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This review paper discusses rhythmic interactions and distinguishes them
from non-rhythmic interactions. We report on communicative behaviours in
social and sexual contexts, as found in dyads of humans, non-human pri-
mates, non-primate mammals, birds, anurans and insects. We discuss
observed instances of rhythm in dyadic interactions, identify knowledge
gaps and propose suggestions for future research. We find that most studies
on rhythmicity in interactive signals mainly focus on one modality (acoustic
or visual) and we suggest more work should be performed on multimodal
signals. Although the social functions of interactive rhythms have been fairly
well described, developmental research on rhythms used to regulate social
interactions is still lacking. Future work should also focus on identifying
the exact timing mechanisms involved. Rhythmic signalling behaviours
are widespread and critical in regulating social interactions across taxa,
but many questions remain unexplored. A multidisciplinary, comparative
cross-species approach may help provide answers.

This article is part of the theme issue ‘Synchrony and rhythm interaction:
from the brain to behavioural ecology’.
1. Introduction
Animals rely on effective signal transfer for communication with conspecifics.
The sender must produce a clear signal that can be readily detected by the recei-
ver [1]. A variety of sensory systems evolved to accommodate the production
and reception of signals, and over time, these systems were fine-tuned by selec-
tive evolutionary pressures leading to remarkable species-specific adaptations
(e.g. three-ossicle middle ear in mammals adapted for acoustic transmission
of high-frequency signals [2]). Signals can be produced in several modalities,
including acoustic, visual, chemical, tactile, etc.; each modality has its own
(psycho)physical limitations that impose constraints on communication. For
example, acoustic signals are effective for long-range information transfer but
are affected by signal attenuation and degradation, especially at higher frequen-
cies [3]. In the visual modality (e.g. signed languages), receivers are required to
be in close contact with the signaller to accurately discriminate the signals
because obstacles can block them. Regardless of the modality in which signal-
ling occurs, interactive signalling will henceforth refer to a communicative

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2020.0337&domain=pdf&date_stamp=2021-08-23
https://dx.doi.org/10.1098/rstb/376/1835
https://dx.doi.org/10.1098/rstb/376/1835
mailto:kdereus95@gmail.com
mailto:andrea.ravignani@mpi.nl
https://doi.org/10.6084/m9.figshare.c.5495060
https://doi.org/10.6084/m9.figshare.c.5495060
http://orcid.org/
http://orcid.org/0000-0002-6129-9726
http://orcid.org/0000-0002-8596-1956
http://orcid.org/0000-0002-2697-0297
http://orcid.org/0000-0002-2640-6899
http://orcid.org/0000-0003-4362-3032
http://orcid.org/0000-0003-3397-2079
http://orcid.org/0000-0002-1058-0024


Table 1. Definitions of terms relating to dyadic interactions.

term definition

signals ‘traits that (1) change another organism’s behaviour while benefitting the sender, that (2) are evolved for this function, and that

(3) have their effects through the evolved response of the receiver’ [15, p. 1011]

rhythm ‘pattern of time intervals between the onset of events’ [16, p. 165]

rhythmic

interaction

an interaction where two conspecifics adjust their timing behaviour to each other to create temporal regularities that facilitate the

interaction

entrainment ‘spatiotemporal coordination resulting from rhythmic responsiveness to a perceived rhythmic signal’ [17, p. 5]

duets ‘joint […] displays where two [partners] coordinate their [signals] with a degree of temporal precision’ [18]; traditionally, duets

occur in the acoustic modality, but we believe the use of the term should be extended to all other communicative modalities.

synchrony ‘precise coincidence of events in time’ [19, p. 158]

turn-taking ‘orderly exchange of purely communicative signals or behaviours (e.g. peek-a-boo games in humans) between individuals

characterized by principles for the coordination of turn transfer, which result in observable temporal regularities’ [20, p. 2];

we subscribe to the idea that turn-taking is mostly rhythmic in its temporal dimension [6]

alternation ‘where the regularly repeating signals of two […] individuals are broadcast such that they do not occur at the same time’ [21,

p. 4]

antiphony ‘when […] two animals transmit sounds among themselves in response to preceding signals’ [22, p. 155]
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exchange during which signals are transferred, back and
forth, over a short time scale.

