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Abstract We consider the problem of testing whether the points in a complex or real variety with non-zero
coordinates form a multiplicative group or, more generally, a coset of a multiplicative group. For the coset case, we
study the notion of shifted toric varieties which generalizes the notion of toric varieties. This requires a geometric
view on the varieties rather than an algebraic view on the ideals. We present algorithms and computations on 129
models from the BioModels repository testing for group and coset structures over both the complex numbers and the
real numbers. Our methods over the complex numbers are based on Gröbner basis techniques and binomiality tests.
Over the real numbers we use first-order characterizations and employ real quantifier elimination. In combination
with suitable prime decompositions and restrictions to subspaces it turns out that almost all models show coset
structure. Beyond our practical computations, we give upper bounds on the asymptotic worst-case complexity of
the corresponding problems by proposing single exponential algorithms that test complex or real varieties for toricity
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or shifted toricity. In the positive case, these algorithms produce generating binomials. In addition, we propose an
asymptotically fast algorithm for testing membership in a binomial variety over the algebraic closure of the rational
numbers.

Keywords Binomial ideals · Chemical reaction networks · Complexity bounds · Complex balancing · Gröbner
bases · Mass-action kinetics · Real quantifier elimination · Scientific computing · Symbolic computation · Toric
varieties

Mathematics Subject Classification Primary 14Q20; Secondary 14P05 · 92C42

1 Introduction

We are interested in situations where the points with non-zero coordinates in a given complex or real variety form a
multiplicative group or, more generally, a coset. We illustrate this by means of a simple example. For K ∈ {C, R},
(K ∗)n denotes the direct power of the multiplicative group of the respective field. Consider a family of ideals

Ik = 〈x2 − ky2〉 (1)

with a rational parameter k. Let Vk be the complex variety of Ik , and let V ∗k = Vk ∩ (C∗)2. Then V ∗1 forms a group,
but V ∗−1 does not, because it does not contain (1, 1). However, V ∗−1 = (1, i) · V ∗1 forms a coset of V ∗1 . Over the
reals, V ∗1 ∩ (R∗)2 is again a group, but V ∗−1∩ (R∗)2 = ∅ is not a coset of any group. Consider now V1 = V11∪V12,
where V11 and V12 are given by 〈x− y〉 and 〈x+ y〉, respectively. Notice that V ∗11 is itself a group, and V ∗12 is a coset
of V ∗11. Both V ∗11 and V ∗12 are irreducible because their generating ideals are prime. Under the additional condition
of irreducibility V ∗11 forms a torus and V ∗12 forms a shifted torus. We then call the varieties V11 and V12 toric and
shifted toric, respectively.

Toric varieties are well established and have an important role in algebraic geometry [24,32]. However, our
principal motivation to study generalizations of toricity comes from the sciences, specifically chemical reaction
networks such as the following:
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k
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1

2

2B.

Assuming, e.g., mass action kinetics [66] one can derive a system of autonomous ordinary differential equations
describing the development of concentrations of the species A and B as functions of time [29, Section 2.1.2]. For the
given reaction network one obtains a polynomial vector field generating exactly our ideals Ik in (1). Our methods
thus detect whether equilibrium points with non-zero coordinates form a group or a coset.

Detecting toricity of a variety in general, and of the steady state varieties of chemical reaction networks in
particular, is a difficult problem [7]. The first issue in this regard is finding suitable notions to describe the structure
of the steady states. Existingwork typically addresses algebraic properties of the steady state ideal, e.g., the existence
of binomial Gröbner bases. In this article, in contrast, we take a geometric approach, focusing on varieties rather
than ideals. We propose to study toricity and shifted toricity of varieties V over K ∈ {C, R}, which for irreducible
varieties coincides with V ∩ (K ∗)n forming a multiplicative group or coset, respectively. It is noteworthy that
chemical reaction network theory generally takes place in the interior of the first orthant of R

n , i.e., all species
concentrations and reaction rates are assumed to be strictly positive [29]. Our considering (C∗)n in contrast to C

n

is a first step in this direction, considering also (R∗)n is another step.
Toric dynamical systems have been studied by Feinberg [27] and by Horn and Jackson [44]. Craciun et al. [17]

showed that toric dynamical systems correspond to complex balancing [29]. Our generalized notions of toricity are
inspired by Grigoriev and Milman’s work on binomial varieties [40]. There are further definitions in the literature,
where the use of the term “toric” is well motivated. Gatermann et al. considered deformed toricity for steady state
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ideals [33]. The exact relation between the principle of complex balancing and various definitions of toricity has
obtained considerable attention in the last years [34,51,55].

Complex balancing itself generalizes detailed balancing, which has widely been used in the context of chemical
reaction networks [28,29,44]. Gorban et al. [35,36] related reversibility of chemical reactions in detailed balance to
binomiality of the corresponding varieties. Historically, the principle of detailed balancing has attracted considerable
attention in the sciences. It was used by Boltzmann in 1872 in order to prove his H-theorem [4], by Einstein in
1916 for his quantum theory of emission and absorption of radiation [23], and by Wegscheider [68] and Onsager
[53] in the context of chemical kinetics, which lead to Onsager’s Nobel prize in Chemistry in 1968. Pérez-Millán et
al. [55] consider steady state ideals with binomial generators. They present a sufficient linear algebra condition on
the stoichiometry matrix of a chemical reaction network in order to test whether the steady state ideal has binomial
generators. Conradi and Kahle proposed a corresponding heuristic algorithm. They furthermore showed that the
sufficient condition is even equivalent when the ideal is homogenous [15,46,47]. Based on the above-mentioned
linear algebra condition, MESSI systems have been introduced in [54]. Recently, binomiality of steady state ideals
was used to infer network structure of chemical reaction networks out of measurement data [67].

Besides its scientific adequacy as a generalization of complex balancing there are practical motivations for
studying toricity. Relevant models are typically quite large. For instance, with our comprehensive computations
in this article we will encounter systems up to 90 polynomials in dimension 71. This potentially takes symbolic
computation to its limits. A possible approach to overcome this is to discover systematic occurrences of certain
structural properties in the input, and to exploit those structural properties towards more efficient algorithms. From
this point of view, toricity and shifted toricity are interesting concepts because tools from toric geometry can be used
as a complexity reduction step in themultistationarity problem.Grigoriev andWeber [41] gave a complexity analysis
for solving binomial varieties, based on the computation of Smith normal forms.More interestingly, toric and shifted
toric models are known to have scale invariant multistationarity in the space of linear conserved quantities, which
further reduces the dimension of the multistationarity problem [14].

Our original contributions in this article are the following. Interested in the geometric structure of real and complex
varieties V rather than the algebraic structure of the corresponding ideals, we study primarily V ∗ = V ∩ (K ∗)n .
We call V shifted toric when V is irreducible and V ∗ is a coset. This generalizes the notion of toric varieties V for
groups V ∗. Within this setting, we have two principal results:

• Relating our novel geometric view to the established algebraic view, we give a characterization in terms of
Gröbner bases for V ∗ to be a group or coset (Proposition 7).

• We show that Zariski closures of groups in (C∗)n are binomial varieties (Proposition 6). The converse had been
shown in [40].

We propose practical algorithms testing for given polynomial systems F whether their varieties contain group
or coset structures.

• We consider over the complex numbers V (F)∗ (Algorithm 1) and V (Pi )
∗ for prime components 〈Pi 〉 of 〈F〉

(Algorithm 3).
• We consider the same over the real numbers, V (F)∗ (Algorithm 4) and V (Pi )

∗ (Algorithm 6).
• With prime decomposition we find that for up to 98% of the prime components VK (Pi )

∗ is either empty or a
coset.

Our algorithms are implemented in Maple1 and Reduce2 [42,43] and systematically applied to the steady state
varieties of 129models from the BioModels repository.3 Our objective was to build on robust, off-the-shelf software,
which has a chance to be accepted by scientific communities outside symbolic computation in the foreseeable future.
As a consequence, our proposed algorithms must rely on existing implementations. Over C we use Gröbner bases
[8,25,26], and over R we use real quantifier elimination techniques.

1 Maple (2019). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
2 https://sourceforge.net/projects/reduce-algebra/.
3 https://www.ebi.ac.uk/biomodels/.

https://sourceforge.net/projects/reduce-algebra/
https://www.ebi.ac.uk/biomodels/
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Gröbner bases and real quantifier elimination mentioned above come with high intrinsic complexity. The former
are complete for exponential space [50]. The latter are double exponential [18,38,69]. From amore theoretical point
of view we study the intrinsic complexity of the problems actually addressed. We follow Chistov–Grigoriev’s com-
plexity results for first-order quantifier elimination over algebraically closed fields [11], the algorithm constructing
irreducible components of a variety [11,37] and Grigoriev–Vorobjov’s algorithm for solving polynomial system
of inequalities [39]. These results are used to propose an algorithm to test within single exponential complexity
bounds whether:

• a given complex variety is toric or shifted toric (Theorem 25);
• a given real variety is toric or shifted toric (Theorem 26);
• a given point belongs to a given binomial variety (Theorem 27).

The plan of the article is as follows. In Sect. 2 we present preliminaries from the literature and introduce our new
notions and related results. In Sect. 3, we present new algorithms for group and coset tests over C and R. As a first
step towards irreducible varieties we also use prime decompositions over the coefficient field, i.e., rational numbers.
For the sake of a concise discussion, the major part of our rather comprehensive computation results can be found
in Appendix Appendix A. In Sect. 4 we propose asymptotically fast algorithms for the practical computations in
Sect. 3. The proposed algorithms induce upper complexity bounds on the corresponding problems. In Sect. 5 we
summarize our findings and mention perspectives for future work.

2 Toric, Shifted Toric and Binomial Varieties

Weuse K to denote eitherC orRwhendefinitions or results hold for both fields. The natural numbersN include 0. For
positive n ∈ N and X = (x1, . . . , xn), the polynomial ring with coefficients in Q and variables x1, …, xn is written
Q[X ] = Q[x1, . . . , xn]. For α = (α1, . . . , αn) ∈ N

n, Xα = xα1
1 . . . xαn

n is a monomial in Q[X ]. When mentioning
Gröbner bases of ideals we always mean reduced Gröbner bases; when not mentioned explicitly the term order is
not relevant. Given a polynomial f ∈ Q[X ], the variety of a f over K is V ( f ) = { z ∈ K | f (z) = 0 } ⊆ K n ;
this naturally generalizes to sets F of polynomials and ideals I . Vice versa, given a variety V ⊆ K n , we define
the ideal of V to be I (V ) = { f ∈ Q[X ] | f (z) = 0 for all z ∈ V }. Recall that over algebraically closed fields,
I (V (J )) = √J , the radical of J .

Let K ∗ be the multiplicative group of K . A subgroup G ⊆ (K ∗)n is called a torus over the direct product (K ∗)n ,
where multiplication is coordinate-wise, if there exists m ∈ N such that G is isomorphic to (K ∗)m . A variety
V ⊆ K n is called toric if it is irreducible and there exists a torus G ⊆ (K ∗)n such that V = G, the Zariski closure
of G [63]. It is noteworthy that there are alternative definitions that requires the variety to be normal as well [32].

For a variety V ⊆ K n , by V ∗ we denote V ∩ (K ∗)n , i.e., the points in V with non-zero coordinates. It is
well-known that every torus is the (irreducible) zero set of a set of Laurent binomials of the form Xγ − 1 where
γ ∈ Z [32]. We are going to make use of the following proposition, which is a consequence of results in [32,63].

Proposition 1 Let V ⊆ C
n be a variety. V is a toric variety if and only I (V ) is prime and the reduced Gröbner

basis (with respect to any term order) of I (V ) contains only binomials of the form Xα − Xβ where α, β ∈ N
n.

By definition, V is toric if and only if V is irreducible and there exists a torus T such that V = T . Assume that V
is given by a set of generators of I (V ). Since V is irreducible, then V ∗ is irreducible, hence T = V ∗, V = V ∗, and
I (V ) = I (V ∗). Therefore, it suffices to compute a Gröbner basis of I (V ) instead of I (V ∗) and use Proposition 1
in order to check if V ∗ is a group. Note that if there is a Gröbner basis of I (V ) where all elements are of the form
Xα − Xβ and the ideal is prime, then V ∗ is clearly non-empty. For more detailed study of toric varieties refer to
[32] and [63].

