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The study of scattering encounters continues to provide new insights into the general relativistic two-
body problem. The local-in-time conservative dynamics of an aligned-spin binary, for both unbound and
bound orbits, is fully encoded in the gauge-invariant scattering-angle function, which is most naturally
expressed in a post-Minkowskian (PM) expansion, and which exhibits a remarkably simple dependence on
the masses of the two bodies (in terms of appropriate geometric variables). This dependence links the PM
and small-mass-ratio approximations, allowing gravitational self-force results to determine new post-
Newtonian (PN) information to all orders in the mass ratio. In this paper, we exploit this interplay between
relativistic scattering and self-force theory to obtain the third-subleading (4.5PN) spin-orbit dynamics for
generic spins, and the third-subleading (SPN) spin;-spin, dynamics for aligned spins. We further
implement these novel PN results in an effective-one-body framework and demonstrate the improvement
in accuracy by comparing against numerical-relativity simulations.
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I. INTRODUCTION

The burgeoning field of gravitational-wave (GW)
astronomy has already shown its potential to revolutionize
our understanding of our universe [1], gravity [2], and the
nature of compact objects [3,4], such as black holes (BHs)
and neutron stars. The detection of compact-binary GW
sources and the accurate inference of their parameters is
contingent on having accurate theoretical predictions for
their coalescence. As a result of this, a variety of tech-
niques, both analytical and numerical, have been developed
to understand the coalescence of binary compact objects,
with the final goal of providing faithful waveform models
that can be used in GW data analysis.

Post-Newtonian (PN) theory, the best known of the
analytical techniques, has provided the foundation for the
analytical studies of the two-body problem in general
relativity which are most directly useful for gravitational-
wave astronomy [5-12]. In this approximation, most
applicable to bound systems, one simultaneously assumes
weak gravitational potential and small velocities, i.e.,
GM /rc? ~ v?/c* < 1.The PN expansion is thus a powerful
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tool for describing the early inspiral of the binaries observed
by LIGO and Virgo [4,13]. PN studies have been carried
out at high orders both in the nonspinning [14-27] and in the
spinning sectors, including spin-orbit (SO) [28-33],
bilinear-in-spin (spin;-spin,, S;S,) [34-37], and spin-
squared (S?) [37-40] couplings, as well as cubic and
higher-in-spin corrections [41-45]. PN information on the
spin dynamics has also been included in effective-one-body
(EOB) waveform models [46-54].

In parallel to PN formalisms, the small-mass-ratio
approximation, based on gravitational self-force (GSF)
theory, has also seen rapid development (see Ref. [55]
and references therein for a review). As suggested by the
name, the expansion parameter in this limit is the mass ratio
of the two bodies ¢ = m;/m, < 1. The leading order in
this approximation is given by the geodesic motion of a test
body in a Schwarzschild or Kerr background. Successive
corrections, which can be interpreted as a force moving the
body away from geodesic motion, are due to the perturba-
tion of the background sourced by the small body’s nonzero
stress-energy tensor. This self-force effect on the motion of
a nonspinning body has currently been numerically calcu-
lated to first order in ¢ for generic orbits in Kerr spacetime
[56]. In a recent breakthrough [57], the second-order-in-¢
binding energy in a Schwarzschild background has been
calculated and compared to predictions from the first law of
binary black-hole mechanics [58]. Meanwhile, much
activity has led to the analytic calculation at very high
PN orders (but at first order in g) of gauge-invariant
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quantities, such as the Detweiler redshift [59-68] and the
precession frequency [67,69-74], including effects of the
smaller body’s spin. This has quite naturally led to related
activity in confronting and validating the PN and GSF
approximations [58,75,76] in the domain which both are
valid, i.e., for large orbital separations and small mass
ratios, as well as in constructing EOB models based on both
approximations [77-80].

Recently, there has also been rapid advance in under-
standing and employing post-Minkowskian (PM) techniques,
using a weak-field approximation GM /rc* < 1 in a back-
ground Minkowski spacetime, with no restriction on the
relative velocity of the two bodies [81-86]. This approxima-
tion most naturally applies to the weak-field scattering of
compact objects, in which possibly relativistic velocities can
be reached. Recent advances in PM gravity and in our
understanding of the scattering of compact objects have been
spearheaded by modern on-shell scattering-amplitude tech-
niques, developed originally in the context of quantum
particle physics (see, e.g., Ref. [86] and references therein).

Scattering amplitudes were used in Ref. [83] to calculate
the nonspinning 2PM (O(G?), one-loop) scattering angle,
reproducing with astonishing efficiency the decades-old
results of Westpfhal [87,88] obtained by classical methods;
an equivalent canonical Hamiltonian at 2PM order was
derived from amplitudes in Ref. [84]. The scattering angle
plays a key role in PM gravity: it encodes the complete
local-in-time conservative dynamics of the system (at least
in a perturbative sense) and it can be used to specify a
Hamiltonian in a given unique gauge [82], which can in
turn be used for unbound as well as bound systems (with
potential relevance for improving waveform models [89]);
see in particular Refs. [90,91]. In Refs. [85,86], the
scattering angle and a corresponding Hamiltonian have
been obtained at 3PM (two-loop) order for nonspinning
systems, and the results have been confirmed and
expounded upon in Refs. [24,92-94].

The PM approximation for two-spinning-body systems
was first tackled only very recently, with the SO dynamics
at the 1PM and 2PM levels first derived by classical means
in Refs. [95,96]. These results have since been confirmed
by amplitudes methods in Ref. [97], which also gave the
1PM and 2PM dynamics for the S;S, sector, rounding out
the current state of the art for generic-spin PM results
beyond tree level. Several other works have also considered
amplitudes methods in relation to spinning two-body
systems, also beyond the SO and S;S, sectors (beyond
the dipole level in the bodies’ multipole expansions), in
particular for special cases such as bodies with black-hole-
like spin-induced multipole structure and/or for the aligned-
spin configuration (in which the bodies’ spins are [anti-]
parallel to the orbital angular momentum); see, e.g.,
[45,98,99] and references reviewed therein.

These works demonstrate that the study of gravitational
scattering continues to provide novel results and useful

insights on the relativistic two-body problem, with impli-
cations for precision gravitational-wave astronomy yet to
be explored. A particularly powerful example of such an
insight concerns the nontrivially simple dependence of the
scattering-angle function on the masses [100] (see also
[86,90,101]). This was exploited in Refs. [23,24] to
obtain almost all the SPN dynamics (with the exception
of 2 of 36 coefficients in the EOB Hamiltonian; see also
Refs. [18,21]) from first-order self-force calculations (while
appropriately dealing with nonlocal-in-time tail terms).
This approach has also been used in Refs. [26,27] to
obtain most of the 6PN dynamics. An extension of this
approach to spinning systems was used by the current
authors in Ref. [102] to obtain the next-to-next-to-next-to-
leading order (N°LO) SO PN dynamics.

In this paper, we provide details for the calculation of the
N3LO-PN SO dynamics presented in Ref. [102], which
completes the PN knowledge at 4.5PN order together with
the NLO S3 dynamics from Ref. [41] (see also [45]).
Furthermore, we extend our analysis to include a derivation
of the N°LO S, S, effects, contributing at 5PN order, for the
case of spins aligned with the orbital angular momentum.
We note that partial results of the N3LO-PN SO and
N3LO S;S, dynamics have previously been presented in
Refs. [33,37], where all terms at G* were calculated within
the powerful effective field theory framework using
Feynman integral calculus. The latter of these references
give further results for all quadratic-in-spin terms at N3LO.

Our derivations are organized in the following procedure:

(1) We argue that the scattering angle for an aligned-
spin binary has a simple dependence on the masses
(when expressed in terms of appropriate geometrical
variables), which extends the result of Ref. [100] for
nonspinning binaries. This mass dependence implies
that the 4PM part of the scattering angle, which
encodes the N>LO PN dynamics, is determined by
terms up to linear order in the mass ratio. We use
analytic results for the test-spin scattering angle to
fix all terms at zeroth order in the mass ratio, leaving
the linear terms to be fixed by first-order GSF
results.

(2) Assuming the existence of a PN Hamiltonian at the
desired 4.5PN SO and 5PN S, S, orders, and making
use of its associated mass-shell constraint with
undetermined coefficients, we calculate the scatter-
ing angle and match it to the constrained form from
step 1. This procedure fixes its lower orders in
velocity at 3PM and 4PM orders, leaving but half of
the linear-in-mass-ratio coefficients to be determined
by GSF calculations. We construct the bound-orbit
radial action from the scattering angle (via the
Hamiltonian dynamics), noting its simple depend-
ence on the bodies’ masses.

(3) From the radial action, we calculate the redshift and
spin-precession invariants and compare them with
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GSF results available in the literature to determine
the remaining coefficients of the scattering angle.
Vital to this step is the first law of spinning binary
mechanics [58,103,104], which is used to relate the
radial action to the redshift and precession fre-
quency, and for which we herein discuss an exten-
sion to arbitrary-mass-ratio aligned-spin eccentric
orbits.

(Although we work with aligned spins throughout, we note

that the aligned SO result actually fixes the SO Hamiltonian

also for precessing spins [102].)

The paper is organized as follows. Sections II, III, and IV
discuss points 1, 2, and 3, respectively. In Sec. V, we
implement the new PN results in the scattering angle in an
EOB model and use it to compare our results against NR
simulations. We conclude in Sec. VI with a discussion of
results and potential future work. Finally, Appendix A
contains expressions for tail terms in the radial action,
while Appendix B contains explicit expressions for a
certain mapping between variables used to connect redshift
and precession-invariant results from the radial action to
GSF results in the literature, which have been previously
erroneously (yet innocuously) reported in the literature.

A. Notation

We use the metric signature (—, +, +, +), and use units
in which the speed of light is ¢ = 1. For a binary of
compact objects with masses m; and m,, we use the
following combinations of the masses:

mpmy H
M: . = s = —,
my + my M v
mi my — N,y
= —, 6=—"—1—, 1.1
1 my M ( )

with m; < m,. We often make use of the rescaled versions
of the canonical spins S; and S,, i.e.,

S S
aI:—l, aZ:—z, (1.2)
my my
and define the following combinations of spins:
S=8 +8, S ="28 +g,
m my
S S
=—, =, 1.3
a, M a M (1.3)

The relative position and momentum three-vectors are
denoted by r and p, respectively. Using an implicit
Euclidean background, it holds that

L2

P=pits.  p=np. L=rxp. (14)

where n = r/r with r = |r|, and L is the orbital angular
momentum with magnitude L.

II. THE MASS DEPENDENCE OF THE
SCATTERING ANGLE

Here we argue that the structure of the PM expansion,
applied to the conservative orbital dynamics of a two-
massive-body system, leads to simple constraints on the
dependence of the scattering-angle function on the bodies’
masses, at fixed geometric quantities characterizing the
incoming state. We closely follow the arguments given in
Sec. II of Ref. [100] for the nonspinning case, considering
only the local-in-time, conservative part of the dynamics,
while generalizing to the case of spinning bodies, finally, in
the aligned-spin configuration.

The motion of a two-point-mass system (the nonspin-
ning case) is effectively governed by the coupled system of
(i) geodesic equations for the worldlines of the two point
masses, using the full two-body spacetime metric (with
a suitable regularization or renormalization procedure)
and (ii) Einstein’s equations for the metric, sourced by
effective point-mass energy-momentum tensors. In the
case of spinning bodies, to dipolar order in the bodies’
multipole expansions, the geodesic equations are replaced
by the pole-dipole Mathisson-Papapetrou-Dixon (MPD)
equations [105-107],

Dpi 1 <y QPO
dT./‘ — Elepo_xi S{ , (2 la)
DS/ ’
= 2pVi, (2.1b)
0= p;,S™, (2.1¢)

where, for the ith body (i =1, 2), pé‘ (7;) is the linear
momentum vector, $/“(z;) is the antisymmetric spin
(intrinsic angular momentum) tensor, and x!(z;) is the
tangent to the body’s worldline x;(z;). The constraint (2.1c¢),
the “covariant” or Tulczyjew-Dixon spin supplementary
condition [108-111], combined with (2.1a) and (2.1b),
uniquely determines a first-order equation of motion for the
worldline, & = & (x;, p;. S;)[g]. The corresponding effec-
tive energy-momentum tensor,

=3 / dr, [pgﬂxp %

*(x —xp)
+V (Sf("icf) 7)] 22
: N (2:2)
sources Einstein’s equations,
1
R,, —Rg,, = 8xGT,,. (2.3)

2
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In the PM scheme, an iterative solution to these equations is
obtained as an expansion in G of the worldlines, momenta
and spins,

x"l(’fi) = io(Ti) + leill (Ti) + szjilz(’fi) +ee
pi(z) = Plo(m) + Gply () + GPply(z) + - -,

St () = St (7)) + GS (7)) + G285 () + -+ -, (2.4)
and of the metric,
.guz/(x) = M + Gh];w(x) + Gth;w(x) +eee (25)

where 7, is the Minkowski metric, which we henceforth
use instead of the full metric g, for all four-vector
manipulations (index raising and lowering, dot products
and squares of vectors, etc.).

