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SUMMARY
The Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu
and the Mongols. However, little is known about the region’s population history. Here, we reveal its dynamic
genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We
identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian
populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism
regardless of ancestry. The Xiongnu emerged from themixing of these populations and those from surround-
ing regions. By comparison, the Mongols exhibit much higher eastern Eurasian ancestry, resembling pre-
sent-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, so-
ciopolitical, and cultural changes on the Eastern Steppe.
INTRODUCTION

Recent paleogenomic studies have revealed a dynamic popula-

tion history on the Eurasian Steppe, with continental-scale

migration events on the Western Steppe coinciding with Bronze
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Age transformations of Europe, the Near East, and the Caucasus

(Allentoft et al., 2015; Damgaard et al., 2018a; 2018b; Haak et al.,

2015; Mathieson et al., 2015; Wang et al., 2019). However,

despite advances in understanding the genetic prehistory of

the Western Steppe, the prehistoric population dynamics on
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the Eastern Steppe remain poorly understood (Damgaard et al.,

2018a; Jeong et al., 2018; Rogers, 2016). The Eastern Steppe is a

great expanse of grasslands, forest steppe, and desert steppe

extending more than 2,500 km (Figure 1; Figure S1). While also

covering parts of modern-day China and Russia, most of the

Eastern Steppe falls within the national boundaries of present-

day Mongolia. Recent paleogenomic studies suggest that the

eastern Eurasian forest steppe zone was genetically structured

during the Pre-Bronze and Early Bronze Age periods, with a

strong west-east admixture cline of ancestry stretching from

Botai in central Kazakhstan to Lake Baikal in southern Siberia

to Devil’s Gate Cave in the Russian Far East (Damgaard et al.,

2018a; Jeong et al., 2018; Sikora et al., 2019; Siska et al., 2017).

During the Bronze Age, the multi-phased introduction of

pastoralism drastically changed lifeways and subsistence on

the Eastern Steppe (Honeychurch, 2015; Kindstedt and Ser-

Od, 2019). A recent large-scale paleoproteomic study has

confirmed milk consumption in Mongolia prior to 2500 BCE by

individuals affiliated with the Afanasievo (ca. 3000 BCE) and

Chemurchek (2750–1900 BCE) cultures (Wilkin et al., 2020a).

Although Afanasievo groups in the Upper Yenisei region have

been genetically linked to the Yamnaya culture of the Pontic-

Caspian steppe (ca. 3300–2200 BCE) (Allentoft et al., 2015; Mor-

gunova and Khokhlova, 2013; Narasimhan et al., 2019), the ori-

gins of the Chemurchek have been controversial (Kovalev,

2014). Once introduced, ruminant dairying became widespread

by the Middle/Late Bronze Age (MLBA, here defined as 1900–

900 BCE), being practiced in the west and north at sites associ-

atedwith Deer Stone-Khirigsuur Complex (DSKC) and in the east

in association with the Ulaanzuukh culture (Jeong et al., 2018;

Wilkin et al., 2020a). The relationships between DSKC and

Ulaanzuukh groups are poorly understood, and little is known

about otherMLBAburial traditions inMongolia, such as theMön-

khkhairkhan and Baitag. By the mid-first millennium BCE, the

previous MLBA cultures were in decline, and Early Iron Age cul-

tures emerged: the Slab Grave culture (ca. 1000–300 BCE) of

eastern/southern Mongolia, whose burials sometimes incorpo-

rate uprooted materials from DSKC monuments (Fitzhugh,

2009; Honeychurch, 2015; Tsybiktarov, 2003; Volkov, 2002),

and the Sagly/Uyuk culture (ca. 500–200 BCE) of the Sayan

mountains to the northwest (also known as the Sagly-Bazhy cul-

ture, or Chandman culture in Mongolia), who had strong cultural

ties to the Pazyryk (ca. 500–200 BCE) and Saka (ca. 900–200

BCE) cultures of the Altai and eastern Kazakhstan (Savinov,

2002; Tseveendorj, 2007).

From the late first millennium BCE onward, a series of hierar-

chical and centrally organized empires arose on the Eastern

Steppe, notably the Xiongnu (209 BCE–98 CE), Türkic (552–

742 CE), Uyghur (744–840 CE), and Khitan (916–1125 CE) em-

pires. The Xiongnu empire was the first such polity in the steppe,

whose drastic expansions into northern China, southern Siberia,

and deep into Central Asia had a profound impact on the demo-

graphics and geopolitics of Eurasia. The Mongol empire,

emerging in the thirteenth century CE, was the last and most

expansive of these regimes, eventually controlling vast territories

and trade routes stretching from China to the Mediterranean.

However, due to a lack of large-scale genetic studies, the origins

and relationships of the people who formed these states,
including both the ruling elites and local commoners, remain

obscure.

To clarify the population dynamics on the Eastern Steppe

since prehistory, we generated and analyzed genome-wide

genetic datasets for 214 individuals from 85 Mongolian and

3 Russian sites spanning approximately 6,000 years of time

(ca. 4600 BCE to 1400 CE) (Tables S1, S2, and S3A). To

this, we added recently published genomic data for 19 Bronze

Age individuals from northern Mongolia (Jeong et al., 2018), as

well as datasets from neighboring ancient populations in

Russia and Kazakhstan (Damgaard et al., 2018a; 2018b; Nar-

asimhan et al., 2019; Sikora et al., 2019; Unterländer et al.,

2017) (Tables S3B and S3C), which we analyze together

with worldwide modern reference populations (Table S3C).

We also generated 30 new accelerator mass spectrometry

dates, supplementing 74 previously published radiocarbon

dates (Jeong et al., 2018; Taylor et al., 2019), for a total of

98 directly dated individuals (104 total dates) in this study (Ta-

ble S4).

RESULTS

Pre-Bronze Age Population Structure and the Arrival of
Pastoralism
In this study, we analyzed six pre-Bronze Age hunter-gatherer in-

dividuals from three sites dating to the fifth and fourth millennia

BCE: one from eastern Mongolia (SOU001, ‘‘eastMongolia_p-

reBA,’’ 4686–4495 cal. BCE), one from central Mongolia

(ERM003, ‘‘centralMongolia_preBA,’’ 3781–3639 cal. BCE),

and four from the eastern Baikal region (‘‘Fofonovo_EN’’). By

comparing these genomes to previously published ancient and

modern data across Eurasia (Figure 2; Table S3C), we found

that they are most closely related to contemporaneous hunter-

gatherers from the western Baikal region (‘‘Baikal_EN,’’ 5200–

4200 BCE) and the Russian Far East (‘‘DevilsCave_N,’’ ca.

5700 BCE), filling in the geographic gap in the distribution of

this genetic profile (Figure 3A). We refer to this profile as ‘‘Ancient

Northeast Asian’’ (ANA) to reflect its geographic distribution rela-

tive to another widespread mid-Holocene genetic profile known

as ‘‘Ancient North Eurasian’’ (ANE), which is found among the

Pleistocene hunter-gatherers of the Mal’ta (ca. 24500–24100

BP) and Afontova Gora (ca. 16900–16500 BP) sites in Siberia

(Fu et al., 2016; Raghavan et al., 2015) and the horse-herders

of Botai, Kazakhstan (ca. 3500–3300 BCE) (Damgaard et al.,

2018a). In principal component analysis (PCA) (Figure 2), ancient

ANA individuals fall close to the cluster of present-day Tungusic-

and Nivkh-speaking populations in northeast Asia, indicating

that their genetic profile is still present in indigenous populations

of the Far East today (Figure S3A). EastMongolia_preBA is

genetically indistinguishable from the ANA group DevilsCave_N

(Figures 3A and 4A; Figure S4A; Table S5A), whereas Fofono-

vo_EN and the slightly later centralMongolia_preBA both derive

a minority (12%–17%) of their ancestry from ANE-related

(Botai-like) groups with the remainder of their ancestry (83%–

87%) characterized as ANA (Figures 3A and 4A; Table S5A). Re-

analyzing published data from the western Baikal early Neolithic

Kitoi culture (Baikal_EN) and the early Bronze Age Glazkovo cul-

ture (Baikal_EBA) (Damgaard et al., 2018a), we find that they
Cell 183, 890–904, November 12, 2020 891
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Figure 1. Overview of Ancient Populations and Time Periods

(A) Distribution of sites with their associated culture and time period indicated by color: Pre-Bronze, purple; Early Bronze, red; Middle/Late Bronze, blue; Early

Iron, pink; Xiongnu, green; Early Medieval, brown; Late Medieval, gold (see STAR Methods). See Figure S1A and Table S1B for site codes and labels.

(B) Inset map of Eurasia indicating area of present study (box) and the locations of other ancient populations referenced in the text, colored by time period. The

geographic extent of the Western/Central Steppe is indicated in light brown, and the Eastern Steppe is indicated in light green.

(C) Timeline of major temporal periods and archaeological cultures in Mongolia. Site locations have been jittered to improve visibility of overlapping sites.
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have similar ancestry profiles and a slight increase in ANE

ancestry through time (from 6.4% to 20.1%) (Figure 3A).

Pastoralism in Mongolia is often assumed to have been intro-

duced by the eastward expansion of Western Steppe cultures

(e.g., Afanasievo) via either the Upper Yenisei and Sayan moun-

tain region to the northwest of Mongolia or through the Altai

mountains in the west (Janz et al., 2017). Although the majority

of Afanasievo burials reported to date are located in the Altai

mountains and Upper Yenisei regions, the Early Bronze Age

(EBA) site of Shatar Chuluu in the southern Khangai Mountains

of central Mongolia has yielded Afanasievo-style graves with

proteomic evidence of ruminant milk consumption (Wilkin

et al., 2020a) and a western Eurasian mitochondrial haplogroup

(Rogers et al., 2020). Analyzing two of these individuals (Afana-

sievo_Mongolia, 3112–2917 cal. BCE), we find that their genetic
892 Cell 183, 890–904, November 12, 2020
profiles are indistinguishable from that of published Afanasievo

individuals from the Yenisei region (Allentoft et al., 2015; Nara-

simhan et al., 2019) (Figure 2; Figure S5C; Table S5B), and

thus these two Afanasievo individuals confirm that the EBA

expansion of Western Steppe herders (WSH) extended a further

1,500 km eastward beyond the Altai into the heart of central

Mongolia (Figure 3A).

The succeeding EBAChemurchek culture (2750–1900 BCE), a

ruminant dairying society (Wilkin et al., 2020a) whose mortuary

features include stone slabs and anthropomorphic stelae, has

also been purportedly linked toWSHmigrations (Kovalev and Er-

denebaatar, 2009). Chemurchek graves are found throughout

the Altai and in the Dzungarian Basin in Xinjiang, China (Jia and

Betts, 2010; Kovalev, 2014; 2015). We analyzed two Chem-

urchek individuals from the southern Altai site of Yagshiin Huduu



Figure 2. Genetic Structure of Mongolia through Time

PCA of ancient individuals (n = 214) from threemajor periods projected onto contemporary Eurasians (gray symbols). Main panels display PC1 versus PC2; insets

display PC1 versus PC3. Inset tick marks for PC1 correspond to those for the main panels; PC3 accounts for 0.35% of variation. See Figure S3B for population,

sample, and axis labels, and Tables S1B, S1C, and S2A for further site and sample details.
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and two individuals from the northern Altai sites of Khundii Gobi

(KUM001) and Khuurai Gobi 2 (KUR001). Compared to Afanasie-

vo_Mongolia, the Yagshiin Huduu individuals also show a high

degree of Western ancestry but are displaced in PCA (Figure 2)

and have a strong genetic affinity with ANE-related ancient indi-

viduals such as AfontovaGora3 (AG3), West_Siberia_N, and

Botai (Figure 3A; Figures S5A andS5C).We find that the Yagshiin

Huduu Chemurchek individuals (‘‘Chemurchek_southAltai’’) are

genetically similar to Dali_EBA (Figure 3A), a contemporaneous

individual from eastern Kazakhstan (Narasimhan et al., 2019).

The genetic profiles of both the Yagshiin Huduu and Dali_EBA in-

dividuals are well fitted by two-way admixture models with Botai

(60%–78%) and groups with ancient Iranian-related ancestry,

such as Gonur1_BA fromGonur Tepe, a key EBA site of the Bac-

tria-Margiana Archaeological Complex (BMAC) (22%–40%; Fig-

ure 3A; Table S5B). Although minor genetic contributions from

the Afanasievo-related groups cannot be excluded, Iranian-

related ancestry is required for all fitting models, and this admix-

ture is estimated to have occurred 12 ± 6 generations earlier

(�336 ± 168 years; Figure S6) when modeled using DATES (Nar-

asimhan et al., 2019). However, because all proxy source popu-

lations used in this modeling are quite distant in either time or

space from the EBA Altai, the proximate populations contrib-

uting to the Chemurchek cannot yet be precisely identified. In

the northern Altai, the two Chemurchek individuals (‘‘Chemurch-

ek_northAltai’’) have mostly ANA-derived ancestry (�80%), with

the remainder resembling that of the southern Altai Chemurchek

individuals (Figures 3A and 4A; Table S5B). As such, we observe

genetic heterogeneity among Chemurchek individuals by

geographic location.

Although based on a small number of genomes, we find that

neither the Afanasievo nor the Chemurchek left enduring genetic

traces into the subsequent MLBA. This is strikingly different than

in Europe, where migrating EBA steppe herders had a transfor-
mative and lasting genetic impact on local populations (Allentoft

et al., 2015; Haak et al., 2015; Mathieson et al., 2018). In the

Eastern Steppe, the transient genetic impact of the EBA herders

stands in sharp contrast to their strong and enduring cultural and

economic impact given that the cultural features that EBA pasto-

ralists first introduced, such as mortuary mound building and

dairy pastoralism, continue to the present day.

Bronze Age Emergence of a Tripartite Genetic Structure
Previously, we reported a shared genetic profile among EBA

western Baikal hunter-gatherers (Baikal_EBA) and Late Bronze

Age (LBA) pastoralists in northern Mongolia (Khövsgöl_LBA)

(Jeong et al., 2018). This genetic profile, composed of major

and minor ANA and ANE ancestry components, respectively, is

also shared with the earlier eastern Baikal (Fofonovo_EN) and

Mongolian (centralMongolia_preBA) groups analyzed in this

study (Figures 3A, 3B, and 4A), suggesting a regional persistence

of this genetic profile for nearly three millennia. Centered in

northern Mongolia, this genetic profile is distinct from that of

other Bronze Age groups. Overall, we find three distinct and

geographically structured gene pools in LBA Mongolia, with

the Khövsgöl_LBA population representing one of them (Figures

3B and 4A). The other two, which we refer to as ‘‘Altai_MLBA’’

and ‘‘Ulaanzuukh_SlabGrave,’’ are described below.

During the MLBA (1900–900 BCE), as grasslands expanded in

response to climate change, new pastoralist cultures expanded

out of inner-montane regions and across the Eastern Steppe

(Kindstedt and Ser-Od, 2019). This period is also notable for

the first regional evidence of horse milking (ca. 1200 BCE; Wilkin

et al., 2020a), which is today exclusively associated with alcohol

(airag) production (Bat-Oyun et al., 2015), and a dramatic inten-

sification of horse use, including the emergence of mounted

horseback riding, which would have substantially extended the

accessibility of remote regions of the steppe. In the Altai-Sayan
Cell 183, 890–904, November 12, 2020 893
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region, dairy pastoralists associated with DSKC and other un-

classified MLBA burial types (Altai_MLBA, n = 7) show clear ge-

netic evidence of admixture between a Khövsgöl_LBA-related

ancestry and a Sintashta-related WSH ancestry (Figure 3B;

Figure S4B). Overall, they form an ‘‘Altai_MLBA’’ cline on PCA

between Western Steppe groups and the Baikal_EBA/Khövs-

göl_LBA cluster (Figure 2), with their position varying on PC1 ac-

cording to their level of Western ancestry (Table S5C).

This is the first appearance on the Eastern Steppe of a Sin-

tashta-like ancestry (frequently referred to as ‘‘steppe_MLBA’’

in previous studies), which is distinct from prior Western ances-

tries present in the Afanasievo and Chemurchek populations and

instead shows a close affinity to European Corded-Ware popu-

lations and later Andronovo-associated groups, such as the Sin-

tashta (Allentoft et al., 2015). In Khovd province, individuals

belonging to DSKC and unclassified MLBA groups (BER002

and SBG001, respectively) have a similar genetic profile that is

best modeled as an equal mixture of Khövsgöl_LBA and Sin-

tashta (Figure 3B; Table S5C). This genetic profile matches

that previously described for a genetic outlier in northern

Mongolia that deviated from the Khövsgöl_LBA cluster in a pre-

vious study (ARS026; Jeong et al., 2018). An additional four Al-

tai_MLBA individuals belonging to DSKC (ULI001) and unclassi-

fied MLBA groups (BIL001, ULI003, ULZ001) also fit this

admixture model with varying admixture proportions (Table

S5C). Taken together, the Altai_MLBA cline reveals the ongoing

mixture of two source populations: a Sintashta/Andronovo-

related WSH population and a local population represented by

Khövsgöl_LBA. The admixture is estimated to have occurred

only 10 ± 2 generations (�290 years) before the individuals

analyzed in this study, a finding consistent with their heteroge-

neous ancestry proportions (Figure S6). Because the Sintashta

culture (ca. 2200–1700 BCE) is associated with novel transporta-

tion technologies, such as horse-drawn chariots (Anthony,

2010), the appearance of this ancestry profile on the Eastern

Steppe suggests that heightened mobility capabilities played

an important role in linking diverse populations across the

Eurasian Steppe (Honeychurch, 2015).

Three MLBA individuals in our dataset present genetic profiles

that cannot be fully explained by the Altai_MLBA cline. These

three, two Altai individuals (UAA001 and KHI001) and UUS001

from Khövsgöl province, are better modeled with a small
Figure 3. Genetic Changes in the Eastern Steppe across Time

Characterized by qpAdm

(A–F) Major time periods: (A) Pre-Bronze through Early Bronze Age, (B) Middle/

Late Bronze Age, (C) Early Iron Age, (D) Xiongnu period, (E) Early Medieval, and

(F) Late Medieval.

Modeled ancestry proportions are indicated by sample size-scaled pie charts,

with ancestry source populations shown below (see STAR Methods). The

sample size range for each panel is indicated in the upper right. For (B) and (C),

Baikal_EBA is modeled as light blue; in (D–F), Khövsgöl_LBA (purple) and the

Sagly/Uyuk of Chandman_IA (pink) are modeled as new sources (Figure 4).

Cultural groups are indicated by bold text. For (D–F), individuals are Late

Xiongnu, Türkic, and Mongol, respectively, unless otherwise noted. Previously

published reference populations are noted with white text; all others are from

this study. Populations beyond the map borders are indicated by arrows.

Burial locations have been jittered to improve visibility of overlapping

individuals.
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Figure 4. Genetic Ancestry Changes in Chronological Order across All Newly Reported Genetic Groups

Well-fittedmodeling results for grouped-based population genetics analyses for (A) prehistoric periods and (B) historic periods. The number of individuals in each

genetic group is given in Table S3A. Raw ancestry proportions and standard error estimates are provided in Table S5. Horizontal bars represent ± 1 standard error

(SE) estimated by qpAdm.
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contribution from Gonur1_BA as a third ancestry source (Table

S5C). Taken together, although cultural differencesmay have ex-

isted among the major MLBAmortuary traditions of the Altai and

northern Mongolia (Mönkhkhairkhan, DSKC, and unclassified

MLBA), they do not form distinct genetic groups.

The populations making up the heterogeneous Altai_MLBA

cline left descendants in the Altai-Sayan region, who we later

identify at the Sagly/Uyuk site of Chandman Mountain (‘‘Chand-

man_IA,’’ ca. 400–200 BCE) in northwestern Mongolia during the

Early Iron Age (EIA). Nine Chandman_IA individuals form a tight

cluster on PCA at the end of the previous Altai_MLBA cline

away from Khövsgöl_LBA cluster (Figure 2). During the EIA, the

Sagly/Uyuk were pastoralists and millet agropastoralists largely

centered in the Upper Yenisei region of present-day Tuva.

Together with the Pazyryk of the Altai and the Saka of eastern

Kazakhstan, they formed part of a broader Scythian cultural phe-

nomenon that stretched across the Western Steppe, Tarim Ba-

sin, and Upper Yenesei (Parzinger, 2006).

