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Model Order Reduction
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Gas and Energy Networks
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Abstract:

To counter the volatile nature of renewable energy sources, gas networks take
a vital role. But, to ensure fulfillment of contracts under these new circum-
stances, a vast number of possible scenarios, incorporating uncertain supply
and demand, has to be simulated ahead of time. This many-query gas network
simulation task can be accelerated by model order reduction, yet, large-scale,
nonlinear, parametric, hyperbolic partial differential(-algebraic) equation sys-
tems, modeling natural gas transport, are a challenging application for model
reduction algorithms.

For this industrial application, we bring together the scientific computing topics
of: mathematical modeling of gas transport networks, numerical simulation of
hyperbolic partial differential equation, and model reduction for nonlinear para-
metric systems. This research resulted in the morgen (Model Order Reduction
for Gas and Energy Networks) software platform, which enables modular test-
ing of various combinations of models, solvers, and model reduction methods.
In this work we present the theoretical background on systemic modeling and
structured, data-driven, system-theoretic model reduction for gas networks, as
well as the implementation of morgen and associated numerical experiments
testing model reduction adapted to gas network models.
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p Pressure Ny Number of supply nodes
q Mass-flux Ny Number of internal nodes
p Steady-state pressure Ny Number of demand nodes
q Steady-state mass-flux N, Number of compressors
s, Supply node pressure N, Dimension of pressure space
dg Demand node mass-flux | N, Dimension of mass-flux space
sq  Supply node mass-flux n, Dimension of reduced pressure space
d, Demand node pressure ng Dimension of reduced mass-flux space

Table 1: List of recurring symbols.
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1 Introduction

Rapid transient simulations of gas flow in pipeline networks are essential for safe
operations of gas networks as well as reliable delivery of denominations. Yet, in
a volatile supply and demand environment, due to increasing renewable energy
sources, the time horizon for planning dispatch and load forecasting shortens
while more sources of accountable uncertainties, such as effects of weather on
energy consumption and production are introduced; to a lesser degree this is
a long standing challenge [6]. An example is the interconnection of gas and
power grids through gas-fired power plants [26, 139, [89]. Thus, more simulations
for the uncertainty quantification of dynamic gas network behavior need to be
completed in less time by the gas grid operators. However, available compute
power is (and was [I33]) never sufficient. To this end we evaluate customized
model reduction techniques for an established class of gas network models.
This work and the associated software platform is an effort to determine which
model reduction methods are suitable for enabling digital twins [85] [118] [56] of
gas networks. Depending on the mathematical model and quantities of interest,
the twin may contain redundant or superfluous information with respect to
the simulations. Therefore, model reduction compresses the twin to a matched
surrogate model, which is sufficiently accurate in the chosen operating region.
The swift numerical simulation of gas network twins by reduced order modeling
is highly relevant, not only due to the transition towards renewables at the time
of writing, which is underlined by the research projects MathEnergg,H (Mathe-
matical Key Technologies for Evolving Energy Grids) [28] that the authors are
part of, and TRR1 54E| (Mathematical Modelling, Simulation and Optimization
using the Example of Gas Networks) [83], but also because of the intriguing
numerical problem of model reduction for hyperbolic, nonlinear, coupled, para-
metric, multiscale partial differential-algebraic equation systems.

If relevant intraday demand changes occur, established steady / stationary /
static simulations may not be sufficient anymore [41]. The basic model for the
simulation of unsteady / dynamic / transient flow processes in gas pipelines
is based on the one-dimensional (isothermal) Euler equations, originally intro-
duced in [53], and “rediscovered” in [I02] as well as in [78] [79] around the same
time. A practical extension in the context of gas networks is the repetitive mod-
eling approach [36], which enables a modular construction. For extensive details
on gas network modeling, see the works [127, [T03}, 44}, 120}, [92] 32} [18)] [124], and
for a concise summary of the overall approach we recommend [7]. Furthermore,
a system-theoretic approach to gas networks is discussed in [34], and results on
boundary reachability (controllability) and observability for this class of models
have been derived in [8] [9].

In terms of complexity reduction for gas network models, earlier works applied
techniques such as combining parallel pipelines [125], singular perturbation [123]
and symbolic simplifications [93]. Younger works introduced projection-based
model reduction methods from fluid dynamics, proper orthogonal decomposition
(POD) [49, 62l 50], and system-theoretic methods [86] (matrix interpolation),
[1, 87] (balanced truncation), or Padé-type approximations [84] B8] (moment
matching).

Thttps://mathenergy.de
2https://trrib4.fau.de
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In this work, we conceptually combine these previous approaches, by using
system-theoretic but data-driven methods that are structure-preserving. The
utilized data-driven assembly of the system-theoretic operators, central to the
employed methods, is also a partial answer to the challenges posed in [55, Re-
mark 5.10]. Furthermore, we note that from this work’s point of view, [139,
140], [126] are concerned rather with (valuable) model simplifications and index
reduction than (projection-based) model reduction.

To avoid the analytically most complex aspects of the gas network model — the
nonlinearities — one could linearize the model around an operating point. Yet,
the different nonlinearities (i.e. friction, compressibility and compressors) are
unlikely to have a compatible operating point for a wide range of scenarios.
Furthermore, linearized and simplified models of gas flow have limitations with
simulations of real scenarios [59], [129, Ch. 7]; hence, we use a nonlinear model.
Since there is no general theory for model reduction of nonlinear systems, and a
high degree of modularity in the gas network modeling process, model reduction
algorithms have to be compared heuristically to determine their applicability.
As a result of this reasoning and a demand for gas network simulation soft-
ware tools [31) [67], a platform named morgen (model order reduction for gas
and energy networks) was designed with the goal to compare different models,
solvers and reductors. The morgerﬁ platform is an open-source project, and
designed in a configurable, modular, and extensible manner, so that modeling,
discretization or model reduction specialists can compare their methods.

In summary, this work contributes a full, but also fully modular, modeling,
model reduction and simulation open-source software stack for gas networks,
and potentially other energy network systems (i.e. district heating networks,
water networks), which brings together research results from various disciplines.
Overall, this work is composed as follows: In the gas network model,
simplifications, non-pipe elements, its relation to port-Hamiltonian theory, and
the utilized approach for obtaining a steady-state as initial condition are de-
scribed. [Section 3| and [Section 4] outline the general model reduction idea and
propose five reduction method classes. The design and features of the morgen
platform are summarized in[Section 5] followed by three sets of numerical exper-

iments in We conclude by an outlook (Section 7)) and an evaluation
of our findings in

2 The Transient Gas Network Model

The goal of this section is to describe the partial differential-algebraic equation
model of a gas network as an input-output system that maps boundary values
to quantities of interest. First, the model for a single pipeline is summarized,
which is based on the isothermal Euler equations of gas dynamics [102] [104].
Then, it is generalized to a network of pipes, and simplified compressors are
added. Additionally, a connection to energy-based modeling is made.

Even though further non-pipe elements are common in gas networks, such as
resistors, coolers, heaters, valves and control valves [44], [94], we prioritized com-
pressors to focus on the model reduction aspect on a macro scale. Moreover,
the practical numerical problems of scale homogenization, spatial discretization,
index reduction and steady-state approximation are discussed in this section.

3“Morgen” is also the German language word for “tomorrow”.



2.1 The Gas Pipeline Model

The principal building blocks of gas transport networks are pipelines or ducts.
Since the length of pipes exceeds their diameter by far (L > 500d, [79]), a
spatial one-dimensional model suffices. We model gas flow in a (cylindrical)
pipe of length L connecting two junctions by the isothermal Euler equations:
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which determine the evolution of the coupled pressure p(z,t) and mass-flux
q(z,t) variables. The physical dimension of the pipe enters as its diameter d
and the derived cross-section area S = %dQ, which is assumed constant, ignor-
ing the influence of temperature and pressure on the pipe walls. These coupled
partial differential equations (PDE) can also be characterized as a nonlinear,
two-dimensional, first-order hyperbolic system of conservation laws: the pres-
sure p preserves continuity, while the mass-flux ¢ conserves momentum.
Following [77,[62] [106] and [18, Sec. 2.1], the inertia term has been neglected due
to a low Mach number m < 1, which leads to the ISO2 model in the TRR15)
classification [32], also known as friction-dominated model |23, Sec. 3.2.1]. Fur-
thermore, we assume a turbulent flow with a Reynolds number exceeding
Re > 105 [53,[39], neither line breaks or valve closings happen intraday (to pre-
clude associated shocks [33]), and low-frequency boundary values [I06], which
in this work are the supply pressure and demand mass-flux, due to frequent use
in literature, and use-cases such as guaranteed demand pressures [61], 21].

In , the linear reaction term describes the effect of gravity (with standard
gravity g = 9.80665%) due to the pipe height h, while the nonlinear reaction
term models loss of momentum due to friction at the pipe walls, specified by the
(Darcy-Weisbach) friction factor Ao := A(d, k, Reg), given a pipe roughness k,
and an estimated mean Reynolds number Rey, see [18, Sec. 2.2]|ﬂ This friction
term is principal to the accuracy of the gas pipeline model [105], 9T, 32] 59].

In this model variant, a (globally) constant mean compressibility factor
zo = z(po,To) € R is assumed [104], B4} [60, [109], as well as a constant gas
state vo := RgTp, whereas the temperature Ty and the specific gas constant Rg
are treated as parameters (see [Section 2.6|). To this end, the steady-state pres-
sure p =: pg is used to compute zgp, via heuristic formulas based on the Virial
expansion [24], [I8] Sec. 2.3]|ﬂ

2.2 Homogenizing Scales

The SI-based units for pressure and mass-flux are [Pa] and [kg/s], respectively.
This introduces a difference in scales of five orders of magnitude between the
variables p and ¢, and hence induces numerical problems. To counter this mul-
tiscale structure, we simply rescale the pressure from [Pa] to [bar] which con-
veniently comprises a factor of 10°. Nonetheless, the model still consists of
two interacting physical variables, hence the model still has to be treated as a
coupled system, however, without numerical multiscale issues.

4 Additionally to [18], the IGT formula [32], [94] Sec. 15.2.3] is implemented in morgen.
5 Additionally to [I8], the DVGW-G-2000 equation [92, Ch. 9] is implemented in morgen.



2.3 The Gas Network Model

Given the model for a single pipe from the previous section, a (gas) network of
pipes can be encoded by a finite directed graph, which is a tuple G = (N, €) of
finite sets symbolizing nodes A, and oriented edges £. The edges correspond to
pipes, while the nodes represent the junctions connecting pipes. The connectiv-
ity of the network is the relationship between edges and junctions, given by the
incidence matrix A € {—1,0, 1}W|X|5|, a map from edges to nodes, such that:

—1 &; connects from N,
Aij = 0 &; connects not N,
1 &; connects to N;.

Note, that the orientation of the edges is not enforcing the dynamic flow direc-
tion of the gas, but is necessary to determine the complexity and boundary of
the overall networked model [52 [I8].