At the leading orders in (2.4), given by the solutions to
(2.1) with g =75, each body moves inertially in flat
spacetime,

xo(m) =¥ +ul'z,

Plo(mi) = muf,

Sk (1) = me jpul af . (2.6)
Here, y! are constant displacements from the origin at
7; = 0, and ué‘ are constant four-velocities, with “12 = -1,
so that 7; are the (Minkowski) proper times, and p? = —m?
where m; are the constant rest masses. The zeroth-order
spin tensors S, are also constant, and, being orthogonal to
Uiy, have been parametrized in terms of a constant mass-

rescaled (Pauli-Lubanski, covariant) spin vector,

(2.7)

= = el S5
with dimensions of length, the magnitude of which would
measure the radius of the ring singularity of a correspond-
ing (linearized) Kerr black hole. We identify the zeroth-
order geometric (mass-independent) quantities, y’i‘ , ué‘ , and
a!, with those characterizing the asymptotic incoming
state, along with the masses m; and m,.

Inserting (2.6) into (2.2) (with g = ) yields the zeroth-
order stress-energy tensor, which serves as a source for
the first-order metric perturbation h,,, in the linearization
of (2.3). The solution for the trace-reversed H}" =
K" =in*hy,?, in harmonic gauge (9,h4" = 0), reads

T UU v v o 1
R (x) = 4§ijmi<ué‘ui +ule”) ol atd’) o @8

where r; = {(x—y;)?+[u;- (x—y;)]*}'/? is the (Minkowski)
distance of the field point x from the (zeroth-order, flat

geodesic) worldline x;y = y; + u;7; in its rest frame, and 0,
is the flat covariant derivative. (Note that the result for
the first-order field (2.8) would be the same whether we
used the physical retarded Green’s function or the time-
symmetric Green’s function, given the nature of the
zeroth-order source, constant momentum and spin along
a flat-spacetime geodesic.) A key property to be noted here
is that /| is linear in the masses m;, while having a more
intricate dependence on the geometric quantities y!', u}', and
a!'. (It is linear in the spins @/ here only because we are
working to linear order in the spins, to dipolar order in the
multipole expansions.)

In the next step of the iterative scheme, one uses g =
n + h; in the bodies’ equations of motion (2.1) to solve for
the first-order perturbations in (2.4) [for which it is
sufficient to integrate the right-hand sides of (2.1a) and
(2.1b) along the zeroth-order motion (2.6), and to regular-
ize by simply dropping the divergent self-field contribu-
tion]. Importantly, one finds that x{, p, /m;, and St} /m; are
each linear functionals of /;,,(x), and are thus linear in the
masses. From Poincaré symmetry, it follows that these
results can depend on the positions y; only through the
vectorial impact parameter b* = y/ — %, where the y!' here
is chosen along the two zeroth-order worldlines by the
conditions u; - b = u, - b = 0 (at mutual closest approach).
For example, the impulse (net change in momentum) for
body 1, Ap" = Gp! | (z; = ) + O(G?), is given by’

2Gmym, b*
A H = | — 2 2 - 1 Y
2]/ Uy 2 uv P A A
+ E (2b b’ —b n )ey/)mlull'tZ (al + (12)
292 — 1
+2 J/[96 (4b*b* b — 3b2b(ﬂnyﬂ))alua2ﬂ
+0O(G?), (2.9)
where
Yy = —uy-uy (210)

is the asymptotic relative Lorentz factor, and II¥, =
e, s uopuiud/(y* — 1) is the projector into the
plane orthogonal to both u; and u,. Here, as below, we
work to linear order in each spin, a; and a,, keeping the
cross term. We note again in (2.9) the simple dependence
on the masses, with an overall factor of m;m,, at fixed
geometric quantities b*, u¥, and d'.

'Results equivalent to the first two lines of Eq. (2.9) were first
derived in Ref. [95], and the last line results from an expansion in
spins of the all-orders-in-spin results for black holes from
Ref. [112], both references having worked from purely classical
considerations; see also [113,114] for derivations from quantum
scattering amplitudes.

124024-4



GRAVITATIONAL SPIN-ORBIT AND ALIGNED SPIN;- ...

PHYS. REV. D 102, 124024 (2020)

In continuing the iterative PM solution, the O(G") terms
in the bodies’” degrees of freedom (2.4) correct the source
(2.2) for the field equation (2.3), determining the O(G"*!)
metric perturbation in (2.5); the latter, via the bodies’
equations of motion (2.1), determines the O(G"*!) cor-
rections in (2.4). As in Ref. [100] we are assuming here a
systematic use of the time-symmetric Green’s function, to
pick out the conservative sector of the dynamics. It
becomes evident from the structure of these expansions
that the O(G") metric perturbation Ay in (2.5) can be
expressed as a homogeneous polynomial of degree n in the
masses,

RY"(x) = my i, (x) + mayho, (%),
R (x) = m%h’;j’% (x) + m%h’::; (x) + mymyhy,m,(x),

(2.11)

where the /¥ on the right-hand sides are functions only of
the (asymptotic incoming) geometric quantities (y¥, u!', a!')
and the field point x. The first line of (2 11) matches (2 8).
Similarly, the O(G") corrections x%,, pt /my;, St /m; for the
body degrees of freedom (2.4) will be homogeneous
polynomials of degree n in the masses; this is the crucial
point for the following analysis (and for its conceivable
extensions beyond the aligned-spin case). The zeroth-order
quantities xi, = ' +ul'zy, ply/m; =ut, and S /m; =
e‘“’pauip a from (2.6) are (taken to be) independent of
the masses, as is the zeroth-order metric s, = #; they, along
with the masses, both (i) fully parametrize the asymptotic
incoming state and (ii) can be used to parametrize all the
higher-order corrections.

Letus now specialize to the case of aligned spins, in which
both spin vectors ¢! are (anti-)parallel to the orbital angular
momentum, all of which remain constant throughout the
scattering, while the orbital motion is confined to the fixed
plane orthogonal to the angular momenta (just as for the
nonspinning case). This entails u; - a; = u, - @; = 0 and
b - a; = 0. Choosing 2 (with 3> = 1) to be the direction
of the orbital angular momentum (o —€,,,,u] ubb?), let us
write ¢!’ = ;2" for the constant rescaled spin vectors (equal
to their incoming values), where the scalars g; are positive for
spins aligned with Z# and negative for antialigned. Crucially,
in this case, the only nontrivial independent Lorentz-
invariant scalars that can be constructed from the vectors
U, a', and b* are the magnitude b = (b?)'/? of the impact
parameter and the two spin lengths a; and a,, all three with
dimensions of length, and the dimensionless Lorentz
factor y = —uy - u,.

Now consider the extension to higher orders in G of
the impulse Apf (2.9), which equals —Ap5 (under the
conservative dynamics) as the total momentum pi + p5 is
conserved. Its magnitude Q = (Ap;,Ap})"/? must be a
Lorentz-invariant scalar. In the aligned-spin case, given the

previous discussion, and due to Poincaré symmetry and
dimensional analysis, it must be a function only of the
dimensionless scalar y and the dimension-length scalars b,
ay, a,, Gmy, and Gm,. Given also the conclusion from
above that, in (2.4) with i = 1, p}, /m, is a homogeneous
polynomial of degree n in the masses, with the leading
n = 1 result seen in (2.9), it follows that the magnitude Q
of the impulse must take the following form through fourth
order in G (through 4PM order):

2Gmym,
b

2
b2

3

+ 75 (mQU 4 QR

G
Q= QUM - (o, QM -+, QM)

2(3PM 2(3PM 3PM
(m Q +m2Q + mymy Q)

m Wl

+m sz4PM + mym3Q¥M, )] +O(G%), (2.12a)

where the Q’s on the rhs are functions of the dimensionless
scalars y, a,/b, and a,/b,

PM _ (ynPM a1 b
erizlmz - QZL m (}’ b b)
_ QnPM ( ) a QnPM ( ) a QnPM ( )
m m’a" b mlméal Y b mimia, Y
+AZQm, () (2.12b)
b mymyaa,

(with i+ j=n—1). In the second equality, we have
expanded to linear order in each spin (assuming regular
limits as the spins go to zero), and we are finally left with a
set of undetermined functions depending only on the
Lorentz factor y.

Furthermore, Q must be invariant under an exchange of
the two bodies’ identities, (m,a;) <> (my,a,). At 1PM
order, this tells us that Q'"™(y, a; /b, a,/b) is symmetric
under a; <> a,, and thus Q™™ = Q™ so that the third
line of (2.12b) in this case is proportional to a; + a,.
Indeed, the explicit expression for Q"™ is given by the
magnitude of the aligned-spin specialization of (2.9)
(divided by 2Gm,m,/b)*

22 -1
Q'PM :h(l +2“}9§’2) P ‘;“2. (2.14)
y —

*Note that this is the expansion to linear order in the spins of
the result (80) from [112] for a two-black-hole system,

Q'PM — (272_ !

a]+6lz
-2 1—
Sl b )( b

to all orders in the spin-multipole expansion at 1PM order.

(a; + az)2>‘l’ (2.13)
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At 2PM order, the 1 <> 2 symmetry tells us that each of the
two functions in the second line of (2.12a) determines the
other,

a a

QQPM a a4 QZPM
ny (77 bl ) ny (}/a bl ) ( )

This function, like Q'PM, is in fact fully determined by the
(extended) test-body limit of Q/(mm,)—the limit where
one of the masses, say, m;, goes to zero, while keeping
fixed m,, a,, and a; (and y and b). The result for Q/m, in
this limit can be consistently determined by solving the
pole-dipole MPD equations (2.1) for a spinning test body in
a stationary Kerr background; we will present explicit
results from this procedure below in terms of the scattering-
angle function. This test-body limit, with m; — 0, deter-
mines all of the functions Q™ with no powers of m;, for

n—1
m,

all n, and the 1 <> 2 symmetry also tells us that

nPM ﬂ % — Q"PM % ﬂ
erlz—] <7, b ) b) ng—l (7/7 b k) b)

The only remaining functions in (2.12a), those not deter-

mined by the test-body limit and exchange symmetry, are

QM - Q*M and Q*M,. They are however still con-
1742 mymy mym;

(2.16)

strained by the exchange symmetry as follows. First,

3PM a1 @2\ _ ~3pM 4y 4
Qm1m2 <y7?7?> - lemz (%;v;)’

which implies that the third line of (2.12b) for Q;FM (like

mn,
for Q'™ above) is proportional to a; + a,. Second,

a, a a, a
ot (+5-5) - A (55
so that one of these two functions determines the other.
Taking all of these constraints from exchange symmetry,
we can eliminate all of the Q’s with more m,’s in the
subscript for those with more m,’s, while those with the
same number of m;’s and m,’s must be symmetric under
a, <> a,. First, focusing on the nonspinning (a°) part of
(2.12a), this becomes

(2.17)

(2.18)

2Gm1m2
b
G, 2\(3PM 3PM

—l-ﬁ((ml—l-mz)Q‘ +m;m,Qr o)

2.0
myd mymya

G
QUM 2 () 4-m,)Q2

Q= .

G3
+ﬁ((m? +m3)0ﬁg¥o +mymy(m, +m2)anlj%§ao) ;

(2.19)

recalling that all the Q’s on the right-hand side are functions
only of y [henceforth dropping +O(G?)]. Introducing the

total rest mass M = m; + m, and the symmetric mass ratio
v =mymy/M?*> = u/M as in (1.1), and noting

m; +my =M,
m? +m3 = M*(1 - 2v),
m3 +m3 = M(1 -3v), (2.20)
this becomes
2Gmim GM
Q, - 20 [Q;EM + M oy
GM\? =
+ <T> (erg\fg nynPl%Z ao)
GM\?3 ~
+ (S @) @2

where we defined Q) o:=QM  —2Q¥M and
2 2

mymyd mymyd
A4PM . 4PM 2 (WPM o :
lemiuo = lemgao 3nga0’ still functions only of y.

Remarkably, through 4PM order, this is just linear in the
mass ratio v at fixed M. Precisely, the same manipulations
go through for the a, a, terms, replacing a° with a,a, in all
the subscripts and with an overall factor of a,a,/b* on the
right-hand side.