We find that EIA Scythian populations systematically deviate

from the earlier Altai_MLBA cline, requiring a third ancestral

component (Figures 3C and 4A; FigureS4C). The appearance

of this ancestry, related to populations of Central Asia (Cauca-

sus/Iranian Plateau/Transoxiana regions) including BMAC (Nara-

simhan et al., 2019), is clearly detected in the Iron Age groups

such as Central Saka, TianShan Saka, Tagar (Damgaard et al.,

2018b), and Chandman_IA, while absent in the earlier DSKC

and Karasuk groups (Tables S5C–S5E). This third component

makes up 6%–24% of the ancestry in these Iron Age groups,

and the date of admixture in Chandman_IA is estimated at

�18 ± 4 generations earlier, ca. 750 BCE, which postdates the

collapse of the BMAC ca. 1600 BCE and slightly predates the

formation of the Persian Achaemenid empire ca. 550 BCE (Fig-

ure S6). We suggest that this Iranian-related genetic influx was

mediated by increased contact and mixture with agropastoralist

populations in the region of Transoxiana (Turan) and Fergana

during the LBA to EIA transition. The widespread emergence of

horseback riding during the late second and early firstmillennium
BCE (Drews, 2004), and the increasing sophistication of horse

transport thereafter, likely contributed to increased population

contact and the dissemination of this Iranian-related ancestry

onto the steppe. Our results do not exclude additional spheres

of contact, such as increased mobility along the Inner Asian

Mountain Corridor, which could have also introduced this

ancestry into the Altai via Xinjiang starting in the Bronze Age (Fra-

chetti, 2012).

In contrast to theMLBA and EIA cultures of the Altai and north-

ern Mongolia, different burial traditions are found in the eastern

and southern regions of Mongolia (Honeychurch, 2015), notably

the LBA Ulaanzuukh (1450–1150 BCE) and EIA Slab Grave

(1000–300 BCE) cultures. In contrast to other contemporaneous

Eastern Steppe populations, we find that individuals associated

with these burial types show a clear northeastern Asian (ANA-

related) genetic profile lacking both ANE and WSH admixture

(Figures 2, 3C, and 4). Both groups were ruminant pastoralists,

and the EIA Slab Grave culture also milked horses (Wilkin

et al., 2020a). The genetic profiles of Ulaanzuukh and Slab Grave

individuals are genetically indistinguishable (Figure 2; Table

S5C), consistent with the archaeological hypothesis that the

Slab Grave tradition emerged out of the Ulaanzuukh (Honey-

church, 2015; Khatanbaatar, 2019). Both groups are also indis-

tinguishable from the earlier eastMongolia_preBA individual

dating to ca. 4600 BCE, suggesting a long-term (>4,000-year)

stability of this prehistoric eastern Mongolian gene pool (Table

S5C). In subsequent analyses, we merged Ulaanzuukh and

Slab Grave into a single genetic group (‘‘Ulaanzuukh_Slab-

Grave’’). The Ulaanzuukh_SlabGrave genetic cluster is the likely

source of the previously described DSKC eastern outlier from

Khövsgöl province (ARS017) (Jeong et al., 2018), as well as a

culturally unclassified individual (TSI001) from central Mongolia

who dates to the LBA-EIA transition (Figures 2, 3B, and 3C; Table

S5C). In addition, the Mönkhkhairkhan individual KHU001 from

northwest Mongolia has a non-negligible amount of Ulaan-

zuukh_SlabGrave ancestry in addition to his otherwise

Baikal_EBA ancestry (Figure S4B; Table S5C). While these three
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individuals attest to occasional long-distance contacts between

northwestern and eastern Mongolia during the LBA, we find no

evidence of Ulaanzuukh_SlabGrave ancestry in the Altai, and

the overall frequency of the Ulaanzuukh_SlabGrave genetic pro-

file outside of eastern and southern Mongolia during the MLBA is

very low. During the EIA, the Slab Grave culture expanded north-

ward, sometimes disrupting and uprooting former DSKC graves

in their path (Fitzhugh, 2009; Honeychurch, 2015; Tsybiktarov,

2003; Volkov, 2002), and it ultimately reached as far north as

the eastern Baikal region, which is reflected in the genetic profile

of the Slab Grave individual PTO001 in this study (Figure 3C).

Overall, our findings reveal a strong east-west genetic division

among Bronze Age Eastern Steppe populations through the

end of the Early Iron Age. Further sampling from central and

southernMongolia will help refine the spatial distribution of these

ancestry profiles, aswell as the representativeness of our current

findings.

The Xiongnu Empire, the Rise of the First Imperial
Steppe Polity
Arising from the prehistoric populations of the Eastern Steppe,

large-scale polities began to develop during the late first millen-

nium BCE. The Xiongnu was the first historically documented

empire founded by pastoralists, and its establishment is consid-

ered awatershed event in the sociopolitical history of the Eastern

Steppe (Brosseder and Miller, 2011; Honeychurch, 2015). The

Xiongnu held political dominance in East and Central Asia from

the third century BCE through the first century CE. The cultural,

linguistic, and genetic makeup of the people who constituted

the Xiongnu empire has been of great interest, as has their rela-

tionship to other contemporaneous and subsequent nomadic

groups on the Eastern Steppe. Here, we report genome-wide

data for 60 Xiongnu-era individuals from across Mongolia and

dating from ca. 200 BCE to 100 CE, thus spanning the entire

period of the Xiongnu empire. Although most individuals date

to the late Xiongnu period (after 50 BCE), 13 individuals predate

100 BCE and include 12 individuals from the northern early

Xiongnu frontier sites of Salkhityn Am (SKT) and Atsyn Gol

(AST) and one individual from the early Xiongnu site of Jargalan-

tyn Am (JAG) in eastern Mongolia.

We observe two distinct demographic processes that contrib-

uted to the formation of the early Xiongnu. First, half of the early

individuals (n = 6) form a genetic cluster (earlyXiongnu_west)

resembling that of Chandman_IA of the preceding Sagly/Uyuk

culture from the Altai-Sayan region (Figure 2). They derive 92%

of their ancestry from Chandman_IA with the remainder attrib-

uted to additional Iranian-related ancestry, which we model us-

ing BMAC as a proxy (Figures 3D and 4D; Table S5F). This sug-

gests that the low-level Iranian-related gene flow identified

among the Chandman_IA Sagly/Uyuk during the EIA likely

continued during the second half of the first millennium BCE,

spreading across western and northern Mongolia. Second, six

individuals (‘‘earlyXiongnu_rest’’) fall intermediate between the

earlyXiongnu_west and Ulaanzuukh_SlabGrave clusters; four

carry varying degrees of earlyXiongnu_west (39%–75%) and

Ulaanzuukh_SlabGrave (25%–61%) related ancestry, and two

(SKT004, JAG001) are indistinguishable from the Ulaanzuukh_-

SlabGrave cluster (Figure 3D; Tables S5F and S5G). This genetic
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cline linking the earlyXiongnu_west and Ulaanzuukh_SlabGrave

gene pools signifies the unification of two deeply diverged and

distinct lineages on the Eastern Steppe—between the descen-

dants of the DSKC, Mönkhkhairkhan, and Sagly/Uyuk cultures

in the west and the descendants of the Ulaanzuukh and Slab

Grave cultures in the east. Overall, the low-level influx of Ira-

nian-related gene flow continuing from the previous Sagly/

Uyuk culture and the sudden appearance of a novel east-west

mixture uniting the gene pools of the Eastern Steppe are the

two defining demographic processes associated with the rise

of the Xiongnu.

Among late Xiongnu individuals, we find even higher genetic

heterogeneity (Figure 2), and their distribution on PC indicates

that the two demographic processes evident among the early

Xiongnu continued into the late Xiongnu period, but with the

addition of new waves and complex directions of gene flow. Of

the 47 late Xiongnu individuals, half (n = 26) can be adequately

modeled by the same admixture processes seen among the

early Xiongnu: 22 as a mixture of Chandman_IA+Ulaanzuukh_

SlabGrave, 2 (NAI002, TUK002) as a mixture of either Chandma-

n_IA+BMAC or Chandman_IA+Ulaanzuukh_SlabGrave+BMAC,

and 2 (TUK003, TAK001) as a mixture of either earlyXiongnu_

west+Ulaanzuukh_SlabGrave or earlyXiongnu_west+Khovs-

gol_LBA (Figures 3D and 4D; Table S5G). A further two individ-

uals (TEV002, BUR001) also likely derive their ancestry from

the early Xiongnu gene pool, although the p value of their models

is slightly lower than the 0.05 threshold (Table S5G). However, a

further 11 late Xiongnu with the highest proportions of western

Eurasian affinity along PC1 cannot be modeled using BMAC or

any other ancient Iranian-related population. Instead, they fall

on a cluster of ancient Sarmatians from various locations in the

Western and Central Steppe (Figure 2).

Admixture modeling confirms the presence of a Sarmatian-

related gene pool among the late Xiongnu: three individuals

(UGU010, TMI001, BUR003) are indistinguishable from Sarma-

tian, two individuals (DUU001, BUR002) are admixed between

Sarmatian and BMAC, three individuals (UGU005, UGU006,

BRL002) are admixed between Sarmatian and Ulaanzuukh_

SlabGrave, and three individuals (NAI001, BUR004, HUD001)

require Sarmatian, BMAC, and Ulaanzuukh_SlabGrave (Fig-

ure 3D; Figure S4D; Table S5G). In addition, eight individuals

with the highest eastern Eurasian affinity along PC1 are distinct

from both the Ulaanzuukh_SlabGrave and Khövsgöl_LBA ge-

netic profiles, showing affinity along PC2 toward present-day

people from East Asia further to the south (Figure 2). Six of these

individuals (EME002, ATS001, BAM001, SON001, TUH001,

YUR001) are adequately modeled as a mixture of Ulaanzuukh_

SlabGrave and Han (Tables S5F and S5G), and YUR001 in

particular exhibits a close genetic similarity to two previously

published Han empire soldiers (Damgaard et al., 2018b), whose

genetic profile we refer to as ‘‘Han_2000BP’’ (Table S5G). The re-

maining two individuals (BRU001, TUH002) are similar but also

require the addition of Sarmatian ancestry (Table S5G). The

late Xiongnu are thus characterized by two additional demo-

graphic processes that distinguish them from the early Xiongnu:

gene flow from a new Sarmatian-related Western ancestry

source and intensified interaction and mixture with people of

the contemporaneous Han empire of China. A previous study
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of the Egyin Gol Xiongnu necropolis reported mitochondrial hap-

logroups of both western and eastern Eurasian origins (Keyser-

Tracqui et al., 2003), and this accords with our findings of the

west-east admixture from genome-wide data. Together, these

results match well with historical records documenting the polit-

ical influence that the Xiongnu exercised over their neighbors,

including the Silk Road kingdoms of Central Asia and Han Dy-

nasty China, as well as purported migrations both in and out of

Mongolia (Miller, 2014). Overall, the Xiongnu period can be char-

acterized as one of expansive and extensive gene flow that

began by uniting the gene pools of western and eastern

Mongolia and ended by uniting the gene pools of western and

eastern Asia.

Fluctuating Genetic Heterogeneity in the Post-Xiongnu
Polities
After the collapse of the Xiongnu empire ca. 100 CE, a succes-

sion of nomadic pastoralist regimes rose and fell over the next

several centuries across the politically fragmented Eastern

Steppe: Xianbei (ca. 100–250 CE), Rouran (ca. 300–550 CE),

Türkic (552–742 CE), and Uyghur (744–840 CE). Although our

sample representation for the Early Medieval period is uneven,

consisting of 1 unclassified individual dating to the Xianbei or

Rouran period (TUK001), 8 individuals from Türkic mortuary con-

texts, and 13 individuals from Uyghur cemeteries, it is clear that

these individuals have genetic profiles that differ from the pre-

ceding Xiongnu period, suggesting new sources of gene flow

intoMongolia at this time that displace themalongPC3 (Figure 2).

Individual TUK001 (250–383 cal. CE), whose burial was an intru-

sion into an earlier Xiongnu cemetery, has the highest western

Eurasian affinity. This ancestry is distinct from that of the

Sarmatians and closer to ancient populations with BMAC/

Iranian-related ancestry (Figure 2). Among the individuals with

the highest eastern Eurasian affinity, two Türkic-period individ-

uals and one Uyghur-period individual (ZAA004, ZAA002,

OLN001.B) are indistinguishable from the Ulaanzuukh_Slab-

Grave cluster. Another individual (TUM001), who was recovered

from the tomb ramp of an elite Türkic-era emissary of the Tang

Dynasty, has a high proportion of Han-related ancestry (78%;

Figures 3E and 4B; Figure S4E; Table S5H). This male, buried

with two dogs, was likely a Chinese attendant sacrificed to guard

the tomb entrance (Ochir et al., 2013). The remaining 17 Türkic

and Uyghur individuals show intermediate genetic profiles

(Figure 3E).

The high genetic heterogeneity of the Early Medieval period is

vividly exemplified by 12 individuals from the Uyghur period

cemetery of Olon Dov (OLN; Figure 2) in the vicinity of the Uyghur

capital of Ordu-Baliq. Six of these individuals came from a single

tomb (grave 19), of whom only two are related (OLN002 and

OLN003, second-degree; Table S2D); the absence of closer

kinship ties raises questions about the function of such tombs

and the social relationships of those buried within them. Most

Uyghur-period individuals exhibit a high but variable degree of

west Eurasian ancestry—best modeled as a mixture of Alans,

a historic nomadic pastoral group likely descended from the Sar-

matians and contemporaries of the Huns (Bachrach, 1973), and

an Iranian-related (BMAC-related) ancestry—together with

Ulaanzuukh_SlabGrave (ANA-related) ancestry (Figure 3E). The
admixture dates estimated for the ancient Türkic and Uyghur in-

dividuals in this study correspond to ca. 500 CE: 8 ± 2 genera-

tions before the Türkic individuals and 12 ± 2 generations before

the Uyghur individuals (represented by ZAA001 and Olon Dov

individuals).

Rise of the Mongol Empire
After the fall of the Uyghur empire in the mid-ninth century, the

Khitans of northeast China established the powerful Liao Dy-

nasty in 916 CE. The Khitans controlled large areas of the

Eastern Steppe and are recorded to have relocated people

within their conquered territories (Kradin and Ivliev, 2008), but

few Khitan period cemeteries are known within Mongolia. Our

study includes three Khitan individuals (ZAA003, ZAA005,

ULA001) from Bulgan province, all of whom have a strongly

eastern Eurasian genetic profile (Figure 2), with <10% west

Eurasian ancestry (Figures 3F and 4B; Table S5I). This may

reflect the northeastern Asian origin of the Mongolic-speaking

Khitan, but a larger sample size is required to adequately charac-

terize the genetic profile of Khitan populations within Mongolia.

In 1125 CE, the Khitan empire fell to the Jurchen’s Jin Dynasty,

which was then conquered in turn by the Mongols in 1234 CE.

At its greatest extent, the Mongol empire (1206–1368 CE)

spanned nearly two-thirds of the Eurasian continent. It was the

world’s largest contiguous land empire, and the cosmopolitan

entity comprised diverse populations that flowed into the steppe

heartland. We analyzed 62 Mongol-era individuals whose burials

are consistent with those of low-level, local elites. No royal or

regional elite burials were included, and neither were individuals

from the cosmopolitan capital of Karakorum. Although we find

that Mongol-era individuals were diverse, they exhibit a much

lower genetic heterogeneity than the Xiongnu-era individuals

(Figure 2), and they almost entirely lack the residual ANE-related

ancestry (in the form of Chandman_IA and Khövsgöl_LBA) that

had been present among the Xiongnu and earlier northern/west-

ern MLBA cultures. On average, Mongol-period individuals have

a much higher eastern Eurasian affinity than previous empires,

and this period marks the beginning of the formation of the mod-

ern Mongolian gene pool. We find that most historic Mongols are

well-fitted by a three-way admixture model with the following

ancestry proxies: Ulaanzuukh_SlabGrave, Han, and Alans.

Consistent with their PCA location (Figure 2), Mongol-era individ-

uals as a group can be modeled with only 15%–18% Western

Steppe ancestry (Alan or Sarmatian) but require 55%–64%

Ulaanzuukh_SlabGrave and 21%–27% of Han-related ancestry

(Table S5I). Applying the same model to each individual sepa-

rately, this three-source model adequately explains 56 out of

61 ancient Mongols (based on p value at threshold of 0.05), as

well as one unclassified Late Medieval individual dating to

around the beginning of the Mongol empire (SHU002) (Ta-

ble S5J).

Since the fall of theMongol empire in 1368CE, the genetic pro-

file of the Mongolian populations has not substantially changed.

The genetic structure established during the Mongol empire

continues to characterize present-day Mongolic-speaking pop-

ulations living in bothMongolia andRussia.We examined the ge-

netic cladality between the historic Mongols and seven present-

day Mongolic-speaking groups (Mongols, Kalmyk, Buryat,
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Khamnegan, Daur, Tu, and Mongola) using an individual-based

qpWave analysis. Within the resolution of current data, 34 of

61 historic Mongols are genetically cladal with at least one mod-

ern Mongolic-speaking population (Figure S7B). The Mongol

empire had a profound impact on restructuring the political

and genetic landscape of the Eastern Steppe, and these effects

endured long after the decline of the empire and are still evident

in Mongolia today.

Functional and Gendered Aspects of Recurrent
Admixture in the Eastern Steppe
To investigate the functional aspects of recurrent admixture on

the Eastern Steppe, we estimated the population allele fre-

quency of five SNPs associated with functional or evolutionary

aspects of lactose digestion (LCT/MCM6), dental morphology

(EDAR), pigmentation (OCA2, SLC24A5), and alcohol meta-

bolism (ADH1B) (Figure 5A). First, we find that despite a

pastoralist lifestyle with widespread direct evidence for milk con-

sumption (Jeong et al., 2018; Wilkin et al., 2020a), the MLBA and

EIA individuals of the Eastern Steppe did not have any derived

mutations conferring lactase persistence. Individuals from sub-

sequent periods did have the derived mutation that is today

widespread in Europe (rs4988235) but at negligibly low fre-

quency (�5%) and with no increase in frequency over time (Fig-

ure 5A). This is somewhat remarkable given that, in addition to

other dairy products, some contemporary Mongolian herders

consume up to 4–10 L of airag (fermented mare’s milk, �2.5%

lactose) per day during the summer months (Bat-Oyun et al.,

2015), resulting in a daily intake of 100–250 g of lactose sugar.

Petroglyph depictions of airag production date back to the EIA

in the Yenisei Basin (D _evlet, 1976), and accounts of the historic

Mongols record abundant and frequent consumption of airag,

as well as a wide range of additional liquid and solid ruminant

dairy products (Bayarsaikhan, 2016; Onon, 2005), which has

been additionally confirmed by ancient proteomic evidence

(Jeong et al., 2018; Wilkin et al., 2020a). How Mongolians have

been able to digest such large quantities of lactose for millennia

in the absence of lactase persistence is unknown, but it may be

related to their reportedly unusual gut microbiome structure,

which today is highly enriched in lactose-digesting Bifidobacte-

rium spp. (Liu et al., 2016).

Genetic markers that underwent regional selective sweeps

show allele frequency changes that correlate with changes in

the genome-wide ancestry profile (Figure 5A). For example,

rs3827760 in EDAR (ectodysplasin A receptor) and rs1426654

in SLC24A5 (solute carrier family 24 member 5) are well-known

targets of positive selection in East Asians and western Eur-

asians, respectively (Sabeti et al., 2007). Our MLBA and EIA

populations show a strong population differentiation in the allele

frequencies of these two SNPs: rs3827760 frequency is much

higher in groups with higher eastern Eurasian affinity (Khovs-

gol_LBA, Ulaanzuukh_SlabGrave), whereas rs1426654 is higher

in Altai_MLBA and Chandman_IA (Table S2E). We find that two

SNPs that have undergone more recent positive selection (Don-

nelly et al., 2012; Li et al., 2011) in East Asians, rs1229984 in

ADH1B (aldehyde dehydrogenase 1B) and rs1800414 in OCA2

(oculocutaneous albinism II), were absent or in extremely low fre-

quency during the MLBA and EIA, when the eastern Eurasian
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ancestry was primarily ANA-related, but increased in frequency

over time as the proportion of East Asian ancestry increased

through interactions with imperial China and other groups (Table

S2E).

Finally, we investigated gendered dimensions of the popula-

tion history of the Eastern Steppe. Sex-biased patterns of ge-

netic admixture can be informative about gendered aspects of

migration, social kinship, and family structure. We observe a

clear signal of male-biased WSH admixture among the EIA

Sagly/Uyuk and during the Türkic period (i.e., more positive Z

scores; Figure 5B), which also corresponds to the decline in

the Y chromosome lineage Q1a and the concomitant rise of

the western Eurasian lineages such as R and J (Figure S2A). Dur-

ing the later Khitan andMongol empires, we observe a prominent

male bias for East Asian-related ancestry (Figure S2C), which

can also be seen from the rise in frequency of Y chromosome

lineage O2a (Figure S2A). The Xiongnu period exhibits the

most complex pattern of male-biased admixture, whereby

different genetic subsets of the population exhibit evidence of

different sources of male-biased admixture (Figure S2C).