Not all subgroups of (K ∗)n are reducible. For example if K = C and V = V (x2− y2) ⊆ C
n , one can check that

V ∗ = V ∩ (C∗)2 is a group, however it is not irreducible, hence not a torus. Actually V can be decomposed into
the torus V1 = V (x − y)∩ (C∗)2 and V2 = V (x + y)∩ (C∗)2, which is a coset of V1. Varieties that admit a group
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structure have interesting properties. A class of such varieties, called binomial varieties are studied by Grigoriev
and Milman [40], where the authors present a structure theorem for them and discuss the complexity of their Nash
resolution. We remind ourselves of the definition and the structure theorem of binomial varieties, which will be
used for classifying steady state ideals.

Definition 2 (Binomial Variety) A variety V ⊆ C
n is called binomial if V ∗ := V ∩ (C∗)n is the zero set of a finite

set of binomials of the form Xα − 1 ∈ K [x±11 , . . . , x±1n ] and V = V ∗.

Using Gröbner bases instead of Laurent polynomials, one can see that if a variety V ⊆ C
n is binomial then

all elements of every Gröbner basis of I (V ) are binomials of the form Xα − Xβ , where α, β ∈ N \ {0}. The
following theorem by Grigoriev and Milman shows the structure of the binomial varieties by precisely describing
their irreducible components.

Theorem 3 [40, Theorem 3.7] The irreducible components of a binomial variety V ⊆ C
n include exactly one toric

variety T , where T ⊆ (C∗)n is a torus, and several varieties V1 = x1T , …, Vr = xr T , where x1T , …, xr T ⊆ (C∗)n

are cosets of T as a group, with respect to x1, …, xr ∈ (C∗)n, respectively.

Later in this section we will show that the closure of any subgroup of (C∗)n is a binomial variety. Proposition 1
gives the form of the polynomials in a Gröbner basis of the ideal describing the toric component of a binomial
variety. For the components that are cosets of the torus, one can easily derive the form of the reduced Gröbner basis
from the definition of the torus and Proposition 1. This is stated precisely in the following proposition. Intuitively,
non-toric components of a binomial variety can be considered as the shifts of the toric component. This motivates
us to define shifted toric varieties.

Definition 4 (Shifted Toric Variety) A shifted torus in (K ∗)n is defined to be a coset of a torus in (K ∗)n . A variety
V ⊆ K n is called shifted toric if it is the closure of a shifted torus.

Since every group is a coset of itself, every torus is a shifted torus, and therefore every toric variety is a shifted
toric variety. However, a shifted toric variety is not necessarily a toric variety. Following the definition of shifted
toric varieties and using Proposition 1, we show in the following proposition that ideals of shifted toric varieties
have Gröbner bases of a specific form.

Proposition 5 V ∗ ⊆ C
n is a shifted torus if and only if V ∗ is a zero set of Laurent binomials of the form

(
X
g

)α−1,

where g ∈ V ∗ and α ∈ Z
n. Similarly, V is shifted toric if and only if I (V ) is prime and the reduced Gröbner

basis (with respect to any term order) of I (V ) contains only binomials of the form Xα + cXβ where c ∈ C
∗, α,

β ∈ N
n \ {(0, . . . , 0)}.

Proof V is shifted toric if and only if there exists a torus T and a coset C of T with respect to some g ∈ K n (i.e.,
C = gT ), such that V = C . Since V is irreducible, then V ∗ = C = V and I (V ) = I (V ∗) = I (C), and this
ideal is prime. Assume that V given by a set of generators of I (V ). V is shifted toric if and only if I (V ∗) = I (V )

is prime and V ∗ is a coset. This holds if and only if I (V ∗) is prime and g−1V ∗ is a group. Note that g−1V ∗ is
irreducible if and only if V ∗ is irreducible. This holds if and only if I (V ∗) is prime, or equivalently I (V ) is prime.
Therefore, by Proposition 1, V is shifted toric if and only if I (V ) is prime and all the elements of every Gröbner
basis of I (g−1V ∗) is of the form Xα − Xβ , for α, β ∈ N

n \ {(0, . . . , 0)}. Equivalently, all the elements of I (V ) are

of the form
(

X
g

)α −
(

X
g

)β

. Cleaning the denominator, we have the desired form of the Gröbner basis elements. 
�
Proposition 5 along with the structure theorem for binomial ideals imply that the primary decomposition of an

ideal generated by binomials of the form Xα − Xβ include an ideal generated by binomials of the form Xα − Xβ

and several ideals generated by binomials of the form Xα − cXβ .
Using Proposition 5, one can design a randomised algorithm for testing shifted toricity of a variety V = V ∗. Let

g1, . . . , gm be generic points in V ∗ and consider the set of Laurent binomials G =
{ (

X
gi

)γi − 1
∣∣ i = 1, . . . , m

}
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with symbolic exponents γi = (γi1, . . . , γin). Let

M =
⎛
⎜⎝

γ11 · · · γ1n
...

. . .
...

γm1 · · · γmn

⎞
⎟⎠ (2)

be the matrix of exponents of the Laurent binomials and make it row reduced. This leads to a linear combination of
rows with coefficients in Z, say di . Then V is shifted toric if and only if

m∑
i=1

diγi = 0, (3)

which holds if and only if
∏m

i=1
(

gdi1
i1 . . . gdin

in

)
= 1. Solving the linear equations (3) will give us the exponents of

the Laurent polynomials. Note that G obtained in this way is a reduced Gröbner basis.
One can see that a binomial variety is the closure of a group and furthermore, by Proposition 3, it can be

decomposed into toric and shifted toric varieties as its irreducible components. A natural question is whether this
property holds for every variety that is the closure of a group. The answer to this question is positive and indeed
such varieties are precisely binomial varieties. This is explicitly formulated in a remark in [24, after Proposition
2.3].

Proposition 6 Let W be a subgroup of (C∗)n. Then W is a binomial variety.

Proof By definition of binomial variety, we have to prove that W is the zero set of binomials of the form Xα − Xβ

and
(
W

)∗ = W . The equality
(
W

)∗ = W directly comes from the definition of Zariski closure.
For proving that the generators of I (W ) have the desired form, we use the notations of [24]. By Proposition

2.3(a) in the latter reference, C[X±1]I (W ) = I (ρ), for some partial character ρ ∈ Hom(Zn, C
∗). By Theorem

2.1(b) in the same reference, I (ρ) = 〈xm1 − ρ(m1), . . . , xmr − ρ(mr )〉 where m1, . . . , mr ∈ Z
n is a basis of Lρ .

As W is a group, (1, . . . , 1) ∈ W ; hence ρ(m1) = · · · = ρ(mr ) = 1 and therefore I (W ) is generated by binomials
of the form Xα − Xβ where α, β ∈ N. Since W = V (I (W )), we have proved the proposition.

Proposition 6 can also be provedover the positive real numbers by considering the logarithmmapon (R>0)
n acting

coordinate-wise. The image of this map forms a linear space. A basis of this linear space provides a parametrization
of a group.

From a computational point of view, a variety V = V (I ) is usually given by a set of generators of I and wewould
like to derive information about toricity, binomiality or coset property of V by computations over the generators of
I . This can be done via Gröbner bases. Assume that G is a Gröbner basis of I , hence V = V (G), and V ∗ �= ∅. If
all elements of G are of the form Xα − Xβ , then V ∗ is a subgroup of (C∗)n . If all elements of G are of the form
cα Xα − cβ Xβ where cα �= 0 and cβ �= 0, then V ∗ is a coset of a subgroup of (C∗)n . Note that the converse of the
above does not hold. This is because V ∗ and V may not be equal and therefore I (V ∗) and I (V ) may not be equal,
which means that a Gröbner basis of I (V ) does not give information about group or coset structure of V ∗. In case
V is irreducible, we have that V ∗ = V , e.g., when V is toric or shifted toric. In order to solve this problem one
needs to saturate I with the multiplication of the variables and then consider the radical of this saturation. Saturation
removes the points that are in V but not in V ∗. The following proposition states this precisely and is the essence of
this section for computations over complex numbers.

Proposition 7 Let I be an ideal in Q[x1, . . . , xn], let V := V (I ) ⊆ C
n be the variety of I , and let G ⊆

Q[x1, . . . , xn] be a reduced Gröbner basis of the radical of I : 〈x1 . . . xn〉∞. Then V ∗ = ∅ if and only if G = {1}.
If V ∗ �= ∅, then the following hold:
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(i) V ∗ is a subgroup of (C∗)n if and only if all elements of G are of the form Xα − Xβ .
(ii) V ∗ is a coset of a subgroup of (C∗)n if and only if all elements of G are of the form cα Xα− cβ Xβ where cα �= 0

and cβ �= 0.

Proof In order to prove the proposition we use [16, Chapter 4, Theorem 10 (iii)], which states that over an
algebraically closed field, we have that V (J1) \ V (J2) = V (J1 : J∞2 ) for ideals J1 and J2. Set J1 = I and
J2 = 〈x1 . . . xn〉. Since V ∗ = V (I ) \ V (x1 . . . xn), and V is a variety over C which is algebraically closed, we have
that V ∗ = V (I : 〈x1 . . . xn〉∞). Then

I (V ∗) = I (V (I : 〈x1 . . . xn〉∞)) = √
I : 〈x1 . . . xn〉∞. (4)

V ∗ = ∅ if and only if V (I ) \V (x1 . . . xn) = ∅, which is the case if and only if V (I ) ⊆ V (x1 . . . xn). This happens
if and only if I (V (I )) = I (V (x1 . . . xn)), if and only if 〈x1, . . . , xn〉 ⊆

√
I , which is the case if and only if some

product of the variables is in I , or equivalently I : 〈x1 . . . xn〉∞ = 〈1〉, i.e., G = 1.
For proving (i), let V ∗ be a group. By Proposition 6, we have that all the elements of every Gröbner basis of I (V ∗)

are of the form Xα − Xβ . But according to (4) and the assumption that G is a Gröbner basis of
√

I : 〈x1 . . . xn〉∞,
this condition holds.

For the converse, let the elements of G have the desired form. Then V (
√

I : 〈x1 . . . xn〉∞)∗ is obviously a group.

But V (
√

I : 〈x1 . . . xn〉∞)∗ = V (I : 〈x1 . . . xn〉∞)∗ and therefore the latter is a group. Now using [16, Chapter 4,
Theorem 10 (iii)], we have that V (I : 〈x1 . . . xn〉∞)∗ = (V (I ) \ V (x1 . . . xn))∗. One can easily check that the latter
is equal to V (I )∗. Hence V ∗ = V (I )∗ is a group and we are done.

The proof of part (ii) is analogous to that of part (i) above. 
�
For the rest of this section, we present the monomial parametrization of a torus and state propositions that allow

one to find the cosets of a torus as irreducible components of a binomial variety using roots of unity. Readers
primarily interested in our algorithms in Sect. 3 can safely skip this part.

We start with introducing the monomial parametrization of shifted toric varieties. Let T ⊆ (K ∗)n be a torus of
dimension m, hence T � (K ∗)m , and let x0 ∈ (K ∗)n . Following the monomial parametrization of a torus given in
[24, Corollary 2.6], one can see that the coset x0T of T can be seen as the image of the following monomial map,
which is the monomial parametrization of x0T .

ϕ(x0,A) : (K ∗)m → (K ∗)n, ϕ(x0,A)(t1, . . . , tm) =
(

(x0)1
m∏

i=1
t Ai1
i , . . . , (x0)n

m∏
i=1

t Ain
i

)
,

where A ∈ Z
d×n is a rank m matrix. Note that while the matrix A is not unique, it only depends on T and not on

x0. In particular, T is its own coset with respect to the unity 1 := (1, . . . , 1) ∈ (K ∗)n . Note that if B ∈ Z
d×n is

another matrix such that T equals the image of ϕ(1,B), then B corresponds to a re-parametrization of T .

Example 8 V (xy − 1) ∩ (C∗)2 can be seen as the image of ϕ(1,(1,−1)) : C∗ → (C∗)2 with ϕ(1,(1,−1))(t) = (t, t−1)
or as the image of ϕ(1,(−1,1)) : C∗ → (C∗)2 with ϕ(1,(−1,1))(t) = (t−1, t).

Proposition 9 If G ⊆ (C∗)n is a group and reducible into r ∈ N cosets of a torus T , then there exist y1, . . . , yr ∈
(C∗)n whose coordinates are roots of unity and G =⋃r

i=1 yi T is the irreducible decomposition of G.