Next, consider just the 1PM and 2PM terms of the SO
(a') part of (2.12a), after accounting for the exchange
symmetry in the same way as in the previous paragraph
(with QIPM = QIPM, Q2PY = Q2PM and Q2PY = Q2PY ),

mad, mya, maa;
we find
Qal n O(G3) _ 2Gm1m2 aj + a, QCIlPM
b b 2
g mya; + myds, QZPM
b b Mt

n WQ%‘)] . (222

We recognize in the second line the following spin
combinations often used in the PN and EOB literature:

S = mpa; +m2a2 = S] +S2,

S* = moay; + mya, = @Sl +ﬂ52 (223)
my m;

We will find it convenient to rescale each of these by the
total rest mass M, defining

@ = S 7}’7’[101 +m202
b M o ny + my ’
Sy
gy 5o maar £ ma; (2.24)
M mg —I—m2
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where b stands for background (or big) and t stands for test
(or tiny). The (first) reason for these labels is that, in the
extended test-body limit [m; — 0 at fixed m, (or M) and
fixed a; and a,], we see that a,, — a, becomes the spin-
per-mass of the big background object with mass M = m,,
and a, = a, becomes the spin-per-mass of the tiny spin-
ning test body with negligible mass (with a further reason
explained below). Note that a, + a, = a; + a,. Now
extending (2.22) to 4PM order, from (2.12a) accounting
for exchange symmetry, using our new notation, we find

2Gmym,

Q==

2PM 2PM
szazab =+ szal )

M
i ay+a)+ 5

GM
+ ( 7 > (Q)% v+ Q2 @+ 1Qu T, (4 + )

GM
+ <T> (Q4PM ay, + Q;PIZI ag

4PM

O+ Q)| (225)
where we defined Q"M = Q3M _ Q3PM _ Q3PM
mymyay mymyd; mia, mia,’
4PM 4PM 4PM 4PM 4PM - _
lemzaz - lemzaz Qm s -Q 3a and lem a T
APM QM _ Q4PM, all still functions only of .

mymsad, m‘zaz n2a|

We see that (2.25), like (2.21), is linear in the symmetric
mass ratio v (at fixed M, a, and a,).

Now, just as in Eq. (2.14) of [100]—following from
conservation of the total momentum p/ + p5 and simple
geometry and kinematics (which is identical for the non-
spinning and aligned-spin cases)—the scattering angle y,
by which both bodies are deflected in the system’s center-
of-mass (cm) frame, is related to the magnitude Q of the
impulse by

X

inz =—, 2.26
sin’ T (2.26)
where p., (called “P. " by Damour) is the magnitude of
the bodies’ equal and opposite spatial momenta in the cm
frame, at infinity,

Po =2\ - L. (2.27)
Here, E is the total energy in the cm frame,
E*=m? +m5+2mmyy = M*(1+2u(y — 1)), (2.28)

determined by the asymptotic Lorentz factor y and the rest
masses. Note also the definition of the asymptotic relative
velocity v as used, e.g., in [45,101,102],

N 1

v="T——Sy=
14 1 -2

(2.29)

We will find it convenient to define yet another variable
equivalent to y or v, namely,

Pk \?
=y —1=y22 = <m m2> :
1

which, like »?, can serve as a PN expansion parameter, and
unlike v, is real for both unbound and bound orbits,

(2.30)

Unbound: E > M < ¢ >0,

Bound: E<M & ¢ <0, (2.31)

noting that v = i\/1 —y*/y and p, are imaginary for
bound orbits. (Note that our e=y?v> is Damour’s
“p2, = p2,> [the squared momentum per mass of the
effective test body], while our p, is Damour’s P, .) We
will also find it convenient to define a notation for the
dimensionless ratio I' (Damour’s “A”) between the total

energy and the total rest mass,

E
F::M: 14+2u(y - 1), (2.32)

with I' > 1 (y > 1) for unbound orbits and I' < 1 (y < 1)
for bound orbits. Then p, = puyv/T" = u\/e/T.

With this notation in order, we can take our simplified
result for the impulse magnitude Q (2.12a) [namely the sum
of (2.21), its analogous a;a, version, and the SO part
(2.25)], insert it into (2.26), and solve for the aligned-spin
scattering angle y. After this process, y/I" turns out to be
linear in v in the same way that Q is, thanks to the facts that
the sine function is odd in its argument and that I'? is linear
in v. The result can be expressed as follows:

s (8 (2 o

GM 0 GM
<b\/—> (X + XY }—l—(’)( ) ) , (2.33a)
where each XV, ¢« takes the form
v yYm mb ay mt
XGn = X' (e) + b\[x (e) + \[X ()
a‘a2 T X (e). (2.33b)

with x standing for the “cross term” a;a,, and with the
special constraints

X% = X0 Xl = Xlt, (2.34)
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recalling from (2.24) that Ma, = m;a,; + mya, and Ma, =
moa; + m1a2.3 All the X’s on the right-hand side of (2.33b)
are dimensionless and are functions only of the dimension-
less € = y*> — 1; they can be expressed in terms of the above
Q(y)’s alone.

We see that the 1PM and 2PM terms in (2.33) are
independent of the symmetric mass ratio v and are thus fully
preserved in the (extended) test-body limitv — 0O (at fixed M,
orequivalently m; — 0 atfixed M, and atfixed a,, a,, b, and
7), while the 3PM and 4PM terms are linear in v. This allows
us to deduce the complete 1PM and 2PM results for y/I" from
its test-body limit and the complete 3PM and 4PM results
from first-order self-force (linear-in-mass-ratio) calculations.

The special constraints (2.34) are consequences of the
1 < 2 symmetry, as seen in the G'1” and G3¢! SO terms in
(2.25). This is a prediction of the above arguments which
our considerations below will be able to test, rather than to
rely on. For the case of the G3u!' SO terms, which we will
determine (in a PN expansion) below from matching to
first-order self-force calculations, we will allow X}, and X},
to be independent—in fact, Xéb will be determined by the
redshift invariant in a Kerr background and X}, by the spin-
precession invariant in a Schwarzschild background—and
we will find from the matching procedure that they are
indeed equal through the considered PN orders. The fact
that the complete content of Eq. (2.33) holds through N’LO
in the PN expansion can be seen in Eq. (4.32) of Ref. [101].

The 1 terms in (2.33) can be determined by solving the
MPD equations of motion (2.1) for a spinning (pole-dipole) test
body in a stationary background Kerr spacetime. An integrand
for the test-spin-in-Kerr aligned-spin scattering-angle func-
tion, to all PM orders, was derived in Ref. [115]; see, e.g., their
Eq. (66) (which also includes pole-dipole-quadrupole terms
for a test black hole). The results of the integration are as
follows, to all orders in & (to all PN orders at each PM order),
extending Eq. (5.5) of Ref. [101] to 4PM order in the spin-orbit
and bilinear-in-spin terms. The nonspinning parts are

1—|—2£_22y2—1 o 1+e?
Ve V-1 w1 =12

kY4 3
XY= (445 =" (52~ 1),

X0 =2

—1 4+ 12e + 7262 + 6463
383/2 ’

X) =2

1
X} = 1057 (16 + 48¢ + 33¢?),

o (2.36a)

’In Ref. [102], the expression of the result (2.33) for the mass
dependence of the scattering angle differed in that (i) we did not
pull a factor of 1/+/e out of the X’s for every factor of 1/b, (ii) we
used v instead of &, and (iii) we used a, and da_ in place of a,,
and a;, with a, = a, + a; and §:= (m, —m,)/M, the equiv-
alence of the two expressions is apparent since
(2.35)

a, +déa_ = 2ay, a, —déa_ = 2a,.

the SO parts are

X(l)bab + X(l)tat = —4)/\/E(Clb + at),
T

XPay, + XYa, = — 5]/(2 + 5¢)(4ay + 3ay),

1 + 12¢ 4 16€2

ngab + that =4y JE (3ay + 2ay),
¥O0b 0t 21z 2
Pay + Xi'a, = —Hy(S + 36¢ + 33¢*)(8ay, + 5a,),
(2.36b)
and the bilinear-in-spin parts are
X =4y/e(1 + 2¢),
3
X9x = 7” (2 4 19¢ + 2062),
0 1+ 38e + 1286 + 96¢°
X =38 ,
Ve
0 1057 ’ 3
X = 16 (24 + 212¢ + 447¢* 4 264¢”) (2.36¢)

withy = VI +e&.

The ¢! terms in (2.33), at 3PM and 4PM orders, can be
determined in a PN expansion (here, an expansion in €)
from first-order self-force results (as well as from consis-
tency with lower orders), as we will explicitly demonstrate
below for the spin parts. We will use the known non-
spinning coefficients through 4PM-3PN order [101],

X1 — _8+94e 4 3132 + O(&)
3 12\/e ’
15 123 557

X! =z [—7 + <@n2 - T)e + 0(52)} . (2.37a)

noting the transcendental {(2) contribution in the last
term (the 4PM-3PN term). We will parametrize the SO
coefficients as

*Note that, through 2PM order and up through the SO terms,
the first two lines of the right-hand side of (2.33a), with (2.36a)
and (2.36b) plugged into the first two lines of (2.33b), correctly
give either (i) the aligned-spin scattering angle for a spinning test
body with rescaled spin g, in a Kerr background with mass M and
rescaled spin ay,, or (ii) the rescaled aligned-spin scattering angle
/T for the arbitrary-mass two-spinning-body system, using the
“spin maps” (2.24); this is a further reason for the labels a, and a,.
This gives a different “EOB scattering-angle mapping,” an
alternative to Eq. (3.16) of [101], which produces the 1PM
and 2PM SO terms in the two-body scattering angle from its
extended test-body limit. [Note however that this different
mapping fails at quadratic order in the spins, while Eq. (3.16)
of [101] still holds, according to all known results.]
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XY = 72 (Kt + Xhe + Xige? £ Xfie? + O(e?)),
Xyt = my(Xy) + Xihe + Xize? + O(&%)), (2.37b)

with i = b, t, and the bilinear-in-spin coefficients as

X1 — % (X + XIe + Xige? 1+ Xged + O(eh),
X< = a(XIx + Xiye + Xixe? + O(&)). (2.37¢)
We have included all the same powers of & present in the 2°
coefficients (2.36), up to the orders in & which will
contribute at the N°LO PN level. (We have also factored
out y = v/1 4 ¢ in the SO terms and 7z in the 4PM terms,
following the patterns at 1°.) For these X", which are all
pure numbers, k gives the PM order, and n gives the
maximum PN order (N"LO) which determines that coef-
ficient. This labeling and the consistency and sufficiency of
this ansatz for the scattering angle will become evident in
the matching between the scattering angle and a canonical
Hamiltonian described in the following section.

Finally, it is important to note that the impact parameter b
appearing everywhere in this section is the distance
orthogonally separating the two spinning bodies’ asymp-
totic incoming worldlines as defined by the covariant or
Tulczyjew-Dixon condition [108-111], Eq. (2.1c) above,
for each body—the so-called “proper” or covariant impact
parameter b = b, [45,101,116]. This is crucial to the
above argument because only with the covariant condition
(2.1c¢) (or something equivalent to it at OPM order) does it
hold that the first-order field (2.8) is linear in the masses.
Below, we will also work with the canonical orbital angular
momentum L = L, = Poobean, Where b, is the impact
parameter orthogonally separating the asymptotic incoming
worldlines defined by cm-frame Newton-Wigner condi-
tions [117,118] for each body. This coincides with the
conserved canonical orbital angular momentum L appear-
ing in a canonical Hamiltonian formulation of aligned-spin
two-body dynamics [119,120]. [Note that, for the aligned-
spin case, the covariant/Pauli-Lubanski spin vectors m;a’
used above coincide with the canonical spin vectors S/
(spatial vectors in the cm frame) which would be associated
with the cm-frame Newton-Wigner conditions, and thus so
do the aligned-spin (signed) magnitudes, S; = m;a;.] As
shown in [101,112], the canonical L =: L, is related to the
covariant b by

L =L, +AL,

H H
Lcov = poob :fyvb = I?\/EIL

AL = (\/m% + 1% _ml)al + <\/m%+P%o —mz)az

_MF—I n ay, — a,
= 3 ay, ag T .

(2.38)

Solving this for b, inserting the result into (2.33) [or (2.39)],
and reexpanding to bilinear order in the (mass-rescaled)
spins a; and a,, one obtains the final parametrized form for
the aligned-spin scattering-angle function y(E, L;m;, a;)
used in the following matching calculations.

Let us finally rewrite the scattering angle to include both
the ° and v' terms in single coefficients (or which could
allow mass dependence differing from that deduced above),
and which would accommodate general quadratic-in-spin
terms, with sums over i and j implied,

X GM\* di v i Gdjy i
1_“_2<b_\/5) |:Xk(g’y)—|——xk (e,v)+ X (e,v)

k=1 bye be
+O(a?), with (2.39)
aiXi' = apyXi® + a X,
aiajxkij = alazxkx + O(G%, a%) (240)

Our prediction for the mass-ratio dependence of the k<PM
coefficients XA = {X;, X2, X, X} is that

X% (e), k=1,2

2.41
XA (e) + vXiA(e), k=34 (2.41)

X, A(e,v) = {

The ° coefficients X{*(¢) from the extended test-body
limit are given explicitly in (2.36), and the v' coefficients
XiA () which we will determine from self-force results are
parametrized in a PN expansion in (2.37). Note that we will
also be able to use the self-force results to test the fact that
there are no v' terms at 1PM and 2PM orders in this
parametrization of the scattering angle. The fact that there
are no > or higher terms through 4PM order cannot be
probed with first-order self-force results, but has already
been confirmed by arbitrary-mass PN results through
N2LO. Our prediction for the mass dependence will yield
new arbitrary-mass results at the N°LO PN level once we
have fixed the PN expansions of the coefficients X}* from
first-order self-force calculations.

