ffiffiffi
ε

p
�

4ffiffiffi
ε

p ðεþ 2ε2Þ þ
�
GM
b

ffiffiffi
ε

p
�

2 3π

2
ð2þ 19εþ 20ε2Þ

þ
�
GM
b

ffiffiffi
ε

p
�

3 1ffiffiffi
ε

p
�
8ð1þ 38εþ 128ε2 þ 96ε3Þ þ ν

�
8ε − 50ε2 −

1383

5
ε3 þOðε4Þ

��

þ
�
GM
b

ffiffiffi
ε

p
�

4

π

�
105

16
ð24þ 212εþ 447ε2 þ 264ε3Þ

þ ν

�
15

2
−
405

4
εþ

�
−
9795

8
þ 1845π2

256

�
ε2 þOðε3Þ

��

: ð4:38Þ

Importantly, we have checked that all the above results
can be reproduced by starting from a Hamiltonian ansatz
(rather than a radial action), constraining it via the mass-
ratio dependence of the scattering angle [calculated via
(3.11)], and obtaining the redshift and spin-precession
invariants through Eqs. (4.9) and (4.13).

V. EFFECTIVE-ONE-BODY HAMILTONIAN AND
COMPARISON WITH NUMERICAL RELATIVITY

In this section, we quantify the improvement in accuracy
from the new N3LO SO and S1S2 corrections using
numerical relativity (NR) simulations as means of com-
parison. We do this using an EOB Hamiltonian, calculated
using the scattering angle obtained above, since the
resummation of PN results it grants is expected to improve
the agreement with NR in the high-frequency regime.
The EOB Hamiltonian is calculated from an effective

Hamiltonian Heff via the energy map

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
; ð5:1Þ

where we use for the effective Hamiltonian an aligned-spin
version of the Hamiltonian for a nonspinning test mass in a
Kerr background (denoted SEOBTM in Ref. [54]) with SO
and S1S2 PN corrections. The effective Hamiltonian is
given by

Heff ¼
�
A

�
μ2 þ p2 þ Bpr

p2
r þ BL

L2a2

r2
þ μ2Q

��
1=2

þ GMr
Λ

LðgSSþ gS�S�Þ; ð5:2Þ

where Λ ¼ ðr2 þ a2Þ2 − Δa2 with Δ ¼ r2 − 2GMrþ a2.
The Kerr spin a is mapped to the binary’s spins via
a ¼ a1 þ a2, and the potentials are taken to be

A ¼ Δr2

Λ
ðA0 þ ASSÞ; ð5:3aÞ

Bpr
¼

�
1 −

2GM
r

þ a2

r2

�
ðA0D0 þ BSS

pr
Þ − 1; ð5:3bÞ

BL ¼ −
r2 þ 2GMr

Λ
; ð5:3cÞ

Q ¼ Q0 þQSS; ð5:3dÞ
i.e., we factorize the PN corrections to the Kerr potentials.
The zero-spin corrections A0ðrÞ, D0ðrÞ, and Q0ðrÞ are
given by Eq. (28) of Ref. [54] and are based on the 4PN
nonspinning Hamiltonian derived in Ref. [15]. The SO
corrections are encoded in the gyro-gravitomagnetic factors
gS, and gS� , while the S1S2 corrections are added through
ASS, BSS

pr
, and QSS.

For those PN corrections, we choose a gauge such that gS
and gS� are independent of L [46,47,135]; we write an
ansatz such that, up to N3LO,

gSðr; prÞ ¼ 2
X3
i¼0

Xi

j¼0

αij
p2ði−jÞ
r

c2irj
;

gS� ðr; prÞ ¼
3

2

X3
i¼0

Xi

j¼0

α�ij
p2ði−jÞ
r

c2irj
; ð5:4Þ

for some unknown coefficients αij and α�ij. For the S1S2
corrections, ASS and BSS

pr
start at NLO and are independent

of pr, while QSS starts at NNLO and depends on p4
r or

higher powers of pr, i.e., we use an ansatz of the form
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ASS ¼ S1S2

�
αA4
c6r4

þ αA5
c8r5

þ αA6
c10r6

�
;

BSS ¼ S1S2

�
αB3
c4r3

þ αB4
c6r4

þ αB5
c8r5

�
;