Among the Xiongnu, we also detect 10 genetic relative pairs,

including a father-daughter pair buried in the same grave

(JAG001 and JAA001) at Jargalantyn Am, as well as a mother-

son pair (IMA002 and IMA005) at Il’movaya Pad, a brother-sister

pair (TMI001 and BUR003) at Tamiryn Ulaan Khoshuu, and a

brother-brother pair (SKT002 and SKT006) at Salkhityn Am (Ta-

ble S2D). Of the remaining six pairs, three are female-female

relative pairs buried within the same site, suggesting the pres-

ence of extended female kinship within Xiongnu groups. First-

degree relatives within a single site have also been reported in

a previous study on the Egyin Gol Xiongnu necropolis based

on the autosomal short tandem repeat (STR) data (Keyser-Trac-

qui et al., 2003). These relationships, when combined with mor-

tuary features, offer the first clues to local lineage and kinship

structures within the Xiongnu empire, which are otherwise poorly

understood.

DISCUSSION

The population history of the Eastern Steppe is one marked by

the repeated mixing of diverse eastern and western Eurasian

gene pools. However, rather than simple waves of migration, de-

mographic events on the Eastern Steppe have been complex

and variable. Generating more than 200 genome-wide ancient

datasets, we have presented the first genetic evidence of this dy-

namic population history, from ca. 4600 BCE through the end of

theMongol empire.We found that the Eastern Steppewas popu-

lated by hunter-gatherers of ANA and ANE ancestry during the

mid-Holocene and then shifted to a dairy pastoralist economy

during the Bronze Age. Migrating Yamnaya/Afanasievo steppe

herders, equipped with carts and domestic livestock (Kovalev

and Erdenebaatar, 2009), appear to have first introduced rumi-

nant dairy pastoralism ca. 3000 BCE (Wilkin et al., 2020a) but

surprisingly had little lasting genetic impact, unlike in Europe (Al-

lentoft et al., 2015; Haak et al., 2015; Mathieson et al., 2015). By

the MLBA, ruminant dairy pastoralism had been adopted by

populations throughout the Eastern Steppe (Wilkin et al.,

2020a), regardless of ancestry, and this subsistence has
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Figure 5. Functional Allele Frequencies and Sex-Biased Patterns of Genetic Admixture

(A) Allele frequencies of five phenotypic SNP changes through time. For the effective allele, we showmaximum likelihood frequency estimates and one standard

error bar for each ancient group. The pre-MLBA category corresponds to the sumof all ancient groups beforeMönkhkhairkhan. Xiongnu, EarlyMedieval, and Late

Medieval correspond to the sum of all ancient groups in each period correspondingly. Horizontal dashed lines show allele frequency information from the 1000

Genomes Project’s five super populations.

(B) Sex-biased patterns of genetic admixture by period and population. We calculated Z scores for every ancient individual who has genetic admixture with

WSH-/Iranian-/Han-related ancestry. Positive scores suggest more WSH-/Iranian-/Han-related ancestry on the autosomes, i.e., male-driven admixture. See

Figure S2C for individual Z scores.
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continued, with the additions of horse milking in the LBA and

camel milking in the Mongol period (Wilkin et al., 2020a), to the

present day (Bat-Oyun et al., 2015; Kindstedt and Ser-Od,

2019). Puzzlingly, however, there is no evidence of selection

for lactase persistence over this 5,000-year history, despite the

repeated introduction of this genetic trait by subsequent migra-

tions of groups from the west. This suggests a different trajectory

of lactose adaptation in Asia that to date remains unexplained.

During the MLBA, we observed the formation of a tripartite ge-

netic structure on the Eastern Steppe, characterized by the

continuation of pre-Bronze Age ANA ancestry in the east and a

cline of genetic variation between pre-Bronze Age ANA-ANE

ancestry in the north and increasing proportions of a new Sin-

tashta-related WSH ancestry in the west. The Sintashta, a west-

ern forest steppe culture with genetic links to the European
Corded Ware cultures (Mathieson et al., 2015), were masters

of bronze metallurgy and chariotry (Anthony, 2010), and the

appearance of this ancestry on the Eastern Steppemay be linked

to the introduction of new (especially horse-related) technolo-

gies. DSKC sites in particular show widespread evidence for

horse use in transport and perhaps even riding (Taylor et al.,

2015), and genetic analysis has demonstrated a close link be-

tween these animals and the Sintashta chariot horses (Fages

et al., 2019). The strong east-west genetic division among

Bronze Age Eastern Steppe populations at this time was main-

tained for more than a millennium and through the end of the

EIA, when the first clear evidence for widespread horseback

riding appears (Drews, 2004) and the heightened mobility of

some groups, notably the eastern Slab Grave culture (Honey-

church, 2015), began to disrupt this structure. Eventually, the
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three major ancestries met and mixed, and this was contempo-

raneous with the emergence of the Xiongnu empire. The Xiongnu

are characterized by extreme levels of genetic heterogeneity and

increased diversity as new and additional ancestries from China,

Central Asia, and theWestern Steppe (Sarmatian-related) rapidly

entered the gene pool.

Genetic data for the subsequent Early Medieval period are

relatively sparse and uneven, and few Xianbei or Rouran sites

have yet been identified during the 400-year gap between the

Xiongnu and Türkic periods. We observed high genetic hetero-

geneity and diversity during the Türkic and Uyghur periods,

and following the collapse of the Uyghur empire, we docu-

mented a final major genetic shift during the late medieval period

toward greater eastern Eurasian ancestry, which is consistent

with historically documented expansions of Tungusic- (Jurchen)

and Mongolic- (Khitan and Mongol) speaking groups from the

northeast into the Eastern Steppe (Biran, 2012). We also

observed that this East Asian-related ancestry was brought

into the LateMedieval populationsmore bymale than female an-

cestors. By the end of the Mongol period, the genetic makeup of

the Eastern Steppe had dramatically changed, retaining little of

the ANE ancestry that had been a prominent feature during its

prehistory. Today, ANE ancestry survives in appreciable

amounts only in isolated Siberian groups and among the indige-

nous peoples of the Americas (Jeong et al., 2019). The genetic

profile of the historic Mongols is still reflected among contempo-

rary Mongolians, suggesting a relative stability of this gene pool

over the last �700 years.

Having documented key periods of genetic shifts in the

Eastern steppe, future work may be able to explore whether

these shifts are also linked to cultural and technological innova-

tions and how these innovations may have influenced the politi-

cal landscape. Integrating these findings with research on

changes in horse technology and herding practices, as well as

shifts in livestock traits and breeds, may prove particularly illumi-

nating. This study represents the first large-scale paleogenomic

investigation of the Eastern Eurasian Steppe, and it sheds light

on the remarkably complex and dynamic genetic diversity of

the region. Despite this progress, there is still a great need for

further genetic research in central and eastern Eurasia, and

particularly in northeastern China, the Tarim Basin, and the

eastern Kazakh steppe, in order to fully reveal the population his-

tory of the Eurasian Steppe and its pivotal role in world

prehistory.
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torische Untersuchungen zu den mongolischen Grabfunden des 11. bis 17.

Jahrhunderts in der Mongolei. PhD thesis (Rheinische Friedrich-Wilhelms-

Universität).

Erdenebat, U. (2016). Small Graves of the Uyghur Period. In Ancient Funeral

Monuments of Mongolia, G. Eregzen, ed. (Mongolian Academy of Sciences),

pp. 230–233.

Erdenebat, U., Batsaikhan, Z., and Dashdorj, B. (2012). Arkhangai aimagiin

Khotont sum nutag Olon Dovd 2011 ond yavuulsan arkheologiin sudalgaa. Ar-

kheologiin Sudlal 32, 229–258.

Eregzen, G. (2011). Treasures of the Xiongnu (Ulaanbaatar: Institute of Archae-

ology, Mongolian Academy of Sciences).

Eregzen, G. (2016). Ancient funeral monuments of Mongolia (Ulaanbaatar:

Institute Of History And Archaeology, Mongolian Academy Of Sciences).

Fages, A., Hanghøj, K., Khan, N., Gaunitz, C., Seguin-Orlando, A., Leonardi,

M., McCrory Constantz, C., Gamba, C., Al-Rasheid, K.A.S., Albizuri, S.,

et al. (2019). Tracking Five Millennia of Horse Management with Extensive

Ancient Genome Time Series. Cell 177, 1419–1435.e31.

Fitzhugh, W.W. (2009). Stone Shamans and Flying Deer of Northern Mongolia:

Deer Goddess of Siberia or Chimera of the Steppe? Arctic Anthropol.

46, 72–88.

Frachetti, M.D. (2012). Multiregional Emergence of Mobile Pastoralism and

Nonuniform Institutional Complexity across Eurasia. Curr. Anthropol. 53, 2–38.

Fu, Q., Li, H., Moorjani, P., Jay, F., Slepchenko, S.M., Bondarev, A.A., John-
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Peltzer, A., Jäger, G., Herbig, A., Seitz, A., Kniep, C., Krause, J., and Nieselt, K.

(2016). EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60.

Poznik, G.D. (2016). Identifying Y-chromosome haplogroups in arbitrarily large

samples of sequenced or genotyped men. bioRxiv. https://doi.org/10.1101/

088716.

Raghavan, M., Skoglund, P., Graf, K.E., Metspalu, M., Albrechtsen, A., Moltke,

I., Rasmussen, S., Stafford, T.W., Jr., Orlando, L., Metspalu, E., et al. (2014).

Upper Palaeolithic Siberian genome reveals dual ancestry of Native Ameri-

cans. Nature 505, 87–91.

Raghavan, M., Steinrücken, M., Harris, K., Schiffels, S., Rasmussen, S., De-

Giorgio, M., Albrechtsen, A., Valdiosera, C., Ávila-Arcos, M.C., Malaspinas,
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human archaeological skeletal material This study ARG001(AT-765)

Human archaeological skeletal material This study ARG002(AT-764)

Human archaeological skeletal material This study ARG003(AT-763)

Human archaeological skeletal material This study AST001(AT-841)

Human archaeological skeletal material This study ATS001(AT-459)

Human archaeological skeletal material This study BAM001(AT-752)

Human archaeological skeletal material This study BAU001(AT-409)

Human archaeological skeletal material This study BAY001(AT-304)

Human archaeological skeletal material This study BAZ001(AT-846)

Human archaeological skeletal material This study BER002(AT-905)

Human archaeological skeletal material This study BIL001(AT-340)

Human archaeological skeletal material This study BOR001(AT-707)

Human archaeological skeletal material This study BRG001(AT-650)

Human archaeological skeletal material This study BRG002(AT-651)

Human archaeological skeletal material This study BRG004(AT-655)

Human archaeological skeletal material This study BRG005(AT-653)

Human archaeological skeletal material This study BRL001(AT-296)

Human archaeological skeletal material This study BRL002(AT-294)

Human archaeological skeletal material This study BRU001(AT-154)

Human archaeological skeletal material This study BTO001(AT-435)

Human archaeological skeletal material This study BUL001(AT-923)

Human archaeological skeletal material This study BUL002(AT-922)

Human archaeological skeletal material This study BUR001(AT-589)

Human archaeological skeletal material This study BUR002(AT-536)

Human archaeological skeletal material This study BUR003(AT-535)

Human archaeological skeletal material This study BUR004(AT-537)

Human archaeological skeletal material This study CHD001(AT-173)

Human archaeological skeletal material This study CHN001(AT-121)

Human archaeological skeletal material This study CHN003(AT-141)

Human archaeological skeletal material This study CHN004(AT-105)

Human archaeological skeletal material This study CHN006(AT-109)

Human archaeological skeletal material This study CHN007(AT-128)

Human archaeological skeletal material This study CHN008(AT-138)

Human archaeological skeletal material This study CHN010(AT-119)

Human archaeological skeletal material This study CHN012(AT-98)

Human archaeological skeletal material This study CHN014(AT-125)

Human archaeological skeletal material This study CHN015(AT-115)

Human archaeological skeletal material This study CHN016(AT-208)

Human archaeological skeletal material This study DAR001(AT-766)

Human archaeological skeletal material This study DAR002(AT-767)

Human archaeological skeletal material This study DAS001(AT-391)

Human archaeological skeletal material This study DEE001(AT-389)

Human archaeological skeletal material This study DEK001/SHR001(AT-755)

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human archaeological skeletal material This study DEL001(AT-530)

Human archaeological skeletal material This study DOL001(AT-370)

Human archaeological skeletal material This study DUU001(AT-605)

Human archaeological skeletal material This study DUU002(AT-407)

Human archaeological skeletal material This study EME002(AT-708)

Human archaeological skeletal material This study ERD001(AT-831)

Human archaeological skeletal material This study ERM001/ERM002/

ERM003(DA-KG-1909-001)

Human archaeological skeletal material This study FNO001(2008, pogrebenie 3)

Human archaeological skeletal material This study FNO003(2008,

pogrebenie 4, skeleton 2)

Human archaeological skeletal material This study FNO006(2007,

pogrebenie 1, formerly

pogrebenie 18,

main individual)

Human archaeological skeletal material This study FNO007(1996,

pogrebenie 11, kostyak 2)

Human archaeological skeletal material This study GAN002(AT-835)

Human archaeological skeletal material This study GTO001(AT-624)

Human archaeological skeletal material This study GUN002(AT-780)

Human archaeological skeletal material This study HUD001(AT-290)

Human archaeological skeletal material This study IAG001(AT-590B)

Human archaeological skeletal material This study IKU001(AT-772)

Human archaeological skeletal material This study IMA001(2006 Mogila 76)

Human archaeological skeletal material This study IMA002(2005 Mogila 75)

Human archaeological skeletal material This study IMA003(2005 Mogila 73)

Human archaeological skeletal material This study IMA004(2003 Mogila 70)

Human archaeological skeletal material This study IMA005(2007 Mogila 78)

Human archaeological skeletal material This study IMA006(2007 Mogila 77)

Human archaeological skeletal material This study IMA007(2007 Mogila 79)

Human archaeological skeletal material This study IMA008(2004 Mogila 71)

Human archaeological skeletal material This study JAA001(AT-910)

Human archaeological skeletal material This study JAG001(AT-878)

Human archaeological skeletal material This study KGK001(AT-900)

Human archaeological skeletal material This study KHI001(AT-398)

Human archaeological skeletal material This study KHL001(AT-363)

Human archaeological skeletal material This study KHN001/KHN002

(AT-758; AT-759)

Human archaeological skeletal material This study KHO001(AT-354)

Human archaeological skeletal material This study KHO006(AT-361B)

Human archaeological skeletal material This study KHO007(AT-361A)

Human archaeological skeletal material This study KHU001(AT-861)

Human archaeological skeletal material This study KHV002(AT-811)

Human archaeological skeletal material This study KNN001(AT-754)

Human archaeological skeletal material This study KNU001(AT-352)

Human archaeological skeletal material This study KRN001(AT-643)

Human archaeological skeletal material This study KRN002(AT-644)

Human archaeological skeletal material This study KUM001(AT-628)

Human archaeological skeletal material This study KUR001(AT-635)

(Continued on next page)
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Continued
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Human archaeological skeletal material This study MIT001(AT-975)

Human archaeological skeletal material This study MRI001(AT-800)

Human archaeological skeletal material This study NAI001(AT-149)

Human archaeological skeletal material This study NAI002/NAI003(AT-152)

Human archaeological skeletal material This study NOM001(AT-917)

Human archaeological skeletal material This study NRC001(AT-393)

Human archaeological skeletal material This study OLN001.A(AT-871)

Human archaeological skeletal material This study OLN001.B(AT-871)

Human archaeological skeletal material This study OLN002(AT-891)

Human archaeological skeletal material This study OLN003(AT-892)

Human archaeological skeletal material This study OLN004(AT-969)

Human archaeological skeletal material This study OLN005(AT-973)

Human archaeological skeletal material This study OLN007(AT-972)

Human archaeological skeletal material This study OLN008(AT-873)

Human archaeological skeletal material This study OLN009(AT-896)

Human archaeological skeletal material This study OLN010(AT-893)

Human archaeological skeletal material This study OLN011(AT-897)

Human archaeological skeletal material This study OLN012(AT-894)

Human archaeological skeletal material This study PTO001

(Plitochnaya Mogila 4)

Human archaeological skeletal material This study RAH001(AT-532)

Human archaeological skeletal material This study SAN001(AT-575)

Human archaeological skeletal material This study SBG001(AT-960)

Human archaeological skeletal material This study SHA001(AT-594)

Human archaeological skeletal material This study SHG001(AT-701)

Human archaeological skeletal material This study SHG002(AT-699)

Human archaeological skeletal material This study SHG003(AT-703)

Human archaeological skeletal material This study SHT001(AT-26)

Human archaeological skeletal material This study SHT002(AT-25)

Human archaeological skeletal material This study SHU001(AT-233)

Human archaeological skeletal material This study SHU002(AT-232B)

Human archaeological skeletal material This study SKT001(CA-4-1)

Human archaeological skeletal material This study SKT002(CA-19)

Human archaeological skeletal material This study SKT003(CA-13-1)

Human archaeological skeletal material This study SKT004(CA-24)

Human archaeological skeletal material This study SKT005(CA-8)

Human archaeological skeletal material This study SKT006(CA-17)

Human archaeological skeletal material This study SKT007(CA-3-1)

Human archaeological skeletal material This study SKT008(CA-28)

Human archaeological skeletal material This study SKT009(CA-9-1)

Human archaeological skeletal material This study SKT010(CA-7)

Human archaeological skeletal material This study SKT012(CA-29)

Human archaeological skeletal material This study SOL001(AT-274)

Human archaeological skeletal material This study SON001(AT-150)

Human archaeological skeletal material This study SOU001(AT-501)

Human archaeological skeletal material This study TAH002(AT-360)

Human archaeological skeletal material This study TAK001(AT-401A)

Human archaeological skeletal material This study TAV001(AT-625/688)

(Continued on next page)
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Human archaeological skeletal material This study TAV005(AT-670/695)

Human archaeological skeletal material This study TAV006(AT-623)

Human archaeological skeletal material This study TAV011(AT-671/687)

Human archaeological skeletal material This study TEV002(AT-33)

Human archaeological skeletal material This study TEV003(AT-145)

Human archaeological skeletal material This study TMI001(AT-751)

Human archaeological skeletal material This study TSA001(AT-784)

Human archaeological skeletal material This study TSA002(AT-816)

Human archaeological skeletal material This study TSA003(AT-783)

Human archaeological skeletal material This study TSA004(AT-782)

Human archaeological skeletal material This study TSA005(AT-815)

Human archaeological skeletal material This study TSA006(AT-814)

Human archaeological skeletal material This study TSA007(AT-786)

Human archaeological skeletal material This study TSB001(AT-804)

Human archaeological skeletal material This study TSI001(AT-802)

Human archaeological skeletal material This study TUH001(AT-543)

Human archaeological skeletal material This study TUH002(AT-542)

Human archaeological skeletal material This study TUK001/TAV008

(AT-729;AT-728)

Human archaeological skeletal material This study TUK002(AT-757)

Human archaeological skeletal material This study TUK003(AT-684)

Human archaeological skeletal material This study TUM001(AT-913)

Human archaeological skeletal material This study UAA001(AT-614)

Human archaeological skeletal material This study UGO001(AT-588)

Human archaeological skeletal material This study UGO002(AT-581)

Human archaeological skeletal material This study UGU001(AT-749)

Human archaeological skeletal material This study UGU002(AT-549)

Human archaeological skeletal material This study UGU003(AT-570)

Human archaeological skeletal material This study UGU004(AT-805)

Human archaeological skeletal material This study UGU005(AT-747)

Human archaeological skeletal material This study UGU006(AT-692)

Human archaeological skeletal material This study UGU010(AT-690)

Human archaeological skeletal material This study UGU011(AT-748)

Human archaeological skeletal material This study ULA001(AT-840)

Human archaeological skeletal material This study ULI001(AT-676)

Human archaeological skeletal material This study ULI002(AT-675)

Human archaeological skeletal material This study ULI003(AT-680)

Human archaeological skeletal material This study ULN001(AT-823)

Human archaeological skeletal material This study ULN002(AT-920)

Human archaeological skeletal material This study ULN003(AT-921)

Human archaeological skeletal material This study ULN004(AT-885)

