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Abstract

We present a symbolic algorithmic approach that allows to compute invariant manifolds and cor-
responding reduced systems for differential equations modeling biological networks which comprise
chemical reaction networks for cellular biochemistry, and compartmental models for pharmacology,
epidemiology and ecology. Multiple time scales of a given network are obtained by scaling, based
on tropical geometry. Our reduction is mathematically justified within a singular perturbation
setting using a recent result by Cardin and Teixeira. The existence of invariant manifolds is sub-
ject to hyperbolicity conditions, which we test algorithmically using Hurwitz criteria. We finally
obtain a sequence of nested invariant manifolds and respective reduced systems on those manifolds.
Our theoretical results are generally accompanied by rigorous algorithmic descriptions suitable for
direct implementation based on existing off-the-shelf software systems, specifically symbolic com-
putation libraries and Satisfiability Modulo Theories solvers. We present computational examples
taken from the well-known BioModels database using our own prototypical implementations.

1. Introduction
Biological network models describing elements in interaction are used in many areas of biology and
medicine. Chemical reaction networks are used as models of cellular biochemistry, including gene regula-
tory networks, metabolic networks and signaling networks. In epidemiology and ecology, compartmental
models can be described as networks of interactions between compartments. Both in chemical reaction
networks and in compartmental models the probability that two elements interact is assumed propor-
tional to their abundances. This property, called mass action law in biochemistry, leads to polynomial
differential equations in the kinetics.
For differential equations that describe the development of such networks over time a crucial question

is concerned with reduction of dimension. We illustrate such a reduction and the steps involved for
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the classical Michaelis–Menten system, an archetype of enzymatic reactions. The differential equations
for the concentrations of relevant chemical species, which are substrate and enzyme-substrate complex,
have the form

ẏ1 = −εk1y1 + (k1y1 + k−1)y2

ẏ2 = εk1y1 − (k1y1 + k−1 + k2)y2,

involving a small parameter ε that represents the ratio of the total concentration of the enzyme to the
concentration of the substrate. The fact that this ratio is small is an assumption of the model that has
to be verified in applications. In a first step toward reduction, a scaling transformation y1 = x1 and
y2 = εx2 yields

ẋ1 = ε(−k1x1 + (k1x1 + k−1)x2)
ẋ2 = k1x1 − (k1x1 + k−1 + k2)x2.

In a second step, one uses singular perturbation theory to obtain the famous Michaelis–Menten
equation. It consists of two components: First, we obtain a one dimensional invariant manifold given
approximately by the quasi-steady state condition k1x1 − (k1x1 + k−1 + k2)x2 = 0. This considers the
fast variable x2 to be at the steady state and lowers dimension from two to one. Second, we obtain a
reduced system for the slow variable:

ẋ1 = −ε k1k2x1

k1x1 + k−1 + k2
.

With our example, we paraphrased the approach in a seminal paper by Heineken et al. [28], which
was the first one to rigorously discuss quasi-steady state from the perspective of singular perturbation
theory. Realistic network models may have many species and differential equations. Considerable effort
has been put into model order reduction, i.e., finding approximate models with a smaller number of
species and equations, where the reduced model can be more easily analyzed than the full model [46].
The scaling of parameters and variables by a small parameter ε and the study of the limit ε → 0

is central in singular perturbation theory. It is rather obvious that arbitrary scaling transformations
are unlikely to provide useful information about a given system. Successful scalings, in contrast, are
typically related to the existence of nontrivial invariant manifolds. Applications of scaling rely on the
observation that, loosely speaking, any result that holds asymptotically for ε → 0 remains valid for
sufficiently small positive ε∗, provided some technical conditions are satisfied. To determine scalings
of polynomial or rational vector fields that model biological networks, tropical equilibration methods
were introduced and developed in a series of papers by Noel et al. [44], Radulescu et al. [47], Samal et
al. [51, 50], and others. These methods open a feasible path for biological networks of high dimension.
For a given system they provide a list of possible slow-fast systems, which may or may not yield invariant
manifolds and reduced equations. Other methods due to Goeke et al. [26], and recently extended to
multiple time scales by Kruff and Walcher [32], determine critical parameter values and manifolds for
singular perturbation reductions.
The principal purpose of the present paper is to complement scaling with an algorithmic test for

the existence of invariant manifolds and the computation of those manifolds along with corresponding
reduced systems of differential equations. In the asymptotic limit, methods from singular perturbation
theory, principally developed by Tikhonov [58] and Fenichel [21], are available. A recent extension
to multiscale systems by Cardin and Teixeira [10] turns out to be a valuable tool for the systematic
computation of reductions with nested invariant manifolds, and allows an algorithmic approach.
In the language of systems biology the situation at a given time scale can be described as follows:

Faster variables have relaxed and satisfy quasi-steady state conditions, a subset of variables evolves
toward quasi-steady state values, and all slower variables are constant. The sets of quasi-steady state
conditions for relaxed variables define invariant manifolds, more precisely, they provide the lowest order
approximations to the invariant manifolds. As the set of relaxed variables and thus quasi-steady state
conditions increases, the respective invariant manifolds get nested so that later manifolds are contained
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in earlier ones. Local linear approximations of these manifolds were proposed by Valorani and Paolucci
[59] using numerical methods based on the local Jacobian. However, to the best of our knowledge,
constructive approaches providing the nonlinear description of these manifolds and reduced models are
still missing.
From a computer science point of view, we propose a novel symbolic computation-based algorithmic

workflow for the reduction process outlined above. This includes in particular the automatic verification
of certain hyperbolicity conditions required for the validity of the reductions. We restrict ourselves to
the case of polynomial differential equations that covers mass action chemical reaction networks and
compartmental models. We present a series of algorithms that takes as input a system of polynomial
autonomous ordinary differential equations together with numerical information related to the desired
coarse graining of the scaling. As output one finally obtains a collection of nested invariant manifolds
for the input system, associated with smaller dimensional systems that govern the dynamics on those
manifolds. This output establishes the reduced systems discussed above.
The computationally hard parts of our methods are reduced to decision problems in interpreted first-

order logic over various theories. It turns out that quantifier alternation can be entirely avoided, so
that the Satisfiability Modulo Theories (SMT) framework by Nieuwenhuis et al. [41] can be applied.
Several corresponding SMT solvers are freely available and professionally supported [1, 12, 15, 17].
It is remarkable that we arrive with our comprehensive algorithmic work here at SMT sub-problems
for several different logics, viz. linear integer arithmetic, linear real arithmetic, and non-linear real
arithmetic. The algorithms presented here are suitable for straightforward implementation provided
that a symbolic computation library, or computer algebra system, and an SMT solver are available. To
ensure this, we have realized two independent prototypical realizations in software on our own, one in
Python using freely available libraries, and one in Maple.
The plan of the paper is as follows: In Sect. 2.1 we introduce an abstract scaling procedure, which

assumes, for given 0 < ε∗ < 1, the existence of families of exponents ck,J and dk for scaling polynomial
coefficients and variables, respectively. From the scaled system, higher order terms are truncated,
and the obtained system is partitioned into several time scales, ordered from fastest to slowest. A
corresponding generic algorithm uses black-box functions c and d. In Sect. 2.2 we make precise one
possible way to realize c and d, based on tropical geometry. So far, our transformations are mostly
of formal nature. On these grounds, we algorithmically determine in Sect. 3 invariant manifolds and
corresponding reduced systems, which makes the formal scaling meaningful in a mathematically precise
way. In general, this is possible only for a certain number ` of time scales, where ` is explicitly
found and—in contrast to existing alternative approaches—often larger than 2. Technically, we apply
recent results by Cardin and Teixeira [10] based on Fenichel theory. In Sect. 4, we employ symbolic
computation techniques, specifically Gröbner basis theory, to equivalently simplify our reduced systems,
which are still scaled in terms of ε∗, c, and d. In Sect. 5, we finally transform back to the principal
scale of the original system while preserving the obtained multiple time scales and the structure of the
corresponding reduced systems. In particular, the various time scale factors remain explicit. Until here,
the mathematical development of our framework has been accompanied by nine algorithms, and we give
a tenth top-level algorithm and make precise how various modules are combined and interact with one
another. In Sect. 6 we discuss various computational examples with software developed in the course
of the present work. We consider models from the BioModels database, a repository of mathematical
models of biological processes [34]. Our primary objective is to support the understanding of our
algorithms, which naturally comes with a high ratio of negative examples, which do not have meaningful
reductions. This is counter-balanced by a collection of biologically interesting positive examples in the
Appendix A. In Sect. 7, we wrap up and point at possible future research directions.

2. Scaling of Polynomial Vector Fields
In what follows, we adopt a rather general scaling formalism that has been used recently in [43, 44, 46,
47, 51] and is generally rather recurrent in the literature on singular perturbations, see for instance [42,
Sect. 3]. We use the convention that the natural numbers N include 0.
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2.1. An Abstract Scaling Procedure
Our starting point is a parameter dependent system S of polynomial differential equations

ẏk := dyk
dt =

∑
J

γk,Jy
J , 1 ≤ k ≤ n, (1)

where the summation ranges over multi-indices J = (j1, . . . , jn) ∈ Nn, γk,J ∈ R, and only finitely many
γk,J are non-zero. We abbreviate yJ = yj1

1 · · · yjn
n , as usual. In terms of network models, yk represents

the concentration of either a chemical species or a type of individual in a compartment. Note that
we use positive integers as indices, instead of concrete names for species and compartments. The real
coefficients γk,J describe actions of other species or individuals on the species or individual k. If these
actions are activations one has γk,J > 0, whereas for repressions one has γk,J < 0. Several species may
interact to produce an action on a given species k. This information is contained in the number of non-
zero components of J . More precisely, the order of the action, defined as the number of species needed
to produce that action, is the finite cardinality of the set { i ∈ {1, . . . , n} | ji 6= 0 }. This terminology is
inspired from chemical reactions, where the order represents essentially the number of reactant species.
Throughout this paper, we require that positive yk remain positive as time progresses. In other

words, the positive first orthant U = (0,∞)n ⊆ Rn is positively invariant for system (1), which is
the case, e.g., in chemical reaction networks when γk,Jy

J ≥ 0 on all intersections of hyperplanes
{ (y1, . . . , yn) ∈ Rn | yk = 0 } with U .
We fix some small ε∗ ∈ (0, 1), and we impose that

γk,J = ε
ck,J
∗ γ̄k,J , (2)

with rational numbers ck,J . The tacit understanding is that only nonzero γk,J are being considered.
The intuitive idea is that the γ̄k,J are close to one. Moreover, we introduce a positive parameter ε and
consider the system

ẏk =
∑
J

εck,J γ̄k,J y
J , 1 ≤ k ≤ n (3)

with ε-dependent coefficients. Notice that (3) matches (1) at ε = ε∗. By renormalizing yk = εdkxk,
dk ∈ Q, one obtains a system in scaled variables

ẋk =
∑
J

εck,J +〈D,J〉−dk γ̄k,J x
J , 1 ≤ k ≤ n, (4)

with D = (d1, . . . , dn) and the dot product in Rn denoted by 〈·, ·〉. This transformation preserves the
positive invariance of U . The scaling comes with the implicit assumption that for i, j ∈ {1, . . . , n}, the
relative order of yi with respect to yj is bounded by yi/yj = Θ(εdi−dj ) for ε→ 0, so that all xk get the
same order of magnitude. Continuing, we set νk = min{ ck,J + 〈D,J〉 − dk | γ̄k,J 6= 0 } to obtain

ẋk = ενk

∑
J

εck,J +〈D,J〉−dk−νk γ̄k,J x
J , 1 ≤ k ≤ n, (5)

where now all exponents of ε inside the sums are nonnegative. Finally one may perform a preliminary
time scaling τ = εµt, µ = min {ν1, . . . , νn} to arrive at

x′k := dxk
dτ = ενk−µ

∑
J

εck,J +〈D,J〉−dk−νk γ̄k,J x
J , 1 ≤ k ≤ n, (6)

with all exponents nonnegative. We are interested in system (6) for variable ε > 0, in the asymptotic
limit ε→ 0.