We introduce the notation |4 for the component-wise absolute value of a matrix.
Using this absolute value, the following partial incidence matrices associating
edges entering and leaving nodes respectively are defined similar to a Heaviside
function:

Ar = 5(A+ A, Ap = 5(A-JA).

Next, based on this connectivity, certain conservation properties are enforced
to maintain a network balance, and thus ensure physical relevance of the gas
network model. Specifically, the Kirchhoff laws are applied to the network in
vectorized (or rather matricized) form [128] [I7]:

1. The sum of in- and outflows (mass-flux) at every node (junction) is zero:
This means that no gas gets lost in transport from one pipe to the next,
with the exception of boundary nodes. Hence, a vector of flows ¢ € RI€I
applied to the incidence matrix equals the (out-)flow at the boundary

(discharge) nodes dq : R — RMV: Dl, which are mapped into the network via
B € {0, 1}VIXINDI;

Aq(t) = Badq(t),

with Np C N denoting the subset of boundary nodes, which only connect
from one node respectively, but not to any node.

2. The sum of directed pressure drops in every fundamental loop is zero:
Fortunately, an equivalent representation [I38, Ch. 7.3] can be used, which
resolves implicitly. It remains to ensure that the nodal pressures at the
in-flow boundary (supply) nodes are associated to the boundary function
sp:R— RWS‘, which are mapped to the network via B, € {0, 1}VsIxI€l:

A p(t) + B] sp(t) = Aj g p(t) — Af 1 p(?),

with Mg C N denoting the subset of boundary nodes, which only connect
to one node respectively, but not from any node, and the reduced
incidence matrix Ag € {—1,0, 1}NoIXIEL NG| = |N| — |Ns|, with all rows
associated to supply nodes removed.

Given a connected and directed graph representing a gas network topology, with
the dynamic flow in the pipe edges modeled by the PDE , then yields a partial
differential-algebraic equation (PDAE) due to the above constraints.



2.4 Discretization and Index Reduction

Next, we delineate the discretization of the spatial differential operators and
reduction of the (P)DAE index in the networked system, yielding a system of
Ordinary Differential Equations (ODE). Eventually, the remaining discretiza-
tion of the temporal differential operators is addressed.

We explicitly do not use the decoupling approaches from [I1] or [I0], as the
former employs linearization and hence does not fit this setting, while compared
to the latter, our equivalent analytic index reduction is more convenient here.
The partial differential(-algebraic) equation is discretized using the method of
lines: First in space, then in time, yielding a (nonlinear) dynamic system. For
the spatial discretization a first-order upwind finite difference scheme is utilized.
We select (only) two points for each of the k pipes with length Ly, namely the
start ( -f) and end point ( -):
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The matter of short, long and varying lengths L, is addressed in
For each pipe, this leads to the following equations:
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Now, different choices for ( -*) are surmisable. Subsequently, two specific com-
binations of p* and ¢* will be discussed: The midpoint discretization [49] (2]
1401 (50} [I7], and the left-right discretization [51l [112] 47] resulting in (implicit)
ODEs. For an error analysis of these two discretization variants, see [124]. In
the following, we describe a unified approach of deriving these index-reducible
discretizations.

For notational ease in the coming subsections, a vectorized form for the above
(networked) system including its constraints is given by:

do 9ep* = Dp(q" — "),

*

04" = Dy(Afp + Bls,) — (DyDydop* + Dy 2 'pq ) (2)
0
Aoq* = Bd dqa
using, thus resolving, the constraint AJp + BIs, = p® — pl, as well as
do := =1~ € R and the diagonal matrices:
YoZzo
Sk R L >\0 k
D =——— D =——, D =g(hy —h D = —,
oKk S Ly Dokk I, Dok g9 (hi = hi), Dy e 54y, Sy

Note, that (do - p*) corresponds to the global average density, (.S, 1. g;) to the
local flow rate, and depending on the choices for p* and ¢*, the model’s analytic
and numerical character will differ.



2.4.1 Midpoint Discretization

In case of the midpoint discretization, we set p; and g to the mean of its
associated edge’s endpoints:

R L
pE+p
i =T =),
R

(g™ — ¢%), and note, that in vectorized form,

N

Furthermore, we define ¢— :=
p* = LAY+ 1BIs,).
Together with the algebraic constraints from a DAE system in the
variables p, ¢7, and ¢~ arises:

do 3(1AT |5+ |BT13) = Dy 247, (32)
0" = Dy(Alp + Blsy) — (DyDydo 1| ATIp + BT s,)

D, lgt| gt ) (3b)
do3(|ATIp + BI]s,) )’

0= Aoq+ + | Aolg™ — Bady. (3c)

Since we aim to obtain an ODE, we need to transform this DAE system. The
complexity of deriving this transformation is quantified by the DAE’s index.
From the various DAE index concepts, we use the tractability index 7 [90], for
which the midpoint discretization guarantees 7 < 2 [52].

This DAE can be decoupled into an ODE by rewriting it in the variables p and
gT. To this end,

1. the pressure boundary condition implicitly resolves (2)).

2. By multiplying the differential equation by (l4o|D, 1) from the left,
the remaining algebraic constraint is removed by replacing Apq~ by
(—Aog™ + Bady) in (3a). Since D, is a diagonal matrix, this is also nu-
merically feasible.

We also pre-multiply with the inverse of the diagonal matrix D,. Alto-
gether, we obtain:

Aol (3D, do)| ATl p = —Aog™+ Bady — |Ao| (D, do) | BT |3, (4a)
D" = Alp + Bls, — (Dydo3(1ATIp + |BI]s,)
T do s (ATl + |Bsp)

This system of a pressure and mass-flux variable now consists of only differential
equations. Notably, the first equation of the ODE system contains a temporal
derivative of the input function s,, which practically would need to be approx-
imated numerically, for example by finite differences. However, we will assume
that all inputs are sums of step functions, so that effectively s, = 0, which is
reasonable as we assume exclusively low-frequency boundary values.



2.4.2 Endpoint Discretization

For the endpoint discretization, also called left-right discretization, we set pj;
and g; to the left and right endpoints, respectively:

p
q
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Since (BT + |B]|) s, = 0, we can write p"* = Af pp. With the algebraic con-
straints from [Section 2.3] a DAE system in the variables p, ¢©¥, and ¢” results:

doAf b= Dp(q" — ¢"), (5a)
i = Dy (ATp + BT D,D,dy AT p, la'1d"
q" = Dy(Ajp + Blps) — ( DgDgdo Aj g p + ! 40 AT o) (5b)
0=Aorq"+ Ao q" — Bad,. (5¢)

As for the midpoint discretization, we want to derive a system of ODEs. For
the endpoint discretization, it is shown in [51] [112], that the tractability index
is 7 = 1, if all edges connecting supply nodes are directed from the supply,
and each component of the graph is connected to at least one supply. This
implies, no two supplies are to be directly connected. Similar to
this DAE can be decoupled into an ODE by rewriting it in the variables p and
q". Applying equivalent steps to as for the midpoint decoupling yields:

(AO,RDp_ldO Ajr)p =—Ao q~+ Byd,, (6a)

lq" | q"

—1.L _ 4T To _ T ~1
Dy 4" = AJp+ Bls, — (Dydo AL o+ D; DdeA&Rp), (6b)

using .A())R + AO7L = .A() in .
An advantage of this endpoint discretization, in addition to the absence of a
derivative of an input function, is the input-free friction term in .

2.4.3 Temporal Discretization

After spatial discretization and index reduction of the gas network model, a
system of stiff nonlinear ODEs (in time) remains. The remaining temporal
differential operator(s) are discretized using time-stepping schemes.

Due to the hyperbolicity of the pipeline model, the temporal resolution At used
for the discrete integration interdepends on the spatial resolution Ax employed
for the discretization of the spatial differential operators. Formally, this is ex-
pressed by the Courant-Friedrichs-Levy (CFL) condition [57, 12, [135], which
states that the propagation of information cannot be faster than its conveyor:

At
ACFL = Umax 7 < 1,

with the (dimensionless) CFL constant Acpr,, symbolizing the ratio of temporal
and spatial discretization step-width scaled by the peak gas velocity vpax. Since
the flow is subsonic, vmax could be estimated from the (linearized) characteris-
tics [57], or via the boundary valuefﬂ However, we fix this maximum gas speed
t0 Umax = 2072 (practically this is configurable in morgen).

6€.g. https://petrowiki.org/Pipeline_design_consideration_and_standards#Gas_line_sizing
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Due to this relation of the space and time discretization and a pre-selected
application-specific sampling frequency At of the output trajectory (i.e., ev-
ery 60s), Az has to be adapted accordingly. The spatial discretization by finite
differences in the previous sections ignores pipeline length, as each pipe is as-
signed only one (finite) difference. This means, pipes are potentially too long
or too short with respect to a nominal length Az, determined by the CFL con-
dition Az = (1 — &) vyax At, (0 < € < 1). Thus, too long pipes are subdivided
into virtual pipes of nominal length, while too short pipes, including a potential
remainder of too long pipes, are “rounded” to a full nominal-length pipe, yet
with a friction term scaled by the fraction of the short pipe’s length compared
to the nominal length,

5 e = Df7k:k Lk = ASC,
£ %Df,kk L < Az.

This approach assumes that delays due to the forced virtual length of an actually
short pipe is insignificant, hence this simple homogenization of pipe lengths may
be improved by replacing short pipes with friction-less shortcuts and a static
pressure-drop, as used in the quasi-static model [62 [49] and similar to the
subsequent compressor model in

Overall, we refine each pipe into a sequence of pipes of a selected nominal length
— a graph level refinement — which is determined using the CFL condition. We
note here, that this methodology is aimed at ensuring a certain minimum length
for each pipe, as the shortest pipe may dictate an unnecessarily finely resolved
time discretization. In terms of a pipe’s maximum length, suggestions are for
example: 5km ([49]), or 10km ([139]).

As the model is composed of a stiff, linear (hyperbolic) and a nonlinear compo-
nent, an implicit solution of the linear part using a diagonally implicit Runge-
Kutta (DIRK) method, and an explicit solution of the nonlinear part via an
strong stability preserving (SSP) method, by an IMEX (IMplicit-EXplicit) solver,
as proposed in [12] Sec. 3.2.2], is targeted. The actual quadrature rules used to
compute the transient solutions are detailed in

2.5 Simplified Compressors

Beyond pipes, gas networks comprise a variety of non-pipe elements, of which
the most important are compressors. Compressors increase gas pressure to coun-
teract cumulative effects of retarding forces (friction, gravity, inertia etc.), and
are grouped into stations with many possible configurations. For our purposes,
we just allow fixed configurations on a macro scale [88] per scenario, which leads
to a compressor being modeled as a special kind of edge that boosts the pressure
from its suction inlet to its discharge outlet.