Proof If G = T , then it is its own coset with respect to 1 and we are done. Otherwise, let Si = ỹi T be a proper
coset of T and suppose that there is no ξ ∈ (C∗)n such that the coordinates of ξ are roots of unity and Si = ξT . This
means that for all such ξ the image of ϕ(ỹi ,T ) is different from the image of ϕ(ξ,T ). Hence there exists t ∈ (C∗)m

such that for all s ∈ (C∗)m one has ϕ(ỹi ,T )(t) �= ϕ(ξ,T )(s). In other words, there exists t ∈ (C∗)m such that for
all s ∈ (C∗)m one has ỹi t A �= ξs A for some i ∈ {1, . . . , n}. As the coordinates of ξ are roots of unity, there is a
natural number N such that ξ N = 1. Therefore, for all s ∈ (C∗)m one has ỹN

i t N A �= s N A for some i ∈ {1, . . . , n}.
As the image of ϕ is invariant under A �→ N A, the cosets ỹN

i T and T are distinct. By using a similar argument
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and induction, one can prove that T, ỹN
i T , ỹ2N

i T, . . . are distinct. As G is closed under multiplication, it contains
all these cosets. However, this contradicts the assumption that G is reducible into a torus and a finite number of its
cosets. 
�
Remark 10 Let S1 and S2 be two cosets of a torus T ⊆ (C∗)n . The coset S1 is called the complex conjugate of the
coset S2, written S1 = S+2 , when every point of S1 is the complex conjugate of a point of S2 and every point of S2 is
the complex conjugate of a point of S1. As the complex conjugate is an automorphism of (C∗)m , S1 is the complex
conjugate of S2 if and only if S1 contains the complex conjugate of some point of S2. A pair S1, S2 is called a pair
of complex conjugates if S1 = S+2 . If G ⊆ (C∗)n is reducible into a finite number of cosets of a torus then they
come in pairs of complex conjugates. To see this, denote the toric component of G by T . If G = T , then clearly
G = G+. Suppose that G contains a proper coset S of T . By Lemma 9 there is a point ξ ∈ S whose coordinates
are roots of unity. Then ξξ+ = 1. As G is a group, ξ+ is an element of G. As S = ξT and ξ+T = (ξT )+ = S+,
we conclude that S+ is contained in G.

Proposition 11 Let P = (X/ξ)u−(X/ξ)v ∈ C[X ] be a non-zero irreducible polynomial, where the coordinates of
ξ ∈ (C∗)n are roots of unity. Then for all i in N there exist gi in C[X ] and αi , βi in N

n such that gi P = Xiαi − Xiβi .

Proof Note that P = (Xu − ξu−v Xv)/ξu . As the coordinates of ξ are roots of unity, γ = ξu−v is also a root of
unity. Let m be the smallest positive integer such that γ m = 1. As Um = {γ, γ 2, . . . , γ m} is a group of roots of
unity of order m, it is clear that

(Xu − γ Xv)(Xu − γ 2Xv) · · · (Xu − γ m Xv) = (Xmu − Xmv).

Hence one can take

g1 = ξu(Xu − γ 2Xv)(Xu − γ 3Xv) . . . (Xu − γ m Xv).

Substituting Um with the group Umi , i.e., the group of roots of unity of order mi , and following the steps for
constructing g1 accordingly, one can construct gi for all i ≥ 2. 
�

3 Algorithmic Classification of Biomodels

Wewant to apply our concept of shifted toricity to biomodels focusing on theBioModels4 repository ofmathematical
models of biological and biomedical systems [9]. The BioModels repository uses the Systems Biology Markup
Language (SBML) [30,45]. SBML is a representation format, based on XML, for communicating and storing
computational models of biological processes. It is a free and open standard with widespread software support
and a community of users and developers. SBML models have been typically created in the context of numerical
computations or simulations and must be processed carefully with symbolic computation. For instance, numerical
values, like reaction rate constants, contained in the models are often represented as truncated fixed point floats, and
the available SBML parsers possibly introduce further rounding errors when implicitly performing substitutions
with those values. Such issues are addressed by ODEbase,5 which provides pre-processed versions of BioModels
for use in symbolic computation. We consider here all models from ODEbase where the vector field of the ODE
is polynomial over Q after application of certain SBML-specific rules and substitution of parameter values. This
amounts to a total of 129 models considered in this article.

Following a convention often used in publications on chemical reaction network theory in the context of symbolic
computation, ODEbase replaces names of species concentrations by more abstract names xi using numbers as
indices. With the application of SBML rules some of those xi vanish in the ODEbase toolchain. We therefore
consider, more abstractly, ordered sets X of variables, tacitly assuming that the order establishes a mapping between
indeterminates in Q[X ] and coordinates in K |X |. As a matter of fact, the variables will also vanish during our own
algorithms discussed throughout this section. The following example illustrates this.

4 https://www.ebi.ac.uk/biomodels/.
5 http://odebase.cs.uni-bonn.de/.

https://www.ebi.ac.uk/biomodels/
http://odebase.cs.uni-bonn.de/
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Example 12 (BIOMD0000000198) Consider the following system in Q[x2, . . . , x10]:

F = {− 350x2 + 800x3, 350x2 − 1650x3, 4250x3 − 100x4 + x5, 100x4 − x5,

− 350x6 + 800x7, 350x6 − 1650x7, 1700x7 − 5x8 + 50x9, x10 + 125x8 − 1330x9,−x10 + 80x9}.

From its Gröbner basis G = {x2, x6, x5 − 100x4, 8x8 − x10, x7, x3,−x10 + 80x9} we can read off that for every
point in VC(F) ⊆ C

9, e.g., the x2-coordinate must be 0. It follows that VC(F)∗ = ∅. Geometrically, VC(F) lives
in C

5 with coordinates x4, x5, x8, x9, x10. Thinking about toricity as a geometric notion, it makes sense to study the
variety as an object in that lower dimensional space. Hence, consider

Ĝ = G \ {x2, x3, x6, x7} = {x5 − 100x4, 8x8 − x10,−x10 + 80x9} ⊆ Q[x4, x5, x8, x9, x10].
It turns out that VC(Ĝ) is shifted toric in C

5.

Definition 13 (Compatible and canonical projection spaces) Let K ∈ {R, C}, let X be an ordered set of variables,
and let VK �= ∅ be a variety in K |X |. We say that a subset X̂ ⊆ X describes a compatible projection space

K |X̂ | ⊆ K |X | with respect to VK if for the projection πX\X̂ : K |X | → K |X\X̂ | into the complement of K |X̂ | we have
πX\X̂ (Vk) = {0}. In other words, for all x ∈ X \ X̂ and a ∈ VK the x-coordinate of a equals 0. It is easy to see that

there is a unique such X̂ with minimum cardinality, which, we say, describes the canonical projection space with
respect to VK .

If X̂ describes a canonical projection space and X̂ �= ∅, then πX̂ (VK )∗ �= ∅. On the other hand, if V ∗K is empty,

and X̂ describes a compatible but not canonical projection space, then still πX̂ (Vk)
∗ = ∅. In that latter case the

intuition is that the projection does not remove information from VK that is relevant for obtaining πŶ (VK )∗ in
the canonical projection space described by Y ⊆ X . When VK is given as VK (F) for F ⊆ Q[X ], then we write
F̂ = F ∩Q[X̂ ], as we did with the Gröbner basis G in Example 12.

The principle domain of interest for us is R-space, where, e.g., concentrations of species are located in the
interior of the first orthant. In the literature there has been considerable attention to C-space. We therefore start our
algorithmic considerations over C in Sect. 3.1, and then turn to R in Sect. 3.2.

In Example 12we could conclude that VC(F̂)∗ is shifted toric because F̂ consists of binomials of the characteristic
shape according to Proposition 7, and one can easily see from its linearity that it generates a prime ideal over C. As
prime ideal decomposition is related to polynomial factorization, decomposition or even primeness tests over our
fields C and R of interest are not well supported in off-the-shelf computer algebra systems. In our algorithms we
therefore limit ourselves to the properties “group” and “coset” rather than “toric” and “shifted toric”. Nevertheless,
we will consider prime decompositions over Q, which are well supported in software and provide at least partial
decompositions over C and R. Note that for us the relevant notion is prime decomposition in contrast to primary
decomposition, as the former corresponds to the irreducibility of the corresponding varieties.

Example 14 (Comparison of V ∗
C
with V ∗

R
) For F1 = 〈x2 + 2〉, F2 = 〈(x2 − 1)(x2 + 2)〉 the following holds:

(i) VC(F1)
∗ = {i√2,−i

√
2} is a coset in C

∗, because (−i
√
2)−1VC(F1)

∗ = {1,−1} is a group. In contrast,
VR(F1)

∗ = ∅ is not a coset in R
∗.

(ii) VC(F2)
∗ = {1,−1, i

√
2,−i

√
2} is a coset inC

∗ if and only if it is group, due to 1 ∈ VC(F2)
∗. This is not the case

because it is not closed under multiplication: (i
√
2)(−i

√
2) = 2 /∈ VC(F2)

∗. In contrast, VR(F2)
∗ = {1,−1}

is a group.

3.1 Classification over C

Ourmethods overC are, naturally, based onGröbner bases [8,25,26], for whichwe rely on the commercial computer
algebra system Maple. We generally leave it to Maple to find a good term order. Our classifications hold over any
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algebraically closed extension field of the coefficient field Q, including C as well as, e.g., the countable algebraic
closure of Q.

With the following discussion of Algorithm 1 we will introduce some textbook facts from commutative algebra
as lemmas, together with short proofs. The algorithm recognizes for a given ideal basis F whether VC(F)∗ is a
coset.

Algorithm 1 ProjectAndClassifyC
Input: 1. X , a finite ordered set of variables; 2. F ⊆ Q[X ] finite and non-empty

Output: 1. X̂ ⊆ X ; 2. γ ∈ {G,C,O,X,g,c,o,x}
X̂ describes a compatible projection space with respect to VC(F). The letter γ classifies VC(F)∗ in X̂ -space, using upper case when
X̂ = X :

G/g – VC(F)∗ is a group; C/c – VC(F)∗ is a proper coset; O/o – VC(F)∗ = ∅; X/x else.

1: G := GroebnerBasis(F)

2: X ′ := G ∩ X
3: X̂ := X \ X ′
4: Ĝ := G \ X ′ � 〈∅〉 = 〈0〉
5: G̃ := Radical(Saturate(Ĝ,

∏
X̂)) � G̃ is a Gröbner basis

6: γ := ClassifyC(X̂ , G̃)

7: if X̂ �= X then
8: convert γ to a lower case letter
9: end if
10: return X̂ , γ

In line 1 we compute a Gröbner basis G of F . Recall from the previous section that we generally consider reduced
Gröbner bases. We may safely assume that vars(G) ⊆ vars(F). In line 2, the variables X ′ occurring as elements
of G are exactly those that must be zero for all points in VC(F). Removing X ′ from X in line 3 yields X̂ which
describes a compatible but not necessarily canonical projection space according to Definition 13, as the following
example illustrates.

Example 15 Consider F = {x22 , x1 + x2, x2 + x3 + 1}. Then for X̂ ⊆ X to describe the canonical projection
space with respect to V (F) it must not contain x2. However, x2 does not show up in the Gröbner basis G =
{x23 + 2x3 + 1, x2 + x3 + 1, x1 − x3 − 1} of F .

This idea of line 3 is to have a good heuristic method at no extra computational cost. Removing X ′ from G in
line 4 is equivalent to plugging 0 into all X ′ in G, which in turn realizes the projection of VC(F) = VC(G) into
X̂ -space. Note that we follow the convention that the empty set is a generator of the trivial ideal [3, Definition 1.36].
In line 5 we obtain G̃ by saturating Ĝ and subsequently taking the radical. In line 6 we call Algorithm 2 in order to
apply Proposition 7 with I = 〈Ĝ〉 and G = G̃.

Algorithm 2 ClassifyC
Input: 1. X̂ , a finite ordered set of variables; 2. G̃ ⊆ Q[X̂ ], a Gröbner basis of a saturated radical ideal
Output: γ ∈ {G,C,O,X}
1: if X̂ = ∅ or G̃ = {1} then
2: return O
3: else if all elements of G̃ are of the form X̂α − X̂β with α, β ∈ N

m then
4: return G
5: else if all elements of G̃ are of the form cα X̂α − cβ X̂β with α, β ∈ N

m , cα �= 0, cβ �= 0 then
6: return C
7: else
8: return X
9: end if
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In line 1 of Algorithm 2, if X̂ = ∅, then we are in zero-dimensional C-space and certainly VC(Ĝ)∗ = ∅.
Otherwise G̃ = {1} is an equivalent criterion for VC(Ĝ)∗ = ∅ by Proposition 7. From line 3 on we know that
VC(Ĝ)∗ �= ∅ and apply in line 3 and line 5 the criteria from part (i) and (ii) of Proposition 7, respectively. In the
negative case we return X in line 8.