Timing is key in interactive signalling behaviour [4–6].
Individuals take turns in human conversation and entrain to
the rhythms of other players while making music [7,8]. Indivi-
dually timed behaviour in groups can lead to impressive
collective phenomena such as synchronous movements to
musical rhythms at concerts [9], cricket choruses [10] and the
bioluminescent flashing of fireflies [11]. Unfortunately, natural
interactions involving many agents are often difficult to study
under controlled conditions. Hence, for practical reasons, most
studies on interactive rhythms minimize the number of indi-
viduals by focusing on dyadic interactions. Some species can
achieve a high degree of temporal coordination, and even syn-
chronization, during conspecific interactions [10,12–14].
Therefore, we ask: how does rhythm shape dyadic interactions
and how do dyadic interactions shape rhythm?

Here, we review stable interactions in dyads across
species, modalities and contexts. This review covers
humans and non-human animals—namely insects, anurans,
birds, non-human primates and non-primate mammals—
interacting mainly in the acoustic and visual modalities, and
in social and sexual contexts. We (i) begin by proposing
widely applicable definitions for relevant concepts (table 1);
(ii) highlight rhythmic dyadic interactions in each group; and
(iii) discuss the existing behaviours in the light of Tinbergen’s
four questions while proposing suggestions for future research.

We first need to distinguish between what constitutes a
rhythmic versus non-rhythmic interaction. A rhythmic inter-
action is one where two conspecifics adjust their individual
timing to each other to create temporal regularities that facili-
tate the interaction. The rhythmic structure that emerges can
be measured and quantified along sequential and temporal
dimensions [23]. For instance, in piano duets and dyadic
finger tapping experiments, a statistical association, either
synchronous and/or asynchronous, can be established
between the temporal intervals of the two players [24,25].
Based on the concepts described in table 1, any interaction
that requires timing adjustment between two conspecifics
such as dyadic synchrony and turn-taking is considered
rhythmic in this paper. A non-rhythmic interaction is one
where there is no timing adjustment between the members
of the dyad. Despite this, individual rhythms can still play
an important role in regulating the interaction. For example,
male northern elephant seals (Mirounga angustirostris) can
recognize the rhythmic structure of their rivals’ vocalizations;
depending on the individual’s status within the colony, males
will either ignore or move away from the vocalizing male
[26]. In the absence of a temporal relationship between the
signals of two conspecifics, both alternation and antiphony
are considered non-rhythmic. In the electronic supplemen-
tary material, readers can find examples of both interactions
for all animal clades discussed in this review (electronic
supplementary material, table S1) and a discussion on
non-rhythmic interactions.
2. Humans
Humans are a highly social species and perform many types
of duets; here, we focus on two: speech and music. In the
rhythmic domain, speech generally involves turn-taking,
whereas music is typically performed in synchrony, although
people can chant speech together and call-and-response is
used in music. Such behaviours involve complex social inter-
actions and serve to communicate information, express
emotion and socially bond [27,28]. These acoustic behaviours
are performed with others in complex behavioural patterns
involving cues including gesture, touch, body sway and
dance, but also facial expressions and gaze direction [29–32].

(a) Infancy and childhood
Human infants cannot survive without carers for a consider-
able period, and their early development and learning is
done in a social context, often primarily with the mother
[27]. Within this social context, movement behaviours [33],
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vocal behaviours [34], gaze [35], autonomic functioning [36]
and hormone expression [37] are coordinated in time
between infants and their carers. This early temporal coordi-
nation may enable infants to (i) regulate physiological and
behavioural processes for survival [37], (ii) develop self-
regulation [38], (iii) differentiate the emergence of their self
from others [27], (iv) begin building social and empathetic
relations with others [39], and (v) learn speech and music
through continual reciprocal adjustments [40].

Carers provide rhythmic input to their infants in the
forms of singing, patting and rocking, which helps infants
to regulate their states [41]. The periodicities found in
rhythms of infant-directed singing provide a context for
bidirectional entrainment between infants and carers, which
can be seen in the coordination of autonomic and brain
responses between mothers and infants [35,42,43]. Synchro-
nous movement to music during infancy also has important
social consequences. Fourteen-month-old infants who are
bounced in synchrony to music with an experimenter are
much more likely to subsequently help that experimenter
compared to infants who are bounced out of sync [39,44],
suggesting that the origins of empathy and friendship may
be found in coordinated rhythmic behaviours.