Compressors are typically modeled “ideally”, based on their power consumption,
for example as a special node type; in-depth discussions can be found in [61],[120].
Due to this consumption model, such ideal compressor units are useful for energy
utilization optimization tasks, yet, for a simplified transient simulation aspect
already too complicated. A more practical approach is taken in [139] [140, [89],
where a compression ratio a; > 1 is used to scale the pressure in each node, or
pipe [126], which means «; > 1 indicates compression / a compressor, otherwise

(a; = 1) a pipe.



Here, we utilize a likewise simple compressor model similar to [134, [45], for
which we assume it is propelled by an external energy source, for example,
given a compressor electrification, by excess renewable power [40], or that the
off-take in gas is insignificant. But instead of using compression ratios, a con-
stant (or parametric) target pressure is prescribed, modeling discharge pressure
control [125].
The following affine compressor model is a variant of the compressor presented
in [I22] and used in [7]. We model a simplified compressor by a level, short
pipe which increases the pressure at its outflow to a specified value p. (and
without friction, A;; = 0). Given the pipe from nodes i to j is treated as such a
“compressor pipe”, with target pressure of p., the variables p;; and g;; are given
by the differential equations:

pij(t) = a; — qis

4ij(t) = Pe — pi-
The target pressure p. could be a step function p.(t), and hence a control
input [126], which could be accompanied by a (nonlinear) output quantity of
interest yielding the energy consumption of the compressor via [39].
A compressor could also be interpreted as an actual pipe with “negative fric-
tion”, and we considered using such nonphysical pipes as compressor model, but
a difficult transformation between friction and pressure increase would have to

be calibrated for every model variant (including friction factor formulas) and
updated with every change in any model.

(7)

2.6 Parametrization

For the considered pipeline model , two scalar parameters are of practical
interest: The temperature of the gas Tp (in [K]), which is assumed to be constant
throughout the network, and the global specific gas constant Rg (in [J/(kgK)]).
Due to mainly underground on-shore pipelines [92, Ch. 45], and coolers in com-
pressor stations [88], using an isothermal model is a reasonable simplification.
However, temperature is relevant as a global parameter, since the use of an
isothermal model “freezes” the dynamic energy (temperature) component in
the original Euler equations (in time), and while intraday ambient temperature
variation can be neglected for simulations with a 24-hour time horizon, the tem-
perature difference of a hot summer day and a cold winter day should be taken
into account by a parameter representing an average temperature.

The specific gas constant, on the other hand, is determined by the gas composi-
tion, which may also vary. Again, local variations during an intraday simulation
are neglected in this work, yet the average gas mixture of natural gas with, for
example, hydrogen or bio-gas is relevant, so a parameter for the average specific
gas constant is introduced. Together, the parameter-space © is given by:

_(To 2
0.<RS>66CR,

and note that 6 is used in the model (only) as dy = ﬁ = (ToP}s)z() = 9091120.

Yet, lumping into a single parameter would impede physical interpretation.

Applied to the respective components of the input-output model of
this leads to parameter-dependent quantities, which need to be regarded ac-

cordingly by the model reduction as discussed in

10



2.7 Input-Output Model

After spatial discretization and index reduction, we end up with a square input-
output system, a system with the same number of inputs and outputs, consisting
of an ordinary differential equation, an output function and an initial value:

(O O = (2 A0 (2 2N () (L)
()= (&, 5. ®

c
(5)-(i5)
do a(5p,dq) )’

with parameter independent linear vector field components A and B, para-
metric mass matrix E(6), and nonlinear friction and gravity retarding term
fq(p,4, sp,0). The actual composition of the dynamical system components de-
pends on the discretization and index reduction, cf. while the linear
output function C consists of Cyq = —B, and Cgp = BdT. The load vector
F, € RN accumulates the respective discharge pressures p., as described in
for all compressors, and the initial state is given by a steady state,
whose computation is detailed in depending on given steady state
boundary values 5, Jq. Altogether, the gas network model is a generalized
linear system (E, A, B, C'), together with a nonlinear part f.

A control system formulation of transient gas network simulation was already
formulated in [79], and recently in [I35]. Also in [34], a so-called “systemic inter-
pretation” is discussed; inspired by [34] Figure 2], we schematically illustrate
in

The specific structure and grouping for the single pipeline model , the index-
reduced spatially discrete network models , @, and the input-output
model 7 is justified by the numerical processing: only two model compo-
nents depend on the parameters, temperature Ty and specific gas constant Rg,
as well as on the compressibility factor zp, namely the mass matrix I, and the
jointly treated retarding forces gravity and friction f;. Hence, the linear part of
the right-hand side vector field is non-parametric and compressibility-agnostic.
Overall, this system maps input boundary values, in the scope of this work,
pressure at the inlets and mass-flux at the outlets, via the internal state, to
output quantities of interest, here, mass-flux at the inlets and pressure at the

outlets:
S S S
() = ()
N (p) Ve
q

To this type of input-output system we can now apply (data-driven) system-
theoretic model reduction methods, which preserve the input-to-output map-

ping S, but explicitly not the internal state (p ¢)". Lastly, we note that based
on [73], we added a model fact sheet in the [Appendix
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Figure 1: Schematic illustration of gas network input-output model.

2.8 Steady-State Computation

After spatial discretization, the dynamic simulation becomes an initial value
problem. Yet, only the boundary values of the network model are known a-
priori. This means the internal state at time ¢ = 0 is unknown. We assume
simulations always start at a steady-state p, ¢ for which 0;p = 0;q¢ = 0, given
some (initial) boundary values 5,, d,. The internal state is then computable as
a steady-state problem. Since the employed model is nonlinear, we approximate
the steady-state by a two-step procedure:

la. Linear mass-flux steady-state: A,, § = —Bpqd,.

1b. Linear pressure steady-state: Agpp = — (qu 5p+ FC>.

2. Corrected pressure steady-state: Agy p= — (qu Sp+ Fe+ f4(D, 4, 5p, 9))

Step 2 can be repeated until an error threshold is met by using the previously
approximated pressure steady-state. Practically, the linear problems in Step 1
and Step 2 are solved by a QR-based least-norm method [22]. Note, that Step la
and Step 1b can be solved in parallel and that the QR decomposition of Step 1b
can be recycled in Step 2 because of the chosen model structure.

While this method works well for rooted-tree pipe-networks, it is not sufficient
for cyclic networks with multiple supply nodes and non-pipe elements such as
compressors. In this case, the resulting state after a limited number of the
above algorithm’s iterations is used as an initial value for the first order IMEX
integrator detailed in which time-steps until a steady-state is suf-
ficiently approximated. This approximate steady-state, associated to a fixed set
of boundary values and parameters, is used as initial value for the simulations:

() = (o)

While other time steppers are applicable, the first order IMEX solver is related
to the initial (two-step) algebraic approximation, due to the synthesis of the
linear /source/input and nonlinear/reaction terms.
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2.9 Port-Hamiltonian Structure

An interesting class of models are port-Hamiltonian systems, which have
already been used for gas network modeling [84, B8]. Such port-controlled-
Hamiltonian models result from a system-theoretic approach to energy-based
modeling, and are square, passive, stable and feature certain symmetries, be-
sides their physical interpretability [I0T], [14]. To exploit results from port-
Hamiltonian theory in the context of data-driven model reduction, we regiment
the previous modeling approach into the port-Hamiltonian framework.

A linear input-state-output port-Hamiltonian model [I30, Ch. 4] has the form:

A B
. — ——
Ei(t) = (J - R) Qu(t) + (G — P) u(t), 9)
y(t) = (G+ P)TQx(1),
C
with a symmetric positive definite mass matrix £ = ET, E > 0, a skew-
symmetric energy flux J = —JT, a symmetric, positive, semi-definite energy

dissipation R = RT, R > 0, a symmetric, positive definite energy storage @,
@ > 0, resistive port matrix P and control port matrix (ﬂ

Here, we generalize the energy dissipation R € R™V*¥ to a nonlinear mapping
R:RY — RY*N this means the linear constraints become [37]:

R=RT — (R(x)2,2") = (', R(x)2"), Vaz,2’ 2" € RY, (10)
R>0 — (R(z)x,z) >0, VYxeRY. (11)
With this set up, we test the two index-reduced gas network model discretiza-

tions presented in [Section 2.4.2land [Section 2.4.1| for compliance with the above
port-Hamiltonian properties.

Proposition 1
The endpoint discretization @ is a port-Hamiltonian model.

Proof.
We define the port-Hamiltonian state as z := (p qL)T, which induces the
remaining components. The mass matrix

E:[(Ao,RDpldO(ﬂ) or) 0

=ET>0
-1
0 Dq}

is symmetric positive definite, if its diagonal blocks are. Given that the D,
are diagonal, and thus symmetric, as well as positive definite, both blocks are
symmetric positive definite. The energy flux

10 Aol _ 4
1=l =
is skew-symmetric by definition. The energy dissipation (see f;)

0 0

R(x) := . do(0).AT _ . L ,

TTypically, the symbol B is used for this port matrix.
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with the diag : RY — RV*Y operator mapping a vector v to a diagonal matrix
D such that vy — Dy, and element-wise (fraction) nonlinearities, results in
one non-zero diagonal block and thus fulfills . The condition is fulfilled
since the nodal pressure variable is always non-negative, and the friction term
preserves the sign. As a side note, this notation for the dissipation can also be
used for linearization, by constraining the argument of R to the steady state Z,

R := R(z) ~ R(z).
Here, the energy storage represents the scale homogenization from

_ [(10%- In,) 0 _
Q—[ o (105,1Nq)]—QT>0

which is a diagonal matrix with positive entries and thus symmetric positive
definite. Lastly, the port matrix configuration

_Jo o _fo Bp
peloy o o=l W

fulfills the port-Hamiltonian form. O

Some remarks are in order on this result: Note, that this derivation tests if the
endpoint discretization has the mathematical port-Hamiltonian structure, but
does not verify a physical energy-based model.

The somewhat nonphysical treatment of the gravity term as dissipating instead
of storing ([37]), is done with regard to the parametrization. Including the
parametric gravity as a retarding or damping force, and thus keeping the linear
energy flux parameter-free, enables the previous steady-state computation.
Compressors, as modeled in can be included by an additional sum-
mand inside the energy dissipation component, i.e. £< similar to the gravity
term. This exhibits an unphysical negative sign inside the dissipation, as a
compressor introduces energy. Furthermore, this compressor model requires to
remove components from the Ay, block of the system matrix (7)), and thus
perturbs the skew-symmetry of J.

From the previous proof it is also immediately clear that the midpoint dis-
cretization cannot be a port-Hamiltonian model, due to the input dependence
of the energy dissipation.