This takes us back to line 7 of Algorithm 1. For convenience, we patch the classification letter γ from upper
case to lower case when proper projection has taken place. That information could alternatively be reconstructed
by comparing X with X̂ , which is returned in line 10 along with γ .

Example 16 (BIOMD0000000519) Consider F = { f1, f2, f3} ⊆ Q[X ], where X = {x1, x2, x3}:

f1 = − 110569195060524661790966049x21 − 110569195060524661790966049x1x2

− 110569195060524661790966049x1x3 + 8268303407262959414915925880x1,

f2 = − 39340519602534770292542037060x21 − 64716470904160708181625699581x1x2

− 39340519602534770292542037060x1x3 + 4720862352304172435105044447200x1

− 25375951301625937889083662521x22 − 25375951301625937889083662521x2x3

+ 1783712878395505546690039502520x2,

f3 = − 40542202233642354036972112493x1x2 − 40542202233642354036972112493x22
− 40542202233642354036972112493x2x3 + 4865064268037082484436653499160x2

− 1101385347722460000000000000000x3.

We obtain X̂ = X and Ĝ = G = {ĝ1, . . . , ĝ4}. For space reasons, we present ĝ1, …, ĝ4 with approximate
coefficients here:

ĝ1 ≈ 5.72× 1041x3 − 1.05× 1042x2 + 1.47× 1042x1,

ĝ2 ≈ 3.63× 1080x21 − 6.37× 1080x1,

ĝ3 ≈ 8.89× 1067x1x2 − 2.44× 1069x1,

ĝ4 ≈ 2.34× 10111x22 − 9.39× 10112x1 − 5.82× 10112x2.

Notice that g4 is not binomial. After saturation we obtain G̃ = {g̃1, g̃2, g̃3} with
g̃1 = ĝ2, g̃2 = ĝ3, g̃3 ≈ 2.66× 1092x3 − 1.21× 1094,

which is classified as γ = C. Again, for g̃3 we computed exactly but present here only approximate coefficients.

It is important to understand that, although we are using tools from ideal theory, our results in Sect. 2 clarify
that our classification solely depends on geometry. In particular, results are invariant with respect to the input ideal
basis F in Algorithm 1.

In Appendix A.1 we discuss practical aspects of our implementation and give in Table 1 classification results
from applying Algorithm 1 to the 129 models introduced at the beginning of this section. We also address there the
quality of our heuristic method for computing the description X̂ of the projection space in Algorithm 1. For our
discussion here we note that our algorithm terminates within a time limit of 6 hours per model on 104 out of the 129
models. We obtain 2 G, 20 C, and 6 c, which can be summarized as VC(G̃)∗ forming a coset. Furthermore we have
4 O and 42 o, i.e., VC(G̃)∗ = ∅. The rest is 29 X and one single x. In terms of percentages of the 104 successful
computations this yields the following picture:
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coset

26.9%
empty

44.2%

We are now going to turn to prime decompositions over Q of the generating ideals F of our varieties VC(F).
Recall that shifted toricity requires, in addition to the coset structure of VC(F)∗, irreducibility of VC(F), which in
turn corresponds to prime decompositions of F even overC. From that point of view, our decompositions considered
here are only a heuristic step into the right direction. On the other hand, the following example suggests that beyond
the irreducibility issue, prime decompositions over Q can improve our hit rate on cosets.

Example 17 [BIOMD0000000359] Consider F ⊆ Q[X ], where X = {x1, . . . , x7, x9}:

F = {−125x1x2 − 125x1x5 − 11x1x7 + 19250x3 + 19250x4,−5x1x2 + 20x3x7 + 770x3,

5x1x2 − 20x3x7 − 1190x3, 250x1x5 − 300x4x6 + 21000x3 − 38500x4 + x9,

− 2500x1x5 − 27x5x6 + 385000x4 + 10x7,−3000x4x6 − 27x5x6 + 10x7 + 10x9,

− 220x1x7 − 10000x3x7 + 27x5x6 − 10x7, 11x1x7, 1000x3x7 + 300x4x6 − x9}.

Applying Algorithm 1 to X and F yields X̂ = {x1, x2, x4, . . . , x7}, Ĝ = {x1x7, x4x7, x1x5 − 154x4, x1x2, x4x6,
27x5x6 − 10x7, x2x4}, and the saturated radical basis G̃ = {1}. The classification result is X̂ together with γ = o.

The following is a prime decomposition of F over Q:

P = ({x1, x3, x4, x9,−27x5x6 + 10x7}, {x1, x3, x4, x5, x7, x9}, {x1, x3, x4, x6, x7, x9},
{x2, x3, x4, x5, x7, x9}, {x2, x3, x6, x7, x9, x1x5 − 154x4}).

Considering each prime component individually yields respective compatible subsets of variables X̂ =
({x5, x6, x7}, ∅, ∅, ∅, {x1, x4, x5}) and Gröbner bases

G̃ = Ĝ = ({−27x5x6 + 10x7}, {0}, {0}, {0}, {x1x5 − 154x4}),
which are already saturated. Application of Algorithm 2 to pairs of elements of X̂ and G̃ yields 	 = (c,o,o,o,c).
This tells us that VC(F)∗ has two components, which live in different 3-dimensional subspaces of C

8. Both of them
are cosets.

Algorithm 3 formalizes the approach outlined in Example 17. We use the Weierstrass ℘ for power sets. The
algorithm starts with the computation of a prime decomposition in line 1. We have

k⋃
i=1

VC(Pi ) = VC(F) = VC(
√〈F〉) and

k⋂
i=1
〈Pi 〉 =

√〈F〉.

Note that the obtained prime ideals 〈Pi 〉 are also radical.
Lemma 18 Let I ⊆ Q[X ] be a prime ideal. Then I is a radical ideal.

Proof Let f s ∈ I . We show by induction on s that f ∈ I . If s = 1, then we are done. Otherwise consider
f s = f f s−1 ∈ I . Since I is prime, we have f ∈ I or f s−1 ∈ I . In the latter case, f ∈ I by the induction
hypothesis.
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Algorithm 3 DecomposeProjectAndClassifyC
Input: 1. X , a finite ordered set of variables; 2. F ⊆ Q[X ] finite and non-empty

Output: 1. P ∈ ℘(Q[X ])k ; 2. X̂ ∈ ℘(X)k ; 3. 	 ∈ {G,C,O,X,g,c,o,x}k
P = (P1, . . . , Pk) are Gröbner bases of a prime decomposition over Q of 〈F〉. In X̂ = (X̂1, . . . , X̂k), X̂i describes a compatible
projection space with respect to VC(Pi ). In 	 = (γ1, . . . , γk), the letter γi classifies VC(Pi )

∗ in X̂i -space, using upper case when
X̂i = X :

G/g – VC(Pi )
∗ is a group; C/c – VC(Pi )

∗ is a proper coset; O/o – VC(Pi )
∗ = ∅; X/x else.

1: P = (P1, . . . , Pk) := PrimeDecompositionQ(F) � P1, …, Pk are Gröbner bases
2: for i = 1, . . . , k do
3: X ′i := Pi ∩ X

4: X̂i := Xi \ X ′i
5: P̂i := Pi \ X ′i � 〈∅〉 = 〈0〉
6: P̃i := Saturate(P̂i ,

∏
X̂i ) � P̃i is a Gröbner basis; the product runs over the set X̂i

7: γi := ClassifyC(X̂i , P̃i ) � call Algorithm 2
8: if X̂i �= X then
9: convert γi to a lower case letter
10: end if
11: end for
12: return P , (X̂1, . . . , X̂k), (γ1, . . . , γk)

In lines 3–10, Algorithm 3 follows in a for-loop essentially Algorithm 1 for each prime component basis Pi . In
line 5 we note that 〈P̂i 〉 is prime by the following lemma.

Lemma 19 Let G ⊆ Q[X ] be a reduced Gröbner basis of a prime ideal 〈G〉, and let x ∈ G ∩ X. Then 〈G \ {x}〉
is prime.

Proof Notice that 〈G \ {x}〉 is the elimination ideal 〈G〉x = 〈G〉 ∩ Q[X \ {x}]. Let f g ∈ 〈G〉x ⊆ 〈G〉. Then
w.l.o.g. f ∈ 〈G〉, because 〈G〉 is prime. Since x does not occur in f g, it does not occur in f either. Hence
f ∈ 〈G〉x . 
�

It follows that 〈P̂i 〉 is also radical by Lemma 18. When computing P̃i in line 6 primality is again preserved, as
the following lemma shows.

Lemma 20 Let I ⊆ Q[X ] be a prime ideal, and let f ∈ Q[X ]. Then I : 〈 f 〉∞ is a prime ideal.

Proof Recall that I ⊆ I : 〈 f 〉∞. Let gh ∈ I : 〈 f 〉∞. We must show that g ∈ I : 〈 f 〉∞ or h ∈ I : 〈 f 〉∞. By
definition there is s ∈ N such that f s gh ∈ I . If f s ∈ I , then I : 〈 f 〉∞ = 〈1〉, which is prime. Otherwise gh ∈ I
and therefore g ∈ I ⊆ I : 〈 f 〉∞ or h ∈ I ⊆ I : 〈 f 〉∞. 
�

We once more call Lemma 18 to obtain that 〈P̃i 〉 is also radical. Therefore, the radical ideal computation in line
5 of Algorithm 1 is not necessary here.

In Appendix A.2 we discuss practical aspects of our computations and give in Table 3 classification results using
Algorithm 3 on the 129 models introduced at the beginning of this section. We succeed on 105 out of the 129
models within a time limit of 6 hours per model. This yields 3426 prime components to test altogether. We obtain
2 G, 22 C, and 1085 c, which can be summarized as VC(P̃i )

∗ forming a coset. Furthermore, we have 2242 o, i.e.,
VC(P̃i )

∗ = ∅. The rest is only 34 X and 41 x. Again we visualize these results in terms of percentages of the total
of 3426 prime components:
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coset

32.4%

empty

65.4%

Recall that our selection from the BioModels repository presented here is essentially complete with respect to poly-
nomial examples. This comes with the disadvantage that our data is somewhat dominated by BIOMD0000000281,
which contributes 1008 c and 2136 o. We have verified that the ideal dimensions for the 1008 c components are
positive, pointing at non-trivial coset structures in contrast to isolated points. For the sake of scientific rigor we also
present the statistics without BIOMD0000000281:

coset

35.8%

empty
37.6%

3.2 Classification over R

Our primary tool over R is real quantifier elimination [12,13,38,65,69,70]. We use implementations by the fourth
author and his students [21,59] in Redlog [20,57,60–62], which is integrated with the open-source computer
algebra system Reduce [42,43]. Our strategy is to apply virtual substitution methods [48,49,70] for quantifier
elimination within the relevant degree bounds and fall back into partial cylindrical algebraic decomposition [19,56]
with subproblems where this is not possible. Our results hold over any real-closed field, including R as well as, e.g,
the countable field of real algebraic numbers.

Algorithm 4 is the real counterpart to Algorithm 1 in Sect. 3.1.

Algorithm 4 ProjectAndClassifyR
Input: 1. X , a finite ordered set of variables; 2. F ⊆ Q[X ] finite and non-empty

Output: 1. X̂ ⊆ X ; 2. γ ∈ {G,C,O,X,g,c,o,x}
X̂ describes the canonical projection space with respect to VR(F). The letter γ classifies VR(F)∗ in X̂ -space, using upper case when
X̂ = X :

G/g – VR(F)∗ is a group; C/c – VR(F)∗ is a proper coset; O/o – VR(F)∗ = ∅; X/x else.

1: X̂ := X
2: F̂ := F
3: for xi ∈ X do
4: if R |� ∀(∧ f ∈F̂ f = 0 −→ xi = 0) then

5: X̂ := X̂ \ {xi }
6: F̂ := F̂[xi /0]
7: end if
8: end for
9: γ := ClassifyR(X̂ , F̂)

10: if X̂ �= X then
11: convert γ to a lower case letter
12: end if
13: return X̂ , γ
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In line 4 we construct for each xi ∈ X the first-order LOR-formula, where LOR denotes the language of ordered
rings:

ψ =̇ ∀
( ∧

f ∈F̂

f = 0 −→ xi = 0

)
.

The underlined universal quantifier denotes the universal closure, which universally quantifies all variables freely
occurring within its scope. Our formula ψ straightforwardly states that for all points in VR(F̂) with coordinates
x j ∈ X , which occur as variables in the polynomials f ∈ F̂ , the specific coordinate xi is zero. The if-condition
R |� ψ expresses that R is a model of this formula, meaning that the formula holds in R or, equivalently, in the
model class of real closed fields.