QSS ¼ S1S2

�
αQ34

p4
r

c6r3
þ αQ44

p4
r

c8r4
þ αQ36

p6
r

c8r3

�
: ð5:5Þ

To determine those unknowns, we calculate the scattering
angle from such an ansatz using Eq. (3.11) (which entails

inverting the EOB Hamiltonian for pr in a PN expansion,
differentiating with respect toL, and integrating with respect
to r). We then match the result of that calculation to the
scattering angle calculated in the previous section and solve
for the unknown coefficients in the Hamiltonian ansatz. This
uniquely determines all the coefficients of the spinning part
of the Hamiltonian since our choice for the ansatz fixes the
gauge dependence of the Hamiltonian. (See Sec. III A for a
discussion of the gauge freedom in the Hamiltonian.)
We obtain the gyro-gravitomagnetic factors

gS ¼ 2

	
1þ ν

c2

�
−
27

16

p2
r

μ2
−

5

16

GM
r

�
þ ν

c4

��
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16
þ 35ν

16

�
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r

μ4
−
�
21

4
−
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16

�
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r

μ2
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r

−
�
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8
þ ν

16

� ðGMÞ2
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�

þ ν

c6

��
−
80399

2304
þ 241π2

384
þ 379ν

64
−
7ν2

256

� ðGMÞ3
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þ
�
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32
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μ4
GM
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�
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−
63ν
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−
665ν2

256

�
p6
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μ6

�

; ð5:6aÞ

gS� ¼
3

2
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; ð5:6bÞ

and the S1S2 corrections

ASS ¼ S1S2
G2M2μ2

	ðGMÞ4
c6r4

ð2ν − ν2Þ þ ðGMÞ5
c8r5

�
17ν

2
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8
þ 3ν3

4
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þ ðGMÞ6
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�
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41π2ν2
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4
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; ð5:7aÞ

BSS
pr
¼ S1S2
G2M2μ2

	ðGMÞ3
c4r3

�
6νþ9

2
ν2
�
þðGMÞ4

c6r4
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c8r5

�
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4
−
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�

; ð5:7bÞ

QSS ¼ S1S2
G2M2μ2

	
1

c6
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4

�
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�
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16

��

: ð5:7cÞ

Importantly, the factors gS and gS� , obtained here for the
aligned-spin case, also fix the generic-spin case by simply
writing the odd-in-spin part of the effective Hamiltonian as

Hodd
eff ¼ GMr

Λ
L · ðgSSþ gS�S�Þ; ð5:8Þ

with gS and gS� unmodified since they are independent of
the spins (see Ref. [102] for more details.) However, the
spin1-spin2 corrections in Eq. (5.7) are only for aligned
spins since the generic-spin case has additional contribu-
tions proportional to ðn · S1Þðn · S2Þ, where n ¼ r=r. Such
terms vanish for aligned spins and cannot be fixed from
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aligned-spin self-force results or be removed by canonical
transformations.
For comparison with NR, a particularly good quantity to

consider is the binding energy, since it encapsulates the
conservative dynamics of analytical models, and can be
obtained from accurate NR simulations [136,137]. The NR
data for binding energy that we use were extracted in
Ref. [138] from the Simulating eXtreme Spacetimes
catalog [139]. The binding energy calculated from NR
simulations is defined by

ENR
b ¼ EADM − Erad −Mc2; ð5:9Þ

where Erad is the radiated energy, and EADM is the ADM
energy at the beginning of the simulation. We then calculate
the binding energy from the EOB conservative Hamiltonian

using Eb ¼ HEOB −Mc2 for exact circular orbits at differ-
ent orbital separations, i.e., we neglect the radiation
reaction due to the emitted GWs. As a result of this
assumption, the circular-orbit binding energy we calculate
is not expected to agree with NR in the last few orbits.
To obtain the binding energy from a Hamiltonian in an

analytical PN expansion, we set pr ¼ 0 for circular orbits
and perturbatively solve _pr ¼ 0 ¼ −∂H=∂r for the angular
momentum L. The orbital frequency ω is given by ω ¼
∂H=∂L from which we define the velocity parameter

