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Infrared (IR) diagnostics are used to measure plasma-facing components (PFC) surface temperature in fusion 

devices. However, the interpretation of such images is complex in all-reflective environments because of unknown 

emissivity and multiple reflections issues. In order to assess these challenges an iterative inversion method based on 

a fast photonic model, the radiosity method, has been developed. The radiosity method is based on strong hypotheses 

including all diffuse surfaces. The inversion method allows retrieving the true surface temperature of PFC in two 

steps: a step of the target emissivity estimation in a baking scene and the use of the emissivity map to retrieve the 

temperature of metallic components with errors up to 3% during a plasma scenario. 
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1. Introduction 

Infrared (IR) cameras are key diagnostics to monitor and 

control Plasma-Facing Components (PFC) in a fusion 

device. Nevertheless, the use of all-metallic PFC with low 

and variable emissivity (ε ~ 0.1-0.3) makes difficult the 

surface temperature measurement [1]. Indeed, the 

radiance collected by the IR camera includes both the 

thermal radiation emitted by the target and a parasitic 

radiation coming from the surroundings of the target. 

Furthermore, target emissivity changes with the surface 

temperature and roughness. This causes major errors on 

the surface temperature measurement that we need to 

address in order to achieve high power and safe plasma 

operation. 

An inverse method has been developed in order to retrieve 

the true surface temperature of the PFC by solving low 

emissivity and additional parasitic flux coming from the 

reflections. This method relies on the comparison and the 

differences minimization between the experimental IR 

image and a synthetic IR image (obtained through a direct 

model). 

The paper presents the inverse radiation method 

developed and applied to the WEST tokamak [2]. Section 

2 focuses on the surface temperature error in WEST 

assessed from complete IR synthetic diagnostics. Section 

3 describes the radiosity model used as a direct model in 

the inverse processing. Section 4 is dedicated to the 

inverse method. Finally, the paper deals with the results 

of this method to a numerical prototype of the WEST 

tokamak. 

 

2. WEST tokamak 

2.1 IR measurement in WEST 

The WEST device is equipped with 12 IR cameras 

looking at the First Wall (FW), the heating antennas and 

the divertor, the most critical component receiving heat 

flux up to 20 MW/m². 

IR synthetic diagnostic has been used to quantify 

accurately, for each camera, the impact on the surface 

temperature measurement of inaccurate emissivity, the 

reflections and camera resolution [3]. The synthetic 

diagnostic is based on a Monte Carlo ray-tracing (MCRT) 

code able to propagate rays in 3D geometry taking into 

account complex thermo-radiative properties of materials 

and inhomogeneous 3D temperature fields as inputs. 

Geometrical camera parameters (focal length, detector 

size) are used to reproduce the 2D IR image and the 

collected radiance by each pixel. The reflected light 

behavior is modeled through the Bidirectional 

Reflectivity Distribution Function (BRDF) and described 

as a combination of Lambertian and specular components. 

In first estimations, two extremes BRDF are considered: 

a diffuse model (100% Lambertian) and a highly specular 

model (2% Lambertian) following a Gaussian shape with 

a full-width half maximum of 12°. 

In [4], it is showed that considering the target as 

blackbody (i.e. assuming that ε=1 instead of 0.2) induces 

an underestimation of the true target temperature up to 

50% which is a risk for the machine safety. The 

contribution of reflected flux is assessed superior to 90% 

on colder targets (temperatures lower than150°C, the 

maximum temperature is around 1300°C), which causes 

an overestimation of temperature greater than 100%. This 

will affect especially the measurement of the profile decay 

length. The spatial resolution of the camera also affects 

the temperature measurement and may cause an error of 

20% on the maximum temperature. 

 

2.2 Numerical prototype tokamak-like  

To test the inversion method, a numerical prototype 

tokamak-like with the main in-vessel components has 



 

been developed as illustrated in Fig. 1. The camera view 

looking at the lower divertor is reproduced (25°x58° field-

of-view) since the lower divertor temperature 

measurement is the most critical. 

 

Fig. 1. Numerical tokamak-like prototype of WEST with the 

main PFC: the lower divertor, the Upper Divertor , the FW and 

the Vacuum Vessel (Left). Modeled radiance image obtained 

through the radiosity method in a baking scene (Right) 

 

The input thermal scene of the tokamak is described on 

meshed geometries: each patch of the meshes is 

characterized by fixed temperature and emissivity values. 