Human archaeological skeletal material This study ULN005(AT-769)

Human archaeological skeletal material This study ULN006(AT-962)

Human archaeological skeletal material This study ULN007(AT-883)

Human archaeological skeletal material This study ULN009(AT-884)

Human archaeological skeletal material This study ULN010(AT-964)

Human archaeological skeletal material This study ULN011(AT-882)

Human archaeological skeletal material This study ULN015(AT-824)

(Continued on next page)
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Human archaeological skeletal material This study ULZ001(AT-674)

Human archaeological skeletal material This study UUS001(AT-613)

Human archaeological skeletal material This study UUS002(AT-610)

Human archaeological skeletal material This study UVG001(AT-338)

Human archaeological skeletal material This study YAG001(AT-590A)

Human archaeological skeletal material This study YUR001(AT-649)

Human archaeological skeletal material This study ZAA001(AT-954)

Human archaeological skeletal material This study ZAA002(AT-957)

Human archaeological skeletal material This study ZAA003(AT-953)

Human archaeological skeletal material This study ZAA004(AT-959)

Human archaeological skeletal material This study ZAA005(AT-956)

Human archaeological skeletal material This study ZAA007(AT-958)

Human archaeological skeletal material This study ZAM001(AT-390)

Human archaeological skeletal material This study ZAM002(AT-711)

Human archaeological skeletal material This study ZAR002(AT-271)

Human archaeological skeletal material This study ZAY001(AT-768)

Chemicals, Peptides, and Recombinant Proteins

USER� Enzyme, recombinant NEB M5508

Critical Commercial Assays

HiSeq� 3000/4000 SR Cluster Kit Illumina PE-410-1001

HiSeq� 3000/4000 PE Cluster Kit Illumina GD-410-1001

HiSeq� 3000/4000 SBS Kit (50 cycles) Illumina FC-410-1001

HiSeq� 3000/4000 SBS Kit (150 cycles) Illumina FC-410-1002

Deposited Data

Raw and analyzed data This study ENA: PRJEB35748

Haploid genotype data for 1240K panel (Edmond Data

Repository of the Max

Planck Society)

This study https://edmond.mpdl.mpg.de/

imeji/collection/2ZJSw35ZTTa18jEo

Software and Algorithms

EAGER v1.92.55 (Peltzer et al., 2016) https://github.com/

apeltzer/EAGER-GUI

AdapterRemoval v2.2.20 (Schubert et al., 2016) https://github.com/

MikkelSchubert/adapterremoval

BWA v0.7.12 (Li and Durbin, 2009) http://bio-bwa.sourceforge.net

dedup v0.12.2 (Peltzer et al., 2016) https://github.com/

apeltzer/DeDup

bamUtils v.1.0.13 (Jun et al., 2015) https://github.com/

statgen/bamUtil

samtools mpileup (Li and Durbin, 2009) http://www.htslib.org/

doc/samtools.html

pilupCaller v1.2.2 (https://github.com/

stschiff/sequenceTools)

https://github.com/stschiff/

sequenceTools

mapDamage v2.0.6 (Jónsson et al., 2013) https://github.com/

MikkelSchubert/mapDamage

Schmutzi (Renaud et al., 2015) https://github.com/

grenaud/schmutzi

circularmapper v1.1 (Peltzer et al., 2016) https://github.com/

apeltzer/CircularMapper

ANGSD v0.910 (Korneliussen et al., 2014) http://www.popgen.

dk/angsd/index.php/ANGSD

(Continued on next page)
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HaploGrep 2 v2.1.19 (Weissensteiner et al., 2016) https://haplogrep.i-

med.ac.at/category/haplogrep2/

yHaplo (Poznik, 2016) https://github.com/

alexhbnr/yhaplo

Eigensoft v7.2.1 (Patterson et al., 2006) https://github.com/

DReichLab/EIG

DATES (Narasimhan et al., 2019) https://github.com/

priyamoorjani/DATES

admixtools v5.1 (Patterson et al., 2012) https://github.com/

DReichLab/AdmixTools
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Christina Warinner

(warinner@fas.harvard.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The accession number for all newly reported sequencing data reported in this paper are available from the European Nucleotide

Archive: PRJEB35748. 1240K genotype data are available on the Edmond Max Planck Data Repository under the link: https://

edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Here we present new genome-wide data for 213 ancient individuals from Mongolia and 13 individuals from Buryatia, Russia, which

we analyze together with 21 previously published ancient Mongolian individuals (Jeong et al., 2018), for a total of 247 individuals.

Human remains analyzed in this study were reviewed and approved by the Mongolian Ministry of Culture and the Mongolian Ministry

of Education, Culture, Science, and Sport under reference numbers A0122772 MN DE 0 8124, A0109258 MN DE 7 643, and

A0117901 MN DE 9 4314, and declaration number 12-2091008-20E00225. All new Mongolian individuals, except ERM, were

sampled from the physical anthropology collections at the National University of Mongolia and the Institute for Archaeology and

Ethnology in Ulaanbaatar, Mongolia. ERM001/002/003 was provided by Jan Bemmann. Russian samples were collected from the

Institute for Mongolian, Buddhist, and Tibetan Research as well as the Buryat Scientific Center, Russian Academy of Sciences (RAS).

Together, this ancient Eastern Steppe dataset of 247 individuals originates from 89 archaeological sites (Figure 1; Figure S1A; Ta-

ble S1A) and spans approximately 6,000 years of time (Tables S1A, S1B, and S2C). High quality genetic data was successfully gener-

ated for 214 individuals and was used for population genetic analysis (Table S2A). Subsistence information inferred from proteomic

analysis of dental calculus has been recently published for a subset of these individuals (n = 32; Wilkin et al., 2020a), and stable

isotope analysis of bone collagen and enamel (n = 137) is also in progress (Wilkin et al., 2020b); together, these data allow direct com-

parison between the biological ancestry of specific archaeological cultures and their diets, particularly with respect to their dairy and

millet consumption. Below, we provide an overview of the geography and ecology of the archaeological sites in this study, as well as

their temporal and cultural context.

Geography and ecology of Mongolia
Mongolia is located in Inner Asia between Russia and China, and it encompasses most of the Eurasian Eastern Steppe (Figure 1;

Figure S1A). Mongolia has 21 aimags (provinces) and can be divided into ten geographic regions (Figure S1B) with distinct ecological

(Figure S1C) and cultural features (Taylor et al., 2019). For example, far north Mongolia borders Siberia and includes both high moun-

tain and mountain-taiga ecological zones, and it is the only aimag where reindeer pastoralism is practiced. North Mongolia is domi-

nated by forest-steppe, but also contains mountain-taiga and steppe zones; cattle and yak pastoralism is particularly productive

here, and Bulgan province is renowned for its horse pastoralism. The Altai region represents an extension of the Altai mountains

from Russia into Mongolia and consists of a patchwork of environments including high mountains, valleys, and lakes, and ranging

from forest steppe to desert steppe as the region stretches from north to south; pastoral economy in the Altai is mixed and differs
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by local environmental conditions. South Mongolia is dominated by the Gobi Desert, and it borders central and southeast Mongolia,

which are largely characterized by desert-steppe; camel pastoralism is found throughout these regions. East Mongolia is a large

expansive steppe zone that stretches to northeastern China. Today, mining is important in easternMongolia, as well as cattle, sheep,

goat, and horse pastoralism.

Overview of Mongolian archaeology
Mongolian prehistory extends backmore than 40,000 years, with documented sites ranging from the Upper Paleolithic to the present

day. During nearly all of this time, lifeways in Mongolia have been nomadic, either supported by hunting, fishing and gathering or by

pastoralism. The short-term and ephemeral nature of nomadic camp sitesmakes themdifficult to identify on the landscape, andwind

deflation has further reduced the visibility and preservation of many domestic sites. Only during the Bronze Age, with the sudden

appearance of stone mounds and other burial features, do sites become more conspicuous and the archaeology better attested.

As such, knowledge of Mongolian prehistory is strongly biased toward the past five millennia. The archaeology of Mongolia can

be divided into 7 main periods: (1) pre-Bronze Age, prior to 3500 BCE; (2) Early Bronze Age, 3500-1900 BCE; (3) Middle/Late Bronze

Age, 1900-900 BCE; (4) Early Iron Age, 900-300 BCE; (5) Xiongnu, 200 BCE to 100 CE; (6) Early Medieval, 100-850 CE, and (7) Late

Medieval, 850-1650 CE. A brief summary of each period, as well as details for the sites included in this study, are provided below, in

Figure S1, and in Table S1.

Pre-Bronze Age (prior to 3500 BCE)

The early archaeological record of Mongolia is poorly understood, particularly with respect to human remains and burials. While oc-

casional finds provide direct evidence of anatomicallymodern humans inMongolia as far back as the Early Upper Paleolithic (Devièse

et al., 2019; Zwyns et al., 2019), only a small handful of intentionally buried skeletons have been recovered prior to the end of the 4th

millennium BCE. Although early and middle Holocene-era (10,000-3500 BCE) features and burials have been referred to as ‘‘Meso-

lithic,’’ ‘‘Neolithic,’’ or ‘‘Eneolithic’’ (Hanks, 2010), there is no direct evidence for domestic animals or a food-producing economy at

any of these localities, although pottery was in wide use by the mid-Holocene (Janz et al., 2017). Pre-Bronze Age burials in eastern

Mongolia are characterized by an absence of surficial construction features, while in northern Mongolia pre-Bronze burials typically

consist of small stone cairns. The burial goods of this period include artifacts made from stone, mother-of-pearl, and animal bones,

such as deer and marmot (Eregzen, 2016). Two individuals in this study date to this pre-Bronze Age period in Mongolia. The first,

dating to ca. 4600 BCE, is from Kherlengiin Ereg (SOU), located on the south bank of the Kherlen River near Choibalsan city at

the extreme eastern end of Mongolia in Dornod province (Dorj, 1969). It was found in a disturbed context, and the original burial po-

sition could not be reconstructed. However, other burials from this period and region are typically crouched (https://edmond.mpdl.

mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). The second, dating to ca. 3700 BCE, is from Erdenemandal (ERM) in the Arkhangai

province of north Mongolia (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). It lacked stone construction fea-

tures and consisted of a simple crouched pit burial beneath a shallow earthen mound. The burial was recovered at a depth of

2.3 m and the grave mound appears to be part of a larger cemetery.

In addition to these two pre-Bronze burials from Mongolia, we also analyzed four pre-Bronze individuals from the site of Fofonovo

(FNO) near Lake Baikal in Buryatia, Russia (Lbova et al., 2008). All were buried in simple pit burials partially flexed (only their legs bent)

as individuals, or sometimes several persons together. People at Fofonovo, like many others around Lake Baikal, were interred with

many burial goods, including an array of bone and stone beads, neck pieces, chipped stone blades and points, bone harpoons, and

pottery. Among these items were fragments or worked ornaments from wild boar, sable, and hawk.

Although pre-Bronze Age material from Mongolia is sparse, recent excavations in neighboring regions provide important context.

In southern Russia, excavations by the Baikal Archaeological Project (BAP) at three sites (Lokomotiv, Shamanka II, and Ust’-Ida I)

have enabled characterization of the Lake Baikal Neolithic Kitoi (5200-4200 BCE) and Isakovo (4000-3000 BCE) mortuary traditions,

including genome sequencing of 14 of these hunter-gatherers (Damgaard et al., 2018a) (Baikal_EN; also characterized in later studies

as East Siberian Hunter Gatherers, ESHG) (Narasimhan et al., 2019). The genomes of six hunter-gatherers dating to ca. 5700 BCE are

also available from the site of Devil’s Gate (Sikora et al., 2019; Siska et al., 2017), a Neolithic cave site on the border between Russia

and Korea. These individuals, separated by 2500 km, share a similar ancestry to each other and to modern Tungusic speakers in the

lower Amur Basin, who we refer to as Ancient Northeast Asians (ANA).

Early Bronze Age (ca. 3500-1900 BCE)

Twomajor cultural phenomena associated with monumental mortuary architecture have been described inMongolia during the Early

Bronze Age (EBA): Afanasievo and Chemurchek. Both exhibit features linking them to ruminant pastoralism and to cultures

further west.

Afanasievo (3150-2750 BCE). Beginning ca. 3150 BCE and persisting until ca. 2750 BCE (Taylor et al., 2019), although perhaps as

late as 2600 BCE, stone burials belonging to the Afanasievo culture type have been recovered from the Khangai Mountains in central

Mongolia and the Altai Mountains of western Mongolia. These burials contain the earliest direct evidence for domestic livestock

(sheep/goat and cattle) inMongolia. Afanasievo burials inMongolia typically consist of circular flat stones bounded by upright stones,

which overlay an internal burial pit containing an extended individual with flexed legs. Such burials are similar to Afanasievo kurgans

in the Russian Altai (Vadetskaya et al., 2014), which contain burials of supine individuals with flexed legs and heads typically facing

east. The burial mounds at Khuurai Gobi 1 and Ulaankhus (Bayan-Ulgii province, westernMongolia; not sampled in this study) exhibit

typical Afanasievo architectural features (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo).
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In addition to domestic animal remains, Afanasievo burial mounds contain egg-shaped pottery vessels, and sometimes include

metal artifacts (from copper, gold, and silver) and apparent deconstructed cart objects (Kovalev and Erdenebaatar, 2009). Recent

analysis of proteins in human dental calculus from Afanasievo burials directly demonstrates the utilization of ruminant dairy products

and the presence of domestic animals in the Afanasievo economy (Wilkin et al., 2020a).

We analyzed individuals from one Afanasievo site in this study: Shatar Chuluu (SHT). Located in Byankhongor province on the

south slope of the Khangai mountains, Shatatar Chuulu is the easternmost known Afanasievo cemetery in Eurasia. Three of the site’s

burial mounds have been excavated, and each consisted of a flat platform of round stones bounded by large boulders. The burials

were arranged in pits beneath themounds, and the bodies were laid out in a supine position with flexed knees and heads facing to the

west. Despite the fact that few burial goods were found, the overall architectural design of the mounds combined with isolated frag-

ments of typical Afanasievo vessels make it possible to attribute these mounds to the Afanasievo archaeological culture.

Chemurchek (2750-1900 BCE). The Chemurchek archaeological culture (also called Hemtseg, Qiemu’erqieke, Shamirshak),

spans the period between 2750 BCE-1900 BCE (Taylor et al., 2019). These features are found in western Mongolia and adjoining

regions of bordering countries, including the Dzungarian Basin of Xinjiang and eastern Kazakhstan (Honeychurch, 2017; Kovalev

and Erdenebaatar, 2009). Chemurchek mortuary architecture is characterized by collective burials in large stone cists surrounded

by stone and earthen cairns overlapping one another or by large rectangular stone fences up to 50 m in length. The Chemurcheck

burial at Kheviin Am (Khovd province, western Mongolia; not sampled in this study) exhibits typical Chemurchek features (https://

edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). Similar to Afanasievo burials, individuals found in Chemurchek tombs

are laid out in a supine position with flexed legs. Adjacent to many Chemurchek burial features along the eastern side are anthro-

pomorphic standing stones, sometimes depicted holding a shepherd’s crook (https://edmond.mpdl.mpg.de/imeji/collection/

2ZJSw35ZTTa18jEo). Inside the burials, artifacts such as stone bowls, bone tools, ceramics, and sometimes metal jewelry,

have been recovered. Occasionally, non-funerary ritual structures, such as fences containing earthen pits with charcoal and an-

imal remains or large stone fences depicting petroglyphs, are also attributed to this culture (Kovalev, 2014). Recent analysis of

proteins in human dental calculus from these features confirmed the utilization of ruminant dairy products and the presence of

domestic animals in the Chemurchek economy (Wilkin et al., 2020a), although available radiocarbon chronology appears to pre-

clude a meaningful exploitation of domestic horses (Taylor et al., 2019). We analyzed individuals from three Chemurchek sites in

this study: Yagshiin Khuduu (IAG/YAG), Khundii Gobi (KUM), and Khuurai Gobi 2 (KUR). Yagshiin Khuduu is located in the southern

Mongolian Altai, while Khundii Gobi and Khuurai Gobi 2 are located in the northern Mongolian Altai. Whereas Yagshiin Khuduu

represents a typical Chemurchek burial within a stone cist, the two northern Chemurchek mortuary sites consist of burials within

rectangular mounds bounded by upright stones and may belong to a ‘‘mixed type’’ incorporating local traditions from eastern

Kazakhstan and the Russian Altai.

Unclassified. In addition to these two main types, we also analyzed one individual from a site with an uncertain burial type:

Denj (GUR).

Comparative genomic data are available for several contemporaneous sites in neighboring regions, including: (1) Botai, a horse

hunter-herder site dating to ca. 3500 BCE in northern Kazakhstan (Damgaard et al., 2018a); (2) multiple sites of Afanasievo ruminant

pastoralists dating to ca. 3000-2500 BCE in the Kazakh and Russian Altai-Sayan region (Allentoft et al., 2015; Narasimhan et al.,

2019); (3) Dali, a site in southeastern Kazakhstan whose lowest layers contain a woman dating to ca. 2650 BCE but lacking burial

context (Narasimhan et al., 2019); (4) Gonur Tepe, a representative Bactria-Margiana Archaeological Complex (BMAC) site in

Turkmenistan dating to 2300-1600 BCE (Narasimhan et al., 2019); and (5) three Lake Baikal sites, Ust’-Ida I, Shamanka II and Kurma

Xi, associated with the Glazkovo mortuary tradition and dating to ca. 2200-1800 BCE (Damgaard et al., 2018a; 2018b).

Middle/Late Bronze Age (ca. 1900-900 BCE)

The Middle/Late Bronze Age (MLBA) in Mongolia is characterized by the sudden and widespread appearance of monumental mor-

tuary architecture across Mongolia. Primarily taking the form of stone mounds, but also including stone stelae and other features,

these Middle and Late Bronze Age structures remain among the most conspicuous features on the landscape even today. Middle

and Late Bronze Age burial mound typology is complex and there is scholarly debate and disagreement on how to precisely define

and delineate different mortuary types. In this study, we focused on several main burial forms: Mönkhkhairkhan, Baitag, Deer Stone-

Khirigsuur Complex (DSKC), Ulaanzuukh, and Tevsh (Shape). We provide a general overview of these burial types, but acknowledge

that not all scholars will agree with all details.

Mönkhkhairkhan (1850-1350 BCE). Dating to after the Chemurchek period, ca. 1850-1350 cal. BCE (Taylor et al., 2019), Mön-

khkhairkhan burials are found across northern and western areas of Mongolia and in Tuva, spanning a geographic area approxi-

mately 1000 km from west to east and 500 km from north to south. Mönkhkhairkhan burials are characterized by a crouched/flexed

burial position, and graves are completely filled in with stones after burial, as seen at the site Ulaan Goviin Uzuur 2 (https://edmond.

mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). Overlaying the burials are external stone structures consisting of flat round or

rectangular platforms. Such barrows are typically 3-5 m in diameter, but occasionally reach up to 40 m in diameter. Ritual structures

may include stone circles and stelae. No pottery or animal bones have been reported from within Mönkhkhairkhan burials, and little

is known of its economy. Burial goods include tin bronze knives and awls, tin bronze two-trumpet shaped rings, bone spoons,

bone arrowheads, and ornaments made of bone, shell, and stone (Clark, 2015; Eregzen, 2016). Knives and rings have analogs

both in western Siberia and among the Oijia, Lower Xiajiadian, Siba, and Erlitou cultures of China. Similarities between the grave

goods and funerary practices of this culture with those at sites to the west of Lake Baikal (Cis-Baikal) have been previously noted
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(Erdenebaatar, 2016; Kovalev, 2017; Kovalev and Erdenebaatar, 2009). We analyzed individuals from two Mönkhkhairkhan sites in

this study: Khukh Khoshuunii Boom (KHU) and Ulaan Goviin Uzuur 2 (UAA).

Baitag (1050-900 BCE). Restricted to southwestern Mongolia, Baitag burials consist of non-mounded, small stone rings con-

structed from a single layer of small flat stone slabs, as seen for example at the site of Uyench (Khovd province, western Mongolia;

not analyzed in this study, https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo) (Kovalev and Erdenebaatar, 2009). A

central burial pit oriented west-east contains a single individual oriented in a supine position with knees up. Unlike DSKC burials but

similar to preceding Altai groups, such as the Mönkhkhairkhan and Chemurchek, the Baitag burials contain various small grave

goods, including bronze jewelry. These artifacts share similarities with those included in Karasuk culture graves from the Minusinsk

Basin, as well as in burials in Xinjiang and Gansu (Sibu culture) in northwestern China (Kovalev and Erdenebaatar, 2009). In this study,

we analyzed one Baitag individual (ULI004) from the site of Uliastai River (ULI), middle terrace.