A real quantifier elimination procedure computes for any given first-order LOR-formula ϕ an equivalent
quantifier-free LOR-formula ϕ′, where the variables in ϕ′ are a subset of the variables freely occurring in ϕ. Since
ψ contains no free occurrences of variables, the corresponding ψ ′ will be variable-free and can be easily simplified
to either true or false. In the former case the if-condition holds, in the latter case it does not.

When some xi is identified to vanish in all points of VR(F̂) it is removed from X̂ in line 5. Notice that in contrast
to Algorithm 1 the final X̂ describes not only a compatible but the canonical projection space with respect to VR(F).
Accordingly, xi is set to zero within F̂ in line 6, where [xi/0] is a postfix operator substituting the term 0 for the
variable xi in its argument F̂ . From line 9 on, Algorithm 4 proceeds like its complex counterpart Algorithm 1 but
using Algorithm 5 for real classification.

Algorithm 5 ClassifyR
Input: 1. X̂ , a finite ordered set of variables, w.l.o.g. X̂ = {x1, . . . , xn}; 2. F̂ ⊆ Q[X̂ ] finite
Output: γ ∈ {G,C,O,X}
1: define operator �(t1, . . . , tn) := (

∧
f ∈F̂ f = 0)[x1/t1, . . . , xn/tn]

2: if X̂ = ∅ or R |�= ∃(∧n
i=1 xi �= 0 ∧�(x1, . . . , xn)) then

3: return O
4: end if
5: τinv := ∀(∧n

i=1 gi �= 0 ∧∧n
i=1 xi �= 0 ∧

�(g1, . . . , gn) ∧�(g1x1, . . . , gn xn) −→ �(g1x−11 , . . . , gn x−1n )

6: if R |�= τinv then
7: return X
8: end if
9: τmult := ∀(∧n

i=1 gi �= 0 ∧∧n
i=1 xi �= 0 ∧∧n

y=1 yi �= 0 ∧�(g1, . . . , gn) ∧
�(g1x1, . . . , gn xn) ∧�(g1y1, . . . , gn yn) −→ �(g1x1y1, . . . , gn xn yn)

10: if R |�= τmult then
11: return X
12: end if
13: τgroup := �(1, . . . , 1)
14: if R |� τgroup then
15: return G
16: else
17: return C
18: end if

In line 1 we define �(t1, . . . , tn) to generate a first order LOR-formula which states that (t1, . . . , tn) ∈ VR(F̂),
where the ti are LOR-terms. In lines 2–4 we handle the case VR(F̂)∗ = ∅. Hence in line 5 we know VR(F̂)∗ �= ∅.
We are going to use the following characterization of cosets.

Proposition 21 Let K ∗ be a multiplicative group. Let C ⊆ (K ∗)n, C �= ∅. Then the following are equivalent:

(i) C is a coset;
(ii) there exists g0 ∈ (K ∗)n such that g−10 C is a group;
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(iii) there exists g0 ∈ C such that g−10 C is a group;
(iv) for all g ∈ C we have that g−1C is a group.

Proof The equivalence between (i) and (ii) is the definition of a coset. When (ii) holds, then C = g0G for a group
G, hence g0 · 1 ∈ C , which shows (iii). The implication from (iii) to (ii) is obvious, and so is the implication from
(iv) to (iii). It remains to be shown that (iii) implies (iv).

Assume that g0 ∈ C and G = g−10 C is a group; equivalently C = g0G. Let g ∈ C . Then there is y ∈ G such
that g = g0y. It follows that g−1C = (g0y)−1C = y−1g−10 C = y−1G = G. 
�

Proposition 21(iv) yields a first-order characterization for VR(F̂)∗ to be a coset, which could be informally stated
as follows:

∀g, x, y ∈ (R∗)n : g ∈ VR(F̂) ∧ gx ∈ VR(F̂) ∧ gy ∈ VR(F̂) ⇒ gx−1 ∈ VR(F̂) ∧ gxy ∈ VR(F̂). (5)

As a first-order LOR-formula this yields:

τ =̇ ∀
(

n∧
i=1

gi �= 0 ∧
n∧

i=1
xi �= 0 ∧

n∧
i=1

yi �= 0 ∧�(g1, . . . , gn) ∧�(g1x1, . . . , gn xn)

∧�(g1y1, . . . , gn yn) −→ �(g1x−11 , . . . , gn x−1n ) ∧�(g1x1y1, . . . , gn xn yn)

)
.

In the equations originating from�(g1x−11 , . . . , gn x−1n ) principal denominators containing variables from x1,…, xn

can be equivalently dropped, because the left hand side of the implication requires those variables to be different
from zero. The first-order LOR-formula τ can be equivalently transformed into τinv ∧ τmult with τinv and τmult as in
line 5 and line 9 of Algorithm 5, respectively. Therefore it is correct to exit with γ = X in line 7 or 11 when either
part does not hold. This splitting into subproblems has two advantages. First, separate quantifier eliminations on
smaller problems are more efficient. Second, when τinv does not hold in line 6, then τmult need not be considered at
all.

When reaching line 13, we know that VR(F̂)∗ is a coset and apply the following corollary, which concludes our
discussion of Algorithm 5.

Corollary 22 Let C be a coset. Then C is group if and only if 1 ∈ C.

Proof If 1 ∈ C , then C = 1−1C is a group by Proposition 21(iv). The converse implication follows from the
definition of a group.

Remark 23 As an alternative to (5), Proposition 21(iii) yields the following characterization of cosets, which might
appear more natural because it is closer to the original definition of cosets:

∃g ∈ (R∗)n ∀x, y ∈ (R∗)n : gx ∈ VR(F̂) ∧ gy ∈ VR(F̂)⇒ gx−1 ∈ VR(F̂) ∧ gxy ∈ VR(F̂). (6)

The first difference to observe is that in (6) in contrast to (5) there is quantifier alternation from ∃ to ∀. The number of
quantifier alternations is known to be a critical parameter for asymptotic complexity of the real quantifier elimination
problem [38,69]. Furthermore, in the presence of the leading existential quantifier prohibits our splitting into two
independent smaller problems. Experimental computations on the complete dataset considered here have confirmed
that formulation (5) is clearly preferable.

Example 24 (BIOMD0000000159) Consider F ⊆ Q[X ], where X = {x1, . . . , x3}:
F = {−32x1x2 + 3,−x2 + x3, 4x1 − x3}.
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In lines 3–8 of Algorithm 4 we consecutively apply real quantifier elimination to the following formulas:

∀x1∀x2∀x3(−32x1x2 + 3 = 0 ∧ −x2 + x3 = 0 ∧ 4x1 − x3 = 0 −→ xi = 0), i = 1, . . . , 3.

Neither of them holds in R so that in line 9 we enter Algorithm 5 with X̂ = X and F̂ = F .
In line 2 of Algorithm 5 we test

∃x1∃x2∃x3(x1 �= 0 ∧ x2 �= 0 ∧ x3 �= 0 ∧ −32x1x2 + 3 = 0 ∧ −x2 + x3 = 0 ∧ 4x1 − x3 = 0). (7)

Real quantifier elimination [48] confirms that (7) holds in R, and extended quantifier elimination [49] even gives
us a witness

(x1, x2, x3) =
( √

3
8
√
2
,
√
3

2
√
2
,
√
3

2
√
2

)
∈ VR(F)∗. (8)

Therefore we set up τinv in line 5 as follows:

τinv =̇ ∀g1∀g2∀g3∀x1∀x2∀x3(g1 = 0 ∧ g2 = 0 ∧ g3 = 0 ∧ x1 = 0 ∧ x2 = 0 ∧ x3 = 0

∧ − 32g1g2 + 3 = 0 ∧ −g2 + g3 = 0 ∧ 4g1 − g3 = 0

∧ − 32g1x1g2x2 + 3 = 0 ∧ −g2x2 + g3x3 = 0 ∧ 4g1x1 − g3x3 = 0

−→ −32g1g2 + 3x1x2 = 0 ∧ −g2x3 + g3x2 = 0 ∧ 4g1x3 − g3x1 = 0). (9)

Notice that in the three equations in last line of (9) we have equivalently dropped denominators x1x2, x2x3, and
x1x3, respectively. The inequalities for x1, …, x3 in first line of (9) ensure that those denominators do not vanish.
In line 10, quantifier elimination confirms that τinv holds in R, and so does τmult in line 10. Thus we reach line 13
and set up the following formula to test whether our coset F̂ is even a group:

−32+ 3 = 0 ∧ −1+ 1 = 0 ∧ 4− 1 = 0.

This is obviously not the case. Algorithm 5 returns ‘C’ in line 17, and Algorithm 4 finally returns {x1, x2, x3} and
‘C’ in line 13.

In Appendix A.1 we discuss practical aspects of our implementation and give in Table 1 classification results
from applying Algorithm 4 to the 129 models introduced at the beginning of this section. For our discussion here
we note that our algorithm terminates within a time limit of 6 hours per model on 94 out of the 129 models. We
obtain 20 C and 6 c, which can be summarized as VR(G̃)∗ forming a coset. Furthermore we have 4 O and 42 o,
i.e., VR(G̃)∗ = ∅. The rest is 21 X and one single x. In terms of percentages of the 94 successful computations this
gives the following picture:

coset

27.7%

empty
48.9%

In analogy to Algorithm 3 in Sect. 3.1, Algorithm 6 applies prime decompositions over Q also in the real case.
It starts with the computation of a prime decomposition in line 1. We then have

k⋃
i=1

VR(Pi ) = VR(F) and R |�
k∨

i=1

∧
p∈Pi

p = 0←→
∧
f ∈F

f = 0.

In lines 3–4 we apply Algorithm 4 to each component and collect the results.



216 D. Grigoriev et al.

Algorithm 6 DecomposeProjectAndClassifyR
Input: 1. X , a finite ordered set of variables; 2. F ⊆ Q[X ] finite and non-empty

Output: 1. P ∈ ℘(Q[X ])k ; 2. X̂ ∈ ℘(X)k ; 3. 	 ∈ {G,C,O,X,g,c,o,x}k
P = (P1, . . . , Pk) are Gröbner bases of a prime decomposition over Q of 〈F〉. In X̂ = (X̂1, . . . , X̂k), X̂i describes the canonical
projection space with respect to VR(Pi ). In 	 = (γ1, . . . , γk), the letter γi classifies VR(Pi )

∗ in X̂i -space, using upper case when
X̂i = X :

G/g – VR(Pi )
∗ is a group; C/c – VR(Pi )

∗ is a proper coset; O/o – VR(Pi )
∗ = ∅; X/x else.

1: P = (P1, . . . , Pk) := PrimeDecompositionQ(F)

2: for i = 1, . . . , k do
3: X̂i , γi := ProjectAndClassifyR(X, Pi )

4: end for
5: return P , (X̂1, . . . , X̂k), (γ1, . . . , γk)

In Appendix A.2 we discuss practical aspects of our computations and give in Table 3 classification results using
Algorithm 6 on the 129 models introduced at the beginning of this section. We succeed on 88 out of the 129 models
within a time limit of 6 hours per model. This yields 3390 prime components to test altogether. We obtain 2 G, 22
C, and 1083 c, which can be summarized as VR(P̃i )

∗ forming a coset. Furthermore, we have 7 O and 2232 o, i.e.,
VR(P̃i )

∗ = ∅. The rest is only 18 X and 26 x. In left hand side picture below, we visualize these results in terms
of percentages of the total of 3390 prime components. In the right hand side picture, we see the corresponding
statistics without BIOMD0000000281:

coset

32.7%

empty

66.0%

coset

40.2%

empty

41.9%

Recall from the discussion at the end of Sect. 3.1 that we consider the left hand side picture more adequate and add
the right hand side one for the sake of scientific rigor.

4 Upper Complexity Bounds

In this section we give asymptotic upper bounds on the worst case complexity of problems addressed in this paper.
In Sect. 4.1 we derive bounds for recognizing toric and shifted toric varieties over algebraically closed fields of
characteristic zero. In Sect. 4.2 we derive corresponding bounds for toric varieties over real closed fields. Section 4.3
finally gives bounds for the membership problem in subgroups of (Q

∗
)n , which correspond to binomial varieties.