III. FROM THE UNBOUND SCATTERING
ANGLE TO THE BOUND RADIAL ACTION
VIA CANONICAL HAMILTONIAN DYNAMICS

Besides the mass dependence of the scattering-angle
function established in the previous section, and the inputs
of test-body results (discussed above) and first-order self-
force results (discussed below), the other central ingredient in
our derivation is the assumption of the existence of a (local-
in-time) canonical Hamiltonian governing the aligned-spin
conservative dynamics in the cm frame, for generic (both
bound and unbound) orbits, with the Hamiltonian having
well-defined (regular, polynomial) PN and PM expansions.
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Through the desired 4.5PN order in the SO sector and SPN
Si1S, one, we can safely ignore nonlocal-in-time (tail)
contributions in the final dynamics/scattering angle. While
these do appear at the 4PN level in the nonspinning sector
[14] (see, e.g., Ref. [121] for a translation into a nonlocal-in-
time scattering angle), they only start appearing at 5.5PN
order in the spinning one. This can most easily be seen in the
first line of Eq. (68a) in Ref. [122], where the linear-in-spin
tails are a relative 1.5PN order from the leading quadrupolar
contributions to the tail. (As mentioned at the very end of this
section, we find it necessary to include tail terms at 4PN order
in the nonspinning sector to make contact with available
results in the GSF literature.)

Our ultimate goal in this section is to take the gauge-
invariant scattering-angle function y for unbound orbits,
parametrized in the previous section, and derive from it a
parametrized expression for the gauge-invariant radial-
action function /, which characterizes bound orbits, from
which we can derive all the bound-orbit gauge invariants to
be compared with self-force results in Sec. IV B below.

We do this by passing through the gauge-dependent
canonical Hamiltonian dynamics. It is to some extent true
that this process (as we implement it here) can be bypassed
by using relationships between gauge invariants for
unbound and bound orbits found in [91], but not entirely.
Those relationships yield 7, through O(G*) from y through
O(G*), but the complete PN expansion of I, through N*°LO
extends to O(G?®) (for the spin terms). The extra terms in 1,
are obtained here via the canonical Hamiltonian dynamics,
which determines them from (the PN reexpansion of) y
through O(G*). Note that y through O(G*) does not
contain the complete PN expansion of y through N3LO,
nor through LO, since even the Newtonian scattering angle
has contributions at all orders in G. But the PN expansion
of the 4PM scattering angle, y through O(G*), does contain
the complete information of the N°*LO PN Hamiltonian
(contained in its O(G*) truncation), which determines
the N°LO PN radial action /, (contained in its O(G®)
truncation).

We begin in Sec. IIIA by discussing canonical
Hamiltonians for aligned-spin binaries, the resultant equa-
tions of motion, and their gauge freedom under canonical
transformations, in a PM-PN expansion. We fix a unique
gauge by imposing simplifying conditions not on the
Hamiltonian function H itself, but on its corresponding
“mass-shell constraint” (or “impetus formula” [90]), which
is simply a rearrangement of the expression of the
Hamiltonian, in which the squared momentum is given
as a function of the Hamiltonian H (of the energy £ = H).
In Sec. III B, we describe how the scattering-angle function
can be derived from the canonical mass-shell constraint, or
vice versa (with our gauge-fixing for the mass shell), and
derive the explicit relationships between the scattering-
angle coefficients and the mass-shell coefficients. Finally,
in Sec. III C, we compute the radial action /,, and point out

a hidden simplicity in its dependence on the mass ratio,
when expressed in terms of appropriate (covariant rather
than canonical) variables, which is a simple consequence of
the mass dependence of the scattering angle y and the
relationship between y and /, discovered in [91].

A. The canonical Hamiltonian and/or
the mass-shell constraint

For an aligned-spin binary canonical Hamiltonian

H(rv¢’pr7L;mivai):H(r’pﬁL;mivai)’ (31)
the dynamical variables (depending on a time parameter ¢)
are polar coordinates (r,¢) in the orbital plane, with r
being the orbital separation, and their conjugate momenta
(pr. Py =L). The Hamiltonian does not depend on the
angular coordinate ¢ due to the system’s axial symmetry,
and it otherwise depends only on the constant masses and
spins (m;, a;) = (my, my, a,,a,). The Hamiltonian equa-
tions of motions read

. oH . _oH
“op, P77
. OH . OH

where we note that the canonical orbital angular momen-
tum L is a constant of motion.

Such a Hamiltonian is not unique, but is subject to
a type of gauge freedom, namely, under canonical trans-
formations: diffeomorphisms of the phase space which
preserve the canonical form (3.2) of the equations of
motion. In a quite general gauge (one which encompasses
all gauges encountered in previous PN or PM aligned-spin
Hamiltonians), the Hamiltonian takes the following form
through quadratic order in the spins, through 4PM order:

4 Gk 1.2
o 55 )
k=1
+Lai , L* +aiaj , L?
r P 5 2 J }" p 9 2 5 k
—|—O(G5), (3.3)
where
2
P’ =p; T3 (34)

is the total squared canonical linear momentum. Here, H, is
the OPM (free) Hamiltonian, and the functions cy, cik, and
ci,g encode, respectively, the nonspinning, spin-orbit, and
quadratic-in-spin gravitational couplings at the kPM orders.
The c¢’s are assumed to have regular Taylor series around
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L? =0 and p?> = 0. We will work here with the standard
(gauge) choice for the free Hamiltonian in the cm frame,

Hy=\Jm+p* 4 \[mi+p?.  (35)
such that, as r — oo, the magnitude \/17 of the canonical
linear momentum corresponds to the two bodies’ physical
equal and opposite spatial momenta in the cm frame.
The expression (3.3) of the Hamiltonian can be solved,
working perturbatively in G, for p*(r, E, L; m;, a;), where
E=H(r,p,, L;m;, a;) is the total energy; one finds

5 5 Gk LZ
= p(Esm)+ Y~ | fel B S5im
p poo( m)+ rk |:fk< r2 m)

=1
La; . L2 aa; . L?
+ rzlf}c<E,F;mj> +7J E(E?,mkﬂ (3.6)

where the OPM part pZ is found by (exactly) inverting
(3.5), Hy(p*) = E & p%(E) =p?,

(B =} = md)? = dorimd 27— 1

e o ()

Ph =

which we recognize as the same p. from (2.27). The

functions f, f}(, and f7 are determined by (and carry all of
the information of) the c;" coefficients in the Hamiltonian
(3.3). Importantly, the f7" functions will have regular limits
asy’—1=¢- 0 (as py, — 0) and as L> — 0, given our
assumption that the ¢ functions were regular as p> — 0
and L2 — 0. The quantities y, &, and I" are all defined in
terms of the energy E and the rest masses just as in the
previous section.

As discussed in Ref. [101] (through N2LO in the PN
expansion, and as we have explicitly verified through
N3LO), it is possible to find a perturbative canonical
transformation which brings the Hamiltonian (3.3) into a
“quasi-isotropic” form, i.e., a form in which the ¢’s depend
only p? and not on L?/r?. Furthermore, the freedom in
canonical transformations [among Hamiltonians of the
form (3.3)] is completely fixed once one imposes this
quasi-isotropic-Hamiltonian condition and uniquely spec-
ifies a OPM Hamiltonian H,, as we have done in (3.5). For
such a quasi-isotropic Hamiltonian, one finds that the
corresponding mass-shell constraint, the expression for
p? (3.6), has nonspinning and SO coefficients f; fik which
are independent of L?/r?, but its quadratic-in-spin coef-
ficients fi,g have terms at zeroth and first orders in L?/r%.
However, there also exists a different (non-quasi-isotropic)
gauge for the Hamiltonian (3.3) (one with L?/r* terms in

cE) such that its mass-shell constraint (3.6) is quasi-
isotropic, with the fy, fi, and f} all depending only on
E (and the masses) and not on L?/r*. Because both the

scattering angle and the radial action are more directly
related to the f coefficients in the mass shell, we will find it
convenient to adopt this quasi-isotropic-mass-shell gauge
(which is also unique with a given choice for H),
specializing (3.6) to the form

Gk
P2 =pL(Esm)+> ¢ [fk(E; m)
=1 "
a

rfl FE; mk)] . (3.8)

La; .
+71f}c(E?mj)+

Regrouping in terms of powers of r instead of powers of G,
we have

L? G* .,
P%+7:P2=P%o+27fk, (3.9)
r =1 "
where we define
~ La; a,a; i
fk:fk+?fk_2 +G_2J 2 (3.10)

with f; = f;7 =0, and we need to extend the sum to k = 6
(while dropping the nonspinning f5 and fg). Our starting
point for the following calculations will be this ansatz for
the mass-shell constraint, which is fully equivalent to an
ansatz for a Hamiltonian of the form (3.3) modulo gauge
freedom. Our fundamental assumption is the existence of
such a canonical Hamiltonian. We will find that the
coefficients f;'(E;m;) are uniquely determined by the
expansion of the scattering-angle function to kPM order.

B. The scattering angle

As shown in [82], the scattering angle y (E, L; m;, a;) for
an unbound orbit can be found directly from the canonical
mass-shell constraint as follows. The constraint (3.9) can be
solved for the radial momentum p.(r, E, L;m;, a;), and
then the scattering angle is given by the integral

© 9
z+y(E L) = —/ dra—Lpr(r, E,L)

L2 Gk .
—7+27fk,

© 0
= —2/ dr— pgo
Tmin aL \/ k>1

where r;, is the largest real root of p, = 0. In the direct
evaluation of this integral, it would matter that the f; in
(3.10) depends on L (in the SO terms). But let us define an
antiderivative of 7 + y with respect to L to be “the unbound
radial action,”

(3.11)
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W__%(a%>_l(ﬂ+x), (3.12a)

which is essentially a partie finie of the radial action
integral for unbound orbits,

1 o0
W@U:EH/

[Se]

drp,(r,E,L). (3.12b)

The eikonal phase [83,97,123,124] is W/h (up to a
constant). For the expression of W in terms of the f;, it
does not matter that the f depends on L. That expression
will be identical to the L-antiderivative of the nonspinning
scattering angle expressed in terms of the nonspinning f,
with f; — f}, so this reduces the evaluation of the integral
for the spinning case to the nonspinning problem, using
the coefficient mapping (3.10). The results of the non-
spinning integral (for y, from which constructing W is

trivial) have been tabulated at high orders, e.g., in [125].
One finds
GInL G
2zW = —zL — ¥ —=—, (3.13
g T e Xr+;;p&Lk*k—l G.13)
|
G? G?

fl L2f2 3L3

[f1f1 + pafi] +

+{

2L3

1
{——f? +p&fif2+ 2Pi>f3]

where 7, are the entries of Table 1 in [125] with f; — fy;
the first few read

:flv
s _ T 5z
)(2_2poof27
73
J1
12°

B 3 ~ ~ -~
Xa nggo(ngofat + f5+2f1f3).

i =2p4fs+ pufifa—

(3.14)

The scattering angle y is then given by

T+y=-2n (3.15)

oL’
with the L-derivative acting also inside the f; in (3.10). To
obtain W or y through quadratic order in spins and through
4PM order, O(G*), counting both the G* in (3.13) and the
1/G? in (3.10), we must include parts of the contributions
up to f¢ and up to 7g. The resultant explicit expression of
the scattering angle y in terms of the f7 coefficients up to
4PM order and quadratic order in spins is

RLE [f2+2f1f3 +2p3fal

3 5. . . .
OB+ 2

G3 N . . .
S H4APS (i + 111+ 1f2)

3”G4 i 2 i 2 i i i 4 i
4L5 [flfzf f1f2+2poo(f3fl+f2f2+f1f3)+poof4]}
2G 337G o ..
ij{ L‘;)w T+ 6L [4f1f +po B +4)] +
152G o .
PLRAS+ ]+ 61l [8f1fzf +5£ff 41

+ 2p%o<4f3f?' 5L HAf2 S+ 101 +H4F 1) + P (Sfafh + 10£1 £ +4fi£>]} +0(a®) +0(G%).  (3.16)

We see that the kPM coefficients f;" first enter in the G¥
terms; however, they do not enter those terms at the leading
orders in p, (in the PN expansion of each PM coefficient).
Recalling that all of the f’s are finite as p, — 0 (¢ — 0), we
see that, within each set of square brackets multiplying G,
the lowest orders in p, do not depend on f;", rather only on
the lower-PM-order f’s (with some exceptions at G' and G?).
Similarly, for the scattering-angle coefficients at even higher
orders in G (some of which will be relevant below), the lower
orders in their PN expansions will be determined by
coefficients from lower orders in G already appearing here.

|
This gives the scattering angle y in terms of the mass-

shell coefficients f, f'}c, fi, as an expansion in the
canonical orbital angular momentum L. Equating that
expression to a parametrization of y of the form (2.39)
in terms of the covariant impact parameter b, using the
translation (2.38) while reexpanding in spins, one can solve
for the f coefficients in the mass shell in terms of the X
coefficients in the scattering angle (or vice versa), order
by order in the PM expansion. Recall p, = u/e/T.
Rewriting AL =L — p b from (2.38) as a sum over
(effective) spins,
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L= %éiai = % (Eay + &ay), (3.17a)
with
b_(F—l)Z_ y—1 2_ﬁ 3
S="% =) T o
2 _
T e O e ) (3.17b)

2v 2

the results for the f’s through 2PM order are as follows:
nonspinning,

fl - /’lefXI’
2102
fa= M Xa, (3.18a)
al’
spin orbit,
VA :ﬂT(X,‘—i-le‘),
o M2 2 e .
fi= "8 [ X, rx1x11+<;x2—r(x1)2>§1], (3.18b)

and quadratic in spin,

i _ WM
L orye
i _ /JZMZ
2 I'e

(X0 42X, X180 + X,88).