Patches size requires to be optimized for each geometry 

to accurately describe the spatial distribution of 

temperature while limiting the number of patches to be 

solved in the equations describe in section 3. For instance, 

finer mesh is used for the lower divertor (about 160,000 

patches of 12 mm mean size) characterized by a peaked 

temperature distribution, whereas coarse meshes (about 

54,000 patches of 40 mm mean size) are used for the rest 

of geometry. Furthermore, in order to reduce again the 

patches number the tokamak model has been reduced to a 

20° sector closed by two black surfaces at the 

environment temperature (ε=1). For an isothermal lower 

divertor (at 180°C) in an isothermal enclosure (at 200°C), 

the MCRT code shows an error of around 5% on the 

radiance collected by the camera detector between the 

whole tokamak (360°) and the 20° sector. This error can 

be reduced by increasing the closing surfaces temperature 

to compensate the missing flux due to multiple reflections 

outside the sector. In this study, the whole scene consists 

in about N=12,000 patches. 

 

First experimental results [5] in WEST have shown that 

the emissivity on the lower divertor is not homogeneous  

because of the plasma-materials interaction 

(erosion/deposition phenomenon), see Fig. 2. In the 

numerical prototype, the emissivity profile along the 

components corresponding to the red line is then modeled 

as a piecewise constant profile with six values. 

 

 

Fig. 2. Photography of the lower divertor sector and illustration 

of the piecewise constant profile constituted of six emissivities 

(ε1=0.2, ε2=0.07, ε3=0.1, ε4=0.07, ε5=0.15 and ε6=0.3 [5]) 

3. Radiosity model 

The inversion method is based on an iterative processing 

aiming to minimize the differences between the modeled 

and the experimental IR images. The challenge is then to 

use a fast direct model able to simulate IR images for 

different input parameters (emissivity, BRDF, 

temperature) to compare them to experimental data. 

The MCRT is not a direct model adapted to an iteration 

loop (not fast enough and requires a lot of calculations to 

obtain a high enough accuracy increasing its computation 

time). This paper presents a faster direct model working 

in two steps: i) calculation of the view independent 3D 

solution (radiance of each patch) based on the radiosity 

method and ii) calculation of the desired 2D projection IR 

image. In the radiosity method, all the patches of the 

enclosure are assumed diffuse in emission and reflection 

(no specular reflection) [6]-[8].Then, the only radiative 

parameter needed for patch i is the emissivity εi (i=1 to 

N), because reflectivity is then given by ρi = 1 - εi. All the 

radiative quantities (emissivities and fluxes) are 

considered in the spectral range of the IR camera (=3.7 

µm – 4.5 µm). The radiosity solution needs first the 

calculation of the N² diffuse view factors of the enclosure. 

For a given enclosure with a given meshing, this 

calculation is needed only once because the view factor 

between patches A1 and A2 is a purely geometrical 

quantity: 
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It represents the fraction (between 0 and 1) of radiation 

that leaves the surface A1 and hits the surface A2, where 

υ12 is an obstruction factor that takes the value 1 or 0 

depending on whether surface dA1 sees directly dA2 or not 

[6]. 

The radiosity J for an opaque material is the amount of 

energy (emitted and reflected) leaving a surface in all 

directions, per unit area. The radiosity Ji of an elementary 

surface noted i is given by: 
0 (1 )

ii i r i i i iJ M J M E = + = + −  (2) 

Where Mi is the emitted component (exitance), εi is the 

emissivity; Jri is the reflected component (reflectance). 

The exitance Mi° is given by the spectral integration on 

 of Black Body Planck function at the temperature Ti
 

[6]-[9]. The incident power Ei (irradiance) is the sum of 

radiation from all other surfaces that can hit surface i: 

i ij j

j
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The equations (2) and (3) form a set of N linear equations 

with N unknowns Ji given by (4) or (5) in matrix form: 
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With, I = (δij) is the identity matrix, R = (δijρi) the 

reflectivity matrix, F = (FAi→Aj) the view factors matrix 

and M = (εiM0
i(Ti)) the emittance vector which is then 

called the “source term”. 

For N elementary surfaces in the 3D scene the view 

factors matrix is a [N×N] array. The view factors are 

computed with an integral contour calculation since there 

are no obstructions (υ12 = 0) [10]. This matrix has a high 

computation time (72 million view factors for 12,000 

patches, 12h computation time) but it can be obtained 

through parallel computing. When all Ji are computed 

through the resolution of (5), the radiance Li (in W/m².sr) 

are deduced by Li= Ji/π (and Li°(Ti)= Mi°(Ti)/π). Finally, 

the 3D to 2D projection of radiance Li is achieved by an 

OpenGL routine to provide the observable quantity: the 

radiance collected by each pixel of the modeled pinhole 

camera or, in other words, the 2D IR modeled image (see 

an example on Fig. 1 (right)). 