We restructure (6) by collecting all variables with equal νi−µ in vectors z1, . . . , zm, where zk ∈ Rnk

for k ∈ {1, . . . ,m}, in ascending order of exponents and such that n1 + . . . + nm = n. We obtain a
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system of the form

z′k = εak f̃k(z, ε) = εak

(
f̃k(z, 0) + εa

′
k,2pk,2 + · · ·+ εa

′
k,wk pk,wk

)
= εak

(
f̃k(z, 0) + o(1)

)
, 1 ≤ k ≤ m,

(7)
where ak, a′k,j ∈ Q, 0 = a1 < a2 < . . . < am, 0 < a′k,j , and pk,j are multivariate polynomials in z for
1 ≤ k ≤ m and 2 ≤ j ≤ wk. Note that the case m = 1 is not excluded. By substituting δ := ε1/q, with
a sufficiently large positive integer q, one ensures that only nonnegative integer powers of δ appear:

z′k = δbk f̂k(z, δ) = δbk

(
f̂k(z, 0) + δb

′
k,2pk,2 + · · ·+ δb

′
k,wk pk,wk

)
= δbk

(
f̂k(z, 0) + o(1)

)
, 1 ≤ k ≤ m,

(8)
where bk, b′k,j ∈ N, 0 = b1 < b2 < . . . < bm, 0 < b′k,j for 1 ≤ k ≤ m and 2 ≤ j ≤ wk.
Our idea is that the indices k correspond to different time scales δbkτ . For m > 1, system (8), as

δ → 0, may be thought of as separating fast variables from increasingly slow ones. It will turn out in
Sect. 3 that the exact number of time scales finally obtained by our overall approach can actually be
smaller than m.
Given certain conditions, which will be made explicit in Theorem 1 and with its application in

Sect. 3.1, we may formally truncate the right hand sides of (8) and keep only terms of lowest order in
δ:

z′k = δbk f̂k(z, 0), 1 ≤ k ≤ m. (9)

In the sequel, we refer to the transformation process from (1) to (8) as scaling. Strictly speaking, this
comprises scaling in combination with partitioning. We refer to the step from (8) to (9) as truncating.
Algorithm 1 reflects our discussions so far. It takes as input a list S of differential equations rep-

resenting system (1) and a choice of 0 < ε∗ < 1 for (2). For our practical purposes, the polynomial
coefficients in S as well as ε∗ are taken from Q. Our algorithm is furthermore parameterized with a
function c mapping suitable indices to rational numbers and a constant function d yielding either a tuple
D = (d1, . . . , dn) of rational numbers or ⊥. The black–box functions c and d reflect the mathematical
assumptions around (2) and (4) that suitable ck,J and dk exist, respectively. Suitable instantiations
for the parameters c and d can be realized, e.g., using tropical geometry, which will be the topic of
Sect. 2.2. It will turn out that instantiations of d can fail on the given combination of S and ε∗, which
is signaled by the return value ⊥ of d, and checked right away in l.1 of Algorithm 1.

2.2. Scaling via Tropical Geometry
So far, the above transformations leading to (4) are a formal exercise. No particular strategy was
applied for choosing ε∗ ∈ (0, 1). Early model reduction studies used dimensional analysis to obtain ε∗
as a power product in model parameters [28, 53].
Here we discuss a different approach, based on tropical geometry [43, 44, 46, 47, 51, 50]. This approach

starts with a slightly different interpretation of the scaling problem. In this interpretation, the value ε∗
is not dictated by physico-chemistry, but it is freely chosen to provide “power” parametric descriptions
of all the quantities occurring in the differential equations (parameters, monomials, time scales), in
a similar way to describing curves by continuously varying real parameters. This interpretation is
rooted in physics where it unravels scaling laws. It is also natural for any computation with orders of
magnitude. In tropical geometry, it is encountered in several places: as Litvinov–Maslov dequantization
of real numbers leading to degeneration of complex algebraic varieties into tropical varieties [37, 61], or
in the theory of Puiseux series in relation to tropical varieties and pre-varieties [4].
The abstract scaling procedure leading to (6) is implemented with two additional requirements.

Firstly, the orders ck,J are not freely chosen, but are computed from ε∗ ∈ (0, 1) and γk,J as

ck,J =
round(p logε∗ |γk,J |)

p
. (10)
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Algorithm 1 ScaleAndTruncate
Input: 1. A list S = (dy1

dt = f1, . . . ,
dyn

dt = fn) of autonomous first-order ordinary differential
equations where f1, . . . , fn ∈ Q[y1, . . . , yn];

2. c : {1, . . . , n} × {1, . . . , n}n → Q;
3. d : ()→ Qn ∪ {⊥};
4. ε∗ ∈ (0, 1) ∩Q

Output: 1. A list (T1, . . . , Tm) where, abbreviating d
dτ by a prime, Tk = (z′k = δbkfk) with z′k ⊆

(x′1, . . . , x′n),
⋃
k z
′
k = (x′1, . . . , x′n), z′1, . . . , z′m pairwise disjoint, b1 < · · · < bm ∈ N, and

fk ⊆ Q[x1, . . . , xn], or the empty list;
2. A list (P1, . . . , Pm) of lists with Pk ⊆ Q[x1, . . . , xn][δ] and |Pk| = |Tk| for k ∈ {1, . . . ,m};
3. A substitution σ for x1, . . . , xn, τ , δ, and ε

The first output (T1, . . . , Tm) contains differential equations z′k = δbk f̂k(z, 0) for k ∈ {1, . . . ,m}
in terms of system (8). The second output (P1, . . . , Pm) contains the higher order terms in (8) as
polynomials pk = δbk+b′k,2pk,2 + · · ·+ δbk+b′k,wk pk,wk

. The last output is a substitution that undoes
all substitutions applied for obtaining (8) from (1).
This gives the following invariant: Denote S̃ = (

⋃m
k=1 Tk ⊕ Pk)σ, where (x′ = g) ⊕ p stands for

x′ = g + p and is applied elementwise. Then S̃ is equal to S up to multiplication of the differential
equation ẏi =

∑
J γi,Jy

J in S with a positive scalar factor 1/εµ+di
∗ .

For q ∈ Q[x1, . . . , xn](δ) we use degδ(q) for the univariate degree of q in δ. Similarly, tmonδ(q) is
the trailing monomial in δ.

1: if d() = ⊥ then
2: return (), (), [ ]
3: end if
4: µ :=∞
5: q := 1
6: (d1, . . . , dn) := d() ∈ Qn
7: for k := 1 to n do
8: hk := 0
9: for all monomials γyJ in fk do

10: γ̄ := γ/ε
c(k,J)
∗ ∈ Q

11: η := c(k, J) + 〈(d1, . . . , dn), J〉 − dk ∈ Q
12: µ := min(µ, η) ∈ Q
13: q := lcm(q,denom η) ∈ N \ {0}
14: hk := hk + εηγ̄xJ

15: end for
16: end for
17: for k := 1 to n do
18: hk := hk/ε

µ

19: hk := hk[ε← δq] ∈ Q[x1, . . . , xn][δ]
20: gk := tmonδ hk
21: pk := hk − gk
22: end for
23: L := (dx1

dτ = g1, . . . ,
dxn

dτ = gn)
24: (b1, . . . , bm) := sort(degδ g1, . . . ,degδ gn), ascending and removing duplicates
25: for k := 1 to m do
26: Tk := ( dx

dτ = g ∈ L | degδ g = bk )
27: Pk := ( pj ∈ {p1, . . . , pn} | degδ gj = bk )
28: end for
29: σ := [x1 ← y1/ε

d1 , . . . , xn ← yn/ε
dn ] ◦ [τ ← εµt] ◦ [δ ← ε1/q] ◦ [ε← ε∗]

30: return (T1, . . . , Tm), (P1, . . . , Pm), σ
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Algorithm 2 TropicalC
Input: 1. k ∈ {1, . . . , n};

2. J ∈ {1, . . . , n}n;
3. A list S = (ẏ1 = f1, . . . , ẏn = fn) of autonomous first-order ordinary differential equations

where f1, . . . , fn ∈ Q[y1, . . . , yn];
4. ε∗ ∈ (0, 1) ∩Q.
5. p ∈ N \ {0}

Output: c ∈ Q
1: γ := coeff(fk, yJ) ∈ Q
2: c := round(p logε∗ |γ|)/p ∈ Q
3: return c

Algorithm 3 TropicalD
Input: 1. A list S = (ẏ1 = f1, . . . , ẏn = fn) of autonomous first-order ordinary differential equations

where f1, . . . , fn ∈ Q[y1, . . . , yn];
2. ε∗ ∈ (0, 1) ∩Q.
3. p ∈ N \ {0}

Output: D ∈ Qn ∪ {⊥}
1: Π(a1, . . . , an) := TropicalEquilibration(S, ε∗, p)
2: if not R |= ∃a1 . . . ∃anΠ then
3: return ⊥
4: end if
5: (d1, . . . , dn) := one possible choice for a1, . . . , an
6: return (d1, . . . , dn)

Here, the rounding function rounds to nearest integer.1 The positive integer p controls the precision of
the rounding step.
Secondly, the orders D = (d1, d2, . . . , dn) satisfy certain constraints. These constraints result heuris-

tically from the idea of compensation of dominant monomials [43]. Slow dynamics is possible if for each
dominant, i.e., much larger than the other, monomial on the right hand side of (6), there is at least one
other monomial of the same order, but with opposite sign. This condition, named tropical equilibration
condition [43, 44, 46, 47, 51, 50], reads

min
γk,J>0

(ck,J + 〈D,J〉) = min
γk,J′<0

(ck,J ′ + 〈D,J ′〉). (11)

On these grounds, given system (1), the choice of ε∗ boils down to defining orders of magnitude.
Model parameters are coarse-grained and transformed to orders of magnitude in order to apply tropical
scaling. The result depends on which parameters are close and which are very different as dictated by
the coarse-graining procedure, i.e., by the choice of ε∗. Decreasing ε∗ destroys details and parameters
tend to have the same order of magnitude. Increasing ε∗ refines details and parameters range over
several orders of magnitude. For instance, using (10) and p = 1 parameters k1 = 0.1 and k2 = 0.01
have orders c1 = 1 and c2 = 2 for ε∗ = 1/10, but c1 = c2 = 1 for ε∗ = 1/50. This is the perspective
taken in [43, 44, 51].
It is noteworthy that in the context of singular perturbation methods (cf. Sect. 3), which provide

asymptotic results as a small parameter approaches zero, there are independent arguments for choosing
ε∗ rather small.
We are now ready to instantiate the black-box functions c and d in our generic Algorithm 1 with

tropical versions as given in Algorithm 2 and Algorithm 3, respectively.

1To be precise, we use the IEEE 754 rounding rule round to nearest, ties to even.
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Algorithm 4 TropicalEquilibration
Input: 1. A list S = (ẏ1 = f1, . . . , ẏn = fn) of autonomous first-order ordinary differential equations

where f1, . . . , fn ∈ Q[y1, . . . , yn];
2. ε∗ ∈ (0, 1) ∩Q;
3. p ∈ N \ {0}.

Output: A formula Π(a1, . . . , an) describing a finite union of convex polyhedra in Rn.
We use 〈·, ·〉 to denote the standard scalar product in Qn+1.

1: A0 := (1, a1, . . . , an) ∈ Q[a1, . . . , an]n+1

2: for j := 1 to n do
3: c := 0
4: for all monomials γyα1

1 · · · yαn
n in fj do

5: α0 := round(p logε∗ |γ|)/p ∈ Q
6: c := c+ 1
7: Σc := sgn γ ∈ {−1, 0, 1}
8: Ac := (α0, α1, . . . , αn) ∈ Q× Zn ⊆ Qn+1

9: end for
10: Bj := ∅
11: for k := 1 to c do
12: for ` := k + 1 to c do
13: if ΣkΣ` < 0 then
14: P := {〈Ak −A`, A0〉 = 0} 〈Ak −A`, A0〉 ∈ Q[a1, . . . , an]
15: for m := 1 to c do
16: P := P ∪ {〈Am −Ak, A0〉 ≥ 0} 〈Am −Ak, A0〉 ∈ Q[a1, . . . , an]
17: end for
18: Bj := Bj ∪ {P} set of sets of constraints
19: end if
20: end for
21: end for
22: end for
23: Π := DisjunctiveNormalForm(

∧n
j=1

∨
P∈Bj

∧
P )

24: return Π

Algorithm 2 explicitly uses, besides the parameters k and J specified for c in Algorithm 1, also the
right hand sides of the input system (1) and the choice of ε∗. As yet another parameter it takes the
desired precision p for rounding in (10). Notice that the use of this extra information is compatible
with the abstract scaling procedure in Section 2.1. Currying [16] allows to use Algorithm 2 in place of
c in a formally clean manner.