{ X, ——FX X, ——FX1‘X i
3

) A 5
+ (Xz‘ —FX1X1‘>§J + < X, —=I'(X
V3 2 2

1) )5‘5]

(3.18¢)

with symmetrization over i and j understood. These 1PM
and 2PM results are exact (to all orders in €). With our
predicted mass-ratio dependence from the previous section,
we have, for k=1, 2, Xi(e,v) = X0(e), a;X;i(e,v) =
ap X (e) + a X (), and a;a X, (e,v) = a;a,XP*(e) +
O(a3,a3), all independent of v, and the X{"(¢) from the
extended test-body limit are given exphcltly by (2.36).
Though it is not immediately obvious here, each of these
f’s has a finite limit as &€ — 0, as is required by our
Hamiltonian ansatz. We will need the expansions of the f7"
up to O(e®) and of the f5 up to O(&?). Along with f3 up to
O(e') and f; at O(&°), we will then have a complete mass-
shell constraint (3.8) up to N°LO in the PN expansion,
which could be solved for the corresponding canonical
Hamiltonian (3.3).

At 3PM and 4PM orders, one can also solve for the f’s in
terms of the X’s, obtaining exact expressions analogous to

the above. But we will now work in a PN expansion, an
expansion in &, while enforcing our predicted mass-ratio
dependence [which (3.18) did not]. For the nonspinning
coefficients, using the known results (2.36a) and (2.37a) for
the X’s, we find

i 17-100 36-91y+ 13,2
[MP = ) 4 e+ O(&),
f4 41 , 160\ 7
= - 1
M 8+ 2T T3 +2v + O(e) (3.19)

through the orders that contribute to the N°LO PN level.
Here again we note the finite limits as ¢ — 0. For the
spinning contributions, we must enforce that all the f’s
have finite limits as € — 0, which will fix some of the
unknown coefficients in our parametrization (2.37) of the
V' parts of the scattering angle, or relationships between
them, from consistency with the lower-order f’s and X’s
[recall the discussion following (3.16)]. At the SO level,
this determines or constrains the lower-PN-order scattering-
angle coefficients,

Xiia; =
Xta; = 10(% +ay),

21
Eab + 9(1t,

Xia = (68ab +49a, + 2X1ia;),

i, _
X4lai =

(3.20)

and expressions for f1 and fi which are explicitly regular
as ¢ — 0 and depend on the remaining unknowns X1}, X1i,
and X43, with i = b, t,

fla, —6+4v—57 —3-31v -9/
lujw3 = 2 ay + 4 ag a; +— X%Qal
[—24 + 1720 = 27612 + 2113
+ ap
16
—166v — 9012 + 93 v ; :
8 + Z (X:iz + 2Xé3)ai E
+O(e%) (3.21a)
and
fia; 811, 5 13
=2y _4y
uM* 8 TRy )@
L(11ST A, 85,3
8 12 “T16 PR
+V[(4+D)X§§—2X§a X}H} a,+O0(e).  (3.21b)
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Similarly, for the bilinear-in-spin coefficients, we find

15
Xig =0,  Xjf=8  Xj= 5
45

while fgaiaj = fYaja, + O(a?, a3) with 5 and f¥ given
in terms of the remaining unknowns XI5, X1¥, and X!}
(and remaining unknowns from the SO level) by

505 (9 3.,
Pyt Rl Rt

3
gl 150 = 1602 + 407 + 2u(1 - )X

2
+@W§-%@;+m5k+mﬁ) (3.23a)

and
i 187 13
/,tZM4 =2 + Tl/ - 211/2 +§IJ3
+ 219+ 20)XI +2 (10— )Xl
3

3 16
-4+ )X + Eux;; + Eux}g

N

+ O(e). (3.23b)
We now have a complete expression of the mass-shell
constraint (3.8) through N3LO in the PN expansion and
through bilinear order in spins, which could be solved for the
corresponding canonical Hamiltonian. It depends on the
remaining unknown (dimensionless, numerical) coefficients
X123, X14, and X}2 with A = {b,t, x}, from (2.37). Recall,
for X!2, k is the PM order, and n is the relative PN order.

C. The radial action

For a bound orbit (y> —1 = y?1? = ¢ < 0), the
same canonical mass-shell constraint (3.8) governs the
motion. The (gauge-dependent) radial momentum function
p,(r,E,L;m;, a;) is still given by

L? Gk La, . aa ;

_ 2 1 pf 1%y Aij

pr= \/Poo—7+ Ek 7[fk+—r2 fi+ 2 fils
(3.24)

but now p2 = (u/T)%e is negative. As a result, p?(r) has
two positive real roots r = r, between which p? is
positive, with r, being the largest real root, and the
trajectory oscillates between these radial turning points
r.. The canonical radial action function I,.(E, L, m;, a;) is
defined as the integral of p,dr over one period of the radial
motion,

2nl, = ?{drp, = /r+ dr(—l— p%) + /r dr(—\/§>
= Z/r+ dr\/;,

and it is a gauge-invariant function, from which one can
derive several other gauge-invariant functions physically
characterizing bound orbits [90,91]. Like the unbound
radial action W (the L-antiderivative of the scattering
angle y) (3.12), the bound radial action I.(E,L,m;,a;)
encodes the complete gauge-invariant information content
of the canonical Hamiltonian (governing both unbound and
bound orbits) (at least up to the N3LO PN level)—though in
a subtly different way, concerning orders in the PM-PN
expansion of [, versus that of W.

It was shown in [91] that the periastron-advance angle,
O =27+ AD = -2701,/JL, the angle swept out by a
bound orbit during one period of the radial motion, is
related to the scattering angle, 7 + y = —220W/0L, by

(3.25)

®(E,L,m;,a;) =2n+ y(E,L,m;,a;)

+x(E,-L,m;, —a;), (3.26)
where the right-hand side requires an analytic continuation
from E > M (unbound, for which y is real) to E < M
(bound, for which y is complex), as detailed below. It
follows from a straightforward extension of their argument
that a particular L-antiderivative of this relation holds,
giving the bound radial action 7, in terms of the unbound
radial action W,

I.(E,L,m;,a;) = W(E,L,mj,a;)

- W(E, —L, my, —ai), (327)
as can also be verified by explicit calculation.

Consider the unbound radial action in the form (3.13),
after replacing jy; using (3.14) and (3.18a),

G

Ve mo 2wy ph L k—=1

W=-——-GM
3 H

(3.28)

In continuing this from the unbound case, ¢ > 0, pZ > 0,
to the bound case, € < 0, pZ < 0, the second term with
1/+/€ becomes imaginary, as do all of the terms in the sum
with k odd, having odd powers of p,, = (1/I")/e. Note,
from (3.14) and (3.10), and from the fact that all of the f’s
have regular Taylor series in ¢ about ¢ = 0, that all of
the 7, are still real for the bound case, and that the j, are
unchanged by (L,a;) = (=L, —a;). Thus, plugging the
continuation of (3.28), with /e = iy/—¢, into (3.27),
we see that all of the odd-k terms are canceled; after
using In L — In(—L) = In(—1) = —ix (choosing the branch
which yields the physically sensible result), we are left with
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1+28 Gl )N(zl

1
I, =-L+GM ,
r + H /¢ - ;pzszz Y

(3.29)

which is real for bound orbits. Only the }; with k even
(k = 2I) remain, and those with k£ odd are gone (except
for ;). This may make it seem as though we have lost
information in passing from W to I,, but in fact we have
not, as long as we are sure to keep all terms in the consistent
PN expansion of I, (at least up to the N°LO PN level);
this is due to relationships between the j; as discussed
below (3.16).

As we will make clearer below, the complete PN
expansion of I, up to N’LO is contained in its PM
expansion up to O(G®) for the nonspinning terms and
up to O(G?) for the spin-orbit and quadratic-in-spin terms.
This can be computed directly from (3.29), recalling that
the 7, are the entries of Table 1 of [125] with f; — f;, as in
(3.16) above, with the f; given by (3.10). We need again
the contributions from f, f'}c, L up to k = 4, contained in
the f = fi + fi_,Lai/G* + f}_,aia;/G* up to k = 6. To
reach the all the G® quadratic-in-spin terms, we must take
the sum in (3.29) up to [ = 6, involving parts of 7,.

This process yields the radial action 7, through the N°LO
PN level as an expansion in the inverse canonical orbital
angular momentum L = L,,. To express the results of that
process, it will be advantageous to use the covariant orbital
angular momentum L, which we define for the bound-
orbit case by

Ley =L — AL, (3.30)

with AL(E, a;) still given by the last two lines of (2.38) or
by (3.17), in which we note that everything is still real for
bound orbits [unlike in the second line of (2.38), where we
would need to continue to imaginary b to keep L.,, =
Poob real].

In fact, the expression of the radial action (mostly) in
terms of L., is simply related to the expression of the
scattering angle in terms of L., as follows. Taking the
form (2.39) for the scattering angle and eliminating b in

favor of L.,, = (u/T')\/eb,

N e
(e

k>1

LMy
X! +
1—‘LCOV

Fsz xkll} (3.31)

and then using (3.12a), being sure to match up the constant
of integration with (3.28), we find

W= _E _ GM,MX] lnLcov i (GMﬂ)k Xk
2 2 2miz (TLoy ) Tk—1
1 GMu\K[ X & plaza; X,
— i—t+=. 3.32
+2n; (FLCOV> [" G L k1 (3.32)

Then applying (3.27), as we did between (3.28) and (3.29),
noting L.,, = —L, under (L,q;) - (=L, —a;), we are

left with
1 + 28 GM,L{ 21 X2[
I, =-L+GMyu ZFL T |
>1 cov)
Ha; lel M a;a; X21
— , 3.33
Loy 20 T2+ 1] (3.33)

where these X; “(e,v) are precisely the same coefficients
from the scattering angle in (3.31). These coefficients up
through k =2/ =4 are those we gave or parametrized
above in (2.36) and (2.37), with (2.41). Recollecting them
here, while using the constraints (3.20) and (3.22) obtained
in matching between the scattering angle and the canonical
mass shell, we have the G? coefficients which are inde-
pendent of v and are known exactly,

3

X2 4 (4+5€)

X,la; = —gy(2 + 5€)(day, + 3a,),

X, :3;(24— 19¢ + 20€?), (3.34a)

and the G* coefficients which are linear in v,

1057

Xy = ——
YT 64

(16 + 48¢ + 33¢?%)

15 (123 , 557 ,
+7T|:— 5+ (128” ~3 >£+(’)(£ )}1/

21n
Ey(g + 36¢ + 338 )(Sab + Sat)

Lo
71']/2

X4iai =

ap +9a, + (68ab + 49a, + 2X1a;)e

+ Xl ae? + 0(83):| v,

1057

X = 5 —— (24 + 212¢ + 447€* + 264¢3)

15 45
+ﬂ[ +35 (F2 4 X5)e + Xpge + O(e) |v

(3.34b)

As mentioned above, for the complete expression of the
radial action at the N3LO PN level, we need the low orders
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in the PN expansions of X, and (for the spin terms) Xg .
We have obtained these from the procedure to compute the
radial action described in the paragraph containing (3.29)
and the following paragraph, in which the inputs are the f;’
up to k=4 found in the previous subsection, finally
changing variables using (3.30) to bring the result into
the form (3.31). At G%, we find the nonspinning

Xe 231 123 , 125 21 ,
— = — - — — O(e), 3.34
52 4 <128” 2 >”+ gV TOE). (3:34)
spin orbit
Xﬁiai 127 5 2
E— <—99+TU—ZD )Clb
231 167 9 1 ;
<—T+?U—§I/2>a[+zl/X;2ai
4989 123 , 225,
+ |:<—693+ 16 U—3—2ﬂ l/—1—61/ )ab
. 1617+733 123 , 182,
4 4 e e )M

T7=3v,.. 5, )
—|—y< g yX%‘Z—ZXég—f—X}é)ai]8—1—(’)(82), (3.34d)

and bilinear in spin

X 495 1230 9 , 3
= -~ X1><

357 4 16 8Y T3t
[10197 4835 123

B TR P

399

2
3"

2
8 3 Y

3 3
—gy(l + 2v)X15 _ZD(I - )XY

9 B LR S
+a1/(2—l/)ng2 —3—21/X§3 +§I/X‘1H &

+0(e). (3.34e)

At G8, spin orbit
|

142 1(GMp)?, 1 (GMpu)*
I, = |-L+ GM, — PR Sl
: { oMy c\/—¢ * 2 Ly > ¢*37(TLeoy)?
H (GMu)? i (GMp)* i,
B g |2
¢ 2”(FLCOV)
2. (GMp)? ij i (GMp)* X i
s [%(mmﬁ Ry AR

ot T(TLeoy)’ 6

Xg'a; 23947 41 , 97 , 13
i (715 L AR Bl
357 < LTI R 2”+16”>“b
_6435 6883 4l o 277, .3
16 24 " T16" T g Y T )

2— A 20
+ 1/<TVX§'2 - X1 +§X}é> a;+O(e)  (3.34f)

and bilinear in spin

X 5005 6599 4l o 199, 5
3152 16 96 C 128" Y "3 Y T 16"

1 1
- gl/(l + 20)X15 - Zu(l —v)XLs

3 X 3 X 1 X
+ 6]”(2 - I/)X:liz - 372UX:153 + EI/X}B

+ O(e). (3.34g)

Note that the X4 coefficients in (3.34d) and (3.34e) are
exactly quadratic in v, in spite of the fact that the f’s from
which they are constructed, in (3.21) and (3.23), are cubic
in v. Less surprisingly, the X4 are cubic in v, and more
surprisingly the X, are linear in v and the X, are
independent of v. This is all in fact a simple consequence
of (i) the link (3.33) between the scattering-angle coef-
ficients X, and the radial-action coefficients, and (ii) the
(straightforward) extension of the predicted mass-ratio
dependence (2.41) to kPM order: X, is a polynomial
of degree [5!| in v. This is the spinning analog of the
“hidden simplicity” of the mass dependence of (the local-
in-time part of) the radial action (which is the complete
radial action through the N°LO PN level) emphasized in
Ref. [24]; here in the spin terms, this is crucially dependent
on expressing /, in (3.33) in terms the covariant L., rather
than the canonical L.