Given the port-Hamiltonian model with a nonlinear resistive term, an (approx-
imate) adjoint system can be derived by treating R as its image — a diagonal
matrix. Transposing the (primal) port-Hamiltonian system’s @ transfer func-
tion h(s) = (G + P)TQ(Es — (J — R)Q)~ (G — P), and exploiting the system
components properties, yields the dual system:

AT cT
Bi(t) = Q(~J — R(z()) z(t) + Q(G + P)u(t),

(12)

Hence, for the (nonlinear) endpoint discretization, its observability can be (ap-
proximately) quantified by the dual system’s reachability, as for linear systems.
Conceptually, this could also be done with the midpoint discretization, as it sup-
plies the same model components, however, it has no theoretical justification,
as a dual system may not be accessible for (general) nonlinear systems.
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3 Model Order Reduction

In this section, we summarize the principal approach behind all presented model
reduction methods that are extended and tested in this work. The structure of
the model laid out in is given by . For large (expansive) networks,
the differential equations in p and ¢ become high dimensional, which impedes
their solution and hence repeated simulations of scenarios. The aim of model
reduction is to reduce the dimensionality of the differential equations, by com-
puting subspaces of the phase space on which the trajectories evolve suitably
similar (with regard to the quantities of interest). Furthermore, the reduced
order model shall have the same form as the original model, and since two phys-
ical quantities are (bi-directionally) coupled in this system, the model reduction
for interconnected systems [I17] approach is used, yielding reduced operators
for each subsystem:

O30 G

0 E,J\q) \A, 0 J\a+d) \Bys 0 J\dq) \F.) \Sfo(0+D,3+0,5p,0))’
(8‘1) o~ (531): NO ésq (134‘15)

dp dp Cap 0 J\G+G)"’

(&)-0)
do 0/’

centered around the steady-state (f) q_)T. This structure preserving model
order reduction was already used in [52[I7] in the context of model reduction for
gas networks, while the centering has been used in [7] for gas network simulation

and in [63] for nonlinear model order reduction. In the following, the general
ansatz to obtain these reduced quantities (denoted by ) is summarized.

3.1 Projection-Based Model Reduction

The reduced order model is computed by projecting the high-dimensional dy-
namics evolving in the (coupled) pressure and mass-flux phase spaces (of dimen-
sion N, and Ny) to low(er)-dimensional subspaces (of dimension n, and ng),
which capture the principal components of the respective trajectories. Given
suitable discrete projection mappings from the original space to the reduced
space V.7 and mappings from the reduced space back to the original space Us:

U, :R” = RY, VIR 5R™: VI.U,=id,,,
Ug:R"™ = RY VI:RY R VI.U;=id,,.
Thus, the reduced trajectory results from applying Vi to the original trajectory’s

steady-state deviation, while the original trajectory is approximately recovered
by applying U, to the reduced trajectory:

(@)= (7-a) - (i) = o)

the initial condition is also reduced by application of V,. Similarly, the compo-
nents of the reduced system result from applying the U, map to the argument
of the respective operators, and the V, map to the result of the operation.
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For the linear operators, the matrices E,, A., B, and C, and the vector F, this
leads conveniently to pre-computable reduced matrices and vector respectively,

Apg = V[ Apg - Ug € R™7, Agp =V - Agp - Up € R™,
Bpg =V - Byg € R Ne, Bys =V - By, € RM*Ne,
Cap = Cap - U, € RN, Csq = Csq - U, € RN=7"a,

Ep(e) = VpT EP(Q) U, € R"» %7 E, = VqT E, U, € R™a X"
F. = ‘/qT -F. € an,
yet, the nonlinear component f, remains a composition operation:

fq =VS fo(p+Upp,q+Ugq,8p,0) : R"™ xR™ x RN x R? — R™ . (13)

3.2 Structure Preserving Model Order Reduction

In this specific context, the term structure preserving model order reduction
(SPMOR) has two meanings: first, SPMOR refers to the separate reduction
of the state components, as above in the case of gas networks, the individual
reduction of pressure p and mass-flux q. Second, SPMOR can also refer to pre-
serving the port-Hamiltonian form @ For projection-based model reduction,
the former is generally ensured by separate projectors [43] (or an overall block
diagonal projection). The latter is guaranteed specifically by using Galerkin
projections, which implies stability preservation [I5], given a port-Hamiltonian
full order model. Both SPMOR interpretations are fulfilled jointly if a block-
diagonal Galerkin projection is used.

3.3 The Lifting Bottleneck and Hyper-Reduction

The gas network models considered for reduction are nonlinear (and possibly
non-smooth), hence the reduced order nonlinear part fq involves lifting the
reduced state up to the original high-dimensional space, evaluating the non-
linearity and projecting the result back down to the reduced low-dimensional
space . As the high-dimensional space is involved, this is typically compu-
tationally demanding and may eat up the gains from the reduction of the linear
part. To mitigate this so-called lifting bottleneck, hyper-reduction methods can
be employed, which construct low-dimensional surrogates for nonlinearities.

In this work we discard (or rather defer) hyper-reduction due to the following
reasoning: The purpose of this work is to determine which method constructs
the best reduced order models, a hyper-reduction may inhibit comparability due
to, for example, a dominating hyper-reduction approximation error. Second,
various hyper-reduction methods for this setting are applicable (i.e. DEIM [25],
Q-DEIM [35], DMD [137] or numerical linearization [96]), which may interact
differently with the different model reduction methods. So as a first step, the
bare model reduction methods are tested here (this means: which method’s
linear subspaces capture the nonlinear dynamics best), at a later stage the
best hyper-reduction method can then be determined. Lastly we note, the
nonlinear part of the vector field consists exclusively of element-wise operations
(see [Section 2.9), a system with repeated scalar nonlinearities (SRSN) [27],
which are less difficult to handle due to “locality” of the nonlinearity, and hence,
its vectorization.
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3.4 Parametric Model Reduction

There are two common approaches for projection-based parametric model or-
der reduction: averaging and accumulating [65]. For the selected data-driven
methods, averaging means that for a set of parameter samples the associated
trajectories or derived quantities (such as the utilized system Gramians) are av-
eraged, while accumulating refers to the concatenation of trajectories or derived
quantities (such as the projectors).

Generally, each of the structure-preserving model order reduction methods in
can be used with either, we opted to use the averaging ansatz for all
of the following methods since their computation is without exception based on
parametric empirical Gramians [70].

4 Model Reduction Methods

In this section, we briefly summarize the employed model reduction methods
from a practical point of view. For theoretical details and backgrounds we refer
to the relevant papers, cited in the respective subsections. Due to the non-
differentiable nonlinearity (friction), the sought projections U, V, for all tested
model reduction techniques are constructed from (transformed) time-domain
trajectory data obtained from numerical simulations, which is given by discrete-
time snapshots of the internal pressure nodes X and mass-flux edges Xq,

X, (t;0%)
X, (t; 0x)

[p'(t:0k) ... pNetNa(t;0;) ],
[ (t:06) ... NeNa(t;05) ],

the external demand node pressure }7}, and supply node mass-flux }A’q,

sl(t,9k)> SO (:.0)
(50 l(dZ(t79k) (dﬁp(t;@@)] ’
sl(t,m) sq." (t: 1)
(50 [(dZ(tﬁk) (dﬁq(t;ok)ﬂ ’
as well as dual state components Z, and Z,, if available
Zy(t:00) = [P (5:06) .. pNTNu(E6y) ]
Zo@t;08) = [a'(t:00) ... aNetNe(t;0,)].

The state-space trajectories X, (t; 0r), Z 7. (t; 0;) are obtained for perturbations of
the inputs, pressure at the N5 supply boundary nodes and mass-flux at the Ny
demand boundary nodes, while the output trajectories Y, (¢; ) are computed
for perturbations in the respective N, steady-state components. Using the dual
state trajectories is significantly faster than output trajectories, as computing
observability as dual reachability scales, as for the primal reachability, with the
number of ports, instead of scaling with the number of internal states. The
training parameters 0 are sampled from a sparse grid spanning the parameter
space © C R?.
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All methods are prefixed “Structured”, since the model structure of a pressure
and mass-flux variable is preserved in the reduced order model. Practically, this
means while pressure and mass-flux trajectories are computed simultaneously
due to their coupling, the individual projectors for pressure and mass-flux are
constructed separately.

The subsequent methods may not have been previously introduced explicitly in
structured form, yet given [I3T} 117} [I] introducing structured Gramians, these
are trivial extensions. For ease of notation, we describe the computation of
projectors {Up, V,,} and {U,, V,} generically as {U,, V. }.

We implemented a total of thirteen model reduction method variants, which
we compare in this work. All tested methods are data-driven and time-domain
focused, as the dynamic gas network model is nonlinear. Furthermore,
all model reduction methods construct linear subspaces and are derived from
methods for linear systems, yet differ from plain linearization: instead, the
implemented methods assemble linear subspaces of the model’s phase space
that, in a method specific sense, approximately enclosing the relevant nonlinear
system evolution. Moreover, all methods are SVD-based [4], and their majority
is originally based on (empirical) system Gramian matrices, for details see [64].
We highlight here that the time horizon for the training data is significantly
shorter than for the actual simulations the reduced order model is targeted at.
Furthermore, generic training inputs (transient boundary values), such as im-
pulse, step or random signals, are utilized to avoid a model reduction crime [65]
(comparable to an inverse crime): Test a reduced order model using the training
parameters or inputs.

4.1 Empirical System Gramians

All model reduction methods currently included in morgen are computationally
realized using empirical system Gramian matrices, which are system-theoretic
operators encoding reachability and observability. From these operators, infor-
mation on importance of linear combinations of states can be extracted. For
linear systems, these system Gramians are typically computed via matrix equa-
tions, for general nonlinear systems there is no feasible closed form. However, the
empirical system Gramians approximate the nonlinear Gramians locally based
on state and trajectory data. The empirical Gramians used in this context are
described in-depth in [64]; here only a brief summary is given.

4.1.1 Empirical Reachability Gramian Matrix

Reachability quantifies how well a system can be driven by the inputs, which
is encoded by the reachability Gramian. The empirical reachability Gramian is
an approximation based on state trajectory data [82]:

oo
Whye=_ Y /0 X™(t;0r) X (t; 05)T dt € RN=> N (14)

k=1 m=1

Given a suitable set of input perturbations, WR,* approximates the nonlinear
reachability Gramian near a steady-state [54].
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4.1.2 Empirical Observability Gramian Matrix

Observability quantifies how well the state can be characterized from the out-
puts, which is encoded by the observability Gramian. The empirical observabil-
ity Gramian is an approximation based on output trajectory data [82]:

Wo. = Z/ (6 0)T Y, (t: 0;) dt € RN-XN- (15)

For a suitable set of steady-state perturbations, /WQ* approximates the nonlin-
ear observability Gramian near a steady-state [54].

Given the port-Hamiltonian structure of a discretization, the empirical reacha-
bility Gramian of the dual system can be used to compute the empirical
observability Gramian [65, Sec. 2] with Z, (t;6;,) instead of X, (t; 6).

4.1.3 Empirical Cross Gramian Matrix

The empirical cross Gramian concurrently encodes reachability and observabil-
ity, which in conjunction quantifies redundancy also known as minimality; how-
ever, the (empirical) cross Gramian is only applicable for square systems, sys-
tems with the same number of inputs and outputs (which the gas network
model fortunately is), and an approximation is based on simulated state
and output trajectory data [69]:

- K Ns+Nd o0 R R
W= Y / X™(t;0,) Y (t:0),) dt € RN=*N- (16)
k=1 m=1 0

For a suitable set of input and steady-state perturbations, W;@* approximates
the nonlinear cross Gramian near a steady-state [69].