Deer Stone-Khirigsuur Complex (DSKC) (1350-900 BCE). This culture comprises three different monumental features - khirigsuurs,

deer stones, and Sagsai-style graves - and is tightly associated with the emergence of horsemanship in theMongolian Steppe during

the late secondmillenniumBCE. In general, DSKC sites are concentrated in thewestern, northern, and central parts ofMongolia, with

only a small number of sites further east (Honeychurch, 2015). Khirigsuurs in central Mongolia consist of large stone mounds, sur-

rounded by an outer fence that is either circular or four-cornered in shape, as seen for example at the site of Egiin Gol (Bulgan prov-

ince, northernMongolia; not analyzed in this study, https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo) . In theMon-

golian Altai, some khirigsuurs display stone lines between the central cairn and outer fence, producing a shape that resembles a

spoked wheel. Although their exclusive function as burials is a subject of contention (Wright, 2012), khirigsuurs often contain a supine

human body (Littleton et al., 2012) and do not typically yield other kinds of artifacts. Deer stones are anthropomorphic standing

stones found either independently or co-occurring with khirigsuurs. Deriving their name from the commonmotif of stylized deer, carv-

ings on these stelae also depict belts, weapons, and tools - and occasionally even a human face. Many of the weapons depicted on

deer stones are of recognizably Karasuk style, bearing a strong resemblance to bronzes found in tombs in the Minusinsk Basin more

than 500 km to the northwest (Honeychurch, 2015), and the presence of deer stones in nearby Tuva further support the possibility of

long-distance interaction between the Karasuk and the DSKC (Honeychurch, 2015). At many Mongolian khirigsuurs and deer stones

(particularly in central Mongolia), smaller stone mounds containing the head, jaw, neck, and hooves of individual horses are found

surrounding the eastern perimeter of the monument (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). These

horse mounds can range in number from a handful into the hundreds or thousands. Osteological study of DSKC horses reveal their

use in transport and likely riding, aswell as their sophisticatedmanagement as herd animals (Taylor et al., 2015; 2018). Another kind of

satellite feature found at DSKC sites, open stone circles, often yield partial remains of sheep, goat, or cattle. Analogies in the compo-

sition and architecture of deer stone and khirigsuur sites with horse sacrifices has led some to interpret deer stones as cenotaphs for

people not buried in funerary structures (Kovalev et al., 2014; 2016).

Sagsai-style graves (Taylor et al., 2019; Törbat, 2016) are often associated with the DSKC culture; however, this grave type is not

associated with horse sacrifice. Sagsai burials consist of round or rectangular stone platforms without an outer fence, but with large

boulders demarcating the edge of the cairn. Beneath the center of the platform, individual burials are positioned within stone cists or

narrow pits covered by stone slabs. Individuals are typically arranged in a supine positionwithout burial goods. Alternative names that

have been used to describe this burial style includeMunguntaiga, Mongun-Taiga, and even khirigsuur. A similar burial style known as

a ‘‘slope burial’’ due to its common occurrence on the edge of hillslopes is often considered a variant of the Sagsai type. Slope burials

consist of a similar stone cairn with four-corner fences and upright corner posts. Sagai-style mounds and slope burials are concen-

trated in western and northern Mongolia, and representative examples have been excavated in Khövsgöl province (https://edmond.

mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo).

Radiocarbon modeling dates central Mongolian khirigsuurs to between ca. 1350-900 cal BCE, deer stones to ca. 1150-750 cal.

BCE, and places the emergence of DSKC horse ritual at ca. 1200 cal BCE (Taylor et al., 2019, 2017). Sagsai-style graves fall within

this range (1350-1050 BCE), further strengthening the claim for their affiliation to the DSKC culture sphere (Taylor et al., 2019). It

should be noted, however, that these dating estimates could be influenced by taphonomic or dietary processes. In particular, young

dates for deer stones may be influenced by radiocarbon contamination (Zazzo et al., 2019), and early dates may be influenced by

aquatic reservoir effects. Dairy proteins preserved in dental calculus demonstrate a pastoral, ruminant dairy-based economy at khir-

igsuur and Sagsai sites (Jeong et al., 2018;Wilkin et al., 2020a), and one Sagsai site to date has also yielded evidence of horsemilking

(Wilkin et al., 2020a). Perhaps buoyed by the innovation or adoption of mounted horseback riding and accompanying changes to the

pastoral economy, deer stones and various stone cairns with external fences proliferated over an extremely wide geographic range,

reaching modern-day Tuva and southern Russia, Kazakhstan, Kyrgyzstan, and northwest China. We analyzed individuals from four

DSKC sites in this study: Arbulag Soum (ARS), Berkh Mountain (BER), Uliastai River Lower Terrace (ULI), and Uushigiin Uver (UUS).

Ulaanzuukh - Tevsh (Shape) (1450-1150 BCE). Beginning in the mid-second millennium BCE, a number of different burial traditions

emerged in the southern and southeastern regions of Mongolia. United by a common prone or face-down burial position, these

groups were once considered part of the Slab Grave culture, but are now either classified separately as discrete burial types Ulaan-

zuukh and Tevsh/Shape (Kovalev and Erdenebaatar, 2009) or are sometimes considered a single cultural unit (Ulaanzuukh-Tevsh/

Shape) (Honeychurch, 2015). Ulaanzuukh burials (named after the type site), are found within southeast Mongolia and consist of

non-mounded square or rectangular platforms surrounded by a wall of upright slabs or layered stone placed over a central burial

pit (Dashtseveg et al., 2014). The site of Adgiin Gol (Sukhbaatar province, eastern Mongolia; not analyzed in this study) provides a
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representative example of this burial type (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). Tevsh burials, also

called Shape burials, are found throughout southern Mongolia and central Inner Mongolia and are similar to Ulaanzuukh burials

except that they are hourglass-shaped (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). The walls of Tevsh/

Shape burials are typically made of layered stone (masonry), and sometimes with a single edge ringedwith upright slabs. Other burial

styles in the region, which may represent variant types, include D-shaped and stirrup-shaped burial structures.

Radiocarbonmodeling suggests that Ulaanzuukh features date to ca. 1450-1150 BCE, while shape burials could both predate and

postdate this mark – although very few have been reliably dated (Taylor et al., 2019). Burials of this culture often contain apparently

domestic livestock remains, including sheep, goat, horse, and cattle (Nelson et al., 2009), although the earliest horses from these

features date to only ca. 1250 BCE (Taylor et al., 2017). Recent analysis of proteins in human dental calculus has confirmed the uti-

lization of ruminant dairy products and the presence of domestic animals in the Ulaanzuukh economy (Wilkin et al., 2020a). A few

bronze knives of Karasuk origin have been found in Ulaanzuukh-Tevsh graves, indicating possible long-distance connections to

the Minusinsk basin (Honeychurch, 2015). We analyzed individuals from two Ulaanzuukh sites in this study: Bulgiin Ekh (BUL) and

Ulaanzuukh (ULN). We did not analyze individuals from Tevsh/Shape burials in this study.

Unclassified. In addition to these main types, we also analyzed individuals from six Late Bronze Age sites containing burials with

uncertain or unclassified cultural affiliations: Biluutiin Am (BIL), Khoit Tsenkher (KHI/KHO), Shar Gobi 3 (SBG), Tsaidam Bag (TSB/

TSI), Uliastai River lower terrace (ULI), and Uliastai Zastav II (ULZ). For more information on these burials, see Table S1C.

Comparative genomic data are available for several contemporaneous archaeological sites in neighboring regions, including: (1)

four Okunevo sites (Verkhni Askiz, Okunev Ulus, Uybat, Syda 5), dating to 2200-2600 BCE (Allentoft et al., 2015; Damgaard et al.,

2018a); (2) five Sintashta sites (Bulanovo, Tanabergen II, Stepnoe VII, and Bol’shekaraganskii, Kamennyi Ambar 5 cemetery), dating

to ca. 2200-1700 BCE (Allentoft et al., 2015; Narasimhan et al., 2019); (3) four Central Steppe sites near Krasnoyarsk in western Si-

beria (Krasnoyarsk Krai, Potroshilovo II, Ust-Bir IV, Chumyash-Perekat-1) dating to 1700-1400 BCE (Narasimhan et al., 2019); (4)

three Karasuk sites (Arban I, Sabinka II, and Bystrovka), dating to ca. 1400-1300 BCE (Allentoft et al., 2015).

Early Iron Age (ca. 900-300 BCE)

The Early Iron Age cultures of Inner Asia arose during a time of new technological advancements, including the development of com-

posite bows and the beginnings of ironmetallurgy used for items like arrows and horse-riding equipment (Honeychurch, 2015). These

cultures include (1) the widespread Slab Grave culture, prevalent in eastern, southeastern, and central Mongolia as well as East Bai-

kal and parts of northern China, and (2) the Sagly/Uyuk and Pazyryk cultures in the Sayan-Altai and portions of northwestern

Mongolia. These latter cultures were part of a broader ‘‘Scythian’’ cultural phenomenon that spread into eastern Kazakhstan and

across the Eurasian steppes, and which was related to Saka groups of northern Iran and the Tian Shan mountains. The Saka

were an Iranian group broadly associated with the Scythians. Their later (after 200 BCE) military activities in Sogdia, Bactria, and

the Tian Shan were recorded by Persian, Greek, and Chinese sources (Beckwith, 2009). Alongside the technological advancements

of the Early Iron Age came increased long-distance interactions and the intensification of grain subsistence outside of the central

Mongolian Steppe, but not yet by groups like the Slab Grave culture within Mongolia (Ventresca Miller and Makarewicz, 2019).

Slab Grave (1000-300 BCE). Beginning around 1000 BCE, a new burial style known as Slab Grave began appearing in eastern

Mongolia. Slab graves are so called because of the large stone slabs used to mark the surface of the burial and to contain the rect-

angular burial space (hence in Mongolian they are called ‘‘square burials’’) wherein single individuals are interred (Tsybiktarov, 1998).

Although occasionally found singly, Slab Grave burials are more typically grouped into small cemeteries (Honeychurch, 2015). Stone

slabs are set upright in the ground, and are thus prominent grave markers (https://edmond.mpdl.mpg.de/imeji/collection/

2ZJSw35ZTTa18jEo). The burial pits are quite shallow, and human remains are rarely found complete or in good preservation.

Over time, the Slab Grave culture expands northward into eastern Baikal and westward into central Mongolia, where it intrudes

into former DSKC territory. Some slab graves tear apart the stone structures of khirigsuurs to construct the graves, and some

even reuse deer stones for standing corner stones or laid-down slabs within the burial pit (Honeychurch, 2015). Unlike earlier Bronze

Age burials, grave goods become more common in Slab Grave burials, consisting primarily of bronze beads, buttons, and small or-

naments, as well as horse gear, arrowheads, axes, and knives. Stone, ceramic, and bone artifacts are also found in slab graves, and a

few burials contained tripod-shaped pottery similar to those from Inner Mongolia andManchuria or other non-local grave goods such

as turquoise and carnelian beads from Central or South Asia (Honeychurch, 2015). Portions of livestock are often set at the edge or

just outside of the rectangular burial space. In addition to faunal remains demonstrating the presence of domestic animals in the Slab

Grave economy, recent analysis of proteins in human dental calculus has confirmed the utilization of ruminant and horse dairy prod-

ucts (Wilkin et al., 2020a). Although the Slab Grave phenomenon emerges out of the former territory of the Ulaanzuuk culture, archae-

ological evidence for the relationship between these two groups has been ambiguous. Nevertheless, the similarity of bronze artifacts,

especially relating to horse gear and weaponry, found at Slab Grave sites to similar artifacts found in the Altai, Tuva, and Minusinsk

regions may indicate a continuation of previously established long-distance relationships between these regions (Honeychurch,

2015). We analyzed individuals from five Slab Grave sites in this study: Bor Bulag (BOR), Morin Tolgoi (MIT), Darsagt (DAR), Shunkhlai

Mountain (SHU), and Pesterevo 82 (PTO).

Sagly/Uyuk (500-200 BCE). This Early Iron Age culture centered in the Upper Yenisei River area, in modern-day Tuva, with some

extensions into northwesternMongolia (Murphy, 2003; Savinov, 2002). This culture is also referred to as the Sagly-Bazhy culture, and

is best known inMongolia by the thoroughly excavated site of ChandmanMountain (Ulaangom cemetery) included in this study (Nov-

gorodova et al., 1982; Tseveendorj, 1980) (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). Gravesweremarked
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by a round pile of stones and are often found in cemeteries of one to two dozen graves. Beneath the stone mounds are large log

chambers containing several individuals (often assumed to be kin as they include men, women and children) all laid in partially flexed

positions on their sides. Portions of sheep are also often placed in the graves. The Sagly/Uyuk log chambers resemble similar log

architecture constructed by the contemporaneous Pazyryk culture in the Russian Altai and surrounding areas, and both the

Sagly/Uyuk and Pazryk have been associated with the broader Saka culture (Parzinger, 2006). Similar to Slab Graves, recent analysis

of proteins in human dental calculus has confirmed the utilization of ruminant and horse milk among those at Chandman Mountain

(Wilkin et al., 2020a). Isotopic studies have also shown that some Uyuk communities, including at Chandman Mountain, had a sig-

nificant amount of millet in their diet (Murphy et al., 2013; Wilkin et al., 2020b). This links them to agropastoralist cultures of the West-

ern Steppe, where the intensification of millet cultivation occurred during the second millennium BCE (Ventresca Miller and Makar-

ewicz, 2019). We analyzed individuals from one Sagly/Uyuk site in this study: Chandman Mountain (CHN).

Pazyryk (500-200 BCE). This culture is known mainly for its type site of Pazyryk, whose large tombs contain numerous exotic im-

ports, including silks from China and textiles from Achaemenid Persia (Rudenko, 1970). Pazryk burials are found mostly within the

northern Altai areas of Russia, far eastern Kazakhstan (Samashev, 2011) and northwestern Mongolia (Törbat et al., 2009). Similar

to Sagly/Uyuk and other ‘Saka’ style graves, Pazyryk burials are marked by round piles of stones. Beneath these stone piles, how-

ever, most Pazyryk graves have smaller wooden chambers with only one or two persons; their size and burial goods vary greatly,

though many of them are accompanied by whole horses laid beside the burial chamber (Kubarev and Shul’ga, 2007) (https://

edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). No new Pazyryk individuals were included in this study; however,

they are important to consider because the northern Altai practice of whole horse burials later appears in scattered central Mongolia

cemeteries of the subsequent Xiongnu period. Genome-wide data from Pazyryk individuals have been previously reported from site

of Berel in Altai region of Kazakhstan (Unterländer et al., 2017).

Comparative genomic data are available for several contemporaneous sites in neighboring regions, including: (1) the early Sarma-

tian site Pokrovka in southwestern Russia, dating to ca. 500-100 BCE (Unterländer et al., 2017), a Scythian individual from the Samara

region dating to ca. 300 BCE (Mathieson et al., 2015), and nine Sarmatian sites in southwestern Russia (Chebotarev V, Kamyshevah-

sky X, Nesvetay II, Nesvetay IV and Tengyz), northern Kazakhstan (Bestamak and NaurzumNecropolis), and the southern Ural region

(Cherniy Yar and Temyaysovo) (Damgaard et al., 2018b; Krzewi�nska et al., 2018); (2) the Pazyryk site of Berel in the Altai, dating to ca.

400-200 BCE (Unterländer et al., 2017); (3) the Saka sites of Borli, Karasjok-1, Karasjok-6, Nazar-2, Sjartas (Zjartas), and Taldy-2 in

Kazakhstan (Damgaard et al., 2018b), and the sites of Basquiat I, Keden, and Ornek in the Tian Shan (Damgaard et al., 2018b); and (4)

the Tagar site of Grishkin Log 1 in the Minusinsk Basin (Damgaard et al., 2018b). Data from three other potentially relevant sites (the

Aldy-Bel site Arzhan 2 in Tuva, dating to ca. 700-500 BCE, and the Zevakino-Chilikta sites Ismailovo and Zevakino in eastern

Kazakhstan, dating to ca. 900-600 BCE; (Unterländer et al., 2017) were excluded from analysis due to insufficient genetic coverage

for comparison.

Xiongnu (ca. 200 BCE to 100 CE)

During the late first millennium BCE, a radically new multi-regional political entity formed in Mongolia, known as the Xiongnu empire.

The Xiongnu empire is attested not only by historical records but also by ample archaeological remains throughout Inner Asia (Bros-

seder and Miller, 2011; Honeychurch, 2015). For roughly three centuries the Xiongnu ruled from their core realms in central and

eastern Mongolia, expanding into western Mongolia, northern China and eastern Baikal, as well as making inroads into more distant

regions in Central Asia. Most graves of the Xiongnu period were shaft pits set beneath thick rings of stones on the surface. These

burials represent the vast network of regional and local elites and not the ‘‘commoner’’ people of Xiongnu society, whose burials

are far less conspicuous, lying under small piles of stones or in unmarked pits. The graves of the uppermost ruling elites of the empire,

on the other hand, were constructed on a far grander scale than that of ring graves.

While ring grave structures are found throughout the entire Xiongnu era, prestige accoutrements (and to some degree burial rituals)

changed during the course of the empire. According to these changes, we can discern a general division between Early (200-50 BCE)

and Late (50 BCE - 100 CE) Xiongnu periods (Miller, 2014). Overall, Xiongnu graves aremarked by a dramatic increase in grave goods

and furnishings as compared to previous time periods and cultures in Mongolia. As the Xiongnu expanded their empire, they

conquered numerous neighboring groups to their east and west as well as subduing their Han Dynasty neighbors to the south (Di

Cosmo, 2002). They continually traded and warred with Han China, defying the Great Wall boundaries, and held significant sway

over the Silk Road kingdoms of Central Asia (Hulsewé, 1979). The findings of exotic items from China, Persia and the Mediterranean

attest to these far-flung interactions, with Egyptian-style faience beads in graves of local elites and Roman glass bowls in the tombs

of the rulers (Miller and Brosseder, 2017; Eregzen, 2011). The end of the Xiongnu period ca. 100 CE is marked by the widespread

decline of Xiongnu power and influence following defeats by the Xianbei in northeastern China and the Han Dynasty of China,

although isolated groups from the Xiongnu empire continued to exist in northern China until the 5th century CE.

Early Xiongnu (200-50 BCE). Prestige items during the Early Xiongnu period are dominated by large bronze belt pieces; however,

burial customswithin graves of the Early period varied to a great degree between regions. One example of this occurs at Salkhityn Am

cemetery, where rituals of ring graves show a high degree of variation, even including offerings of whole horses that are more typical

of Altai elites such as those in Pazyryk graves (Ölziibayar et al., 2019) (https://edmond.mpdl.mpg.de/imeji/collection/

2ZJSw35ZTTa18jEo). We analyzed individuals from three Early Xiongnu sites in this study: Astyn Gol (AST), Buural Uul (BAU/BRL/

BUU), and Salkhityn Am (SKT).
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Late Xiongnu (50 BCE - 100 CE). Prestige items in the Late Xiongnu period shift to more iron items, often covered with gold foil or

even inlaid with precious stones, and increasingly focused on long-distance exotic materials. At the same time, burial customs in ring

graves throughout the empire become more regularized. Most elites were buried in wooden coffins in shaft pits with livestock por-

tions and ceramic vessels set beside the coffin (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). During the Late

period, the high ruling Xiongnu elites adopted a radically new form of burial structure. These square tombs were marked on the sur-

face by rectangular stone structures with trapezoidal ‘ramp’ entryways, their burial pits were extremely deep, and wooden coffins

were decorated and nested within larger wooden chambers (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo).

We analyzed individuals from 26 Late Xiongnu sites in this study: Atsyn Am (ATS), Baruun Mukhdagiin Am (BAM), Baruun Khovdiin

Am (BRU), Burkhan Tolgoi (BTO), Chandman Mountain (CHN), Delgerkhaan Uul (DEL), Khanan Uul (DOL), Duulga Uul (DUU); Emeel

Tolgoi (EME), Khudgiin Am (HUD), Ikh Tokhoirol (IKT), Il’movaya Pad (IMA), Jargalantyn Am (also called Jargalantyn Khondii; JAA/

JAG), Tarvagatain Am (also called Khoit Tsenkher; KHO), Naimaa Tolgoi (NAI), Sant Uul (SAN), Solbi Uul (SOL), Songino Khairkhan

(SON), Takhityn Khotgor (TAK), Tavan Tolgoi (TAV), TevshMountain (TEV), Ulaanzuukh (ULN), Ovgont (UVG), Yuroo II (YUR), Tamiryn

Ulaan Khoshuu (also called Burkhan Tolgoi; BUR/TMI/TUH/TUK), and Uguumur Uul (UGU).