vω ¼ ðGMωÞ1=3: ð5:10Þ

Expressing the PN-expanded Hamiltonian in terms of vω
yields, for the SO part,

ESO
b;PN ¼ ν

GM

	
v5ω

�
−
4

3
S − S�

�
þ v7ω

�
S

�
31ν

18
− 4

�
þ S�

�
5ν

3
−
3

2

��

þ v9ω

�
S
24

ð−324þ 633ν − 14ν2Þ þ S�

8
ð−27þ 156ν − 5ν2Þ

�

þ v11ω

�
S

�
−45þ 19679þ 174π2

144
ν −

1979

36
ν2 −

265

3888
ν3
�
−
S�

8

�
135

2
− 565νþ 1109

3
ν2 þ 50

81
ν3
��


; ð5:11Þ

while for the S1S2 part,

ESS
b;PN¼

S1S2
G2M3

�
v6ωþv8ω

�
5

6
þ 5

18
ν

�
þv10ω

�
35

8
−
1001

72
ν−

371

216
ν2
�
þv12ω

�
243

16
þ123π2−4214

32
νþ147

8
ν2þ13

16
ν3
��

: ð5:12Þ

The same steps can be performed numerically to obtain
the EOB binding energy without a PN expansion.
To examine the effect of the new N3LO terms on

the binding energy, we isolate the SO and the S1S2
contributions to the binding energy by combining configu-
rations with different spin orientations (parallel or anti-
parallel to the orbital angular momentum), as explained in
Refs. [138,140]. For the SO contribution, we use

ESO
b ðν; â; âÞ ¼ 1

2
½Ebðν; â; âÞ − Ebðν;−â;−âÞ� þOðâ3Þ;

ð5:13Þ

while for the S1S2 contribution, we use

ESS
b ðν; â; âÞ ¼ Ebðν; â; 0Þ þ Ebðν; 0;−âÞ − Ebðν; â;−âÞ

− Ebðν; 0; 0Þ þOðâ3Þ: ð5:14Þ

In Fig. 1, we plot the SO contribution to the EOB and
PN-expanded binding energies versus the velocity param-
eter vω for spin magnitudes â ¼ 0.6. We also plot the NR
results by combining the binding energies of configurations

with different spins using results from Refs. [138,139].
From the figure, we see that, adding each PN order
improves agreement of the EOB binding energy with
NR, especially in the high-frequency regime, with better
improvement for equal masses than for unequal masses. In
contrast, the PN binding energy, plotted using Eq. (5.11),
seems not to converge toward NR in the high-frequency
regime, with little difference between the N2LO and N3LO
SO orders. Figure 2 shows the S1S2 contribution to the
EOB and PN binding energies. As in the SO case, adding
the new N3LO significantly improves agreement of the
EOB binding energy to NR, especially for equal masses,
but there is little difference between PN orders for the PN
binding energy.
Note that Figs. 1 and 2 should not be interpreted as a

direct comparison between PN and EOB dynamics since
our results were obtained for simplicity using exact circular
orbits, which leads to a very different behavior than for an
inspiraling binary; Refs. [80,137,138], e.g., show that EOB
results are significantly better than PN when taking into
account the binary evolution. Let us also stress that while
the EOB and PN curves are based on the same PN
information, the EOB Hamiltonian represents a particular
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resummation of the PN results. We leave the exploration
of other resummations and a calibration to NR for future
work.

VI. CONCLUSIONS

GW astronomy allows a multitude of applications in
fundamental and astrophysics [1–4] that rely on accurate

waveform models for inferring the source parameters.
In this paper, we improved the PN description of spinning
compact binaries using information from relativistic scat-
tering and self-force theory, which is an extension of the
approach introduced and used in Refs. [23,24,100] for the
nonspinning case. We started by extending the arguments
from Ref. [100] to show that the scattering angle for an
aligned-spin binary has a simple dependence on the masses.

FIG. 1. Binding energy versus the velocity parameter vω for the SO contribution to the EOB (left panels) and PN-expanded (right
panels) binding energies for mass ratios q ¼ 1 (top panels) and q ¼ 1=3 (bottom panels).

FIG. 2. Binding energy versus the velocity parameter vω for the S1S2 contribution to the EOB (left panels) and PN-expanded (right
panels) binding energies for mass ratios q ¼ 1 (top panels) and q ¼ 1=3 (bottom panels). The NR error is indicated by the shaded
regions.
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This allowed us to determine the SO and aligned S1S2
couplings through N3LO in a PN expansion using GSF
results for the redshift and precession frequency of a small
body on an eccentric orbit in a Kerr background. This result
is neatly encapsulated in the gauge-invariant aligned-spin
scattering-angle function, given explicitly in Eq. (4.38).
The derivation presented here provides the full details for
the recently reported result at SO level in Ref. [102], while
extending the analysis to aligned S1S2 couplings.
Using these new PN results, we calculated the circular-