Similarly, Algorithm 3 takes parameters ε∗ and p, while d is specified in Algorithm 1 to have no
parameters at all. In l.1 we use Algorithm 4 as a subalgorithm for tropical equilibration. One obtains
a disjunctive normal form Π, which explicitly describes a set P = { p ∈ Qn | Π(p) } as a finite union
of convex polyhedra, as known from tropical geometry. Every (d1, . . . , dn) ∈ P satisfies (11). The
satisfiability condition in l.2 tests whether P 6= ∅. We employ Satisfiability Modulo Theories (SMT)
solving [41] using the logic QF_LRA [2] for quantifier-free linear real arithmetic. The set P can get empty,
e.g, when all monomials on the right hand side of some differential equation have the same sign. Such
an exceptional situation is signaled with a return value ⊥ in l.3. In the regular case P 6= 0, the choice
(d1, . . . , dn) in l.5 is provided by the SMT solver. From a practical point of view, the disjunctive normal
form computation in Algorithm 4 is a possible bottleneck and requires good heuristic strategies [39].
With applications in the natural sciences one often wants to make in l.5 an adequate choice for

(d1, . . . , dn) lying in a specific convex polyhedron P ⊆ P, which technically corresponds to one conjunc-
tion in Π. Such choices are subtle and typically require human interaction. For instance, when the chain
of reduced dynamical systems ends with a steady state, it is interesting to consider the polyhedron P
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that is closest to that steady state. Such strategies are not implemented in the current version of our
algorithm.
At this stage we have obtained a scaled system as defined in Sect. 2.1, including partitioning. The

focus of the next section is to utilize this scaling for analytically substantiated reductions.

3. Singular Perturbation Methods
The theory of singular perturbations is used to compute and justify theoretically the limit of system (8)
when δ → 0. There are several types of results in this theory. The results of Tikhonov, further improved
by Hoppensteadt, show the convergence of the solution of system (8) to the solution of a differential-
algebraic system in which the slowest variables zm follow differential equations and the remaining fast
variables follow algebraic equations [58, 29]. The results of Fenichel are known under the name of
geometrical singular perturbations. He showed that the algebraic equations in Tikhonov’s theory define
a slow invariant manifold that is persistent for δ > 0 [21]. For geometrical singular perturbations,
differentiability in δ is needed in system (8).
Samal et al. have noted that Tikhonov’s theorem is applicable to tropically scaled systems [51]. For

instance, with δ1 = δb2 , system (8) may be rewritten as

z′1 = ĝ1(z, δ1), z′2 = δ1ĝ2(z, δ1), . . . , z′m = δ1ĝm(z, δ1). (12)

However, this approach comes with certain limitations. To start with, it allows only two time scales.
Furthermore, in case b2 > 1, there may be differentiability issues with respect to δ1, and some care has
to be taken when one tries to apply to (12) also Fenichel’s results [21]. In this section, we are going
to generalize geometrical singular perturbations, and compute invariant manifolds and reduced models
for more than two time scales, introducing further δ2, . . . , δ`. Our generalization is based on a recent
paper by Cardin and Teixeira [10].
Section 3.1 presents relevant results from [10] adapted to our purposes here and applied to our system

(8). In contrast to the original article, which is based on a series of hyperbolicity conditions, we introduce
the stronger notion of hyperbolic attractivity. In Sect. 3.2 we describe efficient algorithmic tests for
hyperbolic attractivity. Section 3.3 gives sufficient algorithmic criteria addressing the above-mentioned
differentiability issues.

3.1. Application of a Fenichel Theory for Multiple Time Scales
From now on we consider our system (8) over the positive first orthant U = (0,∞)n ⊆ Rn. A recent
paper by Cardin and Teixeira [10] generalizes Fenichel’s theory to provide a solid foundation to obtain
more than one nontrivial invariant manifold. This allows, in particular, the reduction of multi-time
scale systems such as system (8). Technically, the approach considers a multi-parameter system using
time scale factors δ1, δ1δ2, . . . instead of increasing powers of one single δ.
We let ` ∈ {2, . . . ,m} and define

β1 = b2 − b1 = b2, . . . , β`−1 = b` − b`−1, (13)

and furthermore δ1 = δβ1 , . . . , δ`−1 = δβ`−1 , and δ̄ = (δ1, . . . , δ`−1).
These definitions allow us to express also all δb

′
k,j occurring in (8) as products of powers of δ1, . . . , δ`−1,

with nonnegative but possibly non-integer rational exponents, via expressing each b′k,j as a nonnegative
rational linear combination of β1, . . . , β`−1. This yields

ĝk(z, δ1, . . . , δ`−1) = f̂k(z, δ), 1 ≤ k ≤ m. (14)

Moreover, we express δb`+1 = δ1 · · · δ`−1 · η`+1, . . . , δbm = δ1 · · · δ`−1 · ηm, via

ηk(δ1, . . . , δ`−1) = δbk−b` , `+ 1 ≤ k ≤ m, (15)
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which is obtained by writing each bk − b` as a nonnegative rational linear combination of β1, . . . , β`−1.
In these terms our system (8) translates to

z′1 = ĝ1(z, δ̄)
z′2 = δ1ĝ2(z, δ̄)

...
z′` = δ1 · · · δ`−1ĝ`(z, δ̄)

z′`+1 = δ1 · · · δ`−1η`+1(δ̄)ĝ`+1(z, δ̄)
...

z′m = δ1 · · · δ`−1ηm(δ̄)ĝm(z, δ̄). (16)

In terms of the right hand sides of (16) the application of relevant results in [10] requires that ĝ1,
. . . , ĝ` and η`+1ĝ`+1, . . . , ηmĝm are smooth on an open neighborhood of U × [0, ϑ1) × · · · × [0, ϑ`−1)
with ϑ1 > 0, . . . , ϑ`−1 > 0. We are going to tacitly assume such smoothness here and address this issue
from an algorithmic point of view in Sect. 3.3.
We are now ready to transform our system into ` time scales as follows, where possibly ` > 2:

τ1 = τ, τ2 = δ1τ, . . . , τ` = δ1 · · · δ`−1τ.

In time scale τk, with 1 ≤ k ≤ `, system (16) then becomes

δ1 · · · δk−1
dz1

dτk
= ĝ1(z, δ̄)

...

δk−1
dzk−1

dτk
= ĝk−1(z, δ̄)

dzk
dτk

= ĝk(z, δ̄)

dzk+1

dτk
= δkĝk+1(z, δ̄)

...
dz`
dτk

= δk · · · δ`−1 ĝ`(z, δ̄)

dz`+1

dτk
= δk · · · δ`−1η`+1(δ̄)ĝ`+1(z, δ̄)

...
dzm
dτk

= δk · · · δ`−1ηm(δ̄)ĝm(z, δ̄). (17)

For k = 1 and k = ` we obtain empty products, which yield the neutral element 1, as usual.
Similarly to Sect. 2.1, we are interested in the asymptotic behavior for δ̄ → 0, which is approximated

by the elimination of higher order terms. We are now going to introduce a construction required for
a justification of this approximation, which also clarifies the greatest possible choice for ` ≤ m above.
Define F0 = 0 and

Zk =

z1
...
zk

 , Fk(z, δ) =

f̂1(z, δ)
...

f̂k(z, δ)

 , 1 ≤ k ≤ m.
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With system (8) in mind, we are going to use f̂k(z, 0) in favor of ĝk(z, 0, . . . , 0). It is easy to see that
both are equal. We define furthermore

Mk =
(
Fk(z∗, 0) = 0

)
, Mk = { z∗ ∈ U | Fk(z∗, 0) = 0 } , 0 ≤ k ≤ m. (18)

The setsMk are obtained from varieties defined by the lists Mk via intersection with the first orthant.
Furthermore, U =M0 ⊇M1 ⊇ · · · ⊇ Mm establishes a chain of nested subvarieties, again intersected
with the first orthant.
We say that M1 is hyperbolically attractive on M0, if M1 6= ∅ and for all z ∈ M1 all eigenvalues

of the Jacobian Dz1 f̂1(z, 0) have negative real parts. ThereforeM1 is a manifold. For k ∈ {2, . . . ,m},
Mk is hyperbolically attractive on Mk−1, if Mk 6= ∅ and the following holds. Recall that using the
defining polynomials Fk−1 of Mk−1, the implicit function theorem yields a unique local resolution of
Zk−1 as functions of zk, . . . , zm, and thus we obtain

f̂k(z, 0) = f̂∗k (zk, . . . , zm, 0) on Mk−1.

We now require that for all z ∈ Mk all eigenvalues of Dzk
f̂∗k (zk, . . . , zm, 0) have negative real parts.

Again,Mk is a manifold. WhenMk is hyperbolically attractive onMk−1 we writeMk−1 .Mk, where
Zk will be clear from the context.
If we find for some ` ∈ {1, . . . ,m} thatM0 .M1,M1 .M2, . . . ,M`−1 .M`, then we simply write
M0 . · · · .M`, and call this a hyperbolically attractive `-chain. Such a chain is called maximal if either
` = m orM` 6 .M`+1.
Let M0 . · · · . M` be a hyperbolically attractive `-chain. Consider for each k ∈ {1, . . . , `} the

following differential-algebraic system:

0 = Fk−1(z, 0), dzk
dτk

= f̂k(z, 0), dzk+1

dτk
= 0, . . . ,

dzm
dτk

= 0. (19)

In the limiting case δ̄ = 0, this corresponds to system (17). Recall that

τk = δ1 · · · δk−1τ = δb2−b1 · · · δbk−bk−1τ = δbk−b1τ = δbkτ,

and equivalently rewrite (19) as a triplet (Mk−1, Tk, Rk) with entries as follows:

Fk−1(z, 0) = 0, dzk
dτ = δbk f̂k(z, 0), dzk+1

dτ = · · · = dzm
dτ = 0. (20)

For a given index k, we call (Mk−1, Tk, Rk) a reduced system onMk−1, where the relevant hyperbolic
attractivity relation is Mk−1 . Mk. In order to indicate the relevance of M0 . · · · . M` we write
(M0, T1, R1) . · · · . (M`−1, T`, R`) also for reduced systems, whereM` is not made explicit but relevant
for the last triplet. Slightly abusing language, we speak of a hyperbolically attractive `-chain of reduced
systems, which is maximal ifM0 . · · · .M` is.

The following theorem is a consequence of [10, Theorem A and Corollary A], specialized to the
situation at hand.

Theorem 1. Let ` ≥ 2. Assume that (M0, T1, R1) . · · · . (M`−1, T`, R`) is a hyperbolically attractive
`-chain of reduced systems for system (16). Let K ⊆ U be compact. Then for sufficiently small δ̄ and all
k ∈ {1, . . . , `}, system (16) admits invariant manifolds Nk−1 that depend on δ̄ and are (δ1 + · · ·+δk−1)-
close to Mk−1 ∩ K with respect to the Hausdorff distance. Moreover, there exists T > 0 such that
solutions of system (16) on Nk−1 in time scale τk converge to solutions of (Mk−1, Tk, Rk), uniformly
on any closed subinterval of (0, T ), as δ̄ → 0.

For k ∈ {1, . . . , `}, the Mk−1 are critical manifolds, which contain only stationary points. The
systems (Tk, Rk) of ordinary differential equations onMk−1 approximate invariant manifolds Nk−1 in
the sense of the theorem. They furthermore approximate solutions in time scale τk of system (16), which
is equivalent to our system (8). In other words, system (8) admits a succession of invariant manifolds,
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Algorithm 5 ComputeReducedSystems
Input: Output of Algorithm 1:

1. (T1, . . . , Tm), a list of lists z′k = δbkfk;
2. (P1, . . . , Pm), a list of lists of polynomials in Q[x1, . . . , xn][δ];

We denote ξk := |Tk|, Ξk :=
∑k
i=1 ξi, and X = (x1, . . . , xn).

Output: A list ((M0, T1, R1), . . . , (M`−1, T`, R`)) of triplets where ` ∈ {2, . . . ,m}, or the empty list.
For k ∈ {1, . . . , `}, Mk−1 is a list of real constraints definingMk−1 ⊆ Rn; Tk is a list of differential
equations; Rk is a list of trivial differential equations x′ = 0 for all differential variables from Tk+1,
. . . , Tm.
The triplets (Mk−1, Tk, Rk) represent reduced systems according to (20).