Comparative genomic data are available for a few contemporaneous sites in neighboring regions, including: (1) two early Xiongnu

individuals fromKhövsgöl (Hovsgol) province dating to 50-350 BCE (Damgaard et al., 2018b); (2) a late Xiongnu royal tomb (DA39.SG)

in Arkhangai dating to 80-160 CE (Damgaard et al., 2018b).

Early Medieval (ca. 100-850 CE)

After the fall of the Xiongnu, Xianbei groups from northeast China pushed into Mongolia, although historical and archaeological ev-

idence for the establishment of large and long-lasting Xianbei polities appears only in northern China, not in Mongolia (Miller, 2016).

One individual in this study (TUK001) at the site of Tamiryn Ulaan Khoshuu (Burkhan Tolgoi) dates to the era of Xianbei power in Inner

Asia; however, there is no cultural context that could affirm affiliation with the Xianbei or other groups of northeastern China. Instead,

recent excavations at this site have yielded artifacts, such as pottery from the Kwarezm oasis cultures near the Aral Sea and coins of

the Sassanian Persian empire, that indicate significant interactions with areas in Central Asia andmuch farther west. In themid-fourth

century, a large polity known as the Rouran purportedly took over all of Mongolia; however, there is little recorded history about the

Rouran (Kradin, 2005), and only one grave found so far can be dated to the Rouran era (Li et al., 2018; Nei Menggu zizhiqu wenwu

kaogu yanjiusuo and International Institute for the Study of Nomadic Civilizations, 2015). The archaeology of the second to sixth cen-

turies in Mongolia, i.e., the Xianbei and Rouran eras, constitute an extremely new field of research (Odbaatar and Egiimaa, 2018).

The most prominent political entities in the Early Medieval era are the Türk and Uyghur empires, the latter being an immediate

dynastic takeover from the former. Numerous burials of the Türk era have been unearthed in Mongolia. By contrast, far fewer Uyghur

burials have been identified and excavated to date.

Türk (550-750 CE).Göktürkic tribes of the Altai Mountains established a political structure across Eurasia beginning in 552 CE, with

an empire that ruled over Mongolia from 581-742 CE (Golden, 1992). A brief period of disunion occurred between 659-682 CE, during

which the Chinese Tang dynasty laid claim over Mongolia. One individual from this study (TUM001) was a sacrificial person within the

ramp of a Chinese-style tomb in central Mongolia dating (via tomb inscription) to this exact time period. The other Türkic era individ-

uals in this study were excavated from conventional Türkic style graves. Features of the Türk period include numerous stone statues

and stone offering boxes across the steppe landscape, while burials are often arranged as small groups of graves or single graves

inserted into burial grounds of earlier Bronze to Iron ages. Most elites were interred within wooden coffins as single individuals buried

beneath a stone mound, and many were buried with whole horses equipped with riding gear (https://edmond.mpdl.mpg.de/imeji/

collection/2ZJSw35ZTTa18jEo). Other burials were in small wooden coffins without whole horses beside them. We analyzed individ-

uals from 5 Türk sites in this study: Nomgonii Khundii (NOM), Shoroon Bumbagar (Türkic mausoleum; TUM), Zaan-Khoshuu (ZAA),

Uliastai River Lower Terrace (ULI), and Umuumur uul (UGU).

Uyghur (750-850 CE). In the mid-eighth century, Uyghur tribes from the Upper Yenesei region overthrew the Türk rulers and imme-

diately established a Mongolia-based empire, taking over the Orkhon valley as their capital and establishing a dynasty from 744-840

CE (Mackerras, 1972). Most Uyghur period burials excavated to date, including those from theOlon Dov burial ground (OLN) included

in this study, lie in the vicinity of the Kharbalgas capital in the Orkhon Valley. Most of the burials excavated were discovered beneath

large earthen enclosures that contained ritual structures for venerating the uppermost elites. These conspicuous ritual enclosures

occur as single monuments or in small groups, and they are found in several locations throughout the foothills of the nearby the Uy-

ghur capital. Thesemonumental tombs with ramp entries and vaulted brick chambers were likely reserved for the ruling nobility of the

Uyghur empire (Odbaatar, 2016) (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). One individual in this study

(OLN006) was found in a monumental tomb. A second, more modest category of Uyghur burials consists of stone structures placed

on the surface, either square or round in shape, that contain multiple individuals (Erdenebat 2016) (https://edmond.mpdl.mpg.de/

imeji/collection/2ZJSw35ZTTa18jEo). Dozens of these burials have been documented at Olondov (Erdenebat et al., 2012), and

most of the Uyghur individuals in this study are from such graves. One such grave at Olon Dov, grave 19, contained the remains

of multiple individuals, six of whom are included in this study. Other scattered examples of single Uyghur graves have been found

in Mongolia, and we analyzed one of these (ZAA001) from the site of Zaan-Khoshuu. Although a few large ‘royal’ complexes have

been found elsewhere in central Mongolia, no significant cemeteries outside the capital region have yet been found. We analyzed

individuals from two Uyghur sites in this study: Olondov (OLN) and Zaan-Khoshuu (ZAA).
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Comparative genomic data are available for contemporaneous sites in neighboring regions, including: (1) Alan sites in North Os-

setia-Alania and Alan 51 from the Caucasus (Damgaard et al., 2018b); (2) the Rouran site of Khermen Tal site from Arkhanggai,

Mongolia (Li et al., 2018).

Late Medieval (ca. 850-1650 CE)

This period in Mongolia is dominatedmostly by the power struggles of two empires established by the Khitans (907-1125 CE) and the

Mongols (1206-1368 CE). Burials from the Khitan era are virtually unknown in Mongolia, whereas numerous graves from the Mongol

era have been documented and unearthed. So-called cave burials are known from both periods (Bemmann and Nomguunsüren,

2012), but their human remains were not included in this study.

Khitan (ca. 900-1100 CE). After the collapse of the Uyghur empire inMongolia in 840 CE, the Khitans of northeast China established

the powerful Liao Dynasty in 916 CE. Although based in Manchuria, the Khitans conquered and controlled the steppe of present-day

Mongolia through a system of garrisons and long walls, deporting people from other conquered regions, such as northern Korea, to

Mongolia (Kradin and Ivliev, 2008). The dissolution of the Khitan empire in 1125 CE led to a power vacuum inMongolia until the rise of

Chinggis Khan in the early 13th century CE. To date, very few Khitan era graves have been found in Mongolia. The site of Ulaan

Kherem II (ULA) has yielded one Khitan-era grave (ULA001), and two Khitan-era unmarked graves of a man and woman were also

discovered during the excavation of a Xiongnu settlement at Zaan Khoshuu (ZAA) beneath an older collapsed building (Nei Menggu

zizhiqu wenwu kaogu yanjiusuo and International Institute for the Study of Nomadic Civilizations, 2015; Ochir et al., 2016). The man,

found in a pit within the pit-house, was buried in a simple pit with a quiver and arrows. The woman, found nearby a pit-house, was

buried in full dress and placed in a supine position with her head to the northwest inside a wooden coffin, along with pottery of the

Khitan era (https://edmond.mpdl.mpg.de/imeji/collection/2ZJSw35ZTTa18jEo). These burials are significantly different in form and

structure from other Khitan burials in northern China, where the core of the empire was located. At present, no monumental tombs of

high Khitan elites have been found in Mongolia.

Mongol (ca. 1200-1400 CE). The home base of the Mongol tribe was in the forest-steppe zone at the Onon and Kerülen (Kherlen)

rivers in northeastern Mongolia. From this core region they successfully conquered the Eurasian steppes andmost of their sedentary

neighbors in the adjacent regions. Historical records indicate that they transferred a large number of defeated people, war captives

and slaves all over their growing empire; they also fostered trade, the exchange of knowledge, techniques, and technicians (Allsen,

2015). Mongol burials are typically situated in small groups on flat southern slopes or placed within Bronze and Iron Age cemeteries.

They are marked above ground with stones in an irregular, flat, oval or rounded, one-layered setting (https://edmond.mpdl.mpg.de/

imeji/collection/2ZJSw35ZTTa18jEo). The pit is normally between 50-150 cm deep, rarely deeper, and very seldom constructed as a

niche. Typical Mongol burials contain one person placed in a supine position and sometimes in a wooden coffin, with the head to the

north. A very characteristic feature of Mongol burials is the inclusion of a tibia from small livestock, mostly sheep, placed near the

head and sometimes in a vessel. There are two ideal burial types concerning grave goods: one equipped with bow, arrow, quiver,

horse equipment, and belt with attachments, and a second with scissors, a comb, a mirror, beads and a bogtag – a long hat

made out of birch bark, covered with silk and decorated with golden ornament. Graves of these standard types are spread all

over Mongolia, and at present no regional differences have been reported and no monumental burials are known (Erdenebat,

2009; Lkhagvasüren, 2007). The Mongol burials included in this study are of these types, which consist of the burials of local steppe

warriors and elites of the Mongol empire. Individuals from the cosmopolitan capital of Karakorum were not sampled in this study.

Historical recordsmention a large amount of foreign people whomigrated, whether for opportunity or by force, into the core steppe

regions of theMongol empire (Allsen, 2015). Given the intriguing results of extreme genetic diversity among local elite constituents for

the Xiongnu era, one might expect a similar or even greater diversity during the Mongol era. However, within the core steppe realms,

lower local levels of theMongol empire appear not to have been as open. The supposedmass of incoming foreigners must be sought

in other burial contexts, not those of Mongol tradition.

Unclassified. In addition to these main types, we also analyzed individuals from three Late Medieval sites containing burials with

uncertain or unclassified cultural affiliations: Shunkhlai Mountain (SHU), Tsaidam Bag (TSB/TSI), Uushigiin Uver (UUS).

Because no comparative genomic data are available for contemporaneous sites, we compared our Late Medieval data to modern

Mongolic speaking populations (Buryat, Khamnegan, Kalmyk, Mongol, Daur, Tu, Mongola) (Jeong et al., 2019; Lazaridis et al., 2014;

Patterson et al., 2012).

METHOD DETAILS

Radiocarbon dating of sample materials
A total of 30 new radiocarbon dates were obtained by accelerator mass spectrometry (AMS) of bone and tooth material at the Curt-

Engelhorn-Zentrum Archäometrie (CEZA) in Mannheim, Germany (n = 28) and the University of Cologne Centre for Accelerator Mass

Spectrometry (CologneAMS) (n = 2). Selection for radiocarbon dating was made for all burials with ambiguous or unusual burial

context and for all individuals appearing as genetic outliers for their assigned period. Uncalibrated direct carbon dates were success-

fully obtained for all bone and tooth samples (Table S4). An additional 74 previously published radiocarbon dates for individuals in this

study were also compiled and analyzed, making the total number of directly dated individuals in this study to 98 (104 total dates).

Dates were calibrated using OxCal v.4.3.2 (Ramsey, 2017) with the r:5 IntCal13 atmospheric curve (Reimer et al., 2013).
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Of the 104 total radiocarbon dates analyzed in this study, 25 conflicted with archaeological period designations reported in exca-

vation field notes or previous publications (Table S4). Four burials of uncertain cultural context were successfully assigned to theMid-

dle/Late Bronze Age (BIL001, MIT001) and Late Medieval periods (UUS002, ZAA003). One burial originally assigned to the Late Me-

dieval period was reassigned to the pre-Bronze Age following radiocarbon dating (ERM001), and one burial originally assigned to the

Middle/Late Bronze Age was similarly reassigned to the Early Bronze Age (IAG001). This suggests that early burials may be under-

reported in the literature because they are mistaken for later graves. Likewise three burials originally classified as Late Medieval were

found to be hundreds or thousands of years older, dating to the Early Medieval (TSB001) and Middle/Late Bronze Age (ULZ001,

TSI001) periods. Although some highly differentiated burial forms can be characteristic of specific locations and time periods, simple

burial mounds also exist for all periods and - lacking distinctive features - they can be difficult if not impossible to date without radio-

metric assistance.

In addition to early burials being mistaken for later ones, late burials were also misassigned to earlier periods. For example, three

burials originally assigned to theMiddle/Late Bronze Agewere determined to date to the Early Iron Age (DAR001), Xiongnu (ULN004),

and LateMedieval (SHU001) periods, and two Early Iron Age (CHN010, CHN014), six Xiongnu (TUK001, UGU001, DUU002, BRL001,

BAU001, DEE001), and two EarlyMedieval (ULA001, ZAA005) graves were likewise reassigned to later periods following radiocarbon

dating. Part of the difficulty in correctly assigning archaeological period to later burials relates to the frequent reuse of earlier graves

and cemeteries by populations from later periods. The site reports of several Xiongnu excavations noted burial intrusions, displaced

burials, and other indications of burial disturbance and reuse. However, evidence of burial reuse may also be subtle and easily over-

looked. As such, we recommend great care in making cultural or temporal assignments at multi-period cemeteries or for any burials

showing evidence of disturbance.

Sampling for ancient DNA recovery and sequencing
Sampling was performed on a total of 169 teeth and 75 petrosal bones from fragmented crania originating from 225 individuals (Table

S1C). For 14 individuals, both a tooth and a petrosal bone were sampled (Table S2B). For three individuals, two teeth were sampled,

and for one individual, two teeth and one petrosal bone were sampled (Table S2B). For Mongolian material, whole teeth and petrosal

bone (except ERM) were collected at the physical anthropology collections of the National University of Mongolia and the Institute for

Archaeology and Ethnology under the guidance and supervision of M. Erdene and S. Ulziibayar. Petrosal and tooth material from

ERMwere provided by J. Bemmann. For Russianmaterial, whole teeth alongside petrosal bone or bonewere collected from the Insti-

tute for Mongolian, Buddhist, and Tibetan Research as well as the Buryat Scientific Center, Russian Academy of Sciences (RAS).

After collection, the selected human skeletal material was transferred to the Max Planck Institute for the Science of Human History

(MPI-SHH) for genetic analysis.

Laboratory procedures for genetic data generation
Genomic DNA extraction and Illumina double-stranded DNA (dsDNA) sequencing library preparation were performed for all samples

in a dedicated ancient DNA clean room facility at the MPI-SHH, following published protocols (Dabney et al., 2013) with slight mod-

ifications (Mann et al., 2018). We applied a partial treatment of the Uracil-DNA-glycosylase (UDG) enzyme to confine DNA damage to

the ends of ancient DNAmolecules (Rohland et al., 2015). Such ‘‘UDG-half’’ libraries allow us tominimize errors in the aligned genetic

sequence data while also maintaining terminal DNA misincorporation patterns needed for DNA damage-based authentication. Li-

brary preparation included double indexing by adding unique 8-mer index sequences at both P5 and P7 Illumina adapters. After

shallow shotgun sequencing for screening, we enriched libraries of 195 individuals withR 0.1% reads mapped on the human refer-

ence genome (hs37d5; GRCh37 with decoy sequences) for approximately 1.24 million informative nuclear SNPs (‘‘1240K’’) by per-

forming an in-solution capture using oligonucleotide probes matching for the target sites (Mathieson et al., 2015). In addition, eight

samples (see Tables S2A and S2B) were also selected and built into single-stranded DNA (ssDNA) sequencing libraries for compar-

ison. Single-end 75 base pair (bp) or paired-end 50 bp sequences were generated for all shotgun and captured libraries on the Illu-

mina HiSeq 4000 platform following manufacturer protocols. Output reads were demultiplexed by allowing one mismatch in each of

the two 8-mer indices.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequence data processing
Short read sequencing data were processed by an automated workflow using the EAGER v1.92.55 program (Peltzer et al., 2016).

Specifically, in EAGER, Illumina adaptor sequences were trimmed from sequencing data and overlapping sequence pairs were

merged using AdapterRemoval v2.2.0 (Schubert et al., 2016). Adaptor-trimmed and merged reads with 30 or more bases were

then aligned to the human reference genome with decoy sequences (hs37d5) using BWA aln/samse v0.7.12 (Li and Durbin,

2009). A non-default parameter ‘‘-n 0.01’’ was applied. PCR duplicates were removed using dedup v0.12.2 (Peltzer et al., 2016).

Based on the patterns of DNA misincorporation, we masked the first and last two bases of each read for UDG-half libraries and

10 bases for non-UDG single-stranded libraries, using the trimbam function in bamUtils v1.0.13 (Jun et al., 2015), to remove deam-

ination-based 50 C>T and 30 G>Amisincorporations. Then, we generated pileup data using samtools mpileup module (Li and Durbin,

2009), using bases with Phred-scale quality score R 30 (‘‘-Q30’’) on reads with Phred-scale mapping quality score R 30 (‘‘-q30’’)
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from the original and the end-masked BAM files. Finally, we randomly chose one base from pileup for SNPs in the 1240K capture

panel for downstream population genetic analysis using the pileupCaller program v1.2.2 (https://github.com/stschiff/

sequenceTools). For C/T and G/A SNPs, we used end-masked BAM files, and for the others we used the original unmasked BAM

files. For the eight ssDNA libraries, we used end-masked BAM files for C/T SNPs, and the original BAM files for the others.

In cases where more than one sample was genetically analyzed per individual, we compared the amount of human DNA between

samples. For pairs of petrous bone and teeth, humanDNAwas higher in the petrous bone in 8 of 13 individuals, and higher in the teeth

of 5 of 13 individuals (Table S2B). In addition, intra-individual sample variation was high, as evidenced by the high variance observed

between paired tooth samples (Table S2B). Finally, in a comparison of dsDNA and ssDNA libraries, ssDNA libraries yielded a higher

endogenous content in 7 of 8 library pairs. All data from paired samples were merged prior to further analysis.

Of the 225 new individuals analyzed, 18 failed to yield sufficient human DNA (< 0.1%) on shotgun screening (Table S2A) and a

further 6 individuals failed to yield at least 10,000 SNPs after DNA capture (Table S2A). These 24 individuals were excluded from

downstream population genetic analysis.

Data quality authentication
To confirm that our sequence data consist of endogenous genomic DNA from ancient individuals with minimal contamination, we

collected multiple data quality statistics. First, we tabulated 50 C>T and 30 G>A misincorporation rate (Table S2A) as a function of

position on the read using mapDamage v2.0.6 (Jónsson et al., 2013). Such misincorporation patterns, enriched at the ends due to

cytosine deamination in degraded DNA, are considered as a signature of the presence of ancient DNA in large quantities (Sawyer

et al., 2012). Second, we estimated mitochondrial DNA contamination for all individuals using the Schmutzi program (Renaud

et al., 2015). Specifically, we mapped adaptor-removed reads to the revised Cambridge Reference Sequence of the human mito-

chondrial genome (rCRS; NC_012920.1), with an extension of 500 bp at the end to preserve reads passing through the origin. We

then wrapped the alignment to the circular reference genome using circularmapper v1.1 (Peltzer et al., 2016). The contDeam and

schmutzi modules of the Schmutzi program were successively run with the world-wide allele frequency database from 197 individ-

uals, resulting in estimatedmitochondrial DNA contamination rates for each individual (Table S2A). Last, for males, we also estimated

the nuclear contamination rate (Table S2A) based on X chromosome data using the contamination module in ANGSD v0.910 (Kor-

neliussen et al., 2014). For this analysis, an increased mismatch rate in known SNPs compared to that in the flanking bases is inter-

preted as the evidence of contamination because males only have a single copy of the X chromosome and thus their X chromosome

sequence should not contain polymorphisms. We report the Method of Moments estimates using the ‘‘method 1 and new likelihood

estimate,’’ but all the other estimates provide qualitatively similar results.

Ten individuals were estimated to have > 5% DNA contamination (mitochondrial or X) or uncertain genetic sex (Table S2A); these

individuals were excluded from downstream population genetic analysis.

Genetic sex typing
We calculated the genetic sequence coverage on the autosomes and on each sex chromosome in order to obtain the ratio between

the sex chromosome coverage and the autosome coverage. For 1240K capture data, we observe females to have an approximately

even ratio of X to autosomal coverage (X-ratio of�0.8) and a Y-ratio of 0, andmales to have approximately half the coverage on X and

Y as autosomes (�0.4). Genetic sex could be determined for a total of 224 individuals, of which 100 were female and 124 were male

(Table S2C).