Finally, we can make the PN order counting explicit by
restoring factors of 1/c. Through N3LO, (3.33) reads

1 (GMy)S 1
X, 4~ \OM” €
+F 85a(TLey)’ ° +0 et

1 (GMp)® . 1 (GMu)® . 1
2 MR 2 PR i 2 IR i o
2 2 4n(TLe, )* ™ P 6m(TLegy ) ° Jrc(’ 8m(TLegy)® * c?

GMu)® o1 GMu)® i 1
(GMpu) J+megwog . (339)

with all the coefficients, to the orders in &€ = y?> — 1 = O(c™?) contributing here at N*LO, relative O(c~°), given explicitly
by (3.34). These depend on the remaining unknowns X} from the parametrization of the scattering angle at kPM order and

relative nPN order.
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In all the above manipulations, it was consistent to keep
the nonspinning, spin-orbit, and bilinear-in-spin terms all
through the same relative PN orders, here relative 3PN
order, N°LO. However, in matching to self-force results,
due to certain changes of variables discussed below, the
treatment of the N3LO spin-orbit and bilinear-in-spin terms
will require the inclusion of the 4PN nonspinning terms.
We thus need to add to (3.35) the 4PN nonspinning part of
the radial action for bound orbits, which includes contri-
butions from the nonlocal-in-time tail integrals. We present
in Appendix A the additional terms at 4PN order, which
have been computed from (3.25) applied to the 4PN EOB
Hamiltonian derived in [15], valid in an expansion in
eccentricity (about the circular orbit limit) to sixth order.
Replacing the first two lines of (3.35) with (A1) yields the
final form of the radial-action function which we will use to
compute the gauge-invariant quantities to be compared
with self-force calculations.

IV. THIRD-SUBLEADING POST-NEWTONIAN
SPIN-ORBIT AND SPIN;-SPIN, COUPLINGS

The remaining unknowns in the parametrization of the
scattering-angle function (2.37) can be fixed with available
self-force results. The key feature here is the existence of a
Hamiltonian/radial action allowing us to connect the
scattering angle to the redshift and spin-precession invar-
iants that, in the small-mass-ratio limit, can be matched to
expressions independently calculated in GSF literature.
A vital step in this calculation is the first law of BBH
mechanics, which we extend to aligned-spins and eccentric
orbits.

A. The first law of BBH mechanics

The first law of BBH mechanics [58] was first derived
for nonspinning point particles in circular orbits in
Ref. [58], then generalized to spinning particles on circular
orbits in Ref. [103], to nonspinning particles in eccentric
orbits in Refs. [104,126], and to precessing eccentric orbits
of a point mass in the small mass-ratio approximation
[127]. In the following, we briefly review the arguments
leading to these incarnations of the first law for binaries,
making explicit how they apply to generic mass-ratio
aligned-spin systems on eccentric orbits.

Let us follow Ref. [103] and start out with an action S for
the binary,

§=Sgay + 81 + 8, (4.1)
where the compact objects are approximated by effective
point-particles moving along worldlines x!'(z;),

DALI-/
S, = /drl{ m;+— SWA = + A5+

} . (42)

and the gravitational action S, is given by the Einstein-
Hilbert one with appropriate gauge-fixing and boundary
terms. Here A{* are frame transformations between the
coordinate frame and a body-fixed frame (labeled by ¢ = 0,
1, 2, 3) that is Lorentz orthonormal (A; Az, = 1cq)-
We take 7; to be the (full-metric) proper times from now
on. The equations of motion are obtained by varying
the action with respect to the dynamical variables
Xp={x, S A" X g, }, leading to Egs. (2.1)-(2.3);
see, e.g., Refs. [109,120]. The dots in Eq. (4.2) represent
nonminimal (curvature) couplings to the worldline that may
carry undetermined coefficients. These terms also include
couplings of quadratic and higher orders in spin related to
spin-induced multipole moments of the body [109].

Let us write the action as an integral of a Lagrangian L
over coordinate time ¢ as

S:/dtL.

We can vary the Lagrangian L not only with respect to the
dynamical variables X4, but also vary certain constants
appearing in the action, e.g., the masses Cp = {m, m,}.
Furthermore, taking the dynamical variables X, on shell
(fulfilling their equations of motion) after variation, we
arrive at (using summation convention for A, B)

(4.3)

oL oL

ocy B + 5X,
~—
=0 (on-shell)

5L = 5X, + (1d),  (4.4)

with a total time derivative (td). Now, if one performs a
transformation of the dynamical variables X, — X/,
which may depend on the Cp, then on shell it holds

oL SL 68X, 0X',,
SL=——56Cy + |— td) [5C
9Cp B+@5XA, 8CB+( )] B
0
BL 58X,
6X’ + (td). 4.5
0

Also allowing for changes of the Lagrangian of the form
L =L"+ (td), we arrive at

<(§—CL‘;>X,I> - <<%>XA> (onshell),  (4.6)

where the subscripts indicate quantities that are kept fixed
during differentiation and with (...) an appropriate on shell
averaging that removes the total time derivatives.

For generic bound orbits, one can average the con-
servative motion in Eq. (4.6) over an infinite time in order
to remove total time derivatives, which can be traded
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for a phase-space average in regions where the motion is
ergodic; see, e.g., Refs. [127,128]. For the aligned-spin
case where the motion is confined to a plane, all oscillatory
behavior can be removed by an average over a single
orbit [104] (defined as an oscillation cycle of the radial
distance r); this is the averaging used in the present paper.
Further specializing to circular orbits, the radial distance is
constant and hence the average becomes trivial [103].
Finally, note that another benefit of the averaging in
Eq. (4.6) is that it helps to make expressions manifestly
gauge invariant [127], which is important when matching
PN Hamiltonians to (eccentric-orbit) self-force results.

It is straightforward to generalize the discussion from
Lagrangians L’ to Hamiltonians H’. Hamilton’s dynamical
equations for some pairs of canonical variables (¢°, p.) are
equivalently encoded by Hamilton’s action principle,

dg° ,
0=585=6 [ dt|y po———H'|.
—"° dr

L

4.7)

!

Noting that the dynamical variables are now X', ={¢° p.},
and that the kinematic pg-terms in L’ are independent of
the Cp, we see that either Lagrangian in Eq. (4.6) can be
replaced by minus a Hamiltonian (i.e., it can be applied also
to canonical transformations between two Hamiltonians).
The rather general on-shell relation (4.6) is interesting on its
own, aside from facilitating the derivation of the first law of
binary dynamics as demonstrated below.

We are now in a position to elaborate on the redshift
variables z; [58,103,104],

_ dTi 8L

w= (@) =)
where the first equality is the definition of z; adopted by us
and the second equality is a consequence of the definition
of L (4.3) together with the original point-particle action
(4.2), [dtL ~—m; [drdr;/dr. We note that this relation
holds to all orders in spin if the coefficients in the
nonminimal couplings (the dots) in Eq. (4.2) are normal-
ized such that no further explicit dependence on the masses
m; arises [68]. Now, several nontrivial transformations of
the original action (4.1) are performed to arrive at a PN
Hamiltonian (see, e.g., Refs. [39,103,126]): a transforma-
tion to SO(3)-canonical (Newton-Wigner) variables for the
spin degrees of freedom, integrating out the orbital/near-
zone metric or tetrad field (calculating the “Fokker action”),
reduction of higher-order time derivatives via further
variable transformations, a Legendre transform to the
Hamiltonian H, specialization to the cm system, and
eventually reducing nonlocal-in-time tail contributions to
local ones. However, all of these transformations fall into
the class of transformations (X4, L) — (X, L’) discussed
above, so we may apply Eq. (4.6) (with L' - —H) to

(4.8)

Eq. (4.8) and conclude that the redshift variables z; can be
obtained from a PN Hamiltonian H via

- JoH
i = ami .

Beside the redshift, let us introduce the (averaged)
spin precession frequency €; as another important
observable [103],

(4.9)

Q= (|1&™)).

(4.10)

The (instantaneous, directed) precession frequency (zi;js‘
can be read off from the equations of motion for the SO(3)-
canonical spin vectors S! generated by the Hamiltonian H,

a5 _ g5, gm =9

4.11
- : (@11)

i

Indeed, this describes a precession of the spin vector; it is

straightforward to see that the spin length S; = (5 - S;)!/2is
constant,

d(S; - Sy)

dr = 2§1 . ﬁ}nst X S:i =0.

(4.12)

From now on, as in previous sections, we simplify the
discussion to nonprecessing (aligned or antialigned) spins,
so that Q"||S; and dS;/dt = 0. That is, the spin degrees of
freedom become nondynamical and can be dropped from
the set of dynamical variables.” We can now include the
spin lengths into our set of constants, Cz = {m;, S;}.
Furthermore, the spin-direction component of the defining
relation for Q™' (4.11) reads |Q™'| = 9H/dS;. Hence
Eq. (4.10) becomes

Qg = <g—§]> (nonprecessing). (4.13)

We have now arrived at the important Egs. (4.9) and (4.13)
for the (gauge-invariant) observables z; and €;, that could
be used to relate a PN Hamiltonian H to self-force results
[67,129]. But here, for the purpose of matching to self-
force, we perform a canonical transformation to different
phase-space variables that simplify explicit calculations and
connects to the radial action introduced above.

As a first step in that direction, we choose the (non-
precessing) motion to be in the equatorial plane 6 = /2,
removing the polar angle 6 and its canonical conjugate
momentum p, from the phase space; the Hamiltonian is

*More precisely, their contribution to the kinematic terms in
Hamilton’s principle (4.7) (have to) vanish or turn into total time
derivatives.
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now of the form discussed in Sec. IIT A. Furthermore, since
we consider a system where the Hamilton-Jacobi equation
is separable, one can construct a special canonical trans-
formation (for bound orbits) where the constant action
variables

1
I, =——¢drp,

1

1, = Z—ﬂ](d¢p¢ — L (414)
are the new momenta [130], with the cm orbital angular
momentum of the binary p, = L = const conjugate to the
azimuthal angle ¢. The advantage of these variables for our
purpose is that the averaging (...) over one radial period
becomes trivial due to the integral over one radial period f in
their definition. The canonical conjugatesto /,., 1 4 are the so-
called angle variables g,, g, and evolve linear in time, i.e.,
their angular frequencies Q, = ¢,, Q4 = ¢, are constant
[130]; overall Hamilton’s equations of motion for the new,
canonically transformed, Hamiltonian H'(1,,1, = L;Cp)
read

OH' OH'

Q, = o const, Q= 3L const, (4.15)
. OH' OH'

i=-2" o, -2 _0. (416

dq, n (4.16)

Recalling that Cyz = {m;, S;}, we can apply Eq. (4.6) (with
both Lagrangians replaced by Hamiltonians) for the canoni-
cal transformation to action-angle variables as well.
Equations (4.9) and (4.13) then turn into
OH'

OH'
—am =g (4.17)

Zj

where the averaging over one radial period is inconsequen-
tial and can be dropped. Collecting Eqgs. (4.15) and (4.17),
we see that the differential of the cm energy E = H' can be
written as

dE = Q,dI, + Q,dL + Y (zidm; + QdS;).  (4.18)

In analogy to the first law of thermodynamics for the
differential of the internal energy, this can be called the
first law of conservative spinning binary dynamics for
nonprecessing bound orbits (covering eccentric orbits and
generic mass ratios). It also resembles the first law of BH
thermodynamics, which provides a relation for the differ-
ential of the Arnowitt-Deser-Misner (ADM) energy dm; of
an isolated BH and can be generalized to other compact
objects as well [131]. Recall that Eq. (4.18) is valid to all
orders in spin, if the coefficients of possible nonminimal
coupling terms denoted by dots in Eq. (4.2) are normalized
such that no additional dependence on m; arises. It would
be interesting to consider these coefficients as part of the
constants Cp in future work.