4.1 Toricity over Algebraically Closed Fields of Characteristic Zero

Asmentioned in Sect. 2, a torusG can be represented as the set of solutions of binomials of the form xa1i
1 · · · xani

n = 1,
1 ≤ i ≤ n − m, where a ji ∈ Z and m is equal to the dimension of G and every Gröbner basis of a toric variety G

consists only of binomials of the form xb1i
1 · · · xbni

n − xc1i
1 · · · xcni

n where integers b ji , c ji are non-negative [63].
Let f1, …, fk ∈ Z[x1, . . . , xn] and V ⊆ C

n be the algebraic variety of common zeroes of f1, …, fk . We design
an algorithm which recognizes whether V is toric. Note that f1, …, fk are not necessary binomials. To estimate the
complexity of the algorithm we suppose that deg( fi ) ≤ d, 1 ≤ i ≤ k and that the bit-size of each integer coefficient
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of f1, …, fk does not exceed L . Invoking [10,37] we first verify whether V is irreducible and V ∗ = V (if this is
not true then V is not toric). The complexity of the algorithms from [10,37] can be bounded by (Ldn2)O(1). Then
we verify that V ∗ is a group. This holds if and only if we have the following first-order formula in the theory of
algebraically closed fields of characteristic zero:

∀x∀y(x �= 0 ∧ y �= 0 ∧∧
i fi (x) = 0 ∧∧

i fi (y) = 0 −→∧
i fi (xy) = 0 ∧∧

i fi (1/x) = 0). (10)

This can be verified via the algorithm in [11]. The complexity of this step is bounded by (Ldn2)O(1) as well.
So far, the algorithm has verified whether V is toric. Now we show how to find a system of binomial equations

determining V ∗. In order to do so, in this subsection we find a set of Laurent binomials determining V ∗ instead of
binomials in C[X ] whose set of solutions is V . This is because as it has been shown by Mayr and Meyer in their
seminal work, the number of binomials and their degrees in a Gröbner basis of I (V ) can be double-exponential
[50]. Using the algorithms from [10,37] one can produce m = dim V coordinates among x1, …, xn which form a
transcendental basis of V ∗. Without loss of generality, assume that {x1, . . . , xm} be a transcendental basis. Fix an
integer j , m < j ≤ n and project V ∗ on the space generated by x1, …, xm , x j , which is isomorphic to (C∗)m+1
invoking again [11]. Let W ⊆ (C∗)m+1 be image of the projection. Due to the choice of the transcendental basis,
we have that dim W = m and W is a hypersurface. Therefore, W can be determined by a single polynomial
h := h j ∈ Z[x1, . . . , xm, x j ] (c.f. e.g., [58]). Moreover, deg W ≤ deg V ∗ ≤ dn ; the latter follows from Bezout

inequality [58]. The algorithm from [11] constructs h and a generic point of W within the complexity (Ldn2)O(1).
Observe that W is also a group. Hence h can be rewritten as a binomial of the form x

q j1
1 · · · xq jm

m · x
q j
j − 1 ∈

Z[x±1 , . . . , x±n ] for suitable relatively prime integers q j1, …, q jm , q j ∈ Z. Doing so for every j , m < j ≤ n,
the algorithm yields polynomials h j ∈ Z[x1, . . . , xn]. Denote by H ⊆ (C∗)n the variety given by equations h j ,
m < j ≤ n. Clearly, V ∗ ⊆ H , dim H = m and H is a group, therefore, V ∗ is an irreducible component of H .
Moreover, H is a binomial variety and hence, V ∗ is its subgroup (of a finite index). In particular, (1, . . . , 1) ∈ V ∗,
and every irreducible component H1 of H has the form H1 = gV ∗ for an arbitrary element g ∈ H1. Moreover, one
can choose g such that its coordinates are roots of unity [40, Remark 3.1, Remark 5.2].

In addition, in order to obtain the Laurent binomials defining V ∗, the algorithm finds a Z-basis of the intersection
Q(Qm+1, . . . , Qn) ∩ Z

n of the Q-linear space generated by vectors Q j = (q j1, . . . , q jm, 0, . . . , 0, q j , 0 . . . , 0),
m < j ≤ n with the grid Z

n [40, Remark 3.1]. To find that Z-basis, the algorithm first applies [22,31] to produce
(within polynomial complexity) a Z-basis Z of the space of integer solutions of the linear system with rows Q j ,
m < j ≤ n, and subsequently applies [22,31] to construct a Z-basis of the linear system with the rows from Z .

Recall from the Definition 4 that for a torus V ∗ ⊆ (C∗)n and a point g ∈ (C∗)n we call gV ∗ a shifted torus,
and gV ∗ ⊆ C

n a shifted toric variety. In particular, every irreducible component of a binomial variety in (C∗)n is
a shifted torus (Proposition 3). One can modify the described algorithm to test whether an input variety V ⊆ C

n

is shifted toric. To this end, pick an arbitrary point g = (g1, . . . , gn) ∈ V ∗ and test whether g−1V ∗ is a torus. If
the latter holds, the algorithm produces binomial equations for g−1V ∗. Clearly a binomial equation xs1

1 · · · xsn
n = 1

vanishes on g−1V ∗ if and only if xs1
1 · · · xsn

n = gs1
1 · · · gsn

n vanishes on V ∗ .
The following theorem summarizes our algorithm.

Theorem 25 Let f1, …, fk ∈ Z[x1, . . . , xn], deg( fi ) ≤ d, 1 ≤ i ≤ k with bit-sizes of integer coefficients of f1,
…, fk at most L. One can design an algorithm which tests whether the variety V ⊆ C

n determined by f1, …, fk

is (shifted) toric. In the positive case, the algorithm yields a transcendental basis xi1 , …, xim , m = dim V of
V . It furthermore yields binomial equations defining V ∗ = V ∩ (C∗)n. Each binomial equation has the form
xs1
1 · · · xsn

n = gs1
1 · · · gsn

n for all (g1, . . . , gn) ∈ V ∗ and for suitable integers s1, …, sn ∈ Z satisfying |si | < O(dn2).

The complexity of the designed algorithm does not exceed (Ldn2)O(1).

One can extend the algorithm in Theorem 25 so that it takes a reducible variety V and decomposes V into
irreducible components and then tests whether its irreducible components are toric or shifted toric (following the
lines of the algorithm for each irreducible component of V ∗ separately). Moreover, if the irreducible components of
V are exclusively toric and shifted toric varieties and V ∗ is a group, then the extended algorithm yields the described
representation of V ∗ by means of binomials. The complexity of the extended algorithm is still (Ldn2)O(1).
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Our discussion here can be straightforwardly generalized to any algebraically closed field with characteristic
zero. Independently, the algorithm can be generalized to coefficients from a finite field extension of Q [10,37].

4.2 Toricity over Real Closed Fields

In this subsection we design an algorithm that recognizes toricity of a semi-algebraic set over R. We refer to [2] for
the algorithms in real algebraic geometry. Let R>0 := { z ∈ R | z > 0 } denote the positive orthant. Keeping the
notations from Sect. 4.1 consider the semi-algebraic set T := { x ∈ (R>0)

n | fi (x) ≥ 0, 1 ≤ i ≤ k }. Modify (10)
replacing C

∗ by R>0 and equalities fi = 0 by inequalities fi ≥ 0, respectively. Also keep the first-order formula
(10). This formula can be verified by applying the algorithms from [39]. Clearly, (10) is true if and only if T is a
group (a torus). Thus, assume that (10) is true. Then the image of the coordinate-wise logarithm map log(T ) ⊆ R

n

is a linear subspace. Hence, in particular, T is connected.
First, compute m := dim(T ) and produce m coordinates such that the projectionU of T on m-dimensional space

with these coordinates has the full dimension m. Without loss of generality assume that these coordinates are x1,
…, xm . Fix j ,m < j ≤ n and denote byU j the projection of T on the (m+1)-dimensional spacewith coordinates x1,
…, xm , x j . Denote by p the projectionmapof the latter space along x j ontom-dimensional spacewith the coordinates
x1, . . . , xm . Then p(U j ) = U . Since dim(U j ) = dim(U ) = m, we have that p(log(U j )) = log(U ) = R

m , and
therefore we conclude that any point of U has a unique preimage of p in U j . Moreover, U j is determined by a
single binomial-type (analytic) equation of the form

x
t j1
1 · · · xt jm

m x
t j
j = c j (11)

for some reals t j1, …, t jm , t j , c j . Since U j is a group we get that c j = 1.
On the other hand, applying the algorithm from [2], one can construct the projection p : U j → U and conclude

that equation (11) is algebraic, thus t j1, …, t jm , t j ∈ Z. The algorithm also yields t j1, …, t jm , t j . Note that without
loss of generality one can assume that they are relatively prime, otherwise divide by their greatest common divisor.
The complexity of the algorithm is again (Ldn2)O(1). Doing so for each j , m < j ≤ n, the algorithm yields
binomial equations of the form (11) which determine T uniquely. Similar to Sect. 4.1 one can produce a Z-basis
of the intersection of Q-linear space generated by vectors (t j1, . . . , t jm, 0, . . . , 0, t j , 0 . . . , 0) with the grid Z

n .
Then any vector (s1, . . . , sn) from this basis provides a binomial Xs1

1 · · · Xsn
n − 1 that vanishes on T . The above

Z-basis need not be constructed, since binomials of the form (11) already determine T uniquely. We summarize
the described algorithm in the following theorem.

Theorem 26 Let f1, …, fk ∈ Z[x1, . . . , xn], deg( fi ) ≤ d, 1 ≤ i ≤ k with bit-sizes of integer coefficients of f1,
…, fk at most L. One can design an algorithm which tests whether the semi-algebraic set T := { x ∈ (R>0)

n |
fi (x) ≥ 0, 1 ≤ i ≤ k } is a group (a torus). In the positive case, the algorithm yields coordinates xi1 , …, xim , where
m = dim(T ), such that the dimension of the projection of T on the m-dimensional space with the coordinates xi1 ,

…, xim equals m. It furthermore yields for each j /∈ {i1, . . . , im} a binomial equation of the form x
t j1
1 · · · xt jm

m ·xt j
j = 1

which vanishes on T , with relatively prime t j1, …, t jm, t j ∈ Z, where |t j1|+· · ·+|t jm |+|t j | ≤ d O(n). The complexity

of the algorithm does not exceed (Ldn2)O(1).

Similar to Subsect. 4.1, our results here can be generalized to arbitrary real closed field.

4.3 Membership in Binomial Varieties

Let a group G ⊂ (Q
∗
)n be given by binomial equations x

ai,1
1 · · · xai,n

n = 1, 1 ≤ i ≤ k, where ai, j ∈ Z, |ai, j | ≤ d.
Let v = (v1, . . . , vn) ∈ Q

n be a point such that the absolute values of the numerators and denominators of v1,
…, vn do not exceed M . We design an algorithm which tests whether v ∈ G. Recall that G is a binomial variety,
and it is a toric variety when G is irreducible.
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Theorem 27 There is an algorithm which tests whether a point v belongs to a binomial variety G with its complexity
bounded by

(i) (k · log M · (dn)n)O(1) and by
(ii) (k · M · n · log d)O(1).

Proof Permuting the coordinates, assume w.l.o.g. that v = (0, . . . , 0, vs+1, . . . , vn), where vs+1 · · · vn �= 0. Due
to Claim 5.3 in [40], v ∈ G if and only if there exist a point u = (u1, . . . , us, vs+1, . . . , vn) ∈ G and positive
0 < b1, . . . , bs ∈ Z such that

v = lim
t→0

(u1 · tb1, . . . , us · tbs , vs+1, . . . , vn) (12)

and for all t �= 0, i.e., a shift of a one-parametric subgroup,wehave that (u1·tb1, . . . , us ·tbs , vs+1, . . . , vn) ∈ G. Then
(12) is equivalent to the existence of u ∈ G and a one-parametric subgroup { (tb1, . . . , tbs , 1, . . . , 1) | t �= 0 } ⊆ G.
The existence of the latter is equivalent to the existence of a non-negative vector (b1, . . . , bs, 0, . . . , 0) orthogonal
to the vectors (ai,1, . . . , ai,n), 1 ≤ i ≤ k. This can be checked by means of linear programming.