Uniparental haplogroup assignment
We called mitochondrial consensus sequence from the Schmutzi output using the log2fasta program in the Schmutzi package, with

quality threshold of 10. We then assigned each consensus sequence into a haplogroup (Table S2C) using the HaploGrep 2 v2.1.19

(Weissensteiner et al., 2016). For the Y haplogroup assignment, we took 13,508 Y chromosome SNPs listed in the ISOGG database

and made a majority haploid genotype call for each male using pileupCaller (with ‘‘-m MajorityCalling’’ option). We assigned each

individual into a haplogroup (Table S2C) using a patched version of the yHaplo program (Poznik, 2016) downloaded from https://

github.com/alexhbnr/yhaplo. This version takes into account high missing rate of aDNA data to prevent the program from stopping

its root-to-tip haplogroup search prematurely at an internal branch due to missing SNP and therefore assigning a wrong haplogroup.

We used ‘‘–ancStopThresh 10’’ following the developer’s recommendation. Haplogroup assignments are shown in Figures S2A

and S2B.

Estimation of genetic relatedness
To evaluate the relatedness within our dataset, we calculated pairwise mismatch rate of haploid genotypes on automosomes across

all individuals. The pairwise mismatch rate for each pair of individuals, is defined as the number of sites where two individuals have

different alleles sampled divided by the total number of sites that both individuals have data. The pairwise mismatch rate between

unrelated individuals is set as the baseline and the coefficient of relationship is inversely linear to the baseline pairwisemismatch rate.

More detailed description can be found in the Supplemental Materials of (Jeong et al., 2018).

A total of 15 first or second degree genetic relationships were observed across the dataset (Table S2D), of which 10 date to the

Xiongnu era. Additionally, in one case, a tooth and petrosal bone thought to belong to one individual (AT-871) were later discovered
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to belong to two different individuals (OLN001.A andOLN001.B). In another case, two teeth (AT-728 and AT-729) thought to belong to

different individuals were found to originate from the same individual (TUK001/TAV008).

Data filtering and compilation for population genetic analysis
To analyze our dataset in the context of known ancient and modern genetic diversity, we merged it with previous published modern

genomic data from i) 225 worldwide populations genotyped on the Human Origins array (Jeong et al., 2019; Lazaridis et al., 2014), ii)

300 high-coverage genomes in the Simons Genome Diversity Project (‘‘SGDP’’) (Mallick et al., 2016), and iii) currently available

ancient genomic data across Eurasian continent (Allentoft et al., 2015; Damgaard et al., 2018a; 2018b; Fu et al., 2014; 2016;

Haak et al., 2015; Haber et al., 2017; Harney et al., 2018; Jeong et al., 2016; 2018; Jones et al., 2015; Kılınç et al., 2016; Lazaridis

et al., 2016, 2017;Mathieson et al., 2015; 2018; McColl et al., 2018; Narasimhan et al., 2019; Raghavan et al., 2014; 2015; Rasmussen

et al., 2010; 2014; 2015; Sikora et al., 2019; Unterländer et al., 2017; Yang et al., 2017). We obtained 1,233,013 SNP sites (1,150,639

of which on autosomes) across our dataset when intersecting with the SGDP dataset, and 597,573 sites (593,124 of which on auto-

somes) when intersecting with the Human Origins array.

Analysis of population structure and relationships
Weperformed principal component analysis (PCA) on themerged dataset with the Human Origins data using the smartpca v16000 in

the Eigensoft v7.2.1 package (Patterson et al., 2006). Modern individuals were used for calculating PCs (Figure S3A), and ancient

individuals were projected onto the pre-calculated components using ‘‘lsqproject: YES’’ option (Figure 2; Figure S3B). To charac-

terize population structure further, we also calculated f3 and f4 statistics using qp3Pop v435 and qpDstat v755 in the admixtools

v5.1 package (Patterson et al., 2012). We added ‘‘f4mode: YES’’ option to the parameter file for calculating f4 statistics.

Admixture modeling using qpAdm
For modeling admixture and estimating ancestry proportions, we applied qpWave v410 and qpAdm v810 in the the admixtools v5.1

package (Patterson et al., 2012) on the merged dataset with the SGDP data to maximize resolution. To model the target as a mixture

of the other source populations, qpAdmutilizes the linearity of f4 statistics, i.e., one can find a linear combination of the sources that is

symmetrically related to the target in terms of their relationship to all outgroups in the analysis. qpAdm optimizes the admixture co-

efficients to match the observed f4 statistics matrix, and reports a p-value for the null hypothesis that the target derives their ancestry

from the chosen sources that are differently related to the outgroups (i.e., when p < 0.05, the null hypothesis is rejected so that the

target is different from the admixture of chosen sources given the current set of outgroups). The chosen outgroups in qpAdmneeds to

be differentially related to the sources such that a certain major ancestry is ‘‘anchored’’ in the test, which is rather heuristic. We used

qpWave to test the resolution of a set of outgroups for distinguishing major ancestries among Eurasians, as well as the genetic cla-

dility between populations given a set of outgroups. We used a set of eight outgroup populations in our study: Central African hunter-

gatherers Mbuti.DG (n = 5), indigenous Andamanese islanders Onge.DG (n = 2), Taiwanese Aborigines Ami.DG (n = 2), Native Amer-

icans Mixe.DG (n = 3), early Holocene Levantine hunter-gatherers Natufian (n = 6) (Lazaridis et al., 2016), early Neolithic Iranians

Iran_N (n = 8) (Lazaridis et al., 2016; Narasimhan et al., 2019), early Neolithic farmers from western Anatolia Anatolia_N (n = 23) (Ma-

thieson et al., 2015), and a Pleistocene European hunter-gatherer from northern Italy Villabruna (n = 1) (Fu et al., 2016).

To evaluate potential sex bias (Figure S2C), we applied qpAdm to both the autosomes (default setting) and the X chromosome

(adding ‘‘chrom:23’’ to the parameter file) for comparing the difference in the estimated ancestry proportions. For a certain ancestry,

we calculated sex-bias Z score using the proportion difference between PA and PX divided by their standard errors (Z = ðPA �
PX =

ffiffiffiffiffiffiffiffiffiffiffiffi
s2

A +
q

s2
XÞ, where sA and sX are the corresponding jackknife standard errors, as previously performed in (Mathieson et al.,

2018). Therefore a positive Z score suggests autosomes harbor a certain ancestry more than X chromosomes do, indicating

male-driven admixture. A negative Z score, in contrast, suggests female-driven admixture. The qpAdm estimates from both auto-

somes and the X chromosome are available in Table S5K.

Dating admixture events via DATES
We used DATES v753 (Narasimhan et al., 2019) to estimate the time of admixture events in ancient individuals (Figure S6B), and

convert the estimated admixture date in generation into years assuming 29 years per generation (Patterson et al., 2012). We

show the admixture dates in years before present (Figure S6A) by adding the age of each ancient population (i.e., mean value of

the midpoint of the 95% confidence interval of available calibrated 14C dates in each population). The standard error of DATES es-

timates come from the weighted block jackknife, an option in DATES parameter file. In the parameter file for running DATES, we used

‘‘binsize: 0.001,’’ ‘‘maxdis: 1,’’ ‘‘runmode: 1,’’ ‘‘mincount: 1,’’ ‘‘lovalfit: 0.45’’ in every run, same to the example file at https://github.

com/priyamoorjani/DATES/blob/master/example/par.dates.

Phenotypic SNP analyses
We examined 49 SNPs in 17 genes (Table S2E) known to be associated with phenotypic traits or with positive selection in Eurasia

(Jeong et al., 2018). Given the low coverage of ancient DNA data, we focused on five of these genes and calculated the likelihood of

allele frequency for SNPs in each ancient population based on the counts of reads covering on the SNP following a published strategy
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(Mathieson et al., 2015). In the allele frequency calculation, we classified all ancient individuals before Middle/Late Bronze Age into a

single group, and kept three genetic groups during MLBA (Khövsgöl_LBA, Altai_MLBA, Ulaanzuukh), two genetic groups during Iron

Age (Chandman_IA, SlabGrave), one group for Xiongnu, one group for Early Medieval and one group for Late Medieval. We calcu-

lated allele frequency at five loci (Table S2E) that are associated with lactase persistence (LCT/MCM6), skin pigmentation (OCA2,

SLC24A5), alcohol metabolism (ADH1B), and epithelial phenotypes including shovel-shaped incisor (EDAR) (Figure 5).

Genetic clustering of ancient individuals into analysis units
To further characterize the dynamic changes of the Eastern Steppe gene pools using group-based analyses, we quantitatively exam-

ined genetic differences among the analyzed individuals in combination with their temporal, archeological, and geographic informa-

tion. We first obtained an approximate map of population structure by observing the position of ancient individuals on the PCA calcu-

lated from 2,077 present-day Eurasian individuals. PC1 separates geographically eastern and thewestern populations, PC2 captures

the internal variations in eastern Eurasians, and PC3 captures variations in western Eurasians, thus allowing us to characterize an

overall pattern of genetic changes through time and helping us to formulate explicit hypotheses regarding the genetic relationships

between groups and individuals. Second, we computed outgroup-f3 and symmetric-f4 statistics to (1) quantify genetic similarity be-

tween individuals/groups falling together on PCA and (2) explore populations whose ancestry through admixture may have contrib-

uted to the differences observed between pairs of groups. Third, we identified representative ancient populations to serve as proxies

for five distinct ancestries that we then further investigate (Table S3B). We changed the specific ancestry proxy for our test groups

based on the temporal and archeological records accordingly. Using these ancestry proxies, we performed a formal admixture

modeling using qpWave/qpAdm, which tests the difference between the target and a combination of the proxies (i.e., an admixture

model) with regard to their genetic affinity to outgroups.We applied the same admixturemodels for test groups belonging to the same

time/culture/geography category to compare them in a straightforward manner (Figures 3 and 4). In the following paragraphs, we

describe each of the genetics-based analysis groups reported in our dataset, as well as the principles we applied to model their ge-

netic ancestry using qpAdm.

Pre-Bronze Age

, New genetic groups: eastMongolia_preBA(1), centralMongolia_preBA(1), and Fofonovo_EN(4)

, Published genetic groups: DevilsCave_N(6), and Baikal_EN(9)

Our dataset adds three Ancient Northeast Asian (ANA)-related genetic groups before the start of the Bronze Age in eastern Eurasia.

During this period, we observe the wide distribution of this ANA ancestry from Lake Baikal to the Russian Far East, spanning more

than 2,000 km. As Baikal_EN has been modeled to have �10% Ancient North Eurasian (ANE) ancestry, we also investigated the

possible genetic contribution from ANE in our pre-Bronze AgeMongolian and Baikal groups using Botai, AG3, MA1 andWest_Siber-

ia_N separately as ancestry proxies. We find ANE-related ancestry appears in centralMongolia_preBA and Fofonovo_EN only to a

minor extent; ANE ancestry is not present in eastMongolia_preBA, which is instead characterized by only ANA-related ancestry (Ta-

ble S5A).

Early Bronze Age

, New genetic groups: Afanaseivo_Mongolia(2), Chemurchek_southAltai(2), Chemurchek_northAltai(2)

, Published genetic groups: Afanaseivo(23), Okunevo_EMBA(19), and Baikal_EBA(5)

Our dataset adds three main genetic groups during the Early Bronze Age: Afanasievo_Mongolia, Chemurchek_southAltai and

Chemurchek_northAltai. We group two individuals from Shatar Chuluu site (SHT001, SHT002) into Afanasievo_Mongolia as both

are archaeologically classified into the Afanasievo cultural context and genetically indistinguishable from Afanasievo individuals

from the Russian Altai-Sayan region (Figure S5A, S5C; Table S5B).

We group two individuals from Yagshiin Huduu site (IAG001, YAG001) into Chemurchek_southAltai as both are archaeologically

classified to the Chemurchek cultural context and cluster together on PCA, providing the first genomic investigation of the Chem-

urchek culture.We observed that Chemurchek_southAltai has the highest genetic affinity to ANE-related groups (e.g., Botai) and sec-

ondary affinity to Iranian-related groups (Figures S5A and S5C). We tested Afanasievo as a potential ancestral source given the

geographic overlap and similar burial posture between the Afanasievo and Chemurchek cultures (Taylor et al., 2019), however the

2-way model with Afanasievo as one of the two sources fails (Table S5B). The model also fails when using Okunovo (a neighboring

group contemporaneous with Chemurchek that succeeds the Afanasievo culture) either as Afanasievo + Okunevo or Okunevo + Ira-

nian (Table S5B). To further investigate the Iranian-related ancestry among the Chemurchek_southAltai, we tested four published

groups from the BMAC genetic cluster (Gonur1_BA, Bustan_BA, Dzharkutan1_BA, and Sappali_Tepe_BA), four Chalcolithic/Bronze

Age Iranian groups (Hajji_Firuz_C, Tepe_Hissar_C, Seh_Gabi_C, and Shahr_I_Sokhta_BA1), Eneolithic Turkmenistan and Tajikstan

groups (Paikhai_EN, Sarazm_EN, and Tepe_Anau_EN) and Mesolithic Caucasus Hunter-Gatherer (CHG). Interestingly, 2-way

models consisting of Botai + BMAC genetic cluster groups adequately model Chemurchek_southAltai with �40% ancestry propor-

tion from the latter, while preceding Eneolithic Turkmenistan/Tajikistan groups do not (Table S5B). Spatiotemporally more distant

groups, such as Chalcolithic Iranian groups or CHG, also adequately model Chemuchek_southAltai with similar ancestry proportions

(Table S5B). The 3-way model consisting of Botai + BMAC + Afanasievo returns a positive contribution from Afanasievo but it is not

significantly different from zero (11 ± 7%; Table S5B). Thus, despite some cultural similarities between steppe groups (Afanasievo,

Okunevo) and Chemurchek, we observe a negligible level of genetic influence from the steppe populations among the Chemurch-

ek_southAltai individuals analyzed here.
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Wefind that Chemurchek_southAltai has a close genetic affinity to Dali_EBA (Figure S5A), an individual dating to ca. 2650 BCEwith

poor burial context from southeastern Kazakhstan who has admixed ANE-Iranian ancestry (see Narasimhan et al., 2019). Applying

the same 2-way admixturemodels using Dali_EBA for comparison, we found that Dali_EBA also requires an additional Iranian-related

ancestry but in a smaller proportion and that the models with Afanasievo as a source do not fit, replicating the findings in

Chemurchek_southAltai.

The Chemurchek_northAltai genetic cluster, consisting of two female Chemurchek individuals (KUM001, KUR001) from the north-

ern Altai, shows high genetic affinity to ANA groups, with a small proportion of ancestry consistent with Chemurchek_southAltai (Fig-

ures S5A, S5C; Table S5B). Like other Chemurchek or Chemurchek-like burials in the northern Altai, their mortuary architecture lacks

some features that are classically associated with burials further south.

Middle and Late Bronze Age

, New genetic groups: Altai_MLBA(7), Ulaanzuukh_SlabGrave(11/16), UAA001(1), KHI001(1), UUS001(1), KHU001(1) and TSI001(1)

, Published genetic groups: Khövsgöl_LBA(17), ARS017(1), ARS026(1), Sintashta_MLBA(37), Krasnoyarsk_MLBA(18)

Our dataset adds two main genetic groups in the Eastern Steppe during the MLBA - Altai_MLBA and Ulaanzuukh_SlabGrave - to

the previously published Khövsgöl_LBA from northern Mongolia (Jeong et al., 2018). Our new data substantially expand the

geographic scope of genetically characterized MLBA populations in Mongolia, and reveal an overall picture of the population struc-

ture of the MLBA Eastern Steppe. The Altai_MLBA group contains seven individuals from the Altai-Sayan region (BER002, BIL001,

ULZ001, ARS026, SBG001, ULI001, ULI003), who are admixed between the Western Steppe gene pool associated with Srubnaya/

Sintashta/Andronovo cultures (‘‘steppe_MLBA’’) and the one associated with Khövsgöl_LBA/Baikal_EBA. Although the ancestry

proportion estimates within this group vary along a cline, the Altai_MLBA represents the formation of a gene pool incorporating a

substantial genetic influx fromWestern Steppe herders. Thus we classified them into one genetic group despite their archaeological

and cultural differences (DSKC and unclassified burial types). This also explains the genetic profile of one outlier from Khövsgöl_LBA

(ARS026), who nowgenetically falls within the Altai_MLBA group. Of note, onemember of this group, ULZ001, is found not in the Altai,

but in far eastern Mongolia.

The other genetic cluster, Ulaanzuukh_SlabGrave, contains 11 individuals with Ulaanzuukh burial type (BUL001, BUL002, ULN001,

ULN002, ULN003, ULN005, ULN006, ULN007, ULN009, ULN010, ULN015) and 5 individuals with Slab Grave burials (see below),

from eastern Mongolia. They all are classified into one single genetic group given their strong genetic homogeneity with ANA (Table

S5C) and the geographic links between the two. This clustering of Ulaanzuukh and Slab Grave confirms previous archaeological hy-

potheses that the Slab Grave culture likely emerged out of the Ulaanzuukh gene pool. This genetic cluster also explains another

Khövsgöl_LBA outlier, ARS017, who now genetically falls within the Ulaanzuukh_SlabGrave group, as well as a single individual

with unknown burial type from central Mongolia, TSI001, who also falls into this cluster. Of note, one male Mönkhkhairkhan individual

(KHU001) also has a large proportion of ancestry from Ulaanzuukh_SlabGrave in addition to his main genetic component from Bai-

kal_EBA (Table S5C). Together, the individuals ARS017, TSI001, and KHU001 suggest contact with the Ulaanzuukh_SlabGrave

group in northern, central Mongolia, even though these individuals were buried according to local burial customs. Overall, this Ulaan-

zuukh_SlabGrave genetic cluster is a continuation of the ANA easternMongolia_preBA gene pool (represented by SOU001) of 3,000

years earlier.

We also identified three outliers which do not fall into any of the three genetic clusters described above. UAA001 (Mönkhkhairkhan)

from the Altai is well-fitted with 3-way admixture model using Afanasievo, Baikal_EBA and Gonur1_BA (Table S5C), despite the fact

that they date to�1500 years after the Afanasievo culture. KHI001 (unclassified culture) from the Altai, is well-fitted with 3-way admix-

ture model using Sintatash, Baikal_EBA and Gonur1_BA (p-value = 0.056; Table S5C), presenting minor genetic component from

Gonur1_BA. Alternatively, KHI001 can also be modeled as a 2-way admixture between Afanasievo and Khövsgöl_LBA (p-value =

0.117; Table S5C); however, this model has a lower priority than the former model. UUS001 (DSKC) from Khövsgöl province is

well-fitted with 3-waymodel using Sintashta, eastMongolia_preBA andGonur1_BA (Table S5C). Given the temporal discordance be-

tween UUS001 and the eastMongolia_preBA individual (�3,000 years), it is more likely that the admixing partner for UUS001 was

related to the Ulaanzuukh cluster; Ulaanzuukh shares a high degree of ancestry with eastMongolia_preBA and is contemporaneous

with the UUS001 individual, and someUlaanzuukh individuals plot very close to the eastMongolia_preBA individual - SOU001 in PCA.

Early Iron Age

, New genetic groups: Chandman_IA(9), Ulaanzuukh_SlabGrave(5/16),

, Published genetic groups: Tagar(8), CentralSaka(6), TianShanSaka(10), Kazakhstan_Berel_IA(2; Pazyryk culture)

Our dataset adds two main genetic groups during EIA: one represented by Ulaanzuukh_SlabGrave and the other represented by

the site of Chandman Mountain associated with the Sagly/Uyuk culture (Chandman_IA). In addition to the 11 Ulaanzuukh burials

described above, four Slab Grave individuals (BOR001, DAR001, MIT001, SHU001) from eastern Mongolia also presented a homo-

geneous genetic profile with Ulaanzuuk and thus were merged into the Ulaanzuukh_SlabGrave analysis group (Table S5C). Interest-

ingly, PTO001, a Trans-Baikal individual who is also archaeologically classified as Slab Grave, has a genetic profile that matches

other Slab Grave individuals from eastern Mongolia, and we also merged PTO001 into the Ulaanzuukh_SlabGrave genetic cluster.

The genetic profile of PTO001 is consistent with an archaeologically described expansion of the Slab Grave culture into the Baikal

region during EIA (Losey et al., 2017).

The contemporaneous Chandman_IA from the Altai-Sayan region in western Mongolia has a genetic profile that matches the pre-

ceding Altai_MLBA cline. Since all individuals are from a single site and cluster together on PCA, we group them into a single analysis
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unit (‘‘Chandman_IA’’). Here, we use the Andronovo-associated dataset Krasnoyarsk_MLBA as the representative central step-

pe_MLBA group for admixturemodeling because it is geographically closest to our test EIA groups.We first tested a 2-way admixture

model of Krasnoyarsk_MLBA + Baikal_EBA, but it failed to adequately model the Chandmand_IA cluster, as did Kar-

snoyarsk_MLBA + Khövsgöl_LBA. Further changing the steppe_MLBA source from Karsnoyarsk_MLBA to Sintashta_MLBA did

not rescue the 2-way admixture model. We then attempted a 3-way admixture model by adding Iranian-related ancestry as the third

source, using a BMAC group from the Gonur Tepe site (Gonur1_BA) as a proxy. Using Krasnoyarsk_MLBA as the Steppe proxy, we

observed 51.3% of Steppe, 42.2% of Baikal_EBA and 6.5% of Iranian ancestry in Chandman_IA (Table S5D).