Given the port-Hamiltonian structure of a discretization, the linear empirical
cross Gramian exploiting the dual system can be used to compute the
empirical cross Gramian [13] with Z, (t;0)7 1nstead of ¥, (t;6k).

4.1.4 Empirical Non-Symmetric Cross Gramian Matrix

A generalization of the empirical cross Gramian for non-square systems is the
empirical non-symmetric cross Gramian, which is an approximation based on
simulated state and (averaged) output trajectory data [71]:

N, No+Ny

K N.+Ny
=3 Z/ X (t:00) (00 dt € RN (17)

k=1 m=1

For a suitable set of input and steady-state perturbations, ﬁ/\z,* approximates
the nonlinear cross Gramian near a steady-state. Even though the gas network
model is square, the empirical non-symmetric cross Gramian is included
here, since, heuristically, it could provide better results than the regular cross
Gramian [71]. Furthermore, an empirical non-symmetric linear cross Gramian
is computable by similarly averaging over the dual states and replacing Y. (t; 0k)
by Za(t; 04)T.
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4.2 Structured Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a basic data-driven method for
model reduction: given a matrix of state snapshots over time, the dominant
left singular vectors are computed as a basis via a singular value decomposition
(SVD) [95]. The basis vectors are assigned their principality with respect to the
conveyed energy by the associated (relative) singular value magnitude.

In the context of this work, the POD is constructed from a system-theoretic
point of view, that connects to the system property of reachability. Due to the
overall structured approach to model reduction, a structured POD refers in this
context to the separate PODs for pressure and mass-flux variables p and ¢ as
in [52, 50, 17].

4.2.1 Reachability-Gramian-Based

The singular vectors to the principal singular values of the empirical reachability
Gramian correspond to the POD modes. To obtain a reduced order model,
first, a truncated SVD (tSVD) of the empirical reachability Gramian,

£SVD
Wr« = Ur«Dr.Uf

reveals the principal subspace of the respective trajectories X ™(t), whereas the
importance of each basis vector (column) in Ug . is determined by (the square-

root of) the associated singular value o; := D}{/ i i

U* = UR’*.

The matrix of basis vectors (POD modes) constitutes a Galerkin projection
Vi := U,. Notably, (structured) POD only considers the input-to-state map-
ping, not the state-to-output mapping, and hence approximates the state vari-
ables, p and ¢, not the output quantities of interest s, and dp,.

The POD could also be computed directly from an SVD of the trajectory data,
yet the computational overhead of using the empirical reachability Gramian
is small compared to the trajectory simulation runtimes, and the systematic
perturbations of the empirical Gramian approach [64] are exploited.

4.3 Structured Empirical Dominant Subspaces

The previous (structured) POD method considers only the reachability infor-
mation, hence the data only reflects the input-to-state mappings, and thus the
POD derived ROMs (Reduced Order Model) approximate the state variables p
and g. To approximate the outputs s, and d,, the state-to-output mappings,
encoding observability information, need to be considered, too.

The (empirical) dominant subspaces method initially developed in [I08], and
originally named DSPMR (Dominant Subspace Projection Model Reduction),
conjoins and compresses the dominant reachability and observability subspaces
of an input-output system, such as the gas network model , obtained from
(empirical) system Gramians. Heuristically, this method seems to be useful for
hyperbolic input-output systems [48]. Here, we consider three variants: first,
based on the empirical reachability and observability Gramians, second, based
on the empirical cross Gramian and third, on the empirical non-symmetric cross
Gramian.
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4.3.1 Reachability- and Observability-Gramian-Based

The singular vectors associated to the principal singular values of the empirical
reachability and observability Gramians span these dominant subspaces, which
are first extracted by tSVDs, and then, after concatenation, compressed by
orthogonalization via another tSVD:

= tSVD

Wgr+« = UR_,*DR,*VI;*,

e tSVD
WO,* = UO,*DO,*VOT’W

SVD
[(wRUR,*DR,*) (WOUO,*DO,*)] ‘ = URO,*DRO,*VRO,*7

from which the singular vectors Vi, = U, := Ugrp,» make up a Galerkin pro-
jection. The weights wg = HWR,*HEI, and wp = ||/I/I707*||;1 equilibrate the
potentially mismatched scales of the respective Gramians, akin to the refined
DSPMR method from [108].

4.3.2 Cross-Gramian-Based

A truncated SVD of the cross Gramian also engenders the sought dominant
subspaces [19]: The (empirical) cross Gramian’s left and right singular vectors
(approximately) span the reachability and observability subspaces, respectively,
and their orthogonalized concatenation, via a truncated SVD,

WX,* tSlD UX,*DX,*V);*y

[(UX7*DX7*) (VX,*DX,*)} tle URO,*DRO,*VRO,*7

yields a Galerkin projection Vi, = U, := Ugro. The cross-Gramian-based
variant does not need to additionally weight the reachability subspace Ux . and
observability subspace Vx ., as they are both extracted from the same matrix.
This cross-Gramian-based empirical dominant subspaces method seamlessly ex-
tends to the empirical non-symmetric cross Gramian Wy ..

4.4 Structured Empirical Balanced Truncation

The dominant subspaces method combines separately quantified input-to-state
and state-to-output energies, but not the actual input-to-output energy. Such
can be accomplished by balanced truncation and based on the Hankel opera-
tor, which maps past inputs to future outputs. This operator’s singular values
measure the sought input-to-output energy, and the singular vectors constitute
a basis. To obtain the Hankel operator’s truncated SVD, first, the underly-
ing system needs to be balanced, and then singular vectors associated to small
magnitude Hankel singular values are truncated.

Balanced truncation is the reference model reduction method for linear input-
output systems, due to stability preservation in the ROMs and a computable
error bound. For (control-affine) nonlinear input-output systems, such as the gas
network model , balanced truncation can be generalized to empirical balanced
truncation [82], while a structured variant is introduced as interconnected system
balanced truncation [I31], which we combine.
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Again, we consider three variants: First, based on the empirical reachability and
observability Gramian, second, based on the empirical cross Gramian and third,
on the empirical non-symmetric cross Gramian; additionally, the reachability
and observability-based balanced POD variant is included.

4.4.1 Reachability- and Observability-Gramian-Based

The original balanced truncation method is based on the reachability and ob-
servability Gramians [97]. A transformation into a balanced coordinate system
in which both system Gramians are diagonal and equal is obtained via simul-
taneous diagonalization. Various balancing algorithms are available for this
task [I32], in this setting we selected the general balancing algorithm [I15] [1T6],
which utilizes the magnitude-based truncated eigenvalue-decomposition (tEVD)
of the Gramians: The matrices U,, V, constitute a Petrov-Galerkin projection,
whereas the importance of each column is determined by the approximate Han-
kel singular values, the (diagonal) elements of Dpg ,:
WR,*WO,*TR,* tE;/D AR,*TR,*a
(WR,*WO,*)TTO,* P N6 To
tSVD
Tg’*TFi,* = UB,*DB,*VB,*; (18)
1
U* = TR,*VB,*DB,QW

V, = To.Up. Dy,

4.4.2 Cross-Gramian-Based

For linear, symmetric systems, alternatively a balanced and truncated reduced
order model can be computed via the cross Gramian. Yet, the gas network
model is neither linear nor symmetric, not even in a nonlinear sense of
symmetric systems, i.e. gradient systems [74], but the considered input-output
system is square. Hence, an empirical cross-Gramian-based reduced model is
computable, but it will differ from the reduced model obtained by reachability-
and observability-Gramian-based balanced truncation.

Given a cross Gramian with full rank, an (approximate) balancing projection is
computable in a similar manner as for the (empirical) balanced truncation ,
but based on the left and right eigen spaces of the cross Gramian [76]:

= tEVD
WxTrx = ATR.

= tEVD
W)E’*TO,* - A*TO,*

T3 Tro "2 Ux o Dx iV o, (19)
1
U* = TR,*VX,*DX’Q*a
1
V. i=To,.Ux.Dy>.

The matrices U,, V, again constitute a Petrov-Galerkin projection, and the
importance of each column is determined by the absolute value of the (diagonal)
elements of Dx ., which are only equal to the Hankel singular values for linear
and symmetric systems.
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As for the empirical dominant subspaces method, the cross-Gramian-based em-
pirical balanced truncation variant directly extends to the non-symmetric cross
Gramian Wz .

One could assume that if only one system Gramian has to be computed, instead
of two for dominant subspaces or balanced truncation, that the cross-Gramian-
based computation is significantly faster, but the overall number of simulated
trajectories is the same for both methods, which causes the dominant fraction of
computational cost. Thus, the empirical cross Gramian computation is merely
somewhat quicker than the computation of both empirical reachability and ob-
servability Gramians.

4.4.3 Structured Balanced POD

Instead of balancing the system using the product of the (empirical) reacha-
bility and observability Gramians, the dominant subspaces of the respective
Gramians can be used to approximately balance the system. This variant of
reachability- and observability-Gramian-based balanced truncation is called bal-
anced POD [I36], and the approximate balancing algorithm reads:

frm tEVD
WR,*TR,* = AR,*TR,*a

7 tEVD
WO,*TO,* = AO,*TO,*7

T3 Tr. "=° Up .Dp V.., (20)

_1
U* = TR,*VB,*DB,iv

V. :=To.Up.Dp2,

with the matrices U,, V, inducing a Petrov-Galerkin projection.

Here, we categorized balanced POD as a variant of balanced truncation, due the
algorithmic similarity to the balancing algorithm . Alternatively, we could
have classified balanced POD as a variant of POD, since it can be described as
POD with the observability Gramian defining the POD’s inner product [113].
We leave it to the reader to test other balancing algorithms, e.g. [132 [16], while
we excluded the modified POD [100, 65], as it is not a Petrov-Galerkin method.

4.5 Structured Empirical Balanced Gains

The empirical balanced gains method is a variant of the empirical balanced
truncation method [29] [65]: While balanced truncation selects principality of
subspaces based on the Hankel singular value magnitude, balanced gains [29]
sorts the balanced basis vectors by the impulse response norm:

Isqll3 = t1(CsgWrqCLy) = t1(BI,Wo,4Bys) = | t1(CsqWx g Bs )

I3 ~ tr(cdeR,pC;p) ~ tr(B;dWO,pod) ~ [ tr(CapWix,pBpa)l,

for a system in balanced form. Hence, either method, balanced truncation and
balanced gains compute the same balancing transformation, via or (19),
but the sequence of basis vectors differs due to the variant measures.

We note, that due to the linear input and output operators, the balanced gains
method can be directly applied for the nonlinear gas network models ().
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4.5.1 Structured Goal-Oriented Proper Orthogonal Decomposition

Similar to the balanced gains method, (structured) POD basis vectors can also
be sorted, instead of by their singular value magnitude oy, in terms of their
impulse response, akin to the simplified balanced gains in [29], by the index dy

)
dk ‘= CRCLOE,

for rows ¢ of the POD-transformed output matrix C. Given the reachability-
based POD, this variant is related to the concept of output-reachability.