While the bidirectionality of interactions begins in infancy,
carers initially have a broader role in structuring and scaffold-
ing the interaction [45,46]. As children develop their
advancing language, social and cognitive skills support and
expand their active participation in complex, rhythmic
verbal and non-verbal interactions [45]. In the verbal
domain, children become increasingly proficient at dialogue
and conversation [45,47]. Active turn-taking during conversa-
tion, which reflects partners’ attunement to each other, is
associated with children’s language and social skill develop-
ment [48,49]. Children who experience more appropriate
turn-taking styles during conversations with their parents
are more liked by their peers [50], and also exhibit more
appropriate turn-taking with their peers even when the
peers are novel acquaintances [51]. In the non-verbal
domain, unfamiliar child peers who actively engage in coor-
dinated rhythmic movement activities together show greater
cooperation [52] and perceive that they are closer and more
similar to each other, potentially due to increased intentional
communication [53].
(b) Adulthood
In adults, entrainment during dyadic conversation is observed
through temporal adaptations within each individual’s speech
pattern that occur over multiple timescales [54]. The precise
timing involved in conversational entrainment suggests the
presence of underlying rhythmic processes that allow for accu-
rate timing predictions [55]. During a conversation, dyads
converge their individual speech rhythms as measured via
speech rate, prosody and respiratory movement [56–58], as
well as turn-taking timing (e.g. by minimizing silent gaps
and avoiding overlap) [55,59,60]. The degree of entrainment
in conversation is impacted by the interaction context (e.g.
friendly versus unfriendly [54]). Rhythms are crucial in these
interactions as their temporal regularity enables prediction
and sampling of environmental stimuli [61].

Coordination in both musical and conversational duets
relies on visual and auditory cues [62,63] but, in contrast
with speech which largely involves turn-taking, musical
interactions typically involve synchrony. While the two inter-
acting musicians may sing or play different pitches, their
outputs must fit together both rhythmically and harmoni-
cally to create a single meaningful joint performance. The
high real-time temporal demands of duet music-making
require continual adjustments, anticipation and prediction
(if an individual reacts to rather than anticipates their part-
ner’s output, they will be late and not in sync with them)
[8]. The continual adaptation of two people tapping together
can be seen in ‘lag-1 correlations’, whereby on a given tap, the
individual who is slightly ahead will slow down on their next
tap and the individual who is slightly behind will speed up
on their next tap [64]. Studies of string quartets also show
mutual adjustments of timing, with some quartets being
more leader-driven and others more egalitarian [65–67].
However, asynchronies increase when one musician in a
duet is replaced with a recording [68] and when tempo pre-
ferences of two musicians are divergent [69], highlighting
the importance of bidirectional coordination. Musicians
convey their upcoming intentions through body sway, similar
to how people use hand gestures when they speak. Findings
from string quartets show that the body sway of one musician
predicts the upcoming body sway of another musician [70].
In short, the better overall communication is among group
members, the higher rated is the quality of their performance
[29]. Music affords an ideal context in which people can syn-
chronize their movements, and when a person experiences
even a short period of synchronization with another person,
it has social consequences, leading to increased liking,
cooperation and trust [71,72]. These social consequences may
explain why music-making in groups is universal across
human societies and likely an evolutionary adaptation [73].

3. Non-human primates
Dyadic interactions among primates are essential to determine
hierarchies within stable groups [74], and establish alliances
and partnerships [75]. In several monkey and ape species,
where vocal communication follows precise temporal and
social rules, strong social bonds shape interactive signalling
patterns [76,77]. For instance, bonobos respond preferentially
to conspecifics with whom they have close bonds, and take
turns to avoid overlap when vocalizing with those [78]. Unfor-
tunately, rhythmic features have generally been understudied
in primate communication, with few exceptions.

Primates may form long-lasting, socially monogamous
pairs with opposite-sex conspecifics. Tarsiidae, Callicebinae,
Hylobatidae and Indriidae include the main species of pair-
living primates producing duets [79,80]. These pair-living
primates face the need to defend a reduced home range
[81] and males within these pairs struggle to protect mating
exclusivity [82]. In both gibbons and indris, duets serve to
inform neighbouring groups about the occupation of a terri-
tory and to defend it during group encounters [83]. In indris,
duetting mediates group cohesiveness (see figure 1c, [86]),
while in gibbons, it can inform about the presence of particu-
lar predators [87]. Duetting in siamang pairs (Hylobates
syndactylus) is associated with a rhythmic swinging from
branch to branch, which helps maintain entrained vocal dis-
plays between males and females [88]. Depending on the
species, simultaneous singing or avoiding song overlap
advertises the strength of a bond and may predict both
behavioural coordination and grooming rates [89].
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units. (b), (d ) and ( f ) are sketches of the animals represented in the adjacent spectrograms.
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4. Non-primate mammals
Rhythmic interactions in other mammalian species allow indi-
viduals to identify conspecifics and maintain affiliations with
other group members. We summarize findings of interactive
exchanges in animal groups inhabiting different physical and
socio-ecological environments including cetaceans, pinnipeds,
bats, rodents, elephants, antelopes and meerkats.