1: U := (x1 > 0, . . . , xn > 0)
2: M0, Z, F,A := ()
3: for k := 1 to m do
4: z := (x | x′ = δbkg ∈ Tk ) ⊆ X, |z| = ξk
5: f := ( g | x′ = δbkg ∈ Tk ) = f̂k(z, 0) ∈ Q[X]ξk

6: Mk := Mk−1 ◦ (f = 0) = M0 ◦ (F = 0) ◦ (f = 0)
7: ϕ,A := IsHyperbolicallyAttractive(U ◦Mk, Z, z, F, f, k, A)
8: if not ϕ then
9: break

10: end if
11: Rk := (x′ = 0 | x′ = h ∈ Tk+1 ∪ · · · ∪ Tm ) Ξk−1 + ξk + |Rk| = n
12: Z := Z ◦ z ⊆ X, |Z| = Ξk
13: F := F ◦ f ∈ Q[X]Ξk

14: end for
15: # We either broke in line 9 preserving k, or we have k = m+ 1.
16: ` := k − 1
17: if ` < 2 then
18: return ()
19: end if
20: if TestSmoothness((T1, . . . , Tm), (P1, . . . , Pm), `) = failed then
21: print "Warning: differentiability requires further verification"
22: end if
23: return ((M0, T1, R1), . . . , (M`−1, T`, R`))

on which the behavior in the appropriate time scale is approximated by the respective reduced equations
(19) and, equivalently, (20). Note that only the δbk f̂k(z, 0) without the higher order terms enter the
reduced systems (Mk−1, Tk, Rk).
Algorithm 5 now starts with the output (T1, . . . , Tm) of Algorithm 1, which represents the scaled

system (9). Notice that each Tk already meets the specification in (20). In l.1 we define U to contain
defining inequalities of the first orthant U . Starting with k = 1, the for-loop in l.3–14 successively
constructsMk and Rk such that in combination with Tk from the input, (Mk−1, Tk, Rk) forms a reduced
system as in (20). The loop stops when either k = m + 1 or a test for hyperbolic attractivity in l.7
finds that Mk−1 6 . Mk. We are going to discuss this test in detail in the next Sect. 3.2. Note
that we maintain a matrix A for storing information between the subsequent calls of our test. In
either case we arrive at a maximal hyperbolically attractive (k − 1)-chain of reduced systems given
as a list ((M0, T1, R1), . . . , (Mk−2, Tk−1, Rk−1)). Following the notational convention used throughout
this section we set ` to k − 1 in l.16. The test in l.17–19 reflects the choice of ` ∈ {2, . . . ,m} at the
beginning of this section. Finally, l.20 uses the second input (P1, . . . , Pm) of the algorithm to address
the smoothness requirements for system (16). We are going to discuss the corresponding procedure in
detail in Sect. 3.3. It will turn out that this procedure provides only a sufficient test. Therefore we issue
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in case of failure only a warning, allowing the user to verify smoothness a posteriori, using alternative
algorithms or human intelligence. One might mention that it is actually sufficient to consider weaker
finite differentiability conditions instead of smoothness, which can be seen by inspection of the proofs
in [10].
From an application point of view, attracting invariant manifolds are relevant in the context of

biological networks, and our notion of hyperbolic attractivity holds for large classes of such networks
[20]. This is our principal motivation for using hyperbolical attractivity here. From a computational
perspective, hyperbolic attractivity can be straightforwardly tested using the Hurwitz criterion, as we
are going to make explicit in Sect. 3.2.
The relevant results in [10], in contrast, are based on a series of hyperbolicity conditions, which are

somewhat weaker than hyperbolic attractivity. Hyperbolicity can be tested algorithmically as well,
albeit with more effort. For approaches based on Routh’s work see, e.g., [23, Chapter V, §4], which
checks the number of purely imaginary eigenvalues of a real polynomial via the Cauchy index of a
related rational function.

3.2. Verification of Hyperbolic Attractivity
Our definition of hyperbolic attractivityMk−1 .Mk refers to the eigenvalues of the Jacobians of the
f̂∗k , which cannot be directly obtained from the Jacobians of the f̂k [10, 11]. Generalizing work on
systems with three time scales [32], we take in this section a linear algebra approach to obtain the
relevant eigenvalues without computing the f̂∗k .
To start with, recall the well-known Hurwitz criterion [30]:

Theorem 2 (Hurwitz, 1895). Consider f = a0x
n+a1x

n−1 + · · ·+an ∈ R[x], a0 > 0. For i ∈ {1, . . . , n}
define

Hi =


a1 a3 a5 . . . a2i−1
a0 a2 a4 . . . a2i−2
0 a1 a3 . . . a2i−3
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . ai

 , ∆i = |Hi| .

Then all complex zeros of f have negative real parts if and only if ∆1 > 0, . . . , ∆n > 0. Notice that
∆n = an∆n−1, and therefore ∆n > 0 can be equivalently replaced with an > 0.

We call Hn the Hurwitz matrix and ∆i the i-th Hurwitz determinant of f . Furthermore, we refer to
Γ = (∆1 > 0 ∧ · · · ∧∆n−1 > 0 ∧ an > 0) as the Hurwitz conditions for f .

Our first result generalizes [32, Proposition 1 (ii)]. The proof is straightforward by induction.

Lemma 3. For k ∈ {1, . . . ,m} define

Jk =
( 1

...
%1···%k−1

)
·DZk

Fk(z, 0) =


Dz1 f̂1(z, 0) . . . Dzk

f̂1(z, 0)
%1Dz1 f̂2(z, 0) . . . %1Dzk

f̂2(z, 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

%1 · · · %k−1Dz1 f̂k(z, 0) . . . %1 · · · %k−1Dzk
f̂k(z, 0)

 .

Let ` ∈ {1, . . . ,m}. Then M0 . · · · . M` if and only if M` 6= ∅ and for all k ∈ {1, . . . , `}, all
sufficiently small %∗1 > 0, . . . , %∗k−1 > 0, and all z∗ ∈ Mk, all eigenvalues of Jk(%∗1, . . . , %∗k−1, z

∗) have
negative real parts.
In particular, one can choose %∗1 = · · · = %∗k−1 = %∗ with sufficiently small %∗ and consider J ′k =

diag(1, . . . , %k−1) ·DZk
Fk(z, 0).

Let Γk denote the Hurwitz conditions for the characteristic polynomial of J ′k. Then Lemma 3 allows
to state hyperbolic attractivityM0 . · · · .M` as a first-order formula over the reals as follows:(

∃(0 < z) : F`(z, 0) = 0
)
∧
( ∧̀
k=1
∃(0 < σ)∀(0 < % < σ)∀(0 < z) : Fk(z, 0) = 0⇒ Γk(%, z)

)
. (21)
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On these grounds, any real decision procedure [57, 13, 63] provides an effective test for hyperbolic
attractivity. However, our formulation (21) uses a quantifier alternation ∃σ∀% in its second part. From
a theoretical point of view, such a bounded alternation does not affect the asymptotic worst-case
complexity, which remains single exponential [27]. From a practical point of view, we would like to
continue using SMT solving over a quantifier-free logic. Our next result allows a suitable first-order
formulation without quantifier alternation. Its proof combines [32, Lemma 3] with our Lemma 3.

Proposition 4 (Effective Characterization of Hyperbolically Attractive `-Chains). Define A1 =
Dz1 f̂1(z, 0). For k ∈ {2, . . . ,m} define(

Ak−1 Bk
Ck Vk

)
=
(
DZk−1Fk−1(z, 0) Dzk

Fk−1(z, 0)
DZk−1 f̂k(z, 0) Dzk

f̂k(z, 0)

)
,

and note that
(
Ak−1 Bk

Ck Vk

)
= Ak. Let ` ∈ {1, . . . ,m}. ThenM0 . · · · .M` if and only if

(i) M` 6= ∅,

(ii) for all z∗ ∈M1 all eigenvalues of W1(z∗), where W1 = A1, have negative real parts,

(iii) for all k ∈ {2, . . . , `} and all z∗ ∈Mk, Ak−1(z∗) is regular and all eigenvalues of Wk(z∗), where
Wk = Vk − CkA−1

k−1Bk, have negative real parts.

Proof. Assume M0 . · · · . M`. By Lemma 3 we have M` 6= ∅. For all z∗ ∈ M1, all eigenvalues
of the Jacobian W1(z∗) have negative real parts by the definition of hyperbolic attractivity. Let now
k ∈ {2, . . . , `}, z∗ ∈Mk, and define P = diag(1, . . . , %k−2). Using Lemma 3 we fix 0 < τ∗ < 1 such that
for all 0 < %∗ < τ∗ all eigenvalues of J ′k−1(%∗, z∗) = P(%∗)Ak−1(z∗) have negative real parts. It follows
that P(%∗)Ak−1(z∗), P(%∗), and Ak−1(z∗) are all regular. Next, consider

J ′k =
(

PAk−1 PBk
%k−1Ck %k−1Vk

)
.

Using Lemma 3 once more, we find 0 < σ∗ < τ∗ such that for all 0 < %∗ < σ∗ also all eigenvalues of
J ′k(%∗, z∗) have negative real parts. Now J ′k(%∗, z∗) satisfies condition (ii) of [32, Lemma 3] with δ = σ∗

and ε = (%∗)k−1, which allows us to conclude that all eigenvalues of (Vk −Ck(PAk−1)−1PBk)(%∗, z∗) =
(Vk − CkA−1

k−1P−1PBk)(%∗, z∗) = Wk(z∗) have negative real parts as well.
Assume, vice versa, that (i)–(iii) hold. We use induction on k to showM0 . · · · .Mk for 1 ≤ k ≤ `.

For k = 1 we have M0 . M1 by definition of hyperbolic attractivity. Assume that 2 ≤ k ≤ `
and M0 . · · · . Mk−1. By Lemma 3 there exists 0 < τ∗ such that for all 0 < σ∗ < τ∗ and all
z∗ ∈ Mk−1 all eigenvalues of P(σ∗)Ak−1(z∗) have negative real parts, where P = diag(1, . . . , (σ∗)k−2).
We rewrite Wk = Vk − Ck(PAk−1)−1PBk. Then Wk(z∗) satisfies condition (i) of [32, Lemma 3] with
A = P(σ∗)Ak−1(z∗), B = P(σ∗)Bk(z∗), C = Ck(z∗) and D = Vk(z∗). Thus there exists 0 < δ such that
for all 0 < ε < δ all eigenvalues of (

P(σ∗)Ak−1(z∗) P(σ∗)Bk(z∗)
εCk(z∗) εVk(z∗)

)
have negative real parts. Choosing %∗ = min{σ∗, k−1

√
ε} in Lemma 3 yieldsM0 . · · · .Mk.

From now on let Γk denote the Hurwitz conditions for the characteristic polynomial ofWk, which—in
contrast to the ones used in (21)—do not depend on % anymore.

Corollary 5 (Logic-Based Test for Hyperbolically Attractive `-chains). For k ∈ {1, . . . ,m} define

ϕk =
(
∃(0 < z) : Fk(z, 0) = 0)

)
,

ψk =
(
∀(0 < z) : Fk(z, 0) = 0⇒ Γk(z)

)
.

Let ` ∈ {1, . . . ,m}. ThenM0 . · · · .M` if and only if R |= ϕ` ∧
∧`
k=1 ψk.
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Algorithm 6 IsHyperbolicallyAttractive
Input: 1. M , 2. Z, 3. z, 4. F , 5. f , 6. k, 7. A, as in the calling Algorithm 5

Knowing thatM0 . · · · .Mk−1, we check here whether alsoMk−1 .Mk. We denote ξ := |f | = |z|,
Ξ := |F | = |Z|, and X = (x1, . . . , xn). In these terms, A ∈ Q[X]Ξ×Ξ.

Output: 1. Boolean, 2. A′ ∈ Q[X](Ξ+ξ)×(Ξ+ξ)

1: if not R |= ∃
∧
M then

2: return false,
( )

3: end if
4: V := Jacobian(f, z) ∈ Q[X]ξ×ξ
5: if k = 1 then
6: W := V
7: A′ := V
8: else
9: B := Jacobian(F, z) ∈ Q[X]Ξ×ξ

10: C := Jacobian(f, Z) ∈ Q[X]ξ×Ξ

11: W := V − CA−1B ∈ Q[X]ξ×ξ

12: A′ :=
(
A B
C V

)
∈ Q[X](Ξ+ξ)×(Ξ+ξ)

13: end if
14: χ := λξ + · · ·+ aξ := CharacteristicPolynomial(W ) ∈ Q[X][λ]
15: H := HurwitzMatrix(χ) ∈ Q[X]ξ×ξ
16: for j := 1 to ξ − 1 do
17: ∆j := det

(
Hr,s

)
1≤r,s≤j ∈ Q[X]

18: end for
19: Γ := {∆1 > 0, . . . ,∆ξ−1 > 0, aξ > 0}
20: return R |= ∀(

∧
M −→

∧
Γ), A′

Proof. Assume M0 . · · · . M`. Then Proposition 4 yields its conditions (i)–(iii). Now, ϕ` holds as
a formalization of (i). Furthermore, ψ1 holds as a formalization of (ii), and the validity of ψ2, . . . , ψ`
follows directly from (iii). Hence R |= ϕ` ∧

∧`
k=1 ψk.