4.6 Structured Dynamic Mode Decomposition - Galerkin

In addition to the four energy-based method classes (Sections ,
also an alternative method from [2], based on system identification, is investi-

gated. However, it is utilized as a structured projection-based model reduction
method with separate projections for pressure and mass-flux. After summarizing
the parent system identification method, the derived model reduction technique
is presented.

4.6.1 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) identifies a discrete-time operator from
(discrete) trajectory time-series data, preserving certain modal behavior [114].
This system identification method is based on the Koopman operator, which is
an infinite dimensional, but linear operator, mapping (a transformation, or ob-
servable of the) state x* at discrete-time step k to (k+1). DMD yields a (linear)
finite-dimensional approximation of the Koopman operator preserving its domi-
nant eigenmodes. Here, using the identity observable and given time series data

X = [mo . xK], DMD identifies an operator A, via least-squares:
2t~ Ak, (21a)
A=[zt ... R [0 xK_1]+. (21b)
Since the underlying model is a control system, DMD with control (DMDc) [110]
(and known input operator B), i.e. using X°¢ := [a:o —Bu® ... oK - BuK]
instead of X for DMD, is applicable, yet, due to the perturbed steady-state

training of ROMs (see [Section 6.1)) not beneficial.

4.6.2 Reachability-Gramian-Based DMD-Galerkin

DMD is rather a system identification than a model reduction method. To
fit into the projection setting, we utilize the DMD-Galerkin method [2], which
forms a Galerkin projection U from the orthogonalized dominant eigenvectors
(based on the associated eigenvalue magnitudes),

AT PXP p

~TAYP upyT.

Since only state-space trajectories are utilized, as for the POD, the DMD-
Galerkin method approximates the state, not the output. Curiously, we note,
that this method uses discrete-time information to assemble projections for
continuous-time systems.
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Practically, U, are computed as a subset of singular vectors for the largest
magnitude singular values, instead of orthogonalized principal eigenvectors. In

the structured setting at hand X, = [xfz .ok ], the Galerkin projection
U, =V, is given by:
[z0 ... 2K [0 ... oK1)T Py

Effectively, the approximate Koopman operator Ais computed via an empirical
reachability Gramian, yet instead of the standard inner product, the DMD-
“kernel” is used. Additionally, and in line with the original empirical
Gramians [82], the utilized trajectories are centered, following [72]. This means
theoretically, DMD-Galerkin is POD with a specific kernel, and practically,
that by computation via an empirical Gramian the systematic perturbation
properties can also be exploited for DMD-Galerkin.

{ Scenario ;

\ 4
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/NetworkF} Model —)( Model 6} Solver —7/ Output
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Figure 2: Internal data flow and process of morgen.

5 morgen

The morgen (Model Order Reduction for Gas and Energy Networks) platform
implements the mathematical methods presented above, in MATLAB (> 2020b)
and compatible to Octave (> 6.1). Compared to, for example [60], morgen does
not feature a graphical user interface or Simulink integration, since it is designed
for batch testing on (headless) workstations and multi-query supercomputer use.
The source code is organized into five main components:

networks (holds network and scenario data-sets)
models (discretizes networks and assembles input output systems)
solvers (computes solution time series for discrete models and scenarios)
reductors (reduces state variables of discrete models)
tests (defines experiments for data-model-solver-reductor combinations).

These components are briefly described in the following. For an illustration of
the internal structure of morgen, see Further code that is used by the
main function or multiple components is contained in an utils folder, and the
stand-alone network format converters®] are stored in a tools folder.

8Converters for GasLib XML, SciGRID__gas CSV, and MathEnergy JSON are available.
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5.1 Networks

The networks directory stores the network .net files, and a folder for each
network with the same name as the associated network file’s base name, which
hold the scenario definition files. The .net file, in comma-separated value (CSV)
format, defines the network topology and gas network components through an
edge list. Each row encodes one edge from the information: edge type (pipe,
shortcut, compressor, valve), “from”-node, “to”-node, length, diameter, incline,
roughness; the latter three are only relevant for pipes.

Note that boundary nodes have to be leaf nodes of the network graph in order
to be identified by morgen as such. Furthermore, if a boundary node shall act
as supply and demand, it needs to be artificially split into two leaf nodes, as the
edge connecting a supply node has to be directed from the leaf, while the edge
connecting a demand node has to be directed towards the leaf .

5.1.1 Scenario

A scenario is defined via a set of key-value pairs in an . ini file, whereas sequence
of pairs does not matter. Each network has at least a generic training.ini
scenario. The following keys are mandatory for a scenario definition:

e Mean temperature TO.

e Mean specific gas constant RS.

e Time horizon tH.

o List of time instances ut.

o List of supply node pressures up at time instances ut.

e List of demand node mass-fluxes uq at time instances ut.
Depending on the network composition, the following keys may need to be
provided:

o List of compressor discharge pressures cp.

o List of valve settings vs.
Note that amongst other configurations, the parameter ranges of temperature

and specific gas constant for the parametric model reduction are set in the
morgen. ini file.

5.2 Models

A model encodes a spatial discretization of the simplified Euler equations
on a gas network topology in a structure with the members: A, B, C, E, F, f
and the Jacobian J ([124] [3]), together with the system dimensions in terms of
number of pressure-at-nodes and mass-flux-on-edges states, and total number
of boundary/port nodes. It is ensured during the assembly of the model that
the sparsity of the model components is preserved.

The model interface is given by the following signature:

discrete = model(network,config);
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While the linear components A, B, C', and F' are provided as sparse matrices,
the parameter-dependent linear component E is a closureﬂ returning a sparse
matrix, and the nonlinear component f and the (nonlinear) Jacobian J are
closures returning the application of a state (as well as steady-state, input,
parameters, compressibility).

Two spatial discretizations are currently provided in morgen:

e Midpoint ODE Discretization (Section 2.4.1): ode_mid
e Endpoint ODE Discretization (Section 2.4.2)): ode_end

Even though both provided models are ODEs, DAE models can also be imple-
mented, given a solver (and reductor) is available.

5.3 Solvers

The morgen platform provides four solvers: An adaptive step-size method, a
fixed step-size explicit method and two fixed step-size implicit-explicit methods.
While explicit solvers only require vector field evaluations at the cost of smaller
time steps, implicit solvers have to solve an optimization problem in each time
step for a nonlinear model. An IMEX with singly DIRK (SDIRK) solver turns
out to be the most efficient for this class of models, simplifying the nonlinear
optimization problem to a linear problem solvable by a single matrix decompo-
sition per trajectory. Due to the non-diagonal mass matrix, even in the case of
a sufficiently stable and accurate explicit method, at least one linear problem
per trajectory would have to be solved.

The solver interface is given by the following signature:

solution = solver(discrete,scenario,config);

with the return value solution, being a structure, and the arguments discrete
(model), scenario, and config(uration).

All provided fixed step-size solvers cache matrix decompositions. The initial
steady-state is also cached, as is the QR decomposition used to compute it.
Even though the overall model has a two dimensional structure and the
reductors exploit this structure, the simulations itself can be performed on a
lumped model (we omit parametrization here for ease of notation):

&
8.
=
~—

I

Ax(t) + Bu(t) + f((t), u(t)), (22)

5.3.1 Second-Order Adaptive Implicit Solver: generic

For validation purposes, the adaptive step-size solver for stiff systems ode23ﬂ
included in MATLAB (and Octave) [121, Sec. 2.3], based on a modified sec-
ond order Rosenbrock formula is used and encapsulated as a generic solver.
Due to preferential performance demonstrated in [50], ode23s is preferred over
alternatives such as ode15s (or ode45).

9A closure is a pair of a function together with its scoped environment.
Onttps://mathworks.com/help/matlab/ref/ode23s.html (accessed: 2020-11-18)
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5.3.2 Fourth-Order “Classic” Runge-Kutta Solver: rk4

Since in [102] 103], the fourth-order explicit Runge-Kutta (RK) method [81]
is employed, morgen provides it, too. This method is strong stability preserv-
ing [46], however it is not SSP-optimal and it works only for small time-steps.

5.3.3 First-Order Implicit-Explicit Solver: imex1

The lumped gas network model can be split into a linear and a nonlinear
part, of which the linear part is numerically stiff and hence should be solved
with an implicit solver, while an explicit solver is preferred for the nonlinear part
as to avoid solving a root-finding (optimization) problem in each time step.
An IMEX method allows this separate treatment of operators and is thus suit-
able for this hyperbolic and nonlinear system. Combining the first-order explicit
Euler’s method with the first order implicit Euler’s method yields the first order
IMEX method:

Eh™YNwpy1 — 2x) = (1 — y)Avg + yAzg i1 + Bug + f(ag, ur)
= Expi1 — vhAzge1 = Bz, + (1 — v)hAz, + hBuy + hf (zg, ug)
= Tp1 = + (F — ’yhA)_lh(Axk + Buy, + f(a:k,uk)),
with the associated Butcher tableaus Even though this IMEX method

is not a Runge-Kutta method [5], it was successfully applied to gas network
models in [51] with a relaxation parameter set to v = 1.

Explicit: Implicit:
0 0 1 1
1 1

Table 2: Butcher tableaus for the 1st-order IMEX method (Section 5.3.3)).

5.3.4 Second-Order Implicit-Explicit Runge-Kutta Solver: imex2

A second-order (two-stage) IMEX Runge-Kutta solver is provided, based on
the combination of a second-order explicit SSP Runge-Kutta method [46], and
a second-order DIRK method. Following [I07], such an IMEX-SSP2(2,2,2)
method with relaxation v is given by:

21 = (E — hyAA)™! Eay,
29 = (E — hyAA) " (Bxy + hBuy, + hf (xg, ug) + hy(1 — 20)Azy),

. h
Tpp1 =ax + F 15(31% + f(zr, ur) + YAz + Bug1 + f(21, up1) + 7Az22).

The explicit component of this IMEX method is SSP-optimal [46], while depend-
ing on the choice for the free parameter \, different properties of the implicit
component can be achieved (see . Practically, we found A = %, making
the implicit part SDIRK and stiffly accurate, to work best. Additionally, we
would like to highlight passive Runge-Kutta methods [99], specifically PDIRK
(passive DIRK), as implicit IMEX component, which have various desirable
stability and conservation properties [42].
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Explicit: Implicit:

0]0 0 A A0
11 0 1-A|1-20 A
1 I I 1
‘5 2 ‘ 2 2

Table 4: Butcher tableaus for the 2nd-order IMEX-RK method (Section 5.3.4]).

Parameter Property Source
A=0.24 “Efficient” [80]

A> 1 A-stable [75]
A=l L L-Stable [107]

A=1 Stiffly accurate morgen, cf. [75], Sec. 5.1]
= 3+6\/§ =14 \/% Passive [99], cf. [12, Sec. 3.2.2]

Table 3: Parameter choices for the implicit 2nd-order IMEX-RK component.