orbit binding energy, theEOBgyro-gravitomagnetic factors,
and implemented these results in an EOB Hamiltonian.
To illustrate the effect of the newN3LO terms, we compared
the binding energy with NR simulations (see Figs. 1 and 2,)
showing an improvement over the N2LO. These results
could be implemented in state-of-the-art SEOBNR [48–51]
and TEOBResumS [52,53] waveform models used in LIGO-
Virgo searches and inference analyses [4].
While it is arguable whether PM results already provide a

useful resummation of the PN ones [89], the present work
shows that, with the crucial contribution of GSF theory,
advances in PM theory already allow one to advance the PN
knowledge in the spin sector. We thus beseech further
research to explore synergies between GSF, PM, and PN
theory, along the lines of Refs. [23,24,26,27,45,102] and
the present paper. One could, for instance, extend the
results in this paper to N3LO S2 couplings, i.e., at quadratic
order in each spin. This is an important step to complete the
aligned-spin 5PN dynamics for BBHs. However, we leave
such a calculation for future work, since it would require
currently unavailable GSF results.
One can envision further important work at the interface

between the PM and GSF approximations. With knowledge
of first-order GSF theory, one can in principle determine
the full 3PM and 4PM scattering angles in a completely
independent way from techniques employed, e.g., in
Ref. [85]. To this end, one could calculate the PM expansion
of GSF gauge-invariant quantities for bound orbits directly
(e.g., expansions inup valid at all orders in the eccentricitye).
This enterprise would have to take great care in the inclusion
of tail terms in the dynamics, as well as in the analytical
continuation of such results to scattering systems. Should
these quantities be calculated, one could exploit the method
herein presented to fix the 3PM and 4PM scattering angles
without further PN reexpansions. Even better would be a
direct GSF treatment of scattering orbits and the scattering
angle. This is likely to first come in the form of numerical
calculations at first order in the mass ratio. It will however be
worth exploring whether “experimental mathematics” tech-
niques can be used to obtain analytic expressions for the 4PM
scattering angle by pushing such numerical calculations to
extreme precision (see, e.g., Ref. [62] for an example along
these lines in the GSF literature).
Finally, we stress that it is paramount to check our results

with more established PN calculations (e.g., with the EFT

approach, as was done partially at N3LO in Refs. [33,37]),
as they have been obtained with a so-far completely
unexplored method in the spinning sector that is begging
to be further scrutinized.
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APPENDIX A: THE NONSPINNING 4PN TERMS
IN THE BOUND RADIAL ACTION THROUGH

SIXTH ORDER IN ECCENTRICITY

Here we present the additional 4PN-order terms in the
radial action for bound orbits, computed via (3.25) applied
to the 4PN EOB Hamiltonian given in [15], valid to sixth
order in the orbital eccentricity e. Note that the expansion in
eccentricity has occurred only in the 4PN terms, at Oðc−8Þ,
where it is sufficient to use the Newtonian relation
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εðL=GMμÞ2

p
þOðc−2Þ. The complete radial

action we employ above, through 4PN order for the
nonspinning terms and through NNNLO for the spin terms,
is obtained by replacing the first two lines of (3.35) with

Ir ¼ −Lþ GMμ
1þ 2ε

c
ffiffiffiffiffiffi
−ε

p þ 1

c2
ðGMμÞ2
πΓLcov

X2

þ 1

π

X4
l¼2

1

c2l
ðGMμÞ2l
ðΓLcovÞ2l−1

X̄2l

2l − 1
þ 1

c8
Oðe8Þ þO

�
1

c10

�
;

ðA1Þ
where

X̄4

3π
¼ 5

4
ð7 − 2νÞ þ

�
105

4
þ
�
41

128
π2 −

557

24

�
ν

�
ε

þ
�
1155

64
þ
�
65383

1440
þ 33601

24576
π2 −

74

15
γE

−
6122

3
ln 2þ 24057

20
ln 3þ 74

15
ln
cLcov

GMμ

�
ν

−
81

32
ν2 þ 45

16
ν3
�
ε2 þOðε3Þ; ðA2Þ

X̄6

5π
¼ 231

4
þ
�
123

128
π2 −

125

2

�
νþ 21

8
ν2
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�
9009

32
þ
�
−
64739

240
þ 51439

4096
π2 −

244

5
γE

−
60172

15
ln 2þ 22599

10
ln 3þ 244

5
ln
cLcov
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ν

þ
�
483

8
−
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and

X̄8

7π
¼ 32175

64
þ
�
−
534089

720
þ 425105

24576
π2 −

170

3
γE

−
9982

5
ln 2þ 21141

20
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ln
cLcov
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�
ν
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24
−
1025
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π2
�
ν2 −