Assume, vice versa, that R |= ϕ` ∧
∧`
k=1 ψk. We show M0 . · · · .M` by induction on `. If ` = 1,

then ϕ1 formalizes (i) and ψ1 formalizes (ii) in Proposition 4, and we obtain M0 . M1. Let now
` > 1. Then ϕ` formalizes Proposition 4 (i). Our induction hypothesis yields M0 . · · · . M`−1. By
Lemma 3 there exists 0 < τ∗ such that for all 0 < σ∗ < τ∗ and all z∗ ∈ M`−1 ⊇M` all eigenvalues of
P(σ∗)A`−1(z∗), where P = diag(1, . . . , (σ∗)`−2), have negative real parts. In particular, P(σ∗)A`−1(z∗)
is regular and so is A`−1(z∗). Furthermore, the Hurwitz conditions in ψ` guarantee for all z∗ ∈ M`

that W`(z∗) has only negative eigenvalues. Taking these observations together, Proposition 4 (iii) is
satisfied, henceM0 . · · · .M`.

In contrast to (21), our first-order characterization(
∃(0 < z) : F`(z, 0) = 0

)
∧
( ∧̀
k=1
∀(0 < z) : Fk(z, 0) = 0⇒ Γk(z)

)
(22)

in Corollary 5 has no quantifier alternation. Note that the two top-level components of (22) establish
two independent decision problems, addressing non-emptiness of the manifold and our requirement on
the eigenvalues, respectively.
It is easy to see that for all ` ∈ {1, . . . ,m} and all k ∈ {1, . . . , `− 1}, ϕ` entails ϕk. Thus (22) can be

equivalently rewritten as
∧`
k=1(ϕk ∧ ψk), explicitly:

∧̀
k=1

(
∃(0 < z) : Fk(z, 0) = 0 ∧ ∀(0 < z) : Fk(z, 0) = 0⇒ Γk(z)

)
. (23)
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Our approach tests the conjunction in (23) using a for-loop over k in Algorithm 5. Technically, this
construction ensures with the test forMk−1 .Mk in Algorithm 6 thatM0 . · · · .Mk−1 already holds,
and exploits the fact that ψk and ϕk do not refer to smaller indices than k.
In l.1–3 we test the validity of ϕk. Using from the input the defining inequalities and equations

M = U ◦Mk of Mk along with Z = Zk−1, z = zk, F = Fk−1, f = fk, and A = Ak−1, we construct
in l.4–13 A′ = Ak as noted in Proposition 4. In l.14–19 we construct the Hurwitz conditions Γ = Γk
according to Theorem 2. On the grounds of the validity of ϕk tested in l.1, we finally test in l.20
the validity of ψk and return a corresponding Boolean value. We additionally return A′ = Ak for
reuse with the next iteration. The validity tests for ϕk and ψk in l.1 and l.20, respectively, amount to
SMT solving, this time using the logic QF_NRA [2] for quantifier-free nonlinear real arithmetic. Recall
the positive integer parameter p used for the precision with both Algorithm 2 and Algorithm 3. For
p > 1 symbolic computation possibly yields fractional powers of numbers in the defining equations for
manifolds as well as in the vector fields of the differential equations. However, such expressions are not
covered by QF_NRA. When this happens, we catch the corresponding error from the SMT solver and
restart with floats.

3.3. Sufficient Smoothness Criteria
Let us get back to the requirement in Sect. 3.1 that ĝ1, . . . , ĝ` and η`+1ĝ`+1, . . . , ηmĝm occurring on the
right hand sides of system (16) are all smooth on an open neighborhood of U × [0, ϑ1)× · · · × [0, ϑ`−1)
with ϑ1 > 0, . . . , ϑ`−1 > 0. An obvious criterion for smoothness is that all those expressions are
polynomials in z and δ̄.
Recall the definitions of ĝk for k ∈ {1, . . . ,m} in (14) and of ηk for k ∈ {` + 1, . . . ,m} in (15). For

k ∈ {1, . . . ,m} and j ∈ {1, . . . , wk} one finds nonnegative r1, . . . , r`−1 ∈ Q such that

〈(β1, . . . , β`−1), (r1, . . . , r`−1)〉 = b′k,j ,

and for k ∈ {`+ 1, . . . ,m} one finds nonnegative r1, . . . , r`−1 ∈ Q such that

〈(β1, . . . , β`−1), (r1, . . . , r`−1)〉 = bk − b`.

Such representations always exist but are not unique in general. If one even finds suitable nonnegative
integers r1, . . . , r`−1 ∈ N, which do not always exist, then one obtains ĝ1, . . . , ĝm as polynomials in z
and δ̄, and η`+1, . . . , ηm as polynomials in δ̄, which is sufficient for our criterion above.
An improved but still only sufficient criterion uses similar constructions to directly verify the existence

of polynomial representations of the products η`+1ĝ`+1, . . . , ηmĝm, in contrast to considering the factors
independently. From an algorithmic point of view, we furthermore have to take into account that P1,
. . . , Pm obtained in Algorithm 1 do not contain b′k,j but bk+b′k,j . For k ∈ {1, . . . , `} and j ∈ {1, . . . , wk}
we try to find r1, . . . , r`−1 ∈ N such that

〈(β1, . . . , β`−1), (r1, . . . , r`−1)〉 = b′k,j = (bk + b′k,j)− bk > 0, (24)

and for k ∈ {`+ 1, . . . ,m} we try to find r1, . . . , r`−1 ∈ N such that

〈(β1, . . . , β`−1), (r1, . . . , r`−1)〉 = (bk − b`) + b′k,j = (bk + b′k,j)− b` > 1. (25)

Notably, such representations exist whenever 1 ∈ {β1, . . . , β`−1}.
On these grounds, we introduce Algorithm 7, which specifies the sufficient test applied in l.20 of

Algorithm 5. The first two parameters (T1, . . . , Tm) and (P1, . . . , Pm) originate from Algorithm 1, while
the last parameter ` originates from the calling Algorithm 5.
In l.1–8 of Algorithm 7 we compute β1, . . . , β`−1 as defined in (13) and simultaneously obtain b1,

. . . , b`. In l.9–14 we compute the right hand sides of the conditions in (24) or (25), depending on the
current index k. For checking those conditions in l.16 we once more employ SMT solving, this time
using the adequate logic QF_LIA [2] for quantifier-free linear integer arithmetic. Since we are aiming at
nonnegative integer solutions, we introduce explicit non-negativity conditions r1 ≥ 0, . . . , r`−1 ≥ 0. In
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Algorithm 7 TestSmoothness
Input: (T1, . . . , Tm), (P1, . . . , Pm), ` as in the calling Algorithm 5:

1. (T1, . . . , Tm), a list of lists z′k = δbkfk;
2. (P1, . . . , Pm), a list of lists of polynomials in Q[x1, . . . , xn][δ];
3. ` ∈ N, ` ≥ 2;

We check here a sufficient criterion for smoothness as required for (16).
Output: "true" or "failed" in terms of a 3-valued logic;

1: b1 := 0
2: for k := 2 to ` do
3: bk := the unique exponent of δ in Tk
4: βk−1 := bk − bk−1
5: if βk−1 = 1 then
6: return true
7: end if
8: end for
9: E := ∅

10: for k = 1 to m do
11: for all p in Pk do
12: E := E ∪ { degδm− bmin(k,`) | m monomial of p } ⊆ N \ {0}
13: end for
14: end for
15: for all e ∈ E do
16: if not Z |= ∃r1 . . . ∃r`−1(r1 ≥ 0 ∧ · · · ∧ r`−1 ≥ 0 ∧ 〈(β1, . . . , β`−1), (r1, . . . , r`−1)〉 = e) then
17: return failed
18: end if
19: end for
20: return true

case of unsatisfiability Algorithm 7 returns “failed” in l.17. When this happens, the calling Algorithm 5
issues a warning but continues. This protocol is owed to the fact that our procedure provides only
a sufficient test, which could be supplemented with other software or human intuition. In case of
satisfiability, in contrast, smoothness is guaranteed, we reach l.20, and return “true.” We remark that
the computation time spent on E is negligible compared to the SMT solving later on. The construction
of the entire set E beforehand avoids duplicate SMT instances.

4. Algebraic Simplification of Reduced Systems
In the output (M0, T1, R1), . . . , (M`−1, T`, R`) of Algorithm 5, the Tk are taken literally from the input,
and the Mk−1 and Rk are obtained via quite straightforward rewriting of the input. As a matter of
fact, the computationally hard part of Algorithm 5 consists in the computation of the upper index
`. We now want to rewrite the triplets (Mk−1, Tk, Rk) once more, aiming at less straightforward but
simpler and, hopefully, more intuitive representations. The principal idea is to heuristically eliminate
on the right hand side of the differential equations in Tk those variables whose derivatives have already
occurred as left hand sides in one of the T1, . . . , Tk−1. Of course, our simplifications will preserve all
relevant properties of (M0, T1, R1), . . . , (M`−1, T`, R`), such as hyperbolic attractivity and sufficient
differentiability. Technically, our next Algorithm 8 employs Gröbner basis techniques [9, 3].
Recall that zk are the variables occurring on the left hand sides of differential equations in Tk, and

Zk−1 = (z1, . . . , zk−1). In l.1–5 we construct a block term order ω on all variables {x1, . . . , xn} so that
variables from Zk−1 are larger than variables from zk. This ensures that all multivariate polynomial
reductions modulo ω throughout our algorithm will eliminate variables from Zk−1 in favor of variables
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Algorithm 8 SimplifyReducedSystems
Input: A list ((M0, T1, R1), . . . , (M`−1, T`, R`)), the output of Algorithm 5, with entries corresponding

to (20)
Output: A list ((M ′0, T ′1, R1), . . . , (M ′`−1, T

′
` , R`)); M ′k−1 describes the same manifold as Mk−1 in a

canonical form; the system T ′k is equivalent to Tk modulo M ′k−1, its right hand sides are in a
canonical normal form modulo M ′k−1, possibly with fewer different differential variables than Tk

1: for k := 1 to ` do
2: zk := {x | x′ = g ∈ Tk }
3: end for
4: y := {x | x′ = 0 ∈ R` }
5: ω := a block term order with z1 � · · · � z` � y
6: for k := 1 to ` do
7: F := ( f | f = 0 ∈Mk−1 )
8: G := GroebnerBasis(Radical(F ), ω)
9: M ′k−1 := ( g = 0 | g ∈ G )

10: T ′k := ()
11: for x′ = g in Tk do
12: T ′k := T ′k ◦ (x′ = h) where g −→∗G h and h is irreducible mod G
13: end for
14: end for
15: return ((M ′0, T ′1, R1), . . . , (M ′`−1, T

′
` , R`))

from zk rather than vice versa. Prominent examples for such block orders are pure lexicographical orders,
but ordering by total degree inside the z1, . . . , z`, y will heuristically give more efficient computations.
Recall that the radical ideal

√
〈F 〉 of F is the infinite set of all polynomials with the same common

complex roots as F . In l.8, we compute a finite reduced Gröbner basis G modulo ω of that radical. If
radical computation is not available on the software side, then the algorithm remains correct with a
Gröbner basis of the ideal 〈F 〉 instead of the radical ideal, but might miss some simplifications.
In l.9, the polynomials in G equivalently replace the left hand side polynomials of the equations in

Mk−1. In l.12, reduction modulo ω, which comes with heuristic elimination of variables, applies once
more to the reduction results h obtained from right hand sides g of differential equations in Tk. Since
G is a Gröbner basis, the reduction in l.11–13 furthermore produces unique normal forms with the
following property: if two polynomials g1, g2 coincide on the manifold Mk−1 defined by Mk−1, then
they reduce to the same normal form h. In particular, if g1 vanishes on Mk−1, then it reduces to 0.
We call the output of Algorithm 8 simplified reduced systems.