 

4. Inversion method 

4.1 Methodology 

 

Fig. 3. Illustration of the parameters estimation problem 

 

Fig. 3 illustrates the inversion process applied to IR 

measurements. From a set of input parameters, a 2D IR 

image is computed through the radiosity method coupled 

to the camera modeling. The parameters used as input of 

the direct model are related to the monitored thermal 

scene: the temperature and emissivity of the environment 

are assumed known while the temperature or emissivity 

of the target (lower divertor) are the p parameters xj (j=1 

to p) to be estimated. The Ordinary Least Squares (OLS) 

minimization between the experimental y(si) and modeled 

ymo(si) data will be done on a radiance profile along 

m=230 pixels si (i=1 to m) corresponding to a radial line 

on the lower divertor (see the red line Fig. 1 (right)) and 

not all pixels of the image. The iterative minimization is 

stopped when variation of each parameter is inferior to 

0.01% of its preceding value. The 95% confidence levels 

are then computed. 

At each iteration of the OLS minimization, parameters are 

updated using Gauss-Newton algorithm [11]-[12]. That 

needs to invert the STS information matrix [p×p]: 
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This algorithm is easy to implement and allows a 

minimum number of the direct model calls. Each column 

j of the sensitivity (or Jacobian) matrix S [m×p] contains 

the sensitivity coefficient of the model to the parameter xj 

(j=1 to p) computed along pixels si (i=1 to m) given by 

equation (7) [11]-[12]: 
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The p parameters of the model are either the emissivities 

or the exitance M0 of the patches of the 3D scene. The 

sensitivities to exitance are computed through the 

derivation of equation (4) with respect to exitance M0
j: 
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The equation (8) can be reduced to equation (9) since the 

matrix A does not depend on the exitance M0
j of the 

patches in the 3D scene. In addition, the second term (the 

source term) is 0 everywhere except for the groups of 

patches that share the same M0
j value for which the source 

term is equal to their emissivity. These groups of patches 

(labeled k, m, n) do not necessarily have the same 

emissivity: 
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This equation shows that the sensitivity Sj to the exitance 

M0
j will be the solution of equation (9) that is the same as 

equation (4) with a specific source term. Equation (10) 

gives the sensitivity to the emissivity by derivating 

equation (4) with respect to εj: 
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In this case, the matrix A and more particularly the matrix 

product (RF) depends on εj. The second term (the source 

term) is 0 everywhere except for the groups of patches that 

share the same εj for which the source term is equal to the 

difference between their exitance M0 and their irradiance 

E (given by FJ). These groups of patches (labeled r, s, t) 

do not necessarily have the same (M0-E) value: 
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Then the inverse of matrix A already computed to solve 

(8) is advantageously reused to solve the sensitivity 

equations (9) and (11). This is the same idea developed in 

[13] but with Monte-Carlo algorithm instead of radiosity 

algorithm. 

It is worth plotting the reduced sensitivity xjSj(si) for 

different parameters of models along a pixel line (Region 



 

Of Interest, ROI) on the lower divertor. The reduced 

sensitivities are used to compare directly the parameters 

between them and then figure out the most influent 

parameters and where this influence occurs. This 

comparison is also used to detect if some sensitivities are 

similar which would be bad for the conditioning of the 

information matrix STS that has to be inverted. 

Consider the situation illustrated in Fig. 2 where the lower 

divertor (LD) is assumed split in 6 annular strips of 

different radiative properties and temperatures but each 

strip has an homogeneous emissivity and is at an 

homogeneous temperature. The lower divertor is enclosed 

in the surrounding surfaces (Upper Divertor, UD, FW and 

Vacuum Vessel, VV) described in Fig. 1. Each of them 

has a homogeneous emissivity and a homogeneous 

temperature. This model then has 18 different parameters: 

6 emissivities and 6 exitances for the lower divertor, 3 

emissivities and 3 exitances for the surrounding surfaces. 