Because it is a priori quite unlikely due to a long-distancemigration fromBactria/Iran specific to Chandman_IA, we next applied the

same 3-way models of Krasnoyarsk_MLBA/Sintashta_MLBA+Baikal_EBA+Gonur1_BA to four Iron Age central Asian groups (Tagar

from Minusinsk Basin, Central Saka from central Kazakhstan, Kazakhstan_Berel_IA from eastern Kazakhstan, and Tian Shan Saka

from Kyrgyzstan) and also to the Final Bronze Age group Karasuk. We observed that Iranian-related ancestry proportions range from

�7%–28% in the tested Iron Age groups, while not required for Karasuk. In particular, the Tian Shan Saka, geographically closest to

the Gonur Tepe site, has the highest amount of estimated Iranian-related ancestry. Because of cultural connections between the

Sagly/Uyuk of Chandman_IA and the Saka generally (see section 2.4 above), it is possible that Saka and related groups in Tian

Sian, Fergana and Transoxiana/Turan (such as the sampled Tian Shan Saka) are the proximal source of the Iranian ancestry in

the Iron Age groups further to the north, such as Chandman_IA. To narrow down the spatiotemporal origin of this Iranian-related

ancestry, we tested 3-way models using alternative Iranian-related groups as the proxy in the Tian Shan Saka: (1) three other

post-BMAC groups (Bustan_BA, Dzharkutan1_BA, and Sappali_Tepe_BA) that fall into the BMAC genetic cluster with Gonur1_BA

(Narasimhan et al., 2019), (2) Shahr_I_Sokhta_BA1 from the southeastern corner of Iran, (3) three Chalcolithic Iranian groups

(Hajji_Firuz_C, Tepe_Hissar_C, Seh_Gabi_C), (4) two Iron Age groups from Pakistan (Katelai_IA, Loebanr_IA), (5) Eneolithic groups

from Turkmenistan such as Geoksyur_EN, Parkhai_EN and Tepe_Anau_EN, and (6) Sarazm_EN fromwestern Tajikistan. All

Iranian-ancestry proxies mentioned above except Hajji_Firuz_C and Seh_Gabi_C from the Zagros provide a well-fitted 3-way model

(Table S5E). Therefore, for the Iron Age Eastern Steppe, genetic data alone can only narrow down the source of the Iranian ancestry to

a broad region east of the Caspian Sea. Taken in context, though, we propose that this ancestry likely arrived via a local contact

around the Transoxiana/Sogdiana region (i.e., the border between Kazakhstan, Uzbekistan and Kyrgyzstan).

For the prehistoric genetic groups described above, we used DATES to estimate the date of admixture between Western ancestry

sources (WSHor the Iranian-related groups) and local ancestry sources (i.e., Khovsgol_LBAorBaikal_EBA) (FigureS6). As shown in Fig-

ure S6A, the estimated admixture date between Sintashta and Baikal_EBA for the Karasuk and Tagar is consistent with the admixture

dateobserved inAltai_MLBA- at around3,500BP. For theCentral Saka, Pazyryk (Kazakstan_Berel_IA) andSagly/Uyuk (Chandman_IA),

the admixture date is estimated to be a fewcenturies later, and themost recent admixture date is estimated for the Saka fromTianShan.

Notably, we find that the estimated admixture dates betweenGonur1_BA and Baikal_EBA in the Iron Age groups are roughly consistent

with the admixture dates for Sintashta (FigureS6A). However, becauseweare using amethoddesigned for dating a 2-way admixture on

what is best modeled as 3-way admixture in our study, we caution that these admixture dates should be interpreted with care.

Xiongnu Empire

, New genetic groups: earlyXiongnu_west(6), earlyXiongnu_rest(6), SKT007(1), lateXiongnu(24), lateXiongnu_sarmatian(13), lateX-

iongu_han(8), TAK001(1), TUK002(1)

, Published genetic groups: Xiongnu_WE(2), Xiongnu_royal(1, DA39.SG), Han_2000BP(2)

Our dataset reveals a great deal of previously uncharacterized genetic diversity during the Xiongnu period. For individual modeling,

we tested every possible combination of five main ancestries: Steppe (Krasnoyarsk_MLBA, Sintashta, Srubnaya, Sarmatian, Chand-

man_IA), Gonur1_BA, Khövsgöl_LBA, Ulaanzuukh_SlabGrave, and Han. Considering the low resolution of individual modeling, we

report selected working models that work for many individuals belonging to the same time period and archaeological context and

that reflect qualitative trends observed in PCA. We observed that Iron Age Chandman_IA is a good Steppe ancestry proxy for

many Xiongnu individuals, but there are also many who have western Eurasian ancestry in higher proportion than that of Chandma-

n_IA. These individuals with highwestern Eurasian ancestry proportion show strong affinity to the Iranian-related ancestry that cannot

be explained by the earlier Late Bronze Age steppe groups (e.g., Krasnoyarsk_MLBA, Sintashta_MLBA or Srubnaya). Instead, Go-

nur1_BA or Iron Age Sarmatian fit better with the genetic profile required. Also, a few individuals fall into the eastern Eurasian cline

along PC2 and are explained as a combination of the eastern Eurasian gene pools, Ulaanzuukh_SlabGrave and present-day Han

Chinese, without contribution fromwestern Eurasian sources (Table S5F). We used high-coverage whole genome sequences of pre-

sent-day Han Chinese (‘‘Han.DG’’; n = 4) as a proxy for the ancestry component that is currently broadly distributed across northern

China and distinct from the component represented by Ulaanzuukh_SlabGrave further to the north. This is to achieve statistical po-

wer in our admixture modeling given that there are to date very few available ancient genomes that reflect this ancestry component.

This is due to the fact that ancient China, Korea, Japan, and Southeast Asia remain mostly unsampled. We fully acknowledge the

genetic diversity present within contemporary HanChinese populations, and do not intend to claim by our admixturemodeling a spe-

cific connection between the ancient populations within our study and present-day ethno-cultural identities.

For the group-based qpAdm modeling, we split Xiongnu into two categories based on their age - early Xiongnu and late Xiongnu.

We further split early Xiongnu into two subgroups, earlyXiongnu_west (SKT010, SKT001, SKT003, SKT009, SKT008, AST001) and

earlyXiongnu_rest (JAG001, SKT002, SKT004, SKT005, SKT006, SKT012), based on their individual modeling results, leaving out

one individual outlier - SKT007 (Khövsgöl_LBA-like). The two previously published Xiongnu individuals grouped as ‘‘Xiongnu_WE’’
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show a similar genetic profile to earlyXiongnu_rest, are dated to the early Xiongnu period, and are from the same valley as the two

early Xiongnu sites (SKT and AST) in our dataset (Table S5F). For the late Xiongnu, we summarized their individual modeling results in

Table S5G. Based on the individual modeling results, we set up three subgroups within late Xiongnu individuals to highlight key de-

mographic processes and to use them for specific analyses such as sex-biased gene flow. First, we assigned 24 of 47 individuals into

the main lateXiongnu group (BTO001, CHN010, DEL001, DOL001, IMA001-IMA008, JAA001, KHO006, KHO00, SAN001, SOL001,

TEV002, TEV003, TUK003, UGU004, UGU011, ULN004, UVG001; Table S5F-G); this group is well modeled as a mixture of two main

Iron Age clusters, Chandman_IA+Ulaanzuukh_SlabGrave (p = 0.316; 76.6 ± 0.8% from Ulaanzuukh_SlabGrave). Another 13 individ-

uals have more western Eurasian ancestry than Chandman_IA and thus require a different western Eurasian source. Two of them

(NAI002, BUR001) are explained by Chandman_IA+Gonur1_BA, a model for earlyXiongnu_west, but the remaining 11 need Sarma-

tian contribution, including three that are cladal to Sarmatian (BUR003, TM001, UGU010). Taken all 13 individuals as a group (lateX-

iongnu_sarmatian; BRL002, BUR001-BUR004, DUU001, HUD001, NAI001, NAI002, TMI001, UGU005, UGU006, UGU010), we infer

a major contribution from a Sarmatian-related source into this group (75.7 ± 2.8%; Table S5F-G). On the other hand, we grouped

eight individuals (ATS001, BAM001, BRU001, EME002, SON001, TUH001, TUH002, YUR001) into the third group lateXiongnu_han

based on their affinity to Han Chinese and other East Asian populations that Ulaanzuukh_SlabGrave cannot explain (37.2 ± 10.6%

from Han.DG; Table S5F-G). The previously published Xiongnu_royal individual shows substantial Han-related ancestry (Table S5F),

similar to our lateXiongnu_han group. Further, the late Xiongnu individual YUR001 is an extreme East Asian outlier, who genetically

resembles ‘‘Han_2000BP,’’ two Han empire soldiers recovered from a mass grave near a Han fortress in the southern Gobi (Dam-

gaard et al., 2018b). These two groups, lateXiongnu_sarmatian and lateXiongnu_han, robustly support influxes of new ancestries

both from the west and the east that were not previously observed in early Xiongnu or earlier populations. We left two individuals

out of grouping, due to their unusual ancestry profiles: TAK001mostly resembles Khövsgöl_LBA, and TUK002 is modeled as Chand-

man_IA+Ulaanzuukh_SlabGrave_Gonur1_BA (Table S5G). In contrast to the strong east-west genetic division among Bronze Age

Eastern Steppe populations through the end of the Early Iron Age, the Xiongnu period is characterized by an extreme degree of ge-

netic diversity and heterogeneity that does not have any obvious geographic correlation (Figure S7A).

Early Medieval

, New genetic groups: TUK001(1), earlyMed_Türk(7), TUM001(1), earlyMed_Uyghur(12), OLN007(1)

Our dataset adds twomain genetic groups during the earlyMedieval period inMongolia: earlyMed_Türk and earlyMed_Uyghur. For

each individual, we tested every possible combination of four main ancestries: Steppe (Sarmatian, Alan), Gonur1_BA, Ulaanzuukh_

SlabGrave, and Han. The genetic contribution from Iranian-related ancestry becomes even more prominent in Türkic and Uyghur

individuals, as seen from well-fitted models using the Alan, an Iranian pastoral population from the Caucasus (Table S5H). Overall,

the Türkic and Uyghur individuals in this study show a high degree of genetic diversity, as seen in their wide scatter across PC1 in

Figure 2. TUK001(250-383 CE), the earliest early Medieval individual in our dataset from a Xiongnu site with a post-Xiongnu occupa-

tion, has the highest western Eurasian affinity. This individual is distinct from Sarmatians, and likely to be admixed between Sarma-

tians and populations with BMAC/Iranian-related ancestry (Table S5H). Among the Türkic period individuals, TUM001 is a genetic

outlier with mostly East Asian (Han_2000BP-like) ancestry. This individual was buried together with a knife and two dogs within

the ramp of a Türkic era mausoleum. The mausoleum’s stone epitaph indicates that it was constructed for a diplomatic emissary

of the Pugu tribe who was allegiant to the Chinese Tang Empire. His cremated remains were found within the tomb; TUM001 was

likely this emissary’s servant (Ochir et al., 2013).

With respect to Uyghur burials, many consist of collective graves, and it has been suggested that such graves may contain the

remains of kin groups (Erdenebat, 2016). We examined one such collective grave (grave 19) at the site of Olon Dov; however, of

the six individuals analyzed in grave 19, there were no first degree relatives (parent-offspring pairs or sibling), and only two individuals

(OLN002 and OLN003) exhibited a second degree (avuncular, grandparent-grandchild, or half-sibling) relationship. One Uyghur in-

dividual (OLN007) had markedly higher proportions of Han-related East Asian ancestry that cannot be explained by Ulaanzuukh_

SlabGrave, and therefore grouped separately from the other earlyMed_Uyghur individuals (Table S5H).

Late Medieval

, New genetic groups: lateMed_Khitan(3), lateMed_Mongol(61), SHU002(1)

Our dataset adds two main genetic groups during late Medieval in Mongolia: lateMed_Khitan and lateMed_Mongol. We used the

same modeling strategy as used for the early Medieval period, and additionally explored the genetic cladality between every individ-

ual from the Mongol period and from modern Mongolic-speaking populations via qpWave (Figure S7B; Table S5J). Relatively few

Khitan individuals (n = 3) were available for analysis, but all show high ANA-related ancestry (Table S5I). Mongol-era individuals

(n = 61) are genetically more diverse and are cladal with modern Mongolic-speaking populations (Figure S7B). SHU002 is a single

individual dated to the late Medieval period however without recognizable Mongol-like burial feature. Overall, Mongol period individ-

uals characterized by a remarkable decrease in Western Eurasian ancestry compared to the preceding 1,600 years. They are best

modeled as a mixture of ANA-like and East Asian-like ancestry sources, with only minor Western genetic ancestry. In addition, nearly

a third of historic Mongol males (12/38) have Y haplogroup C2b, which is also widespread among modern Mongolians (Figure S3;

Table S6); C2b is the presumed patrilineage of Genghis Khan (Zerjal et al., 2003).
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Supplemental Figures

Figure S1. Archaeological Sites and Geographic and Ecological Features in Mongolia, Related to Figure 1

(A) Archaeological sites in Mongolia and neighboring regions analyzed in this study.

(B) Mongolian regions and provinces (aimags). Provinces are indicated by gray lines and text. Regions are indicated by black dashed lines and text following the

definitions of (Taylor et al., 2019).

(C) Ecological zones of Mongolia. Map produced using QGIS software (v3.6) with ecological data from (Dorjgotiv, 2004).
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Figure S2. Uniparental Haplogroup Assignments by Group and Sex-Bias Z Scores, Related to Figure 5B and STAR Methods

(A and B) Population structure from uniparentally inherited markers. (A) Distribution of Y haplogroups across each period. (B) Distribution of mitochondrial

haplogroups across each period.

(C) Sex-bias Z scores by evaluating the differences of WSH-/Iranian-/Han-related ancestry on the autosomes and the X chromosome. We calculated Z-score for

each ancient individual who has genetic admixture with any of the three ancestries. Positive scores suggest more WSH-/Iranian-/Han-related ancestry on the

autosomes, i.e., male-driven admixture.
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(legend on next page)
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Figure S3. PCA of Present-Day Eurasian Populations and Genetic Structure of Mongolia through Time, Related to Figure 2

(A) PCA of present-day Eurasian populations used as the background for Figure 2 and Figure S3B. Here we show the population labels for the 2,077 Eurasian

individuals used for calculating PCs and plotted as gray dots in Figure 2. Each three-letter code in the plot represents a single individual. Population IDs matching

to the three-letter codes are listed at the bottom.

(B) Genetic structure of Mongolia through time. Principal component analysis (PCA) of ancient individuals (n = 214) from three major periods projected onto

contemporary Eurasians (gray symbols). Projection and axis variance corresponds to Figure 2. Population labels are positioned over the mean coordinate across

individuals belonging to each population.
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Figure S4. Genetic Changes in the Eastern Steppe across Time Characterized by qpAdm with All Individuals Indicated, Related to Figures 3

and 4

(A) Pre-Bronze through Early Bronze Age;

(B) Middle/Late Bronze Age;

(C) Early Iron Age;

(D) Xiongnu period;

(E) Early Medieval;

(F) Late Medieval.

Modeled ancestry proportions are indicated by sample size-scaled pie charts, with ancestry source populations shown below. Cultural groups are indicated by

bold text. For panels (D–F), individuals are Late Xiongnu, Türkic, and Mongol, respectively, unless otherwise noted. Previously published reference populations

are noted with white text; all others are from this study. Populations beyond the map borders are indicated by arrows. Burial locations have been jittered to

improve visibility of overlapping individuals. Zoom in to see individual labels. Here we report results from admixture models that include all ancestry components

required to explain historic late Medieval individuals as a group for unbiased cross comparison between individuals. Individual results with simpler admixture

models can be found in Table S5J. See modeling details in Section 7.
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Figure S5. Outgroup f3-Statistics and Cladality Testing using f4-Statistics, Related to Figures 3 and 4

(A) Outgroup f3-statistics for the pre-Bronze Age to Early Bronze Age groups in the Eastern Steppe. We show top 15 outgroup f3-statistics of the form f3(Target,

world-wide; Mbuti) out of 345 ancient and present-day populations for the six target groups: eastMongolia_preBA, centralMongolia_preBA, Fofonovo_EN,

Afanasievo_Mongolia, Chemurchek_southAltai and Chemurchek_northAltai. Horizontal bars represent ± 1 standard error (SE) calculated by 5 cM block

jackknifing.

(B) Testing cladality of the four ANA populations using f4-statistics. We show top and bottom 15 symmetric f4-statistics of the form f4(ANA1, ANA2; world-wide,

Mbuti) out of 345 ancient and present-day populations for the four ANA-related target groups: eastMongolia_preBA, centralMongolia_preBA, Fofonovo_EN,

DevilsCave_N. Horizontal bars represent ± 1 standard error (SE) calculated by 5 cM block jackknifing. f4-statistics with Z-score > 3 are highlighted in red.

(C) Testing cladality of Afanasievo and Chemurchek using f4-statistics. We show top and bottom 15 symmetric f4-statistics for the three target groups Afana-

sievo_Mongolia, Chemurchek_southAltai and Chemurchek_northAltai, in the form f4(Afanasievo_Mongolia, Afanasievo; world-wide, Mbuti), f4(Chem-

urchek_southAltai, Botai; world-wide, Mbuti), f4(Chemurchek _northAltai, Chemurchek_southAltai; world-wide, Mbuti), and f4(Chemurchek _northAltai, east-

Mongolia_preBA; world-wide, Mbuti) out of 345 ancient and present-day populations. Horizontal bars represent ± 1 standard error (SE) calculated by 5 cM block

jackknifing. f4-statistics with Z-score > 3 are highlighted in red.
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(legend on next page)
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Figure S6. Dating Admixture in Prehistoric Individuals, Related to STAR Methods

(A) Dating admixture in prehistoric individuals. We estimated admixture dates using the DATES program and converted it by adding the age of each ancient

population (mean value of the center of the 95% confidence interval of calibrated 14C dates) and assuming 29 years per generation. Horizontal bars associated

with the admixture dates (colored circles) are estimated by the square root of summing the variance of DATES estimate using leave-one-chromosome-out

jackknifing method and the variance of the 14C date estimate, assuming that the two quantities are independent. Published groups aremarked with an asterisk (*).

For the Chemurchek_northAltai, we used Baikal_EN as the representative of ANA ancestry for dating the admixture event, given the larger sample size of

Baikal_EN.

(B) Ancestry covariance in prehistoric individuals. We show the weighted ancestry covariance (y axis) calculated from DATES which is expected to decay

exponentially along genetic distance (x axis) with a decay rate indicating the time since admixture, and fitted exponential curves (shown in red line). We start the fit

at genetic distance at 0.45 centiMorgans, and estimate standard error by a weighted block jackknife removing one chromosome in each run.
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Figure S7. Breakdown ofGeography andGenetics among Xiongnu andComparison ofMongol Period and Present-Day Populations, Related

to Figure 3 and STAR Methods

(A) Breakdown of the geographic-genetic correlation in Xiongnu.We show the proportions ofWest Eurasian ancestry on all individuals/groups from Xiongnu era (y

axis) versus the longitude of archaeological site they come from (x axis). The raw numbers of individual estimates can be found in Table S5G for models using

Sarmatian as the western Eurasian source. Unlike MLBA/EIA individuals (Figure 3), Xiongnu individuals frommore western sites do not have higher proportion of

western Eurasian ancestry than those from eastern sites.

(B) Comparing genetic homogeneity between ancient Mongol individuals and seven present-dayMongolic-speaking populations using qpWave.We report the p-

value for every individual-based qpWave {ancient Mongol individual; Mongolic group} using seven modern Mongolic-speaking populations: Buryat, Daur,

Kalmyk, Khamnegan, Mongol, Mongola, and Tu in the Human Origins dataset. When the p-value from qpWave is > 0.05, it suggests that the ancient individual on

the y axis is genetically indistinguishable from themodernMongolic-speaking population shown on the x axis. Smaller p-values indicate that the ancient individual

is significantly different from the modern group.
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