5. Back-Transformation of Reduced Systems
Let ` ∈ {2, . . . ,m} and k ∈ {1, . . . , `}. Recall that a triplet (Mk−1, Tk, Rk) obtained from Algorithm 5
describes a reduced system according to (20). A corresponding simplified system (M ′k−1, T

′
k, Rk) is

obtained from Algorithm 8 via an equivalence transformation on the set of equations Mk−1 and further
equivalence transformations modulo Mk−1 on the right hand sides of the differential equations in Tk,
while the left hand sides of those differential equations remain untouched. It is not hard to see that for
both these outputs scaling can be reversed using the substitution

σ = [x1 ← y1/ε
d1 , . . . , xn ← yn/ε

dn ] ◦ [τ ← εµt] ◦ [δ ← ε1/q] ◦ [ε← ε∗]

obtained with Algorithm 1. For our discussion here, we use names Mk−1, Tk, Rk as in the unsimplified
system.
The application of σ to all components of (Mk−1, Tk, Rk) yields a raw back-transformation as follows:

Mk−1σ = ( fj = 0 | xj ∈ Zk−1 )σ = ( fjσ = 0 | xj ∈ Zk−1 ),
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Algorithm 9 TransformBack
Input: 1. ((M0, T1, R1), . . . , (M`−1, T`, R`)), the output of either Algorithm 5 or Algorithm 8;

2. σ, the output of Algorithm 1
Output: A list ((M∗0 , T ∗1 , R∗1), . . . , (M∗`−1, T

∗
` , R

∗
` )).

1: for k := 1 to ` do
2: M∗k−1 := Mk−1σ

3: v :=
(
(δbkτ)σ

)
/t, extracting δbk from Tk = ε

(bk/q)+µ
∗

4: T ∗k := ()
5: for all x′j = δbkfj ∈ Tk do
6: h := (yjfj/xj)σ = ε

dj
∗ (fjσ)

7: T ∗k := T ∗k ◦ (ẏj = vh) = ε
bk/q+µ+dj
∗ (fjσ)

8: end for
9: R∗k := ( ẏj = 0 | x′j = 0 ∈ Rk )

10: end for
11: return ((M∗0 , T ∗1 , R∗1), . . . , (M∗`−1, T

∗
` , R

∗
` ))

Tkσ =
(

dxj
dτ = δbkfj

∣∣∣∣ xj ∈ zk )σ =
(

dyj
dεµ+dj
∗ t

= ε
bk/q
∗ (fjσ)

∣∣∣∣ xj ∈ zk ) ,
Rkσ =

(
dxj
dτ = 0

∣∣∣∣ xj ∈ zk+1 ∪ · · · ∪ zm
)
σ =

(
dyj

dεµ+dj
∗ t

= 0
∣∣∣∣ xj ∈ zk+1 ∪ · · · ∪ zm

)
.

In Tkσ, we multiply by εµ+dj
∗ in order to arrive at differential equations in dyj

dt . Furthermore, recall
that the explicit factor δbk in the original Tk corresponds to a time scale δbkτ . The corresponding time
scale in t is given by (δbkτ)σ = ε

bk/q+µ
∗ t, which we make explicit by equivalently rewriting Tkσ as

T ∗k =
(
ẏj = ε

bk/q+µ
∗ (εdj

∗ fσ)
∣∣∣ xj ∈ zk ) .

Similarly, Rkσ can be rewritten as R∗k = ( ẏj = 0 | xj ∈ zk+1 ∪ · · · ∪ zm ), and we set M∗k = Mkσ.
We call (M∗0 , T ∗1 , R∗1), . . . , (M∗`−1, T

∗
` , R

∗
` ) back-transformed reduced systems. In terms of the defini-

tions after (9) in Sect. 2.1 we have reverted the scaling but not the partitioning and not the truncating.
Furthermore, we have preserved all information obtained with the computation of the reduced systems
in Sect. 3, where we keep the time scale factors explicit, and with their algebraic simplification in Sect. 4.
Our back-transformation is realized in Algorithm 9. In l.3 we compute the time scale factor ε(bk/q)+µ

∗
for T ∗k as described above, and in l.6 we compute its co-factor εdj

∗ fσ as (yjf/xj)σ.
Let us discuss what has been gained in ((M∗0 , T ∗1 , R∗1), . . . , (M∗`−1, T

∗
` , R

∗
` )) for our original system S

given in (1). To start with, notice that our decision at the beginning of Sect. 3.1 to limit ourselves
to the positive first orthant U using defining inequalities U = {x1 > 0, . . . , xn > 0} translates into
Uσ = {y1/ε

d1
∗ > 0, . . . , yn/εdn

∗ > 0}, which is again the positive first orthant U . The manifoldsMk−1
described by Mk−1 lead to manifoldsM∗k−1 described by M∗k−1, preserving the nestedness

U =M∗0 ⊇M∗1 ⊇ · · · ⊇ M∗`−1.

Moreover, the system (T ∗k , R∗k) defines differential equations onM∗k−1.
We are now faced with a discrepancy. On the one hand, we fix ε = ε∗. On the other hand, the

requirement that δ̄ be sufficiently small in Theorem 1 entails that ε be sufficiently small. It is of
crucial importance whether invariant manifolds of (3), which do exist for sufficiently small ε, persist at
ε = ε∗. We are not aware of any algorithmic results addressing this question. In particular, singular
perturbation theory is typically concerned with asymptotic results, which are not helpful here.
In case of persistence, there exist nested invariant manifolds N ∗k−1 which are Hausdorff-close toM∗k−1

for system (1). Moreover, the differential equations T ∗k associated with M∗m−1 correspond to the kth
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Algorithm 10 TropicalMultiReduce
Input: 1. A list S = (ẏ1 = f1, . . . , ẏn = fn) of autonomous first-order ordinary differential equations

where f1, . . . , fn ∈ Q[y1, . . . , yn];
2. ε∗ ∈ (0, 1) ∩Q;
3. p ∈ N \ {0}

Output: A list ((M∗0 , T ∗1 , R∗1), . . . , (M∗`−1, T
∗
` , R

∗
` )) of triplets where ` ∈ {2, . . . ,m}, or the empty list.

For k ∈ {1, . . . , `}, M∗k−1 is a list of real constraints definingM∗k−1 ⊆ Rn; T ∗k is a list of differential
equations; R∗k is a list of trivial differential equations ẏ = 0 for all differential variables from T ∗k+1,
. . . , T ∗m.
The relevance of the output in terms of the input is discussed in Sect. 5.

1: TropicalCS,ε∗,p := curry(TropicalC, S, ε∗, p) TropicalCS,ε∗,p is a binary function
2: TropicalDS,ε∗,p := curry(TropicalD, S, ε∗, p) TropicalDS,ε∗,p is a constant function
3: T, P, σ := ScaleAndTruncate(S,TropicalCS,ε∗,p,TropicalDS,ε∗,p, ε∗)
4: Σ := ComputeReducedSystems(T, P ) = ((M0, T1, R1), . . . , (M`−1, T`, R`))
5: Σ′ := SimplifyReducedSystems(Σ) = ((M ′0, T ′1, R1), . . . , (M ′`−1, T

′
` , R`))

6: Σ∗ := TransformBack(Σ′, σ) = ((M∗0 , T ∗1 , R∗1), . . . , (M∗`−1, T
∗
` , R

∗
` ))

7: return Σ∗

level in a hierarchy of time scales and approximate the flow on N ∗k−1. We have achieved a decomposition
of (1) into ` systems of smaller dimension. At the very least, one obtains a well-educated guess about
possible candidates for invariant manifolds and reductions. For the investigation of those candidates one
may check the N ∗k for approximate invariance using, e.g., numerical methods, or by applying criteria
proposed in [45].
Algorithm 10 provides a wrapper combining all our algorithms to decompose input systems like (1)

into several time scales. The underlying tropicalization is not made explicit, and the result is presented
on the original scale. Figure 5 explains the functional dependencies and principal data flow between
our algorithms graphically.

6. Computational Examples
Based on our explicit algorithms in the present work, we have developed two independent software
prototypes realizing all methods described here. The first one is in Python using SymPy [40] for
symbolic computation, pySMT [24] as an interface to the SMT solver MathSAT5 [12], and SMTcut for
the computation of tropical equilibrations [39]. The second one is a Maple package, which makes use
of Maple’s built-in SMTLIB package [22] for using the SMT solver z3 [17]. For our computations here
we have used our Python code. Computation results are identical with both systems, and timings are
similar. We have conducted our computations on a standard desktop computer with an 3.3 GHz 6-core
Intel 5820K CPU and 16 GB of main memory. Computation times listed are CPU times.
In the next subsection, we will discuss in detail the computations for one specific biological input sys-

tem from the BioModels database. The subsequent subsections showcase several further such examples
in a more concise style. The focus here is on biological results. For an illustration of our algorithms,
we discuss in Appendix A examples where reduction stops at ` < m for various reasons.

6.1. An Epidemic Model of the Bird Flu Virus H5N6
We consider a model related to the transmission dynamics of subtype H5N6 of the influenza A virus
in the Philippines in August 2017 [35]. That model is identified as BIOMD0000000716 in the BioModels
database, a repository of mathematical models of biological processes [34]. The model specifies four
species: S_b (susceptible bird), I_b (infected bird), S_h (susceptible human), and I_a (infected human),
the concentrations of which over time we map to differential variables y1, y2, y3, y4, respectively. The
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Algorithm 10
TropicalMultiReduce

Algorithm 1
ScaleAndTruncate

Algorithm 5
ComputeReducedSystems

Algorithm 8
SimplifyReducedSystems

Algorithm 9
TransformBack

Algorithm 4
TropicalEquilibration

Algorithm 3
TropicalD

Algorithm 2
TropicalC

Algorithm 7
TestSmoothness

Algorithm 6
IsHyperbolicallyAttractive

S, ε∗, p

S, ε∗, p

P1, . . . , Pm

σ

1. S = (ẏ1 = g1, . . . , ẏn = gn)
2. ε∗
3. p

1. S
2. TropicalCS,ε∗,p

3. TropicalDS,ε∗,p

4. ε∗

T1, . . . , Tm,
where Tk is zk = δbk f̂k(z, 0)
and b1 < · · · < bm

(M0, T1, R1) . · · · . (M`−1, T`, R`)

(M ′0, T ′1, R1) . · · · . (M ′`−1, T
′
` , R`)

(M∗0 , T ∗1 , R∗1) . · · · . (M∗`−1, T
∗
` , R

∗
` )

Figure 1: Functional dependencies (thin arrows) and principal data flow (thick arrows) between our
algorithms
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input system is given by

S =
[ d

dty1 = − 9137
2635182y1y2 − 1

730y1 + 412
73 ,

d
dty2 = 9137

2635182y1y2 − 4652377
961841430y2,

d
dty3 = − 1

6159375000y2y3 − 1
25258y3 + 40758549

3650000 ,
d
dty4 = 1

6159375000y2y3 − 112500173
2841525000000y4

]
.

We choose ε∗ = 1
5 , p = 1, and Algorithm 3 non-deterministically selects d = (−1,−4,−7,−3) from

the tropical equilibration. Algorithm 1 then yields the following scaled and truncated system with three
time scales:

T1 =
[ d

dτ x1 = 1 ·
(
− 5710625

2635182x1x2 + 412
365
)]
,

T2 =
[ d

dτ x2 = δ3 ·
( 5710625

2635182x1x2 − 116309425
192368286x2

)]
,

T3 =
[ d

dτ x3 = δ6 ·
(
− 15625

25258x3 + 40758549
18250000

)
,

d
dτ x4 = δ6 ·

( 15625
15768x2x3 − 112500173

181857600x4
)]
.

From this input, Algorithm 5 produces the following reduced systems:

M0 =
[ ]
, T1 =

[ d
dτ x1 = 1 ·

(
− 5710625

2635182x1x2 + 412
365
)]
,

R1 =
[ d

dτ x2 = 0,
d
dτ x3 = 0,
d
dτ x4 = 0

]
,

M1 =
[
2084378125x1x2 − 1085694984 = 0

]
, T2 =

[ d
dτ x2 = δ3 ·

( 5710625
2635182x1x2 − 116309425

192368286x2
)]
,

R2 =
[ d

dτ x3 = 0,
d
dτ x4 = 0

]
,

M2 =
[
2084378125x1x2 − 1085694984 = 0, T3 =

[ d
dτ x3 = δ6 ·

(
− 15625

25258x3 + 40758549
18250000

)
,

16675025x1x2 − 4652377x2 = 0
]
, d

dτ x4 = δ6 ·
( 15625

15768x2x3 − 112500173
181857600x4

)]
,

R3 =
[ ]
.

In that course, Algorithm 6 successfully tests all three scaled systems for hyperbolic attractivity. Fur-
thermore, Algorithm 7 applies the sufficient smoothness test from Sect. 3.3 with

` = 3, b1 = 3, b2 = 3, P1 = 1 · (−δ4 · 125
146x1), P2 = δ6 · (−δ4 · 15625

15768x2x3).