Fig. 4 shows the reduced sensitivities of the model to the 

emissivity and the exitance of strip #3 and to the 

emissivity of the UD, VV and FW (5 of the 18 

parameters): 

 
Fig. 4. Reduced sensitivities of model with respect to some 

parameters: emissivity and exitance of strip #3 of LD, 

emissivities of UD, FW and VV. The model output is the 

profile of collected radiance on m=230 pixels for an isothermal 

(180°C) lower divertor, the other 3 parts of tokamak (UD, FW, 

VV) being isothermal at 200°C, with their own emissivities 

 

The sensitivity of the model to one of the emissivities of 

the target (here the #3) is almost zero everywhere except 

on the concerned strip. The observation is analog for the 

exitance. Furthermore, the sensitivities of the model to the 

emissivities of the environment are negligible and there is 

no need to include them in the Parameters Estimation 

Problem. At last, the sensitivity study illustrates also that 

the sensitivities to an emissivity and to an exitance of a 

same strip (here #3) are correlated; hence, it is not 

possible to estimate those two parameters simultaneously, 

which is a well-known issue; multispectral measurements 

are usually used to try to solve the emissivity and 

temperature correlation [14]-[15].  

 

4.2 Application to WEST 

Further to the emissivity and temperature correlation 

issue, two kinds of experimental thermal scenes (named 

“baking” and “heatload”) are proposed to be used for 

estimating independently emissivity and temperature 

parameters. This is possible with WEST experiments 

since its operation plans baking for which the surface 

temperature of all in vessel components is uniform and 

measured punctually thanks to embedded diagnostics 

(thermocouples and Fiber Bragg Grating). 

The inversion method to retrieve the true surface 

temperature of PFC will then occur in two steps: i) use of 

a baking scene, for which the surface temperatures are 

well known, to estimate the emissivity of the target and ii) 

use of the resulting emissivity map to estimate the surface 

temperature of the target during heatload scenes. 

 

5. Results 

5.1 Confidence and Precision of the Inverse Method 

To test the inverse processing, synthetic measurements 

including an additive Gaussian white noise have been 

generated from the radiosity method. The standard 

deviation of this noise is σ=0.155 W/m².sr (roughly 

estimated by considering photon noise and background 

noise). For the baking scene, this noise is roughly 4% of 

the range of magnitude of measured radiances. As for the 

heatload case, the noise is respectively 3% and 0.04% of 

the minimum and maximum measured radiances.. The 

covariance matrix resulting of the amplification of this 

noise is given by the following formula [11]-[12]: 
2 1( ) ( )TCov x S S −=  (12) 

Where x is the vector of estimated parameters (ε or M0) 

corresponding to the solution of the radiosity linear 

system and S the sensitivity matrix computed for x. The 

95% confidence intervals of the estimated parameters are 

computed from this covariance matrix:
1/21.96 ( ( ))x diag Cov x  . 

 

5.2 Emissivity estimation 

The emissivity estimation is performed from infrared 

measurements during the baking scenario. The 

temperatures of the target and environment are assumed 

known. The sensitivities to the emissivities of the 

surrounding surfaces are negligible then they will not be 

estimated but they are fixed to their value of the literature 

(0.1 for the UD made of tungsten, 0.3 for the FW and VV 

made of stainless steel). The simulated input thermal 

scene is the following: the temperature of the surrounding 

surfaces (i.e. UD, FW, VV and the black surfaces) is fixed 

to 200°C and the temperature of the divertor to 180°C.  

The divertor emissivity profile, that we try to solve, is the 

one described in section 2.2, composed of 6 strips with 

emissivity values varying between 0.07 and 0.2. 

However, in the inverse processing, we do not impose the 

spatial variation of emissivity on these 6 strips as a priori 

knowledge. 

The component is split into 40 regular annular strips of 

uniform emissivity. The inversion method will then 

consist in estimating the emissivity of the 40 strips and 

hopefully retrieve the “6 strips” profile. The number of 

strips is optimized to describe the emissivity profile in 

sufficient details while limiting the number of parameters 

to be estimated. In this case, the number of strips is 

constrained by the target mesh size (10 mm). 



 

Fig. 5 (left) shows the optimal radiance profile in the 

camera plane (obtained with the optimal estimated 

emissivity values in the ‘real world’, Fig. 5 (right)) 

compared to the ‘measured’ radiance profile (synthesized 

with noise here).  

It is worth noting that the method converges quickly (in 4 

iterations) and this, without applying high constraint on 

the initial guess. As proof, the initial estimated radiance 

profile shown in Fig. 5 is the result of 40 emissivity initial 

values randomly fixed between 0 and 1. 

The errors on the estimated radiance profile are up to 3%. 

The estimated and synthetic profile are in good 

agreement, the greater discrepancies occur at important 

transitions of the emissivity values. This results in high 

errors on the emissivity up to 40%. However the mean 

error on the emissivity values is much lower (6%). 