The associated Butcher tableaus are given in

In our experiments, the first-order IMEX method allowed larger
time-steps and exhibited less numerical oscillations or artifacts compared to the
second-order IMEX-RK methods. The generic (adaptive) method
also solves sufficiently accurate, but takes longer to compute. Thus, by default,
we recommend the first-order IMEX integrator for gas network simulations.

5.4 Reductors

The reductor module provides methods that compute structured projectors for a
given discretization. These projectors can be stored on disk for reuse. Currently,
the thirteen reductors, described in are included:

e Structured Proper Orthogonal Decomposition: pod_r

e Structured Empirical Dominant Subspaces: eds_ro, eds_wx, eds_wz

o Structured Balanced Proper Orthogonal Decomposition: bpod_ro

e Structured Empirical Balanced Truncation: ebt_ro, ebt_wx, ebt_wz

o Structured Goal-Oriented Proper Orthogonal Decomposition: gopod_r
e Structured Empirical Balanced Gains: ebg_ro, ebg_wx, ebg_wz

e Structured Dynamic Mode Decomposition Galerkin: dmd_r

For each reductor utilizing observability information, a linear variant using the
dual system is available, and signified with the suffix _1. All methods were also
tested in an unstructured variant, but showed insufficient accuracy.

The reductors have the interface:

ROM = reductor(solver,discrete,scenario,config);

returning a closure ROM, which in turn returns a reduced-order model for a
given discrete model, projection matrices and reduced order, as well as the
arguments solver, discrete model, and configuration; the latter containing
the sampled parameters available to the reductor. The projectors specific to
model and solver defining the ROM closure are stored in a .rom file.
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5.4.1 Empirical Gramian Framework

The compute backend for the model reduction methods is emgr — empirical
Gramian framework [64]; currently in version 5.9 [66]. This (open-source)
Octave and MATLAB toolbox computes the empirical Gramians, which are
essential to construct the reduced order models via the Gramian-based model
reduction methods from including the structured DMD-Galerkin
method.

5.5 Tests

A test is a script defining an experiment by specifying network, scenario, model,
solver and reductors. The tests component is a collection of test scripts probing
primarily model reduction for various networks. A typical test contains two calls
to the main morgen function. The first call computes the reduced order model
(offline phase):

morgen (network,training_scenario,model,solver,reductors);

which computes a ROM from a short, generic, steady-state training_scenario.
The projectors defining the reduced order models are then stored in rom_files.
The second call tests the reduced order model(s) on a longer test_scenario
(online phase):

morgen(network ,test_scenario,model,solver,rom_files);

Generally, a model reduction method can also be tested in a single call, dis-
regarding that scenario’s boundary value time series, yet for productive use,
a reduced order model is constructed once (first call), and then employed for
many different scenarios (second call).

Included in morgen are two types of tests: First, tests prefixed with “sim_
only simulate the test scenarios, second, tests prefixed with “mor_” compute
the reduced order models using training scenarios, and benchmark these ROMs
on the test scenarios.

”

6 Numerical Experiments

In the following, we present three sets of numerical experiments, with the pur-
pose of demonstrating the reducibility of gas network models via the data-driven,
parametric, system-theoretic model order reduction algorithms from
and illustrating the capabilities of the morgen framework summarized in
tion 5] The first set uses a pipeline “network”, which is interesting in the context
of model reduction, while the second set tests an academic toy network as a san-
ity check and a simple functionality test. Lastly, a realistic gas network topology
is evaluated.

We note that various further networks are included for testing in morgen;
among others: the CANVEY-LEEDS network [53], [77], the Belgium transport net-
work [30, O3] and a part of the FERMACA network [ITI]. A synthetic pipeline
model and associated simulation results were provided by the PSI SOFTWARE
AG for validation of morgen against the commercial PSIganesiE solver.

Mhttps://wuw.psigasandoil.com
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6.1 Workflow

For each of the numerical tests, the same workflow is employed, which is com-
posed of a training phase (offline phase), in that the ROMs are computed, using
a generic test scenario, with a (virtual) time horizon of 1h, and boundary value
input functions typical for system identification, i.e. Dirac impulse, step signal,
random-binary signal or Gauss noise [98, Ch. 16]. In the test phase (online
phase), the ROMs are tested on scenarios with a (virtual) time horizon of 24h
[26], B8], (starting at 6am [39]). In addition to shorter offline phases, this differ-
ence in training and test time horizons emphasizes generality of the ROMs.

To verify models and solvers [I05] this offline/online procedure is performed for
all combinations of:

e Models: ode_mid, ode_end,

e Solvers: imex1, imex2,

e Reductors: pod_r, eds_ro, eds_wx, eds_wz,
bpod_ro, ebt_ro, ebt_wx, ebt_wz,
gopod_r, ebg_ro, ebg_wx, ebg_wz,
dmd_r,

whereas the port-Hamiltonian ode_end model is tested with the nonlinear as
well as the linear reductor variant (if available), while the ode_mid model is
only tested with the nonlinear reductor variant.

The models are specialized by the Schifrinson friction factor formula and the
AGAS88 compressibility factor formula. We excluded the generic and rk4
solvers in this comparison as they are too slow or too fragile, respectively. How-
ever, the visualizations of the test scenarios in [Fig. 4al and [Fig. 6alare simulated
using the generic solver.

For the parametric model reduction, the temperature range for training and
testing is set to [0°,15°]C, while the specific gas constant range is chosen as
[500, GOO]I(giK. During training, samples from the parameter space are drawn
from a sparse grid, whereas for the tests, parameters are drawn from a uniform
random distribution. For either test and training, five parameters are sampled.
The input perturbations for the steady-state training scenario are selected to
be a step function, which heuristically works well for hyperbolic systems [48].
The reduced order models are compared via the approximate, discrete, para-
metric, (L ® Lo)-norm of the output error [65]:

ly = 3llL.0L, %\/ > Atfvec (yh(9h)*l7h(9h))”;

0,€0

for a finite sample ©; of the parameter space © and discrete output samples
Yn(0r), Jn(0r). This energy norm is chosen, since all methods are at least related
to an energy-based method. However, morgen can also provide the errors in
the approximate parametric (L ® Ly) parameter-space-state-space norms for
ke {1,2,00}, £ € {0,1,2,00}, cf. [49]. To enhance comparability of the results,
also the reducibility measure MORSCORE [65] for each experiment is computed.
The MORSCORE for a certain method and model is essentially the area above
the method’s error graph in the relative error plot such as

Lastly, we note that the following numerical experiments are conducted using a
computer with an AMD RyzgN 4500U @ 2.3Ghz hexa-core processor and 16GiB
memory running MATLAB 2021a on UBUNTU 20.04 LINUX.
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0 J

Figure 3: Pipeline topology.

6.2 Yamal-Europe Pipeline

First, a pipeline is tested, which is an interesting test case, since the trivial topol-
ogy ([Fig. 3|) comprises little redundancy, hence pipelines are a useful benchmark
for model reduction methods.

The Yamal-Europe pipeline connects gas fields in Russia with western Europﬂ
A section of this pipeline was also benchmarked in [24] [T05] 23] 18], from which
the technical properties and test scenario are taken. The considered pipeline
section is 363km long, has a diameter of 1.422m, no (reported) inclination, and
a pipe roughness of 0.0lmm. A steady-state, used as initial state, is set by a
supply pressure of 84bar and demand mass-flux of 46.3%.

In semi-discrete form, the nonlinear state-space system has two inputs and out-
puts as well as 908 states; and a time step width of 20s is used.

The employed test scenario is taken from [24], compressed to 24h, and shown
in the associated model reduction errors are given in
[Fig. 4€] and[Fig. 4] for up to reduced order 150, while the resulting MORSCOREs
are listed in [Table 5l

Generally, in this comparison the choice of solver is more relevant than the
choice of model: while the MORSCOREs for different models but same solver are
similar, for the same model but different solver, they are significantly dissimilar.
The (balancing) Petrov-Galerkin methods perform generally worse than the
Galerkin methods, even when ignoring unstable ROMs, only produced by the
balancing methods.

For both models, and the first-order IMEX solver, the structured empirical
dominant subspaces methods perform best, followed (closely) by the DMD-
Galerkin and (goal-oriented) POD method; then, among the balancing methods,
the balanced POD and cross-Gramian-based variants. The most overall accurate
method is the cross-Gramian-based dominant subspaces method.

For both models, in combination with the second-order IMEX-RK solver, the
structured proper orthogonal decomposition and goal-oriented methods leads,
followed by the DMD-Galerkin reductor. For both solvers, the endpoint model
performs better than the midpoint model. In case of the port-Hamiltonian
endpoint model, the linear Galerkin reductors are slightly less accurate than
the nonlinear Galerkin reductors.

We note that the cross-Gramian-based dominant subspaces methods produce
the lowest errors, and since for the linear reductors used in combination with
the endpoint model, the dominant subspaces methods are as efficient as the
purely reachability-based DMD-Galerkin, and (goal-oriented) POD methods.
Interestingly, while the second-order IMEX-RK solver is better suited for simu-
lations of the full order model, in terms of data-driven model reduction and/or
reduced order model simulation it is significantly worse than the first-order
IMEX solver. This is also demonstrated in the subsequent experiments.

12See also https://en.wikipedia.org/wiki/Yamal-Europe_pipeline.
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Figure 5: MORGEN network topology.

6.3 MORGEN Network

The second set of tests encompasses a synthetic network for testing morgen’s
capabilities. This “MORGEN” network, with topology as in tests the
interaction of simplified compressors from for various network fea-
tures, such as cycles, multiple supply and demand nodes, and is in the spirit of
a test network from [38].

Specifically, six sub-networks (in the shape of letters) are connected, the second
and third sub-network contain a cycle, a compressor connects the third and
fourth sub-network, and the fourth and fifth sub-network contain additional
supply and demand nodes. The edges vary in length between 20km and 60km,
while the diameter and roughness are consistently 1m and 0.01mm, respectively.
A steady-state, used as initial state, is set by supply (and discharge) pressures
of 50bar at both supply nodes and the compressor, and demand mass-fluxes of
30% at all demand nodes.

In semi-discrete form, the nonlinear state-space system features six inputs and
outputs as well as 901 states; and a time discretization with 60s time steps.
The employed 24h test scenario is made from hourly standard load profiles [58]
and shown in the associated model reduction errors are given in [Fig. 6
[Fig. 6d] [Fig. 6e, and [Fig. 6l for up to reduced order 150, while the resulting
MORSCORESs are listed in [Table 61

Again for this comparison, the choice of solver is more relevant than the choice
of model, yet the MORSCOREs are much lower, due to the complexities (cycles,
compressor, multiple demands) of the network.

Both models in conjunction with the first-order IMEX solver only produce work-
able results with Galerkin methods. The endpoint ROMs are again more accu-
rate than the midpoint ROMs. Notably, the linear reachability-and-observability
dominant subspaces method and the DMD-Galerkin ROMs, both for the end-
point model, are leading the MORSCOREsS.