This yields E = {4}, where 4 cannot be expressed as an integer multiple of 3. Thus the test fails,
which causes a warning in Algorithm 5. Notice that in R1, . . . , R` the differential variables are ordered
in the same way as in the scaled and truncated system T1, . . . , Tm. Incidentally, this coincides with
lexicographic order in this example.
Algebraic simplification through Algorithm 8 yields the simplified reduced systems

M ′0 =
[ ]
, T ′1 =

[ d
dτ x1 = 1 ·

(
− 5710625

2635182x1x2 + 412
365
)]
,

R′1 =
[ d

dτ x2 = 0,
d
dτ x3 = 0,
d
dτ x4 = 0

]
,

M ′1 =
[
x1x2 = 1085694984

2084378125
]
, T ′2 =

[ d
dτ x2 = δ3 ·

(
− 116309425

192368286x2 + 412
365
)]
,

R′2 =
[ d

dτ x3 = 0,

22



d
dτ x4 = 0

]
,

M ′2 =
[
x1 = 4652377

16675025 , T ′3 =
[ d

dτ x3 = δ6 ·
(
− 15625

25258x3 + 40758549
18250000

)
,

x2 = 1085694984
581547125

]
, d

dτ x4 = δ6 ·
( 1884887125

1018870563x3 − 112500173
181857600x4

)]
,

R′3 =
[ ]
.

Notice that our implementations conveniently rewrite equational constraints as monomial equations
with numerical right hand sides when possible. This supports readability but is not essential for the
simplifications applied here, which are based on Gröbner basis theory. Comparing T ′2 with T2, we see
that the equation for x1x2 in M ′1 is plugged in. Similarly, M2 is simplified to M ′2, which is in turn used
to reduce T3 to T ′3.
The back-transformed reduced systems as computed by Algorithm 9 read as follows:

M∗0 =
[ ]
, T ∗1 =

[ d
dty1 = 1 ·

(
− 9137

2635182y1y2 + 412
73
)]
,

R∗1 =
[ d

dty2 = 0,
d
dty3 = 0,
d
dty4 = 0

]
,

M∗1 =
[
y1y2 = 1085694984

667001
]
, T ∗2 =

[ d
dty2 = 1

125 ·
(
− 116309425

192368286y2 + 51500
73
)]
,

R∗2 =
[ d

dty3 = 0,
d
dty4 = 0

]
,

M∗2 =
[
y1 = 4652377

3335005 , T ∗3 =
[ d

dty3 = 1
15625 ·

(
− 15625

25258y3 + 203792745
1168

)
,

y2 = 5428474920
4652377

]
, d

dty4 = 1
15625 ·

( 15079097
5094352815y3 − 112500173

181857600y4
)]
,

R∗3 =
[ ]
.

We compare T ∗1 , . . . , T ∗3 to the input system S: In the equation for ẏ1, the monomial in y1 is identified as
a higher order term with respect to δ and discarded by Algorithm 1. In the equation for ẏ2, the monomial
in y1y2 has been Gröbner-reduced to a constant modulo the defining equation in M ′1. Similarly, the
equation for ẏ3 loses its monomial in y2y3 by truncation of higher order terms, and in the equation for
ẏ4, the monomial in y2y3 is Gröbner-reduced to a monomial in y3.

Notice the explicit constant factors on the right hand sides of the differential equations in T ∗1 , . . . , T ∗3 .
They originate from factors δbk in the respective scaled systems T1, . . . , T3, corresponding to (8). They
are left explicit to make the time scale of the differential equations apparent. We see that the system
T ∗2 ◦R∗2 is 125 times slower than T ∗1 ◦R∗1, and T ∗3 ◦R∗3 is another 125 times slower.
Figure 2 visualizes the direction fields of T ∗1 ◦ R∗1, . . . , T ∗3 ◦ R∗3 on their respective manifolds M∗0,

. . . , M∗2 along with their respective critical manifolds M∗1, . . . , M∗3, where M∗3 can be derived from
M∗2 by additionally equating the vector field of T ∗3 ◦R∗3 to zero:

M∗3 =
[
y1 = 4652377

3335005 , y2 = 5428474920
4652377 , y3 = 7051228977

25000 , y4 = 441466240042010928888
327120760850763125

]
.

This list M∗3 does not explicitly occur in the output. However, its preimage M3 is constructed in
Algorithm 5 and justifies the presence of (M2, T3, R3) in the output there. The total computation time
was 0.906 s.
This multiple time scale reduction of the bird flu model emphasizes a cascade of successive relaxations

of different model variables. First, the population of susceptible birds relaxes. As explained in the
introduction, by relaxation we mean that these variables reach quasi-steady state values. This relaxation
is illustrated in Fig. 2(b). Then, the population of infected birds relaxes as shown in Fig. 2(c). Finally,
the populations of susceptible and infected humans relax to a stable steady state as shown in Fig. 2(d),
following a reduced dynamics described by T ∗3 .
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Figure 2: Critical manifolds and direction fields of our reductions of BioModel 716. (a) The sur-
face is the critical manifold M∗1 ⊆ M∗0 = U projected from R4 into real (y1, y2, y3)-space.
The line located at (y1, y2) ≈ (1.4, 1166.8) is the critical submanifold M∗2 ⊆ M∗1. The
dot located at (y1, y2, y3) ≈ (1.4, 1166.8, 282049.2) is the critical submanifold M∗3 ⊆ M∗2.
Both M∗1 and M∗2 extend to ±∞ in both y3 and y4 direction, and M∗3 is located near
(1.4, 1166.8, 282049.2, 1349.6). (b) The direction field of T ∗1 ◦ R∗1 onM∗0 = U projected from
R4 into real (y1, y2)-space. The curve is the critical submanifold M∗1 ⊆ M∗0. (c) The direc-
tion field of T ∗2 ◦R∗2 onM∗1 projected from R4 into real (y3, y2)-space. The line is the critical
submanifold M∗2 ⊆ M∗1. The system here is slower than the one in (b) by a factor of 125.
(d) The direction field of T ∗3 ◦R∗3 onM∗2 projected from R4 into real (y3, y4)-space. The dot is
the critical submanifoldM∗3 ⊆M∗2. The system here is slower than the one in (c) by another
factor of 125.
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6.2. Caspase Activation Pathway
BIOMD0000000102 is a quantitative kinetic model that examines the intrinsic pathway of caspase acti-
vation that is essential for apoptosis induction by various stimuli including cytotoxic stress [36]. Species
concentrations over time are mapped as follows:

Species variable Differential variable Species
A y1 APAF-1
C9 y2 Caspase 9
C9X y3 Caspase 9-XIAP complex
X y4 XIAP
AC9X y5 APAF-1-Caspase 9-XIAP complex
AC9 y6 APAF-1-Caspase 9 complex
C3 y7 Caspase 3
C3_star y8 Caspase 3 cleaved
C3_starX y9 Caspase 3 cleaved-XIAP complex
C9_starX y10 Caspase 9 cleaved-XIAP complex
C9_star y11 Caspase 9 cleaved
AC9_star y12 APAF-1-Caspase 9 cleaved complex
AC9_starX y13 APAF-1-Caspase 9 cleaved-XIAP complex

The input system is given by

S =
[ d

dty1 = − 1
500y1y2 − 1

500y1y3 − 1
500y1y10 − 1

500y1y11 − 1
1000y1 + 1

10y5 + 1
10y6 + 1

10y12

+ 1
10y13 + 1

50 ,
d
dty2 = − 1

500y1y2 − 1
1000y2y4 − 1

5000y2y8 − 1
1000y2 + 1

1000y3 + 1
10y6 + 1

50 ,
d
dty3 = − 1

500y1y3 + 1
1000y2y4 − 1

500y3 + 1
10y5,

d
dty4 = − 1

1000y2y4 + 1
1000y3 − 1

1000y4y6 − 3
1000y4y8 − 1

1000y4y11 − 1
1000y4y12 − 1

1000y4

+ 1
1000y5 + 1

1000y9 + 1
1000y10 + 1

1000y13 + 1
25 ,

d
dty5 = 1

500y1y3 + 1
1000y4y6 − 51

500y5,
d
dty6 = 1

500y1y2 − 1
1000y4y6 + 1

1000y5 − 1
5000y6y8 − 101

1000y6,
d
dty7 = − 1

200000y2y7 − 7
20000y6y7 − 1

20000y7y11 − 7
2000y7y12 − 1

1000y7 + 1
5 ,

d
dty8 = 1

200000y2y7 − 3
1000y4y8 + 7

20000y6y7 + 1
20000y7y11 + 7

2000y7y12 − 1
1000y8 + 1

1000y9,
d
dty9 = 3

1000y4y8 − 1
500y9,

d
dty10 = − 1

500y1y10 + 1
1000y4y11 − 1

500y10 + 1
10y13,

d
dty11 = − 1

500y1y11 + 1
5000y2y8 − 1

1000y4y11 + 1
1000y10 − 1

1000y11 + 1
10y12,

d
dty12 = 1

500y1y11 − 1
1000y4y12 + 1

5000y6y8 − 101
1000y12 + 1

1000y13,
d
dty13 = 1

500y1y10 + 1
1000y4y12 − 51

500y13
]
.

We choose ε∗ = 1
2 , p = 1 and select d = (−4, 2, 3, 5, 5, 4,−6,−8,−4,−2,−2, 0, 0) from the tropical

equilibration. Our back-transformed reduced systems read as follows:

M∗0 =
[ ]
, T ∗1 =

[ d
dty4 = 1 ·

(
− 3

1000y4y8 + 1
25
)]
,

R∗1 =
[ d

dty5 = 0, d
dty6 = 0, d

dty12 = 0, d
dty13 = 0,

d
dty2 = 0, d

dty3 = 0, d
dty10 = 0, d

dty11 = 0,
d
dty1 = 0, d

dty7 = 0, d
dty9 = 0, d

dty8 = 0
]
,

M∗1 =
[
y4y8 = 40

3
]
, T ∗2 =

[ d
dty5 = 1

8 ·
( 2

125y1y3 − 102
125y5

)
,
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d
dty6 = 1

8 ·
( 2

125y1y2 − 101
125y6

)
,

d
dty12 = 1

8 ·
( 2

125y1y11 − 101
125y12

)
,

d
dty13 = 1

8 ·
( 2

125y1y10 − 102
125y13

)]
,

R∗2 =
[ d

dty2 = 0, d
dty3 = 0, d

dty10 = 0, d
dty11 = 0,

d
dty1 = 0, d

dty7 = 0, d
dty9 = 0, d

dty8 = 0
]
,

M∗2 =
[
y4y8 = 40

3 , T ∗3 =
[ d

dty2 = 1
16 ·

(
− 2

625y2y8 + 8
25
)]
,

y1y3 − 51y5 = 0, R∗3 =
[ d

dty3 = 0, d
dty10 = 0, d

dty11 = 0, d
dty1 = 0,

2y1y2 − 101y6 = 0, d
dty7 = 0, d

dty9 = 0, d
dty8 = 0

]
.

2y1y11 − 101y12 = 0,
y1y10 − 51y13 = 0

]
,

The total computation time was 8.547 s, of which Algorithm 4 took 6.188 s.
The multiple time scale reduction of the caspase activation model emphasizes a cascade of successive

relaxations. First, the inhibitor of apoptosis XIAP binds rapidly to the cleaved caspase. Then, the four
APAF complexes are formed. Finally, the Caspase 9 is recruited to the apoptosome.

6.3. TGF-β Pathway
BIOMD0000000101, is a simple representation of the TGF-β signaling pathway that plays a central role
in tissue homeostasis and morphogenesis, as well as in numerous diseases such as fibrosis and cancer
[60]. Concentrations over time of species RI (receptor 1), RII (receptor 2), lRIRII (ligand receptor
complex-plasma membrane), lRIRII_endo (ligand receptor complex-endosome), RI_endo (receptor 1
endosome), and RII_endo (receptor 2 endosome), are mapped to differential variables y1, y2, y3, y4,
y5, and y6, respectively. The original BIOMD0000000101 has a change of ligand concentration at time
t = 2500. For our computation here, we ignore this discrete event. The input system is given by

S =
[ d

dty1 = − 1
100y1y2 − 90277

250000y1 + 33333
1000000y4 + 33333

1000000y5 + 8,
d
dty2 = − 1

100y1y2 − 90277
250000y2 + 33333

1000000y4 + 33333
1000000y6 + 4,

d
dty3 = 1

100y1y2 − 152777
250000y3,

d
dty4 = 33333

100000y3 − 33333
1000000y4,

d
dty5 = 33333

100000y1 − 33333
1000000y5,

d
dty6 = 33333

100000y2 − 33333
1000000y6

]
.