Since the fundamental function introduced in the last
section that generates observables for bound orbits is the
radial action I,(E,L;m;,S;), we consider the first law
(4.18) in the form

27dl, = T,dE = ®dL - Y (T;dm; + ®dS;).  (4.19)
where we have introduced

2
T, = 5” - fdz, ®=Q,T, = ?{dqb, (4.20)

Ti = ZiTr = %d’l’i,

As a consequence of the first law, we hence obtain

q)i — QiTr' (421)

T !

I _ (9 : (4.22a)
2w OFE Lo, S,

0] [

e _ (o : (4.22b)
2r OL) g s,

7, !

i (oL , (4.22¢)
2r OMi) ..,

(02 1

& (9L . (4.22d)
2r aS; E.Lm;.S;

Now the redshift variables can be calculated, from a given
radial action /,, as the ratio of proper and coordinate times,

7;
T b

r

i = (4.23)
which manifestly agrees with the (inverse of the) Detweiler-
Barack-Sago redshift invariant calculated in GSF literature
[59,132]. The spin-precession frequency €2; is given by
Q, = ®,;/T, from which we obtain the spin-precession
invariant [69]
QP
>

Vi==

Q, (4.24)

B. Comparison with self-force results

Starting from the radial action (3.33), we calculate the
redshift z; and spin-precession invariants y; of the small
body using Eqgs. (4.23) and (4.24). To compare with results
available in the literature, we express them in terms of the
gauge-invariant variables,’

®Note that the denominator for z in Eq. (4.25) is of 1PN order,
which effectively scales down the PN ordering in such a way that
manifestly nonlocal-in-time (4PN nonspinning) terms appear in
the N3LO correction to the spin-precession invariant. For this
reason, we have included the 4PN nonspinning tail terms in the
radial action as discussed at the end of the previous section.
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3x

¥ (MO 1= gran

1= (4.25)

which are linked to (e, L) via Egs. (4.15) and (4.22). The
expressions we obtain for z;(x,7) and w(x, 1) agree up to
N2LO with those in Eq. (50) of Ref. [67] and Eq. (83) of
Ref. [129]. The full expressions up to N*LO are lengthy,
which is why we provide them as a Mathematica file in the
Supplemental Material [133].

Next, we expand U; = z7! and y, to first order in the
mass ratio g, first order in the massive body’s spin a,, and
zeroth order in the spin of the smaller companion a;,

U, =U", +aul)

la

+ q(SUSF + asUF) + O(q. a%),
(4.26a)

(0)

0
v, = Wlao ¥

la

+ q(8y S + asyF) + O(4%. a?).
(4.26b)
|

+ ay

72

7e* et
> g )"

29 5y _5
2
2

472 2
4< 230497 20572
+e*| — —_—
GSF — —u, + <2+e2>u +
1a° 14 4 14
277031 1256y 1595372

96 32
+ [_ 2880 15 6144

, (20557 536y, 55217x°
480 5 4096

5/2
P

7/2

117¢*
SUGSF = (3 - + <18—4e2 —Te> )

fn)

343

35441
X1+ e? <—

24

135
16

195 o
32 32

1b
X33 -

S 933 12322 1
v 16 64

11
Xl

+ %

25
Xl
16 +8 3

These results can be directly compared with the GSF
results in Eq. (4.1) of Ref. [65], Eq. (23) of Ref. [134] and
Eq. (20) of Ref. [67] for the redshift, and Eq. (3.33) of
Ref. [72] for the precession frequency. At N2LO, as
expected, our expressions depend on the scattering-angle
coefficients. Upon matching these with the above-men-
tioned equations in the literature, we get the following four
constraints (at each order in eccentricity):

1 97 1455 15
uy? [5 Xig -5+ (Y - Exyfﬂ =0 (4.2%)
97 1 291 3

which can be consistently solved for the two unknowns

4172

4X§‘2 + ez<

5 2
+ngg —gxig +

with @ = a,/m,. In performing that expansion, we make
use of the gauge-independent variables y and A, which are
related to x and 1 via

X
y = (GmyQ,)*3 = a7 (4.27a)
3y 1
)= = ) 4.27b
oem -1 (rqen

To compare the first-order self-force (1SF) corrections
SUSSE and Sy/$§SF with those derived in the literature, we
express the redshift and spin-precession invariants in terms
of the Kerr-geodesic variables (u,,e), where e is the
eccentricity and u, is the inverse of the dimensionless
semilatus rectum (see Appendix B for details.) The terms
needed to solve for the N*LO SO unknowns are SUSSF and

51//?52}:, for which we obtain
)|

1
X5+

11099
32

15
+ Xk

287¢2 B e4<
2

5
Xjg -3+ 2

251
4

11

8 4

535 ) "

79 12372 3
_____Xlt 3
2 256 8 32)]””

296 729 628
Fh’lz + ?ln3 + F

11720 10206
3 In2 - 5

(4.28a)

lnup

lnupﬂ .

97

=7

268
In3+—
n —I—S

— X+ (4.28b)

X15 =Xt (4.30)

Note that the special constraint (2.34), due to symmetry
under interchanging the two bodies’ labels 1 <> 2, is thus
satisfied. Similarly, at N°LO order, after substituting in the
N2LO coefficients, it holds that

26881 241z° 5 . 4
11/2 1b 1b
- ) (LI ¢
“ [ 72 96 2Ty
1846 2417° 5
+e2<——3 o —Exég+2xig>

4 (276775 12057* 135
e —_—

192 128 WX§3—5X3£>] =0, (4.31a)
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8381 4l1z* 5 2
e
17647  123x? 25

(4.31b)

These five equations can be consistently solved for
the remaining four unknowns in the N°LO SO scattering

angle,
32 /41 o2 63 12322 3
Sy/OSF — _up (Al em) s |92
Via >\ Tg)w T e g e
75841° 4496717 1256y, ﬁxlx _xlx
6144 5760 15 16
2
L 277037 1016249 536y Exlu x
4096 640 5

At N?LO, this can be matched to Eqgs. (52) and (56)
of Ref. [129] to get the two constraints (at each order

in e)
75 225 9
uy? X1x = XX | = 434
B 2xg <16+ )] 0, (4.34)
which can be solved for
X%; = -50. (4.35)
Similarly, at N°LO, it holds that
X GM\ _1+2¢ GM\23x
< = 2 4 + 5S¢
L= (o) 7 (ge) T+

177
lelet:
33 33 4 ’
17423 24172 2759 123
Xlp — 222 A e . )
BT 48 128 6=g Ty r (432

Again, the special constraint (2.34) is satisfied by X1} and
X1t. Considering the S;S, dynamics, the relevant con-
straints can be obtained from the linear-in-spin correction
to the spin-precession invariant, which in terms of the
remaining unknown coefficients X}jx reads

1237 9

<7l+ 256 ' 32 5)}”3’/2
185X‘1‘3X %1 2+75£1 3+%1 nu,
5x}g+“;201n2—102061n3+2§81nupﬂu‘,’,/z. (4.33)
[

u?)/z[ 6?29 12332”2+ 1_5)(%_ % Xz

+€2<_4139243 % EXIX iletsxﬂz (4.36)

Each order in eccentricity is solved for the remaining S;S,
unknown coefficients

1383 9795  18457°
5° 8 256

Combining the solutions obtained in this section with the
results of Sec. II yields the scattering angle containing the
complete local-in-time conservative SO and S;S, dynamics
through the third-subleading PN order,

Ix __ _ Ix _ _
X33 - X43_

(4.37)

8 + 94¢e + 3132

(@i,

3e

1= 12¢ = 7262 — 64€3
+v

12

+ (9(53)”

+ (%) [ (16 + 48¢ + 33¢%) + —%—l— G—;Zﬂz—%)e-i-(’)(&))}
(e ()

+ (f—\%) yg{ (14 12¢ +16€?) —v| 10e +9778 +117 3+O(84)>}

+ (%)4@ [22—1 (8 + 36¢ + 33¢2) — <%+%e+ (%823—2?;?)82 + O(£3)>]}
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97 177
2 4

219 (2759 123 .\ , \
o+ et (- )R+ o) ||

22 (24 19¢ + 20¢2)

1
{8(1 + 38e + 128¢% + 96¢3) +I/(8£—5082 3583 3+ O(e ))}

(4.38)

(2o (3 S
+ (%)3%{8(14-128—1-168)—1/<108+—8 Fle ot ))}
¥ (%)471)/ [11065 (8 + 36 + 33¢2) — <
() e (25
(s
+ (%>4n[ 065 (24 + 212¢ + 447> + 264€3)
v g—%g <—$+1§56”2)e2+0(e3)>]}.

Importantly, we have checked that all the above results
can be reproduced by starting from a Hamiltonian ansatz
(rather than a radial action), constraining it via the mass-
ratio dependence of the scattering angle [calculated via
(3.11)], and obtaining the redshift and spin-precession
invariants through Egs. (4.9) and (4.13).

V. EFFECTIVE-ONE-BODY HAMILTONIAN AND
COMPARISON WITH NUMERICAL RELATIVITY

In this section, we quantify the improvement in accuracy
from the new N°LO SO and S;S, corrections using
numerical relativity (NR) simulations as means of com-
parison. We do this using an EOB Hamiltonian, calculated
using the scattering angle obtained above, since the
resummation of PN results it grants is expected to improve
the agreement with NR in the high-frequency regime.

The EOB Hamiltonian is calculated from an effective
Hamiltonian H° via the energy map

Heff
HEOB:M\/1+2IJ( —1),
u

where we use for the effective Hamiltonian an aligned-spin
version of the Hamiltonian for a nonspinning test mass in a
Kerr background (denoted SEOBr,, in Ref. [54]) with SO
and S;S, PN corrections. The effective Hamiltonian is
given by

(5.1)

L2a2 1/2
Heff — [A (;42 +p*+ B, p?+ B, - +u2Q>]

GMr (5.2)

—L(g¢S +S%),
+ A (9sS + gs-S¥)

[
where A = (r* + a?)? — Ad® with A = r> —2GMr + a>.
The Kerr spin a is mapped to the binary’s spins via
a = a; + a,, and the potentials are taken to be

Ar?

A=—- — (A% + A%9), (5.3a)

2GM  a?
B, = (1 - )(A0D0+B§§) ~1.  (5.3b)
2 +2GM
B, = Jre +AG - (5.3¢)
0=0"+0%, (5.3d)

i.e., we factorize the PN corrections to the Kerr potentials.
The zero-spin corrections A°(r), D°(r), and Q°(r) are
given by Eq. (28) of Ref. [54] and are based on the 4PN
nonspinning Hamiltonian derived in Ref. [15]. The SO
corrections are encoded in the gyro-gravitomagnetic factors
gs, and gg-, while the S;S, corrections are added through
ASS, B9, and O3S,

For those PN corrections, we choose a gauge such that gg
and gg are independent of L [46,47,135]; we write an
ansatz such that, up to N3LO,

gs(r,p,) =2

gs-(r.p,) =

for some unknown coefficients a;; and a;;. For the S;S,
corrections, ASS and BSS start at NLO and are independent

of p,, while Q5 starts at NNLO and depends on p? or
higher powers of p,, i.e., we use an ansatz of the form
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o o,
A% _SS2<6 +C10r6>’

B B B

a Qa a

SS 3 4 5
—S152< b s 85>,

Pr Pr Pr
0SS Ssz<a3% 63+a§34 84+a§6 . 3) (5.5)

o

CSFS

To determine those unknowns, we calculate the scattering
angle from such an ansatz using Eq. (3.11) (which entails

J
v[ 27p2 5GM v 5
=214 L=l 2 22
Js { +c2[ 1642 16 r}+c4[<16+

inverting the EOB Hamiltonian for p, in a PN expansion,
differentiating with respect to L, and integrating with respect
to r). We then match the result of that calculation to the
scattering angle calculated in the previous section and solve
for the unknown coefficients in the Hamiltonian ansatz. This
uniquely determines all the coefficients of the spinning part
of the Hamiltonian since our choice for the ansatz fixes the
gauge dependence of the Hamiltonian. (See Sec. Il A for a
discussion of the gauge freedom in the Hamiltonian.)
We obtain the gyro-gravitomagnetic factors

350\ p} (21 23v prGM 24_1 (GM)?
16 ) u* 4 16 r 8 16/ r?

s 80399  241z* 379 T7\ (GM)? N 5283 1557u 692\ p; (GM)?
c® 2304 384 64 256) 128 32 128 ) > r?
781 831y 77112\ p*GM 7 63v 665L%\ pb
(8L 8l TTWA prOM (7636657 prl | (5.6a)
256 64 256 ) ut r 256 64 256 ) pu
3L p;_ (3, v\GM
I =3 c2 ,42 472) r
1 5u 35\ p? 192 3v 23\ pZGM ¥ 13v 9\ (GM)?
+ — —4+ — -t |5t |5 |
s 8 2 8)u r 8 2 8) r
N i 135 41;; v _7627v 237 (GM)* (15 279 N 78707 N 97\ pi (GM)?
c® 288 32 16 r 32 16 16 8 )2
3 1105 3 & 11742 811/ p, GM oM _ﬁ 3 175v 3 772 351/ (5.6b)
192 9 = 32 16 r 64 96 32 16 ’ '
and the S;S, corrections
4SS _ 518, [(GM)* (20— %) + (GM) (1Tv N 1132 +3_y3
MY &4 TV TTES 72 8 4
(GM)® (6lv  41z*?* 37917 N 2503 2104 ’ (5.72)
00\ 2 16 48 4 32
S8, [(GM)? 9 (GM)* (GM)> 37507 3T
s :G2M2/,t2{ i 61/+§1/2 + g (200 +260% +100°) + 53 67+ 32817 — T (5.7b)
055 — S8, (1 ptH(GMm)? +5U+45D2 2503 N 1 [po(GM)} [ Tv 6312 3503 2454
GM* > Ot P 2 8 4 Sl P 4 16 8 32
GM 183 4370
p’ “13u 4+ — 6303 — ]6” )]} (5.7¢)

Importantly, the factors g5 and gg-, obtained here for the
aligned-spin case, also fix the generic-spin case by simply
writing the odd-in-spin part of the effective Hamiltonian as

GMr
il

HEY = ——L- (955 + 95:S"), (5.8)

|

with g¢ and gg- unmodified since they are independent of
the spins (see Ref. [102] for more details.) However, the
spin;-spin, corrections in Eq. (5.7) are only for aligned
spins since the generic-spin case has additional contribu-
tions proportional to (n - S;)(n - S,), where n = r/r. Such
terms vanish for aligned spins and cannot be fixed from
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aligned-spin self-force results or be removed by canonical
transformations.