Cetacean vocal interactions span alternation and syn-
chrony. Bottlenose dolphins exchange signature whistles for
individual recognition and group cohesion [90,91]. These
exchanges are closely coordinated in time such that acoustic
overlap is minimal (silent gaps < 1 s) [92]. Male bottlenose
dolphins also engage in coordinated cooperative interactions
when coercing females by synchronizing their threat
vocalizations and matching tempos [93].

In pinnipeds, mother–pup recognition is a common
dyadic interaction, where mothers and pups use vocal cues
to identify and localize each other in the breeding colony,
though species differ in whether mother, pup or both individ-
uals vocalize [94,95]. Harbour seals may also adjust their call
timing and call asynchronously relative to conspecific vocali-
zations [96]. Within a breeding colony, this turn-taking
strategy may avoid acoustic overlap and make individual
pup calls more conspicuous.

Several bat species engage in antiphonal exchanges of
stereotyped calls, also for mother–pup recognition [97–99].
Moreover, adult white-winged vampire bats (Diaemus youngi)
respond to contact calls in a duet-like fashion by temporally
coordinating their reply (silent gaps < 500 ms), potentially to
monitor the spatial positions of conspecifics [100].
Few studies reported on rhythmicity in rodent dyadic com-
munication. In Alston’s singing mice (Scotinomys teguina),
depending on the social context, males adjust their signal
timing to sing in turns and avoid acoustic overlap (silent gaps
around 500 ms) [101]. Naked mole rats (Heterocephalus glaber)
produce soft chirps antiphonally between two or more individ-
uals to identify their social status and maintain affiliations
(silent gaps < 400 ms) [102]. Middle East blind mole rats (Spalax
ehrenbergi) communicate using vibratory signals by engaging in
alternating head-drumming duets (silent gaps < 2 s) [103].

Data on interactive temporal coordination in dyads are lim-
ited for remaining mammal species. Female African elephants
(Loxodonta africana) use antiphonal rumbling sequences between
group members to maintain social distance [104]. An African
antelope, the klipspringer (Oreotragus oreotragus), engages in
alarm call duetting and calls are produced in alternation, with
female calls closely following those of males [105]. Finally,
meerkats (Suricata suricatta) avoid overlapping conspecifics in
low-conflict group sunning calls by vocalizing in turns [106].
Here, group turn-taking is an outcome of dyadic interactions
between group members and mechanistically relies on two
alternating processes: call inhibition and call excitation.
5. Birds
Duets, which require a certain degree of temporal coordination
(figure 1e), are also widespread across birds, especially in
mating contexts. Vocal or dance duets occur in 18–20% of all
avian species [107], which accounts for mostly song-duetting
species among songbirds and dance-duetting species among
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non-songbirds (but see [108,109]). Avian duets are generally
performed by paired partners or prospective mates, and
serve different functions including mate-guarding, joint
resource defence and/or mutual courtship [110,111].

Some barbet species (Capitonidae) [112] and the magpie
lark (Grallina cyanoleuca) [113] perform multimodal duets,
where the two birds simultaneously coordinate vocalizations
and body movements. For singing, species-specific duet rules
are well documented and show interspecific variation, even
among closely related species. For example, in Thryothorus
wrens, some species produce perfect antiphonal duets with-
out overlap, while others sing in synchrony [114]. In avian
song duetting, each of the sexes often produces a particular
phrase at the precise onset or offset of its partner’s singing,
making it a perfectly timed collective display [115]. By
contrast, rhythmicity in dance duets is still relatively unex-
plored. For example, in the red-crowned crane (Grus
japonensis), males and females exhibit sequences of multiple
dance elements for their joint display [116], but it is not
known whether the paired cranes precisely time and
synchronize their dancing with each other.