15

8
ν3 þOðεÞ: ðA4Þ

APPENDIX B: KERR-GEODESIC VARIABLES

We provide here the relevant details to compute the
change of variables from ðy; λÞ to ðup; eÞ needed for
comparison with the 1SF calculations of the perturbed
redshift and spin precession invariants. Since we are
working with perturbed quantities, we need only compute
this change of variables at the geodesic level.
The geodesic equations in Kerr spacetime when special-

ized to the equator θ ¼ π
2
are

_t ¼ 1

Σ

�
E

�ðr2 þ a2Þ2
Δ

− a2
�
þ aL

�
1 −

r2 þ a2

Δ

��
; ðB1Þ

_r ¼ 1

Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðr2 þ a2Þ − aLÞ2 − Δðr2 þ ðL − aEÞ2Þ

q
; ðB2Þ

_ϕ ¼ 1

Σ

�
ðL − aEÞ þ a

Δ
ðr2E − aðL − aEÞÞ

�
; ðB3Þ

where ⋅ ≡ d
dτ. The radial motion is commonly parametrized

using the Darwin relativistic anomaly χ as

r ¼ m2p
ð1þ e cos χÞ ; ðB4Þ

where e is the eccentricity and p the (dimensionless)
semilatus rectum. This defines the turning points of the
orbit to be at χ ¼ 0; π. Note that here we use p instead of

up ≡ 1=p from the text since it makes the equations below
simpler. To determine the constants of motion E, L as
functions of ðp; eÞ, we set _r ¼ 0 at the turning points.
While these simultaneous equations can be solved fully,
we give their expansion in a, which will be sufficient for
this work,

E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp−2Þ2−4e2

pðp−3−e2Þ

s
−

ðe2−1Þ2
pðp−3−e2Þ3=2aþOða2Þ; ðB5Þ

L ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p − 3 − e2

p þ ð3þ e2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Þ2 − 4e2

pðp − 3 − e2Þ3

s
aþOða2Þ:

ðB6Þ

Next, we calculate the radial and azimuthal periods Tr0
and Φ0 in the Kerr background geometry,

Tr0 ¼
I

dt ¼
Z

2π

0

dt
dχ

dχ; ðB7Þ

Φ0 ¼
I

dϕ ¼
Z

2π

0

dϕ
dχ

dχ; ðB8Þ

where

dt
dχ

¼ _t
_r
dr
dχ

;
dϕ
dχ

¼
_ϕ

_r
dr
dχ

: ðB9Þ

Further expanding the integrands in eccentricity, and
integrating order by order in a and e gives for the periods
a result of the form

Tr0ðp; eÞ ¼ T0
r0ðp; eÞ þ T1

r0ðp; eÞaþOða2Þ; ðB10Þ

Φ0ðp; eÞ ¼ Φ0
0ðp; eÞ þΦ1

0ðp; eÞaþOða2Þ; ðB11Þ

with

T0
r0¼

2πp2ffiffiffiffiffiffiffiffiffiffi
p−6

p
�
1þ3ð2p3−32p2þ165p−266Þ

4ðp−6Þ2ðp−2Þ e2
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64ðp−6Þ4ðp−2Þ3 e4þOðe6Þ

�
; ðB12Þ

T1
r0 ¼ −

6π
ffiffiffiffi
p

p ðpþ 2Þ
ðp − 6Þ3=2

�
1þ ð2p3 − 32p2 þ 139pþ 6Þ

4ðp − 6Þ2ðpþ 2Þ e2 þ ð24p5 − 656p4 þ 6844p3 − 32576p2 þ 60889pþ 210Þ
64ðp − 6Þ4ðpþ 2Þ e4

þOðe6Þ
�
; ðB13Þ

and
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Φ0
0 ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffi
p

p − 6

r �
1þ 3

4ðp − 6Þ2 e
2 þ 105

64ðp − 6Þ4 e
4 þOðe6Þ
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Φ1
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�
: ðB15Þ

With these, we can use Eq. (4.27a) to obtain ðy; λÞ to the desired 4.5PN accuracy by expanding about small up ¼ 1=p as

yðup; eÞ ¼ y0ðup; eÞ þ ayaðup; eÞ þOða2; u6pÞ; ðB16Þ

λðup; eÞ ¼ λ0ðup; eÞ þ aλaðup; eÞ þOða2; u5pÞ; ðB17Þ
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