The existence of a point u ∈ G satisfying (12) is equivalent to the existence of non-zero u1,…, us ∈ Q
∗
satisfying

the binomial equations

u
ai,1
1 · · · uai,s

s = v
−ai,s+1
s+1 · · · v−ai,n

n , 1 ≤ i ≤ k. (13)

One can apply the algorithm in [41] to this system and transform the k × s submatrix A = (ai, j ), 1 ≤ i ≤ k,
1 ≤ j ≤ s to its Smith form. Then solvability of (13) is equivalent to that the right-hand side of (13) fulfils (at most
k) relations of the form
∏

1≤i≤k

(v
−ai,s+1
s+1 · · · v−ai,n

n )ci = 1 (14)

for some integers ci being suitable minors of matrix A, hence |ci | ≤ (ds)O(s) by Hadamard’s inequality.
One can verify relations (14) using the binary form of the numerators and denominators of vs+1, …, vn . This

leads to the complexity bound (i). Alternatively, one can factorize the numerators and denominators of vs+1, …, vn

and execute calculations in terms of exponents of their prime factors which leads to the complexity bound (ii). This
completes the verification of (12) and the description of the algorithm. 
�

One can extend the complexity bound (i) for v j ∈ Q, 1 ≤ j ≤ n being algebraic numbers. In this case log M
plays the role of the bit-size of the representation of v.

5 Conclusions and Future Work

We have taken a geometric approach to studying steady state varieties, which—besides significant theoretical
results—generated comprehensive empirical data from computations on 129 networks from BioModels repository.
We are not aware of any comparable systematic large scale symbolic computations on those data in the literature.
We were indeed surprised by the success rate of Gröbner basis and real quantifier elimination techniques with input
sizes up to 71 variables. We find this most encouraging and believe that robust and supported software tools for
systems biology and medicine that include symbolic computation components are not out of reach.

It was important to learn that real methods do not significantly fall behind complex methods efficiency-wise.
After all, chemical reaction network theory takes place in the interior of the positive first orthant. In a way, our
consideration of V ∗ in favor of V here marks a first step in that direction by looking at points in the variety rather
than polynomials in the ideal. Only real methods allow to go further and, e.g., identify prime components whose
varieties reach into the first orthant.

Our work here gives a number of quite concrete challenges to be considered in subsequent work. To start
with, one must complete the step from “coset” to “shifted toric” in practical software by producing suitable prime
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decompositions beyond decompositions over Q. As mentioned above, real methods allow to explicitly refer to the
interior of the first orthant, and our framework and the first-order descriptions we use should be refined in this
direction. On the complex side, one should also test suitable elimination methods with the logic descriptions we
developed here.

It is noteworthy that all quantifier elimination problems considered here were decision problems, even without
quantifier alternation. On the one hand, this allows the application of methods and tools from Satisfiability Modulo
Theories Solving [1,52]. On the other hand, it shows that we are not yet using the full power of quantifier elimination
methods. One could, e.g., leave a subset of reaction rates parametric and study invariance of shifted toricity under
variation of those reaction rates.

Our input of 129 models considered here is in a way complete: We took all available models from BioMod-
els/ODEbase for which we could straightforwardly produce polynomial vector fields. So far we did not consider
systems with rational vector fields. Such systems come with interesting challenges on the algebraic side: While the
variety V is blind for the presence or non-presence of polynomials factors from the denominators, those factors can
still affect shifted toricity V ∗.
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Appendix A Computations on 129 Models from the BioModels Repository

We conducted our computations on a 2.40 GHz Intel Xeon E5-4640 with 512 GB RAM and 32 physical cores
providing 64 CPUs via hyper-threading. For parallelization of the jobs for the individual models we used GNU
Parallel [64]. Results are stored in an Sqlite3 database file, which contains considerably more information than
can be presented here in print (Online Resource 1). Beyond our own computations the database imports data from
BioModels and ODEbase, so that our models and the history of our input can be reliably tracked. For instance, we
store the mappings between our variables and the original species names and even the original SBML file with each
model.

Among the information imported from ODEbase there is a binary flag indicating whether or not a model has
mass action kinetics [66] according to the following criterion [29, Section 2.1.2].

Definition 28 (Mass Action Test) A system is considered a mass action system when the kinetic law is made up
of the product of the concentrations of the reactant species to the power of their respective stoichiometry times a
constant.

A.1 Classifications of the Original Systems

We start with the classification over C and R of the original, not decomposed, systems using algorithms from
Sects. 3.1 and 3.2, respectively. For comments on the tables from a theoretical point of view compare those sections.

http://creativecommons.org/licenses/by/4.0/
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Table 1 Applying ProjectAndClassifyK over C and R. Model
numbers nnn stand for BIOMD0000000 nnn. “m/a” indicates
mass action kinetics (Definition 28). |X | and |X̂ | are numbers
of variables before and after projection, respectively. γ is G for

group, C fo coset, O for empty set, and X else; lower case let-
ters indicate projection. Time columns give total CPU times in
seconds or “⊥” for a timeout with a limit of 6h per model

Model m/a Algorithm 1 (C) Algorithm 4 (R)

|X | |X̂ | γ Time (s) |X | |X̂ | γ Time (s)

001 1 12 12 C 10.32 12 12 C 3.37

002 1 ⊥ ⊥
009 0 22 22 C 85.96 22 22 C 21.26

011 0 22 22 C 150.21 22 22 C 11.20

026 1 11 11 X 3.99 11 11 X 1.12

028 1 16 16 X 66.60 ⊥
030 1 18 18 X 57.84 ⊥
035 0 9 9 X 21.11 9 9 X 0.25

038 0 ⊥ ⊥
040 0 3 3 X 4.65 3 3 X 0.05

046 0 ⊥ ⊥
050 0 9 0 o 0.09 9 0 o 0.02

052 0 6 0 o 0.09 6 0 o 0.01

057 0 6 6 C 1.53 6 6 C 0.11

069 0 10 10 X 14.09 ⊥
072 0 7 3 o 0.63 7 3 o 0.03

077 0 7 7 C 5.82 7 7 C 0.14

080 0 10 8 o 3.72 10 8 o 0.09

082 0 10 8 o 2.44 10 8 o 0.14

085 0 ⊥ ⊥
086 0 ⊥ ⊥
091 0 14 0 o 0.05 14 0 o 0.03

092 0 3 3 C 1.87 3 3 C 0.04

099 0 7 7 C 2.48 7 7 C 0.34

101 1 6 6 X 1.82 6 6 X 0.09

102 0 13 13 X 226.67 ⊥
103 0 17 17 X 20238.89 ⊥
104 0 4 4 O 1.36 4 4 O 0.01

105 0 26 0 o 0.24 26 0 o 0.51

108 0 ⊥ ⊥
122 0 12 12 X 8639.19 ⊥
123 0 ⊥ ⊥
125 0 5 5 X 2.26 5 5 X 0.05

137 0 21 20 x 50.16 21 20 x 2.91

147 0 ⊥ ⊥
150 0 4 4 C 3.43 4 4 C 0.04

152 0 ⊥ ⊥
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Table 1 continued

Model m/a Algorithm 1 (C) Algorithm 4 (R)

|X | |X̂ | γ Time (s) |X | |X̂ | γ Time (s)

153 0 ⊥ ⊥
156 0 3 3 C 0.96 3 3 C 0.02

158 0 3 3 X 1.00 3 3 X 0.02

159 0 3 3 C 2.49 3 3 C 0.02

163 0 16 16 X 9.09 16 16 X 1.75

173 1 ⊥ ⊥
178 0 4 0 o 0.06 4 0 o 0.00

186 1 10 10 O 4.63 10 10 O 0.14

187 1 10 10 O 9.85 10 10 O 0.12

188 1 10 0 o 0.10 10 0 o 0.02

189 1 7 0 o 0.03 7 0 o 0.01

193 1 8 8 X 7.11 8 8 X 0.13

194 1 5 5 X 7.07 5 5 X 0.03

197 0 5 5 X 9.93 5 5 X 0.15

198 1 9 5 c 0.79 9 5 c 0.06

199 0 8 8 C 2.79 8 8 C 0.18

200 0 ⊥ ⊥
205 0 ⊥ ⊥
220 0 56 46 o 5.27 56 46 o 88.15

226 0 14 14 X 14.19 ⊥
227 0 39 0 o 0.14 39 0 o 0.19

229 0 7 7 C 1.33 7 7 C 0.20

230 0 24 23 o 47.72 ⊥
233 0 2 2 X 1.03 2 2 X 0.01

243 0 19 12 o 1.32 19 11 o 5.21

257 1 8 8 X 2.65 ⊥
259 0 16 0 o 0.38 16 0 o 0.17

260 0 16 0 o 0.09 16 0 o 0.16

261 0 16 0 o 0.09 16 0 o 0.17

262 0 9 1 c 3.18 9 1 c 0.05

263 0 9 1 c 1.11 9 1 c 0.05

264 0 11 9 c 11.45 11 9 c 0.37

267 0 3 0 o 0.09 3 0 o 0.00

270 0 ⊥ ⊥
271 1 4 1 c 0.20 4 1 c 0.01

272 1 4 1 c 0.27 4 1 c 0.01

281 0 32 31 o 1.20 32 31 o 24.50

282 1 3 3 O 0.16 3 3 O 0.01

283 1 3 2 o 0.28 3 2 o 0.01

286 0 ⊥ ⊥
287 1 20 20 X 33.76 ⊥
289 0 4 4 X 0.84 4 0 o 0.01
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Table 1 continued

Model m/a Algorithm 1 (C) Algorithm 4 (R)

|X | |X̂ | γ Time (s) |X | |X̂ | γ Time (s)

292 0 2 0 o 0.16 2 0 o 0.01

306 0 2 2 C 0.25 2 2 C 0.01

307 0 2 0 o 0.14 2 0 o 0.01

310 0 1 0 o 0.02 1 0 o 0.00

311 0 1 0 o 0.02 1 0 o 0.00

312 0 2 0 o 0.02 2 0 o 0.00

314 0 10 7 o 0.73 10 7 o 0.07

315 1 ⊥ ⊥
321 0 3 0 o 0.02 3 0 o 0.00

332 0 ⊥ 70 64 o 395.97

333 0 49 43 o 573.10 49 43 o 120.98

334 0 ⊥ 69 63 o 271.40

335 1 29 28 o 97.52 ⊥
344 0 ⊥ ⊥
357 1 8 4 o 0.20 8 4 o 0.10

359 0 8 6 o 0.21 8 6 o 0.08

360 0 8 6 o 0.93 8 6 o 0.07

361 0 8 7 o 1.04 8 7 o 0.04

362 1 29 28 o 1304.71 29 28 o 429.42

363 0 3 0 o 0.07 3 0 o 0.00

364 1 12 10 o 1.03 12 10 o 0.54

365 1 30 24 o 212.01 ⊥
407 0 ⊥ ⊥
413 1 5 5 X 1.05 5 5 X 0.06

416 0 32 32 X 25.87 32 32 X 4.17

430 0 ⊥ 23 23 X 13.99

431 0 ⊥ 27 27 X 31.90

439 0 20 20 X 52.51 20 20 X 15.42

459 0 3 3 C 0.50 3 3 C 0.09

460 0 3 3 X 0.52 3 3 X 0.04

475 0 22 20 o 3.26 22 20 o 7.92

478 0 29 28 o 33.38 29 28 o 16.85

479 0 ⊥ ⊥
483 0 6 6 X 1.26 6 6 X 0.11

484 0 1 1 C 0.14 1 1 C 0.01

485 0 1 1 X 1.22 1 1 X 0.12

486 1 2 2 C 0.63 2 2 C 0.02

487 1 6 6 C 0.69 6 6 C 0.16

491 1 57 57 G 12.21 ⊥
492 1 52 52 G 17.96 ⊥
504 0 ⊥ ⊥
519 0 3 3 C 4.71 3 3 C 0.18



224 D. Grigoriev et al.

Table 1 continued

Model m/a Algorithm 1 (C) Algorithm 4 (R)

|X | |X̂ | γ Time (s) |X | |X̂ | γ Time (s)

546 0 3 0 o 0.07 3 0 o 0.00

559 0 71 0 o 0.32 71 0 o 0.91

581 0 ⊥ 25 25 X 6.00

584 0 9 9 C 0.60 9 9 C 0.13

619 1 8 0 o 0.07 8 0 o 0.01

629 0 5 5 C 0.41 5 5 C 0.08

637 1 12 12 X 492.76 ⊥
647 1 11 11 X 6.03 11 11 X 0.37

Table 2 Statistical information about the computations in Table 1

Algorithm 1 (C) Algorithm 4 (C)

Time limit 6h 6h

#models 129 129

#successful computations 104 94

Success rate 80.62% 72.87%

Median (time) 1.33 s 0.09 s

Fig. 1 Numbers of
problems solved within
certain time limits by
Algorithm 1 over C (left)
and Algorithm 4 over R

(right). The total number of
problems is 129

Beyond the data presented here we generally save the sets X , X̂ . Furthermore, over C we save the computed
Gröbner bases G, Ĝ, G̃ and their term orders, and over R we save witnesses for V ∗

R
�= ∅.