The degree to which two individuals coordinate their sig-
nalling during a duet varies even among dyads of the same
species. Although temporal coordination can greatly influ-
ence reproductive fitness as better-coordinated signals are
more effective for securing mates or reproductive resources
[117], not every pair will be able to achieve the same degree
of coordination. In fact, high-level coordination can only be
achieved by pairs with longer partnerships [118]. Indeed,
newly established pairs of canebrake wrens (Cantorchilus zele-
doni) improve the coordination of their duets over time,
suggesting that learning enables fine duetting [119].

Multimodal signal coordination in dyadic interactions is
not restricted to species known for their duetting. The zebra
finch has been intensively studied and disproportionately
so relative to other songbirds, but lacks duetting as only
males sing [120]. Despite this, mated pairs display tight tem-
poral coordination in both visual and auditory modalities.
Zebra finches form strong dyads with a lifelong mate [118]
where coordinated behaviours serve as an honest signal of
the pair’s coalition quality. Indeed, the strength of the bond
in zebra finch pairs predicts the degree of coordination of
movements [121] and call exchanges [122], which mechanis-
tically rely on predictive timing [123]. Pairs use such vocal
exchanges to maintain a joint behavioural state [124] and
coordinate shared parenting duties [125].
6. Anurans
Dyadic interactions in anurans occur in mating contexts,
where the same-sex duets serve to compete for access to
mates and opposite-sex duets serve to attract potential
mates [126]. Anurans show a precedence effect, where calls
of leading individuals are preferred when two identical
calls are presented in close succession [21], but exceptions
exist [127]. Moreover, calls that alternate in precise phase
relationships are preferred by females of some species (e.g.
the midwife toad Alytes obstetricans) [127]. Precise patterns
of signal timing largely influence mate choice and are thus
under strong sexual selection in anurans [126].

Males typically form large groups and produce loud alter-
nating advertisement calls to attract females for mating [128].
Instances of non-random call timing in males were studied in
larger groups, but also in dyads [129]. In duetting male pairs
of the Neotropical toad (Rhinella ocellata), males call in alter-
nation and avoid overlap with each other [130]. Moreover,
the call delay of the responding male varies depending on
the call duration of the male that initiated the interaction.
This alternation pattern shows a high degree of temporal
coordination within bouts. Call timing adjustment between
two males of the European tree frog (Hyla arborea) can
result in near-perfect antiphonal calling with the mean rela-
tive phase angles distributed around 180° [131]. The onset
of vocalizations can even be adjusted based on the distance
separating individuals, as evidenced in bullfrogs (Rana cates-
beiana) [132]. Bullfrog males call more frequently following
calls of distant neighbours than of those nearby; nearby
neighbours may inhibit the vocal response of the focal indi-
vidual. In sum, males try to avoid signal overlap in an
effort to increase their conspicuousness by paying selective
attention to their close neighbours and vary their call
timing accordingly [131]. However, precise alternation of
vocalizations is not always the norm. A few species signal
using overlapped calls. For example, males of the American
toad (Bufo americanus) signal in synchrony or near-perfect
synchrony [12]. This timing strategy may help reduce preda-
tion risk [133] and/or increase the chorus’ audibility in order
to attract more females to the breeding area [129].

Even though they are rarely described, duets between
males and females do occur at the beginning of courtship.
In the South African clawed frog (Xenopus laevis), receptive
females produce a vocalization named ‘call rapping’, which
is composed of a rapid series of loud clicks, in response to
the male’s advertising call [134]. The female call spurs the
male to move towards the sound source and produce an
intense bout of calling within 1–2 s of the female’s signal. A
possible explanation for the evolution of female courtship
vocalizations in anurans could be found by looking at
similarities in terms of breeding biology [134].
7. Insects
Observations of non-random timing suggest that insects can
adjust the onset of their signals. Temporal relationships of
interactive signals are described for the acoustic modality in
bush-crickets, grasshoppers, mosquitoes and flies, for the
vibratory modality in planthoppers, leafhoppers, stoneflies,
stink bugs and lacewings, and for the bioluminescent
modality in fireflies [10,135]. Generally, males initiate insect
duets and females respond with a fixed latency relative to
the male signal [135]. The temporal pattern of the duet and
the time window of the female reply are species-specific
[136], hence allowing species recognition [135]. The duration
and complexity of the male signal affects the reply latency of
the female [137]. The longer and more complex the male
signal is, the more time is needed to process the information
encoded in the call and assess the male’s quality. However,
the latency of the reply may also depend on the female’s
readiness to mate [137].