 

5.3 Temperature estimation 

The inversion method for solving the surface temperature 

from experimental data is equivalent to the one for solving 

the emissivity as described in 5.2. The temperature of the 

surrounding surfaces is assumed known (fixed to 90°C) 

and the emissivities of LD are known resulting of the first 

estimation step from IR images obtained during the 

baking.  

The divertor temperature profile, that we try to solve, 

follows a profile given [16]. The exitances of the 40 

different strips of LD (see section 3) are estimated with 

the method described in section 4.1.  

The system converges quickly (in 2 iterations) for the 

exitance estimation because the Parameter Estimation 

Problem is here linear. From the resulting exitance, it is 

possible to retrieve the surface temperature of the strips 

since the exitance Mi°(Ti), given by the spectral 

integration of Planck function at the temperature Ti, is 

monotonous. Fig. 6 (left) presents the comparison 

between the estimated temperatures and the true surface 

temperatures on the lower divertor. Fig. 6 (right) also 

shows the usual interpretations of IR measurements, pixel 

by pixel, to retrieve the temperature of the target. The 

apparent temperature is obtained through Planck’s 

function inversion assuming ε=1 (blackbody 

assumption), whereas the pure emitter temperature uses 

the true emissivity assumed well known for each pixel of 

the profile but does not consider any reflection:

 

Fig. 5. Left: Optimal estimated radiance profile (red) obtained after the convergence of the inverse method compared to the 

‘measured’ profile (black, synthesized with noise here) and to the initial estimated radiance profile (blue). Right: Optimal estimated 

emissivities (blue) in a baking scene compared to the true emissivities (dashed black). The estimated values are given with the 95% 

confidence intervals

 
Fig. 6. Left: Estimated temperatures (blue) with associated confidence intervals during a plasma scenario compared to the true 

temperatures (black) – Right: Planck function inversion applied to the synthetic data results in a profile of apparent temperatures 

(blackbody assumption, ε=1) (magenta) or in a profile of pure emitter temperatures (emissivities assumed known per pixel) (green) 

 

In the ‘real world’ (Fig. 6 left) there is 1% error on the 

maximum temperature profile and up to 3% error on the 

colder temperature (i.e. 90°C, the temperature of the 

environment) between estimated and true temperatures. 

In the image world (with pixels, Fig. 6 right), the apparent 

and pure emitter temperatures are compared to the so-

called IR temperature that corresponds to the true 

temperature profile in the real world after degradation by 

the 3D→2D projection and pixel sampling. The error on 

the peak between the true temperature and the IR 

temperature is negligible (inferior to 0.5%). Table 1 



 

presents the two comparison, in ‘image world’ and in ‘real 

world’: 

 
Table 1.  Error on the surface ‘IR temperature’ measurement 

assuming a blackbody (ε=1, so-called BB T°), known emissivity 

without solving the reflections (so-called PE T° for ‘Pure 

Emitter’). Error on the ‘true surface temperature’ measurement 

with the inverse method (so called estimated T°). 

 In ‘image world’ In ‘real world’ 

 BB T° 

vs IR T° 

PE T° vs 

IR T° 

Estimated T° 

vs true T° 

Peak 42% 15% 1% 

Cold targets 6% 11%-40% 3% 

 

6. Conclusion  

The paper presents an inversion method to retrieve the 

surface temperature from IR measurements solving the 

reflections in an all-reflective environment. To do so, the 

baking scene, in which the uniform temperatures of the 

target and the environment are known, is first used to 

estimate the target emissivity profile with a mean error of 

6%. The target surface temperature is then retrieved 

during a plasma scenario with an error better than 3% on 

the peak and on colder targets, the most disturbed by the 

reflections. 

The inverse method based on radiosity model gives good 

results for all diffuse thermal scenes and knowing the 

environment temperature (which is a realistic assumption 

since the wall is actively cooled). The next step will 

consist in testing the accuracy of the method for retrieving 

the surface temperature in the case of highly specularly 

reflective surface. To achieve that the MCRT code will be 

used as a generator of synthetic measurements with 

materials presenting a highly specular BRDF model. 

Furthermore, the method is currently not limited by the 

number of parameters but rather by the constraints put on 

the meshes precision for computing time issues. This can 

cause high errors on the emissivity estimation if the 

discretization cannot follow the radiative properties 

important transitions along the target. These errors can 

decrease with an optimization of the mesh size. 

To go further the inversion processing will be tested on 

experimental data from WEST and ASDEX Upgrade. 
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