We choose ε∗ = 1
5 , p = 1, and select d = (0,−4,−1,−2,−1,−5) from the tropical equilibrium. Our

back-transformed reduced systems read as follows:

M∗0 =
[ ]
, T ∗1 =

[ d
dty1 = 5 ·

(
− 1

500y1y2 + 8
5
)]
,

R∗1 =
[ d

dty2 = 0, d
dty3 = 0, d

dty4 = 0, d
dty5 = 0,

d
dty6 = 0

]
,

M∗1 =
[
y1y2 = 800

]
, T ∗2 =

[ d
dty3 = 1 ·

(
− 152777

250000y3 + 8
)]
,

R∗2 =
[ d

dty2 = 0, d
dty4 = 0, d

dty5 = 0, d
dty6 = 0

]
,

M∗2 =
[
y1y2 = 800, T ∗3 =

[ d
dty2 = 1

5 ·
(
− 90277

50000y2 + 33333
200000y6

)]
,

y3 = 2000000
152777

]
, R∗3 =

[ d
dty4 = 0, d

dty5 = 0, d
dty6 = 0

]
.

The total computation time was 0.906 s.
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The multiple time scale reduction of the TGF-β model emphasizes a cascade of successive relaxations
of concentrations of different species. First, the concentration of receptor 1 relaxes rapidly. Then follows
the membrane complex, and, even slower, the relaxation of receptor 2.

6.4. Avian Influenza Bird-to-Human Transmission
BIOMD0000000709 examines bird-to-human transmission of different strains of avian influenza A viruses,
such as H5N1 and H7N9 [38]. Species concentrations over time of S_a (susceptible avian), I_a (infected
avian), S_h (susceptible human), I_h (infected human), and R_h (recovered human) are mapped to
differential variables y1, y2, y3, y4, and y5, respectively. The input system is given by

S =
[ d

dty1 = − 1
8000000000y

3
1 + 127

20000000y
2
1 − 9

500000000y1y2 − 1
200y1,

d
dty2 = 9

500000000y1y2 − 37123
50000000y2,

d
dty3 = − 3

500000000y2y3 − 391
10000000y3 + 30,

d
dty4 = 3

500000000y2y3 − 4445391
10000000y4,

d
dty5 = 1

10y4 − 391
10000000y5

]
.

We choose ε∗ = 1
5 , p = 1, and select d = (−7, 0,−8, 3,−2) from the tropical equilibration. Our

back-transformed reduced systems read as follows:

M∗0 =
[ ]
, T ∗1 =

[ d
dty1 = 1 ·

(
− 1

8000000000y
3
1 + 127

20000000y
2
1
)]
,

R∗1 =
[ d

dty4 = 0, d
dty2 = 0, d

dty3 = 0, d
dty5 = 0

]
,

M∗1 =
[
y3

1 − 50800y2
1 = 0

]
, T ∗2 =

[ d
dty4 = 1

5 ·
( 3

100000000y2y3 − 4445391
2000000y4

)]
,

R∗2 =
[ d

dty2 = 0, d
dty3 = 0, d

dty5 = 0
]
.

The total computation time was 0.578 s.
The multiple time scale reduction of this avian influenza model emphasizes a cascade of successive

relaxations of different model variables. First, the susceptible bird population relaxes rapidly. The
reduced equation T1 and manifold M1 suggest that the bird population dynamics is of the Allee type
and evolves toward the stable extinct state. It follows the relaxation of infected human population that
also evolves toward the extinct state, the end of the epidemics.

7. Concluding Remarks
We provided a symbolic method for automatic model reduction of biological networks described by
ordinary differential equations with multiple time scales. This method is applicable to systems with
two time scales or more, superseding traditional slow-fast reduction methods that can cope with only
two time scales. We also proposed, for the first time, the automatic verification of the hyperbolicity
conditions required for the validity of the reduction. Our theoretical framework is accompanied by rigor-
ous algorithms and prototypical implementations, which we successfully applied to real-world problems
from the BioModels database [34].
We would like to list some open points and possible extensions of our research here. Our reduction

algorithm is based on a fixed scaling (8) leading to a fixed ordering of the time scales of different
variables. In our reduction scheme, different variables relax hierarchically, firstly the fastest ones, then
the second fastest, and lastly the slowest ones, which justifies our geometric picture of nested invariant
manifolds. However, there are situations, e.g. in models of relaxation oscillations, when the ordering
of time scales changes with time: variables that were fast can become slow at a later time, and vice
versa. In order to cope with such situations, one would like to use different scalings for different time
segments. One attempt to implement such a procedure has been provided in [54].
Although our proposed method identifies the full hierarchy of time scales, the subsequent reduction

may stop early in this hierarchy when hyperbolic attractivity is not satisfied at some stage. One
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possible reason is the presence of conservation laws, also known as first integrals, at the given reduction
stage. Such conservation laws necessarily force an eigenvalue zero for the Jacobian. A theorem by
Schneider and Wilhelm [52] can be employed to reduce such a setting to the hyperbolically attractive
case. As for the behavior of first integrals when proceeding to the reduced system, see the discussion
of the non-standard case in [33] for two time scales; an extension to multiple time scales should be
straightforward. Work in progress is concerned with the introduction of novel slow variables, one for
every independent conservation law of the fast subsystem, applying this to networks with multiple time
scales, and approximate linear and polynomial conservation laws.
More generally, it is of interest to consider cases when hyperbolic attractivity fails but hyperbolicity

still holds: In such cases, Cardin and Teixeira show there still exist invariant manifolds [10]. Testing
for hyperbolicity is more involved than testing for hyperbolic attractivity, but in theory it is well
understood, and there exists an algorithmic approach due to Routh [23]. In the case of hyperbolicity,
but not attractivity, the ensuing global dynamics may be quite interesting; for instance slow-fast cycles
may appear.
Concerning differentiability requirements, we checked for smoothness of the full system in Sect. 3.3.

However, Fenichel’s results, and in principle also those by Cardin and Teixeira, require only sufficient
finite differentiability. Therefore, given a differential equation system and a scaling, invariant manifolds
and corresponding reduced systems exist for Cp functions with fixed p <∞. Going through the details
will involve intricate analysis that is left to future work.
In the introduction we sketched a Michaelis–Menten system abstracting from the known numerical

values for the reaction rate constants k1, k−1, k2. It would be indeed interesting to work on such
parametric data. In the presence of parameters, one would consider effective quantifier elimination
over real closed fields [14, 63, 31, 55] as a generalization of SMT solving. Robust implementations
are freely available [8, 18] and well supported. They have been successfully applied to problems in
chemical reaction network theory during the past decade [56, 62, 7, 19]. Such a generalization is not
quite straightforward. With the tropical scaling in Sect. 2.2, Algorithm 2 would introduce logarithms
of polynomials in the parametric coefficients, which is not compatible with the logical framework used
here. Similar tropicalization methods, which are unfortunately not compatible with our abstract view
on scaling in Sect. 2.1, require only logarithms of individual parametric coefficients [51]. Such a more
special form would allow the use of abstraction in the logic engine.
From a point of view of user-oriented software, it would be most desirable to develop automatic

strategies for determining good default values for ε∗ and for choices of d from the tropical equilibration
in Algorithm 3.
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A. Illustration of Some Border Cases With Our Algorithms
A.1. Failure of Tropicalization With an Unbalanced Monomial
BIOMD0000000609 describes the metabolism and the related hepatotoxicity of acetaminophen, a pain
killer [48]. The species concentrations over time of Sulphate__PAPS, GSH, NAPQI, Paracetamol_APAP,
and Protein_adducts are mapped to differential variables y1, y2, y3, y4, and y5, respectively. The
input system is given by

S =
[ d

dty1 = −226000000000000y1y4 − 2y1 + 53
2000000000000000 ,

d
dty2 = −1600000000000000000y2y3 − 2y2 + 687

50000000000000000 ,
d
dty3 = −1600000000000000000y2y3 − 220063

2000 y3 + 63
200y4,

d
dty4 = −226000000000000y1y4 + 63

2000y3 − 661
200y4,

d
dty5 = 110y3

]
.

Since there is only one monomial on the right hand side of the equation for ẏ5, equilibration is impossible.
This causes Algorithm 4 to return in l.23 a disjunctive normal form Π equivalent to “false”, which
describes the empty set. Hence Algorithm 3 returns ⊥, and Algorithm 1 returns the empty list. The
total computation time was 0.006 s.

A.2. Failure of Hyperbolic Attractivity due to an Empty Manifold in the First
Orthant

BIOMD0000000726 examines the transmission dynamics of rabies between dogs and humans [49]. The
mapping of the model variables over time and our differential variables is as follows:

Species Differential variable Description
S_d y1 susceptible dogs
E_d y2 exposed dogs
I_d y3 infectious dogs
R_d y4 recovered dogs
S_h y5 susceptible humans
E_h y6 exposed humans
I_h y7 infectious humans
R_h y8 recovered humans

The input system is given by

S =
[ d

dty1 = − 79
500000000y1y3 − 17

100y1 + 18
5 y2 + y4 + 3000000,

d
dty2 = 79

500000000y1y3 − 617
100y2,

d
dty3 = 12

5 y2 − 27
25y3,

33

https://doi.org/10.1007/s11538-010-9618-0
https://doi.org/10.1007/s002000050055
https://doi.org/10.1016/j.mbs.2007.01.007


d
dty4 = 9

100y1 + 9
100y2 − 27

25y4,
d
dty5 = − 229

100000000000000y3y5 − 3
1000y5 + 18

5 y6 + y8 + 15400000,
d
dty6 = 229

100000000000000y3y5 − 6543
1000y6,

d
dty7 = 12

5 y6 − 1343
1000y7,

d
dty8 = 27

50y6 − 1003
1000y8

]
.

We choose parameters ε∗ = 1
5 , p = 1, and d = (−10,−10,−11,−9,−14,−7,−8,−7). The condition in

l.1 of Algorithm 6 does not hold for

M = [−9875x1x3 + 4608x2 = 0, 49375x1x3 − 39488x2 = 0, 17890625x3x5 − 13400064x6 = 0],

i.e., the corresponding manifoldM1 is empty. Consequently, Algorithms 5, 8, and 9 return empty lists.
The total computation time was 0.921 s.

A.3. Failure of Hyperbolic Attractivity in the First Step
BIOMD0000000156 examines the dynamics of a negative feedback loop between the tumor suppressor
protein p53 and the oncogene protein Mdm2 in human cells [25]. The species concentrations over time
for x (p53), y (Mdm2), and y0 (precursor Mdm2) are mapped to differential variables y1, y2, and y3,
respectively. The input system is given by

S =
[ d

dty1 = − 37
10y1y2 + 2y1,

d
dty2 = − 9

10y2 + 11
10y3,

d
dty3 = 3

2y1 − 11
10y3

]
.

We choose parameters ε∗ = 1
2 , p = 1, and point d = (2, 1, 1). Algorithm 5 returns an empty list, since

the test for hyperbolic attractivity fails in Algorithm 6, l.20, even though the manifoldM1, defined by
M1 = [− 37

40x1x2 + x1 = 0], is not empty in the first orthant, as has been ensured in l.1. Obviously, the
simplified and back-translated systems are empty lists as well. The total computation time was 0.453 s.

A.4. Failure in SMT Solving for a Reduced System With Fractional Exponents
BIOMD0000000663 illustrates how CD4 T-cells can influence the spread of the HIV infection [64]. Species
concentrations over time for x (x_Tcell_infected), y (y_Tcell_uninfected), and v (v_free_virus) are
mapped to variables y1, y2, and y3, respectively. The input system is given by

S =
[ d

dty1 = − 1
10y

2
1y3 − 1

10y1y2y3 + 4
5y1y3 − 1

10y1,
d
dty2 = − 1

10y1y2y3 + 1
5y1y3 − 1

10y
2
2y3 + y2y3 − 1

5y2,
d
dty3 = y2 − 1

2y3
]
.

We choose ε∗ = 1
2 , p = 5, and d = (1, 4, 3). The choice of p = 5 causes fractional exponents in the

scaled and truncated system, viz.

T2 =
[ d

dτ x2 = δ7 ·
( 4

5
5
√

4x1x3 − 4
5

5
√

4x2
)]
, T3 =

[ d
dτ x1 = δ12 ·

( 4
5

5
√

4x1x3 − 4
5

5
√

4x1
)]
.

However, the relevant SMT logics QF_LRA and QF_NRA do not accept fractional exponents. Recall from
Sect. 3.2 that in such cases, we catch the corresponding error from the SMT solver, convert to floats,
and restart.
We then get into the special case that ` = 1 in l.16 of Algorithm 5, i.e., there are less than two

reduced systems, and return the empty list. Consequently, the list of simplified reduced systems and
the corresponding list of back-transformed systems are empty as well. Notice that this special case is
not caused by the fractional exponents discussed above. The total computation time was 0.390 s.
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