The ROMs for both models with the second-order IMEX-RK solver perform
worse, with the exception of the balanced truncation ebt_ro and balanced gains
ebg_ro variants. However, the second-order IMEX-RK solver related ROMs are
of no practical use due to the high error.

Overall, the (linear) eds_ro dominant subspaces reductor produces the lowest
error, followed by the DMD-Galerkin, (goal-oriented) POD, and cross-Gramian-
based dominant subspaces methods. As for the pipeline, the endpoint model is
better suited for model reduction, while the first-order IMEX solver results in
significantly more accurate ROMs than the second-order IMEX-RK solver.
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Figure 7: Topology of the GasLib134v2 network depicting a part of the Greek
gas network (taken from https://gaslib.zib.de| licensed under CC-BY.).

6.4 GasLib Network

Lastly, a network topology derived from real-life is tested. The GasLib-134v2
network [I19], modeling a part of the Greek natural gas transport system, is
overlayed on a map of Greece in[Fig. 7} The network has a total length of 1412km
and features a compressor. A steady-state, used as initial state, is set by supply
(and discharge) pressures of 80bar at supply nodes and the compressor, and
demand mass-fluxes up to 16% at all demand nodes.

In semi-discrete form, the nonlinear state-space system has 48 inputs and out-
puts as well as 2682 states; and 30s time steps are employed.

For testing, a random (24h) load profile is generated, by adding samples from
a scaled uniform random distribution on top of the steady—statdﬂ shown in
the associated model reduction errors are given in [Fig. 8c [Fig. 8d]
[Fig. 8¢ and[Fig. 81] for up to reduced order 250, while the resulting MORSCOREs
are listed in [Table 71

As before, the choice of solver is more relevant than the choice of model. Chal-
lenges in this network, beyond the compressor, are the high number of boundary
nodes, which are predominantly demand nodes (Ng = 45).

First, we note that only Galerkin methods produce consistently stable ROMs.
Furthermore, in comparison with the previous experiments, the dominant sub-
space methods perform worse, and all variants based on reachability and ob-
servability Gramians perform relatively better.

The endpoint model seems to be better suited for the tested model reduction
methods than the midpoint model. And as for the other experiments, the first
order IMEX solver outmatches the second order IMEX-RK solver.

Overall, the DMD-Galerkin method performs best in terms of MORSCORE,
accuracy and efficiency, followed by the POD method. As an initial evalua-
tion in terms of the tested model reduction methods, we note, that the only-
reachability-based as well as the linear reductors exploiting the port-Hamiltonian
structure produce the most accurate ROMs, which needs further investigation in
terms of workable results and computation time. Moreover, Galerkin methods
perform better than Petrov-Galerkin methods in terms of accuracy and stability.

Bporgen can generate such profiles for all included networks.
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ode_mid ode_end ode_end ode_mid ode_end ode_end
imex_1 imex_1 imex_1x* imex_2 imex_2 imex_2x*
pod_r 0.41 0.40 0.19 0.22
eds_ro 0.56 0.59 0.56 0.07 0.09 0.04
eds_wx 0.55 0.60 0.58 0.06 0.14 0.20
eds_wz 0.60 0.60 0.57 0.07 0.14 0.20
" bpod_ro | 0.15 | 025 | 013 | 003 | 008 | 011
ebt_ro 0.08 0.08 0.05 0.07 0.12 0.17
ebt_wx 0.15 0.23 0.08 0.00 0.00 0.01
ebt_wz 0.18 0.28 0.14 0.00 0.00 0.01
Tgopod_r | 041 | 041 | 008 |~ 019
ebg_ro 0.06 0.07 0.02 0.05 0.11 0.16
ebg_wx 0.03 0.22 0.14 0.00 0.00 0.00
ebg_wz 0.18 0.26 0.15 0.00 0.00 0.00
" dmd_r | 050 | 053 | 008 | 015

Table 5: MORSCOREs 11(150, €mach(16)) in the (Ly ® Ly) error norm for the
“Yamal-Europe” pipeline network from * notes linear reductors.

ode_mid ode_end ode_end ode_mid ode_end ode_end
imex_1 imex_1 imex_1% imex_2 imex_2 imex_2%
pod_r 0.12 0.12 0.00 0.02
eds_ro 0.12 0.12 0.24 0.03 0.02 0.06
eds_wx 0.05 0.05 0.12 0.01 0.03 0.05
eds_wz 0.03 0.07 0.11 0.02 0.02 0.05
" bpod_ro | 0.04 | 003 | 003 | 000 | 001 | 000 °
ebt_ro 0.01 0.00 0.00 0.01 0.02 0.00
ebt_wx 0.00 0.00 0.02 0.00 0.00 0.00
ebt_wz 0.00 0.00 0.00 0.00 0.00 0.00
Tgopod_r | 009 | 010~ | 000 |~ 000
ebg_ro 0.00 0.00 0.00 0.00 0.01 0.00
ebg_wx 0.00 0.00 0.02 0.00 0.00 0.00
ebg_wz 0.00 0.00 0.00 0.00 0.00 0.00
" dmd_r | 009 | 018 | 003 | 004

Table 6: MORSCOREs 14(150, €ach(16)) in the (Ly ® Ly) error norm for the

“MORGEN?” test network from * notes linear reductors.

ode_mid ode_end ode_end ode_mid ode_end ode_end
imex_1 imex_1 imex_1x% imex_2 imex_2 imex_2%
pod_r 0.14 0.14 0.02 0.11
eds_ro 0.04 0.07 0.16 0.13 0.12 0.11
eds_wx 0.07 0.07 0.13 0.08 0.12 0.11
eds_wz 0.09 0.09 0.12 0.11 0.12 0.11
" bpod_ro | 0.05 | 007 | 000 | 004 | 005 | 000 °
ebt_ro 0.05 0.05 0.00 0.05 0.07 0.02
ebt_wx 0.00 0.00 0.00 0.00 0.00 0.00
ebt_wz 0.00 0.00 0.00 0.00 0.00 0.00
“gopod_r | 009 | 010 | 001 | o007
ebg_ro 0.01 0.02 0.00 0.00 0.02 0.01
ebg_wx 0.00 0.00 0.00 0.00 0.00 0.00
ebg_wz 0.00 0.00 0.00 0.00 0.00 0.00
" dmd_r | 020 | 020 | 012 | 013

Table 7. MORSCOREs 14(250, €mach(16)) in the (Lz ® Lg) error norm for the
“GasLib-134v2” benchmark network from * notes linear reductors.

38



7 Outlook

The next stage in the development of morgen involves testing larger real-life
networks, such as the deliverable of the SciGRIngaﬂ (Open Source Model
of the European Gas Network) project. Yet, various further venues of linked
modeling and model reduction questions are still not covered by morgen.

In terms of model reduction, an interesting issue are intraday switchable valves,
which change the topology of the gas network graph and likely require to extend
the utilized model reduction methods towards these switched systems.
Another interesting question in need of further investigation is the minimal time
horizon of the training phase. A lower bound is the time step times the longest
path from a supply to a demand node, but this is likely not sufficient.

Also as detailed in the pipe roughness is a relevant parameter
for (transient) simulations [126], yet the entailing high-dimensional parameter
space, due to the locally differing roughness and attrition rates, would have to
be treated, too. This in turn would raise the question for combined state and
parameter reduction [68 [63], and is postponed to future investigations.
Finally, a tunable efficiency factor [103] [105] [I09] could be added to the model’s
friction term, which as a free parameter could be used to tune the models to
match real data.

8 Conclusions

In more than a quarter century of computational transient gas network sim-
ulation research and industrial use, morgen seems to be the first open-source
platform (modularly) covering modeling, simulation, and model order reduction
of gas (and energy) networks. The target applications for morgen are finding
the best model reduction method or best reduced order model for a network
by heuristic comparison, as well as comparing model-solver-reductor simulation
configurations.

From a mathematical point of view, a next generation gas network simulation
stack should consist of a port-Hamiltonian model, an IMEX solver, and a block-
diagonal Galerkin projection reductor, which is confirmed by the numerical re-
sults: The port-Hamiltonian endpoint model performs better than the midpoint
model. Also, generally Galerkin reductors, outperform Petrov-Galerkin reduc-
tors.

This results in the following heuristically determined but theoretically explain-
able recommended combination: The endpoint model together with the first-
order IMEX solver, and a Galerkin reductor, specifically a structured dominant
subspaces or structured DMD-Galerkin, exhibiting the highest MORSCORES in
the numerical experiments. The performance of structured balanced trunca-
tion and the related structured balanced gains may be improved in terms of
stability (-preservation) either by a variant of the technique [86], or a postpro-
cessing as in [20].

Lastly, we invite researchers, engineers and users to provide their reductors,
solvers, networks and scenarios for expansion and testing with morgen for a
broader view of this comparison.

Mhttps://wuw.gas.scigrid.de
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Availability of Data and Materials

The Matlab language source code of the morgen platform is licensed under
BSD-2-CLAUSE LICENSE, can be obtained from:

doi:10.5281/zenodo.4680265

and is authored by: C. HIMPE and S. GRUNDEL.

Appendix

Model Fact Sheet

Basis:

Assumptions
Long pipes:
Kinetic term:
Boundary values:

Simplifications
Temperature:
Gas composition:
Compressibility:
Compressors:
Modularization
Friction:
Compressibility:
Discretization
Spatial:
Temporal:

Funding

Euler equations for cylindrical pipes

One spatial dimension
Removed due to slow subsonic velocities
Low-frequency (sum of) step functions

Isothermal (temperature is parameter)

Constant global (specific gas constant is parameter)
Constant global (derived from steady-state)

Affine / Additive

Hofer | Nikuradse | Altshul | Schifrinson | PMT1025 | IGT
Ideal | DVGW-G-2000 | AGAS8S | Papay

1st order upwind finite differences
RK-4 | IMEX-1 | IMEX-RK-2 | Rosenbrock-2
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Abbreviations

CFL Courant-Friedrichs-Levy
CSV  Comma Separated Value
DAE Differential Algebraic Equation
DEIM  Discrete Empirical Interpolation Method
DIRK Diagonally Implicit RK
DMD Dynamic Mode Decomposition
DMDc¢ DMD with Control
DSPMR Dominant Subspace Projection Model Reduction
EVD Eigenvalue Decomposition
IMEX Implicit-Explicit
MOR  Model Order Reduction
ODE Ordinary Differential Equation
PDAE Partial DAE
PDE Partial Differential Equation
PDIRK Passive DIRK
POD Proper Orthogonal Decomposition
RK Runge-Kutta
ROM Reduced Order Model
SDIRK  Singly DIRK
SPMOR Structure-Preserving Model Order Reduction
SRSN  System with Repeated Scalar Nonlinearities
SSP  Strong Stability Preserving
SVD  Singular Value Decomposition
tEVD  truncated EVD
tSVD  truncated SVD
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