In the leafhopper Aphrodes makarovi, sexual communica-
tion and mate recognition are mediated via species-specific
and sex-specific vibrational signals. During duetting, the
female’s response overlaps with the last portion of the male’s
signal [138]. Males can only evaluate the non-overlapped
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part of the female call, and consequently adjust their signal
period length to the duration of the female’s reply to obtain a
longer non-overlapped segment of the female’s call [139].
While competing for access to females in the presence of
rivals, male broad-winged bush katydids (Scudderia pistillata)
produce an acoustic tick that mimics the female’s tick signal
and response timing [140]. This indicates to the female when
the call has concluded and also confounds eavesdropping
males by making it difficult for them to accurately move
towards the true female’s sound source [137]. Not only does
this reduce the risk of competing males interrupting the
established duet, but it also increases the coordination of the
duet itself.

Some insects perform multimodal duets. For temporal
coordination to occur in duets of the fruit fly Drosophila virilis,
females need to detect the male’s sound cues and be in close
physical proximity [141]. During courtship, males tap the
female’s abdomen and lick the genitalia in a precisely
timed manner to coordinate the duet. Females may choose
to mate only with males that provide multiple timing cues
during the duet. In the katydid Onomarchus uninotatus,
male and female signals alternate in a clear phase relation-
ship. Males produce a low-pitched call which receives a
female vibrational signal in response [142] (see electronic sup-
plementary material, figure S1). This unique multimodal duet
may have evolved in response to predation; silent flying
females were predated at a higher rate than calling males.
With females using vibrational signals, the roles are now
reversed: males must search for females by moving towards
the vibration source and face increased risk of predation
by bats.

The same-sex dyadic interactions in insects occur in
highly competitive environments, hence the resulting tem-
poral patterns are an outcome of competition between
signalling males. In species where females prefer to mate
with males leading the call sequence, males alternate calls
to avoid losing their leader role [10,21]. In tarbush grasshop-
pers (Ligurotettix planum), males engage in acoustic ‘fights’ to
defend or conquer a mating territory. The male that cannot
match the signalling rate and length of the signal of its
opponent gives up the fight [143]. The aggressive calls
emitted by competing males thus represent an honest signal
of male fitness.
8. Ultimate causes of dyadic interactions:
function and phylogeny

Dyads can consist of mates, siblings, parent and offspring, or
any two individuals from the same group. Dyadic inter-
actions serve a variety of functions including social
bonding, sharing emotion, establishing hierarchies and part-
nerships, mate-guarding, courtship, joint resource defence,
etc. [14,27,28,40,74,75,110,111]. Studying dyads means that
experiments possibly neglect relevant group dynamics,
especially in highly social species. However, it also enables
researchers to study semi-natural behavioural interactions
under more controlled experimental conditions.

In this review, we identified two settings in which dyadic
behavioural interactions can occur: social and sexual. Helping
behaviour, learning behaviour and parent–offspring recog-
nition were classified as occurring in social settings. Dyadic
interactions in sexual settings mostly pertain to opposite-sex
conspecifics that are potential mates or already form an estab-
lished pair, but they can also involve same-sex conspecifics
during intrasexual competition occurring during mate
search and attraction [127]. Rhythmic behaviours have been
reported for both contexts in mammals and birds, but in
anurans and insects, they have only been reported for
sexual settings.

Animals produce many different types of rhythms; hence,
they could entrain to conspecific rhythms in ways that can be
difficult to observe. For instance, individual rhythms do not
need to occur in the same modality to interact rhythmically
(i.e. coordination of an infant’s brain responses to its mother’s
singing [42]). Moreover, the dynamics of the interaction
can be both unidirectional and bidirectional [29,65–67].
In music, bidirectional interaction improves coordination,
while unidirectional interactions create larger asynchronies
[68]. Does this finding in humans carry over to interactions
in other species? One could test whether the degree of coordi-
nation is affected by unidirectionality in songbird species in
which one of the sexes does not sing (e.g. the Java sparrow
or zebra finch). It seems that several species overcome such
asynchrony by signalling in more than one modality to
achieve higher levels of temporal coordination.