For comparison with NR, a particularly good quantity to
consider is the binding energy, since it encapsulates the
conservative dynamics of analytical models, and can be
obtained from accurate NR simulations [136,137]. The NR
data for binding energy that we use were extracted in
Ref. [138] from the Simulating eXtreme Spacetimes
catalog [139]. The binding energy calculated from NR
simulations is defined by

EZIR = Eapm — Erag — Mc?, (5.9)
where E 4 is the radiated energy, and Espy is the ADM
energy at the beginning of the simulation. We then calculate
the binding energy from the EOB conservative Hamiltonian
|

v 4 i 31w L[SV
9 S 2 S* 2
08 |5 (~324 4 6330 = 147) 4 - (=27 + 1560 - 512)

73

using E, = H®OB — M¢? for exact circular orbits at differ-

ent orbital separations, i.e., we neglect the radiation
reaction due to the emitted GWs. As a result of this
assumption, the circular-orbit binding energy we calculate
is not expected to agree with NR in the last few orbits.
To obtain the binding energy from a Hamiltonian in an
analytical PN expansion, we set p, = 0 for circular orbits
and perturbatively solve p, = 0 = —0H/Jr for the angular
momentum L. The orbital frequency w is given by o =
OH/OL from which we define the velocity parameter

v, = (GMw)'/3. (5.10)

Expressing the PN-expanded Hamiltonian in terms of v
yields, for the SO part,

w

3

|

19679 + 17472 1979 . 265 S* /135 1109 , 50
1| —45 - 2 _ 3) 22 (22 55y —22 223 |V 5
J”’“’[( A VY R T 3888”) 8(2 V3 ”+81”)]} (5-11)
while for the S;S, part,
S,S 5 5 35 1001 371 243 12372—4214 147 , 13
ESS 2122 |6 82 O 1022 _ 2o 1<% v+ —12P =13 ) . 5.12
bN T | Yot el gy ) T s T P o6 ) T (e T 32 ST (5.12)

The same steps can be performed numerically to obtain
the EOB binding energy without a PN expansion.

To examine the effect of the new N3LO terms on
the binding energy, we isolate the SO and the S;S,
contributions to the binding energy by combining configu-
rations with different spin orientations (parallel or anti-
parallel to the orbital angular momentum), as explained in
Refs. [138,140]. For the SO contribution, we use

1

2

E°(v,a,a) = = [Ey(v.a.a) — Ey(v,—a,—a)] + O(a°),

(5.13)

while for the S;S, contribution, we use

Ef,s(y, a,a) =E,(v,a,0)+ E,(v,0,—-a) — Ey(v,a,—a)
— E,(1,0,0) + O(a?). (5.14)

In Fig. 1, we plot the SO contribution to the EOB and
PN-expanded binding energies versus the velocity param-
eter v, for spin magnitudes a = 0.6. We also plot the NR
results by combining the binding energies of configurations

with different spins using results from Refs. [138,139].
From the figure, we see that, adding each PN order
improves agreement of the EOB binding energy with
NR, especially in the high-frequency regime, with better
improvement for equal masses than for unequal masses. In
contrast, the PN binding energy, plotted using Eq. (5.11),
seems not to converge toward NR in the high-frequency
regime, with little difference between the N>LO and N3LO
SO orders. Figure 2 shows the S;S, contribution to the
EOB and PN binding energies. As in the SO case, adding
the new N’LO significantly improves agreement of the
EOB binding energy to NR, especially for equal masses,
but there is little difference between PN orders for the PN
binding energy.

Note that Figs. 1 and 2 should not be interpreted as a
direct comparison between PN and EOB dynamics since
our results were obtained for simplicity using exact circular
orbits, which leads to a very different behavior than for an
inspiraling binary; Refs. [80,137,138], e.g., show that EOB
results are significantly better than PN when taking into
account the binary evolution. Let us also stress that while
the EOB and PN curves are based on the same PN
information, the EOB Hamiltonian represents a particular
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resummation of the PN results. We leave the exploration
of other resummations and a calibration to NR for future
work.

VI. CONCLUSIONS

GW astronomy allows a multitude of applications in
fundamental and astrophysics [1-4] that rely on accurate

waveform models for inferring the source parameters.
In this paper, we improved the PN description of spinning
compact binaries using information from relativistic scat-
tering and self-force theory, which is an extension of the
approach introduced and used in Refs. [23,24,100] for the
nonspinning case. We started by extending the arguments
from Ref. [100] to show that the scattering angle for an
aligned-spin binary has a simple dependence on the masses.
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This allowed us to determine the SO and aligned S;S,
couplings through N*LO in a PN expansion using GSF
results for the redshift and precession frequency of a small
body on an eccentric orbit in a Kerr background. This result
is neatly encapsulated in the gauge-invariant aligned-spin
scattering-angle function, given explicitly in Eq. (4.38).
The derivation presented here provides the full details for
the recently reported result at SO level in Ref. [102], while
extending the analysis to aligned S;S, couplings.

Using these new PN results, we calculated the circular-
orbit binding energy, the EOB gyro-gravitomagnetic factors,
and implemented these results in an EOB Hamiltonian.
To illustrate the effect of the new N3LO terms, we compared
the binding energy with NR simulations (see Figs. 1 and 2,)
showing an improvement over the N’LO. These results
could be implemented in state-of-the-art SEOBNR [48-51]
and TEOBResumS [52,53] waveform models used in LIGO-
Virgo searches and inference analyses [4].

While it is arguable whether PM results already provide a
useful resummation of the PN ones [89], the present work
shows that, with the crucial contribution of GSF theory,
advances in PM theory already allow one to advance the PN
knowledge in the spin sector. We thus beseech further
research to explore synergies between GSF, PM, and PN
theory, along the lines of Refs. [23,24,26,27,45,102] and
the present paper. One could, for instance, extend the
results in this paper to N3LO S? couplings, i.e., at quadratic
order in each spin. This is an important step to complete the
aligned-spin 5PN dynamics for BBHs. However, we leave
such a calculation for future work, since it would require
currently unavailable GSF results.

One can envision further important work at the interface
between the PM and GSF approximations. With knowledge
of first-order GSF theory, one can in principle determine
the full 3PM and 4PM scattering angles in a completely
independent way from techniques employed, e.g., in
Ref. [85]. To this end, one could calculate the PM expansion
of GSF gauge-invariant quantities for bound orbits directly
(e.g.,expansions in u, valid at all orders in the eccentricity ).
This enterprise would have to take great care in the inclusion
of tail terms in the dynamics, as well as in the analytical
continuation of such results to scattering systems. Should
these quantities be calculated, one could exploit the method
herein presented to fix the 3PM and 4PM scattering angles
without further PN reexpansions. Even better would be a
direct GSF treatment of scattering orbits and the scattering
angle. This is likely to first come in the form of numerical
calculations at first order in the mass ratio. It will however be
worth exploring whether “experimental mathematics” tech-
niques can be used to obtain analytic expressions for the 4PM
scattering angle by pushing such numerical calculations to
extreme precision (see, e.g., Ref. [62] for an example along
these lines in the GSF literature).

Finally, we stress that it is paramount to check our results
with more established PN calculations (e.g., with the EFT

approach, as was done partially at N°LO in Refs. [33,37]),
as they have been obtained with a so-far completely
unexplored method in the spinning sector that is begging
to be further scrutinized.
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APPENDIX A: THE NONSPINNING 4PN TERMS
IN THE BOUND RADIAL ACTION THROUGH
SIXTH ORDER IN ECCENTRICITY

Here we present the additional 4PN-order terms in the
radial action for bound orbits, computed via (3.25) applied
to the 4PN EOB Hamiltonian given in [15], valid to sixth
order in the orbital eccentricity e. Note that the expansion in
eccentricity has occurred only in the 4PN terms, at O(c™%),
where it is sufficient to use the Newtonian relation
e =+/1+¢&(L/GMu)* + O(c7?). The complete radial
action we employ above, through 4PN order for the
nonspinning terms and through NNNLO for the spin terms,
is obtained by replacing the first two lines of (3.35) with

1+ 2¢
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r + MC —

I~ 1 (GMp)H Xy 1 1
= = —0(e8)+ 0 —).
TR ALy a1 T ) T O

1 (GMp)?
c? alLy,

X

(A1)
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and
& _ 32175 L < 534089 i 425105 2 @715
Tn 64 720 24576 3
3 99582 n2 -+ 2121041 n3 4 1;01 CGI;‘Z/V)V
<4;111 - 1205265712) V2 — %Iﬁ + O(e). (A4)

APPENDIX B: KERR-GEODESIC VARIABLES

We provide here the relevant details to compute the
change of variables from (y,1) to (u,,e) needed for
comparison with the 1SF calculations of the perturbed
redshift and spin precession invariants. Since we are
working with perturbed quantities, we need only compute
this change of variables at the geodesic level.

The geodesic equations in Kerr spacetime when special-

ized to the equator 6 = 7 are
2, 2
{ (r + a?) a2>—|—aL<1_r Za)]’ (B1)

\/ (E(2 + a?) —aL)? — A(”2 + (L — aE)). (B2)

b= % [(L _aE) + % (PE - a(L - aE))] . (B3)

where " = d . The radial motion is commonly parametrized
using the Darwm relativistic anomaly y as

nyp
=" B4
" (I4+ecosy) (B4)

where e is the eccentricity and p the (dimensionless)
semilatus rectum. This defines the turning points of the
orbit to be at y = 0, z. Note that here we use p instead of

|

= 1/ p from the text since it makes the equations below
simpler. To determine the constants of motion E, L as
functions of (p,e), we set ¥ =0 at the turning points.
While these simultaneous equations can be solved fully,
we give their expansion in a, which will be sufficient for
this work,

(p=2)*—4e*  (-1) a+0(a?
p(p=3-¢?) p(p—3—-e?)? +0(a®), (B5)

= p 2 (p—2)% —4e?
EV/ e T B
(B6)

Next, we calculate the radial and azimuthal periods 7'
and @, in the Kerr background geometry,

T ]{dt—/zﬂﬁd;( (B7)
) . d
ﬂd¢
O, = ¢ d :/ —dy, B8
0 % ¢ o dy (B8)
where
dt tdr dp ¢ dr
2o s . ey B
dy idy’ dy rdy (B9)

Further expanding the integrands in eccentricity, and
integrating order by order in a and e gives for the periods
a result of the form

Two(p,e) =Ty(p.e) +T)y(p.e)a+O(a*), (BIO)

Dy(p.e) = D(p.e) + Pj(p.e)a+ Oa®).  (Bll)

with

(B13)

70— 2 p? < 3(2p* —32p> +165p—266) ,
Y Vp-6 4(p-6)*(p-2)
3(40p7 — 1296 p° + 17556 p° — 128448 p* + 546523 p® — 1350786 p2 + 1803396 p — 1016920
4 300p P P CARIERAS el P P )e4+(’)(e6)>, (B12)
64(p—6)*(p—2)
- 6x/p(p+2) <1+(2p3—32p2+139p+6) , (24p% —656p* + 6844p® —30576p + 60889p + 210) ,
=- e
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and
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p 3
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With these, we can use Eq. (4.27a) to obtain (y, A) to the desired 4.5PN accuracy by expanding about small u,, = 1/p as

y(up,e) =

Mu,,e) = /10(14,,, e) +al(u,, e) + O(a?, u%),

with

0 2 2 2,2 )23
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