Recall that over C, X̂ describes only compatible projection spaces, while over R it describes the canonical
projection space.
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Remark 29 Let F ⊆ Q[X ]. Let YR, YC ⊆ X describe the canonical projection spaces with respect to VR(F),
VC(F), respectively. Let furthermore X̂ describe any compatible projection space with respect to VC(F). Then
YR ⊆ YC ⊆ X̂ and thus |YR| ≤ |YC| ≤ |X̂ |. Using the fact that all sets are finite, |X̂ | = |YR| implies X̂ = YC.

Recall that X̂ as computed in Algorithm 1 describes only a compatible projection space with respect to the
complex variety, while X̂ as computed in Algorithm 4 describes the canonical projection space with respect to the
real variety. The idea with Algorithm 1 was to have a heuristic method to efficiently obtain a description of the
canonical projection space also there. Remark 29 tells us that whenever we find equal numbers for |X̂ | over C and R

in Table 1 below, then that heuristic method was successful. This is the case with all models where the computation
terminated over both C and R except for the models 243 and 289.

Since we obtain X in contrast to O with model 289, we know that X̂ describes a canonical projection space
over C also there. With model 243, our obtained X̂ indeed does not describe the canonical projection space over
C. Inspection of the computation shows that the Gröbner basis G in l.1 of Algorithm 1 contains x26 . An improved
heuristic method could check for powers of variables occurring in G. However, Example 15 shows that this would
still be only heuristic.

There are 15 models where the complex classification in Table 1 succeeded but the real classification timed out:
028, 030, 069, 102, 103, 122, 226, 230, 257, 287, 335, 365, 491, 492, 637. Among those, models 491 and 492 have
classification G and models 230, 335, and 265 have classification o over C, from which we can conclude that they
have the same classification over R, respectively.

Vice versa, there are 5 models where real classification succeeded but complex classification timed out: 332,
334, 430, 431, 581.

There is one single model where we succeeded over both C and R but obtained different classifications: model
289 has X over C but o over R.

Table 2 collects some statistical information about the computations. Figure 1 provides some analysis of the
computation times. Notice that many computations finish quite quickly.

A.2 Classifications of Rational Prime Decompositions

Recall that Algorithm 3 and Algorithm 6 compute prime decompositionsP over Q and then apply our classification
approach to each prime component individually. This yields listsX , X̂ containing in turn lists X and X̂ of variables
before and after projection, respectively, as well as a list 	 of classifications γ . We have |X | = |X̂ | = |	| = |P|,
and elements can be matched by position. Since this information is too comprehensive to be displayed in a table,
we give only |P| and summarize the numbers of occurrences of the various classifications in 	. Our database, of
course, stores the complete information.

There are 17 models where the complex classification in Table 3 succeeded but the real classification timed out:
002, 028, 030, 038, 046, 069, 102, 103, 108, 122, 173, 226, 230, 270, 287, 439, 637. Vice versa, there are no models
where the classification succeeded over R but not over C. There are 8 models where we succeeded over both C and
R but obtained different classifications: 091, 105, 188, 189, 227, 289, 292, 559. All those differences are visible in
the summaries 	summary in Table 3. Model 289 is o + X over C but 2o over R. We have addressed this difference
already with the computations in Appendix A.1. With all other models listed above the difference is o over C in
contrast to O over R.

Table 4 collects some statistical information about the computations. Figure 2 provides some analysis of the
computation times. Notice that many computations finish quite quickly.



226 D. Grigoriev et al.

Table 3 Applying DecomposeProjectAndClassifyK overC and
R. Model numbers nnn stand for BIOMD0000000nnn. “m/a”
indicates mass action kinetics (Definition 28). |P| is the number
of prime components over Q. 	summary summarizes the classi-

fication of the components using G for group, C fo coset, O for
empty set, andX else; lower case letters indicate projection. Time
columns give total CPU times in seconds or “⊥” for a timeout
with a limit of 6h per model

Model m/a |P| Time (s) Algorithm 3 (C) Algorithm 6 (R)

	summary Time (s) 	summary Time (s)

001 1 1 4.49 C 12.64 C 5.00

002 1 1 192.42 X 318.37 ⊥
009 0 28 199.03 C+ 13c+ 14o 238.71 C+ 13c+ 14o 255.23

011 0 20 167.45 C+ 9c+ 10o 197.90 C+ 9c+ 10o 212.07

026 1 2 4.74 o+ X 5.95 o+ X 5.36

028 1 2 135.05 o+ X 162.90 ⊥
030 1 2 157.89 o+ X 175.57 ⊥
035 0 1 12.31 X 18.26 X 12.76

038 0 1 391.05 X 463.38 ⊥
040 0 2 1.64 o+ X 2.14 o+ X 1.67

046 0 2 764.98 X+ x 817.90 ⊥
050 0 1 0.59 o 0.61 o 0.60

052 0 1 0.95 o 0.98 o 0.95

057 0 1 0.63 C 5.44 C 0.70

069 0 2 56.34 2x 61.34 ⊥
072 0 2 0.26 2c 0.55 2c 0.27

077 0 1 1.05 C 6.26 C 1.15

080 0 7 9.43 3c+ 4o 11.43 3c+ 4o 9.62

082 0 7 8.45 3c+ 4o 13.70 3c+ 4o 8.64

085 0 ⊥ ⊥ ⊥
086 0 ⊥ ⊥ ⊥
091 0 1 0.02 o 0.06 O 0.02

092 0 2 0.75 C+ o 1.36 C+ o 0.77

099 0 1 0.26 C 0.92 C 0.47

101 1 1 0.36 X 5.90 X 0.43

102 0 1 38.46 X 249.72 ⊥
103 0 1 3090.38 X 20628.00 ⊥
104 0 4 0.63 4o 0.64 4o 0.63

105 0 1 0.37 o 0.55 O 0.37

108 0 2 40.86 2X 68.74 ⊥
122 0 1 326.19 X 363.45 ⊥
123 0 ⊥ ⊥ ⊥
125 0 1 0.18 X 1.22 X 0.21

137 0 5 180.68 5x 220.13 5x 190.34

147 0 ⊥ ⊥ ⊥
150 0 1 1.12 C 2.86 C 1.15

152 0 ⊥ ⊥ ⊥
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Table 3 continued

Model m/a |P| Time (s) Algorithm 3 (C) Algorithm 6 (R)

	summary Time (s) 	summary Time (s)

153 0 ⊥ ⊥ ⊥
156 0 2 0.53 C+ o 0.77 C+ o 0.54

158 0 1 0.22 X 1.06 X 0.24

159 0 1 0.20 C 0.60 C 0.23

163 0 1 9.69 X 19.50 X 10.36

173 1 1 295.07 x 1719.63 ⊥
178 0 1 3.66 o 3.67 o 3.66

186 1 5 4.73 2c+ 3x 7.78 2c+ 3x 5.09

187 1 5 18.41 2c+ 3x 29.25 2c+ 3x 18.79

188 1 1 0.27 o 0.29 O 0.27

189 1 1 0.02 o 0.04 O 0.02

193 1 1 6.50 X 7.12 X 6.62

194 1 1 1.38 X 1.98 X 1.41

197 0 1 4.18 X 6.96 X 4.24

198 1 1 0.69 c 3.16 c 0.72

199 0 1 0.35 C 2.63 C 0.50

200 0 ⊥ ⊥ ⊥
205 0 ⊥ ⊥ ⊥
220 0 ⊥ ⊥ ⊥
226 0 1 17.10 X 25.93 ⊥
227 0 1 0.03 o 0.15 O 0.03

229 0 2 1.60 C+ c 6.77 C+ c 1.73

230 0 5 181.14 5x 249.78 ⊥
233 0 3 0.14 2C+ o 2.46 2C+ o 0.15

243 0 8 9.13 8o 9.19 8o 9.18

257 1 2 0.63 o+ X 2.29 o+ X 590.61

259 0 1 2.93 o 2.98 o 2.95

260 0 1 1.41 o 1.46 o 1.42

261 0 1 0.84 o 0.87 o 0.86

262 0 1 1.83 c 4.43 c 1.85

263 0 1 2.48 c 2.66 c 2.49

264 0 1 3.12 c 7.28 c 3.31

267 0 1 0.10 o 0.11 o 0.10

270 0 1 14511.34 X 15819.74 ⊥
271 1 1 3.87 c 5.31 c 3.88

272 1 1 0.12 c 1.11 c 0.12

281 0 3144 8264.69 1008c+ 2136o 8317.80 1008c+ 2136o 8655.75

282 1 2 0.36 2o 0.37 2o 0.37
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Table 3 continued

Model m/a |P| Time (s) Algorithm 3 (C) Algorithm 6 (R)

	summary Time (s) 	summary Time (s)

283 1 2 0.10 2o 0.11 2o 0.11

286 0 ⊥ ⊥ ⊥
287 1 1 12.78 X 27.29 ⊥
289 0 2 1.15 o+ X 2.84 2o 1.15

292 0 1 1.20 o 1.20 O 1.20

306 0 2 0.53 C+ o 1.04 C+ o 0.54

307 0 1 0.02 o 0.03 o 0.02

310 0 1 0.02 o 0.03 o 0.02

311 0 1 0.02 o 0.02 o 0.02

312 0 1 0.04 o 0.05 o 0.04

314 0 3 0.94 3c 1.11 3c 0.99

315 1 ⊥ ⊥ ⊥
321 0 1 0.07 o 0.08 o 0.07

332 0 ⊥ ⊥ ⊥
333 0 ⊥ ⊥ ⊥
334 0 ⊥ ⊥ ⊥
335 1 ⊥ ⊥ ⊥
344 0 ⊥ ⊥ ⊥
357 1 2 0.23 2o 0.25 2o 0.24

359 0 5 0.96 2c+ 3o 2.80 2c+ 3o 1.02

360 0 4 0.72 2c+ 2o 1.48 2c+ 2o 0.77

361 0 2 0.48 2c 1.01 2c 0.60

362 1 ⊥ ⊥ ⊥
363 0 1 0.26 o 0.27 o 0.26

364 1 4 2.23 2c+ 2o 3.22 2c+ 2o 2.37

365 1 ⊥ ⊥ ⊥
407 0 ⊥ ⊥ ⊥
413 1 1 1.07 X 1.59 X 1.11

416 0 3 36.24 X+ 2x 43.95 X+ 2x 41.76

430 0 20 112.47 8c+ 10o+ X+ x 221.05 8c+ 10o+ X+ x 12709.47

431 0 ⊥ ⊥ ⊥
439 0 9 32.38 2c+ 2o+ X+ 4x 40.10 ⊥
459 0 1 0.24 C 0.50 C 0.25

460 0 1 1.27 X 1.49 X 1.30

475 0 30 30.46 14c+ 4o+ 12x 37.62 14c+ 4o+ 12x 43.66

478 0 ⊥ ⊥ ⊥
479 0 ⊥ ⊥ ⊥
483 0 1 0.23 X 0.59 X 0.28

484 0 1 0.10 C 0.14 C 0.11
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Table 3 continued

Model m/a |P| Time (s) Algorithm 3 (C) Algorithm 6 (R)

	summary Time (s) 	summary Time (s)

485 0 1 0.16 X 0.23 X 0.23

486 1 1 0.15 C 0.27 C 0.16

487 1 1 1.40 C 1.78 C 1.49

491 1 1 2.55 G 22.49 G 47.84

492 1 1 1.59 G 10.04 G 35.49

504 0 ⊥ ⊥ ⊥
519 0 3 1.60 C+ c+ o 4.15 C+ c+ o 1.62

546 0 1 0.13 o 0.14 o 0.13

559 0 1 0.98 o 1.18 O 0.99

581 0 ⊥ ⊥ ⊥
584 0 1 0.26 C 2.36 C 0.38

619 1 1 0.86 o 0.88 o 0.88

629 0 1 1.03 C 1.70 C 1.06

637 1 3 8383.02 X+ 2x 8464.64 ⊥
647 1 1 5.95 X 6.70 X 6.23

Table 4 Statistical information about the computations in Table 3

Algorithm 3 (C) Algorithm 6 (C)

Time limit 6h 6h

#models 129 129

#successful computations 105 88

Success rate 81.40% 68.22%

Median (time) 2.80 s 0.99 s

Fig. 2 Numbers of
problems solved within
certain time limits by
Algorithm 3 over C (left)
and Algorithm 6 over R

(right). The total number of
problems is 129
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