Even though multimodal signals are widespread across
numerous taxa [62,88,112,113,141], their modalities are often
studied separately [144]. Rhythmic interactive signalling has
been reported mainly for the acoustic and visual modalities
(table 2). However, birds can communicate using vibratory
signals [147], but avian rhythmic interactions in the tactile
modality have not been described. Similarly, anurans have
visual signals [148], but rhythmicity in this modality has
not been described during conspecific interactions. Future
work on interactive rhythms should investigate the unex-
plored modalities in these animal groups. In addition,
analysing rhythmic patterns of multimodal signals during
interactive communication will provide more insight into
the functions of signal timing.
9. Proximate causes of dyadic interactions:
ontogeny and mechanisms

A wide repertoire of signals is needed to become an active,
grown-up participant in dyadic interactions and precise
timing of signals requires extensive practice. The social
environment during development plays a crucial role in
shaping adult signals. Human children benefit from struc-
tured bidirectional interactions scaffolded by their carers
[45,46]. Similarly, young birds learn to participate in adult
interactions. Male zebra finches learn their courtship song
from their father, but can also receive feedback from other
individuals within their social environment [149]. It has
even been argued that learning of species-specific rhythms
starts before birth, with possible long-term effects on vocal
and social development [150]. The social context experienced
during development modulates male signal features and
female mate preferences in insects which will constrain the
interaction [151]. Future work on dyadic interactions should
accurately describe the social environment in which animals
have been raised as it may influence both rhythm perception
and production. Moreover, longitudinal studies should aim
to follow developing individuals to investigate the effect of
development on rhythmic interactions.



Table 2. Summary table of rhythmic interactive signalling in dyads across taxa. Although many signalling modalities have been proposed, the distinctions
between them are often murky, hence, in the spirit of simplicity and to avoid confusion, we only include the main ones: auditory (A), visual (V) and tactile (T).
Bioluminescent signals enhance visual perception [145] and are grouped under the visual modality. Vibratory signals are substrate-borne signals that are
perceived using mechanoreceptors [146], similar to touch, hence they are considered part of the tactile modality. Cases where no empirical evidence was found
are represented by a long dash (—).

composition of dyad interaction context

taxonomic group

mammals (including humans) birds anurans insects

kin

parent–offspring social A, V A, V — —

social group member social A, V A, V — —

non-kin

social group member social A, V A, V — —

male–female sexual A, V A, V A A, V, T

male–male sexual A, V A, V A A, V, T
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Coordinated signal exchanges in dyadic interactions show
reply latencies ranging from the order of milliseconds to
seconds [92,100,101]. The precise temporal coordination of
behaviours must be regulated by the presence of underlying
rhythmic processes, and many timing mechanisms proposed
in the literature are based on the concept of coupled oscil-
lators [55]. Human behaviours such as conversational
entrainment [54] or the synchronous playing of music [8]
rely on mechanisms that allow us to make accurate timing
predictions about the onset of upcoming signals. Pinnipeds
and birds also show some affinity with predictive timing.
Similar to conversational turn-taking, seal pups may adapt
the timing of their calls [96], and some songbirds attempt
to simultaneously synchronize their vocalizations and body
movements [112,121,122]. Insects are also capable of synchro-
nous displays in larger groups, but the neural processes that
regulate signal timing are different from mammals and birds.
Instead of being able to predict the exact onsets of events, sig-
nalling in anurans and insects is reactive [152]. Similar
observable and interactive behaviours can thus be produced
using different mechanisms, but we do not know whether
these mechanisms are learned and whether they change
across modalities.
10. Conclusion
Rhythmic behaviours are widespread among animal clades,
and crucial in regulating social interactions in dyads and
larger groups. Unfortunately, in the temporal domain of
animal communication, many species remain unexplored
and several questions unanswered. Within species and
across contexts, which features of signal timing are stable,
and which are constrained, and to what degree? How are
timing mechanisms learned and do they change from one
modality to the next? Lines of investigation that integrate
ecological and neuroethological perspectives have begun to
resituate rhythmic behaviours within animal communication
systems (see [153]), but they have not been described in
this paper. Such a multidisciplinary approach would allow
researchers to design species-specific experiments to infer
how rhythm functions during interactive signalling [154].
We thus strongly encourage future studies on interactive
rhythmic behaviours in the hope of ultimately developing
an integrative cross-species framework [4]. The comparative
method could then provide crucial insights into the evolution
and adaptive functions of interactive rhythmic behaviour
across taxa [5,6].
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