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S1: Theoretical background to the experimental method 

In order to identify the Auger decay lifetime from our measurement of the delay between 

photo- and Auger emission, we performed a quantum-mechanical simulation of electron streaking for 

both photo- and Auger electrons. In this mathematical treatment of our experiment, we will consider 

the photoionisation of the neon 1s shell by a few-femtosecond, linearly polarised X-ray pulse. Photo- 

and Auger emission occur in the presence of a linearly polarised infrared (IR) field, synchronised with 

the ionising FEL pulse. It is assumed that the two beams are collinear and polarised along the z-

direction. 

The photo- and Auger electrons are not detected in coincidence, so they may be considered as 

propagating independently. Since both types of electrons are relatively fast (𝐸𝑒𝑙 > 1 a. u. ), one can 

apply the Strong Field Approximation (SFA) [1, 2], wherein the probability of emission of a 

photoelectron with momentum 𝑘⃗  can be written as 

Here and in the following, all quantities are given in atomic units, unless otherwise stated. In equation 

(1), 𝜀𝑋(𝑡)̃ is the envelope of the X-ray pulse, 𝐷𝑘⃗  is the dipole matrix element describing the transition 

of the electron from the ground state to the continuum, 𝐶 is a constant which does not affect the 

following discussion, and 𝛷𝑝ℎ(𝑘⃗ , 𝑡) is related to the Volkov phase accumulated by the photoelectron 

as it moves in the IR field [3]. This can be written as 

where 𝐸𝑏 is the absolute value of the photoelectron binding energy and 𝜔𝑥 is the carrier frequency of 

the X-ray pulse, so that the energy of the photoelectron in the absence of the IR pulse 𝐸𝑝ℎ is given by 

𝐸𝑝ℎ = 𝜔𝑋 − 𝐸𝑏. 𝐴𝐼𝑅
⃗⃗ ⃗⃗ ⃗⃗ (𝑡) is the vector potential of the IR laser field with electric field vector 𝜀𝐼𝑅⃗⃗ ⃗⃗  ⃗(𝑡) =

𝜀0⃗⃗  ⃗ cos(𝜔𝐼𝑅𝑡), such that 

 
𝑊𝑝ℎ(𝑘⃗ ) = 𝐶 |∫ 𝑑𝑡 𝜀𝑋(𝑡)̃ 𝐷𝑘⃗ exp[𝑖𝛷𝑝ℎ(𝑘⃗ , 𝑡)]

∞

−∞

|

2

. 
(1) 

 
𝛷𝑝ℎ(𝑘⃗ , 𝑡) = −∫ 𝑑𝑡′ [

1

2
(𝑘⃗ − 𝐴𝐼𝑅

⃗⃗ ⃗⃗ ⃗⃗ (𝑡′))
2
+ (𝐸𝑏 − 𝜔𝑋)] ,

∞

𝑡

 
(2) 

 
𝐴𝐼𝑅
⃗⃗ ⃗⃗ ⃗⃗ (𝑡) = −∫ 𝑑𝑡′𝜀𝐼𝑅⃗⃗ ⃗⃗  ⃗(𝑡′).

∞

𝑡

 
(3) 



Analogous to equation (1), we can calculate the probability of emission of an Auger electron 

of momentum 𝑘⃗  within the SFA [4]: 

Here, 𝑡0 is the moment the X-ray pulse starts to interact with the system, 𝐸𝑒 is the energy of the 

correlated photoelectron, and Γ is the width of the Auger state, obtained from the Auger lifetime 𝜏𝐴 by 

the relation 𝜏𝐴 =
1

Γ
. The quantity Φ𝐴(𝑡) is defined as  

where 𝐸𝐴 is the kinetic energy of the Auger electron in the absence of the IR field. Note that this is of 

a similar form to equation (2); in fact, both equations (1) and (4) can be written in the form  

with  

In equations (6) and (7), the subscript 𝑒𝑙 refers to the type of electrons being described – that is, either 

to photoelectrons 𝑝ℎ or Auger electrons 𝐴. For the photoelectrons, the factor 𝐺𝑒𝑙(𝑡) is given by 

Henceforth, we shall set the dipole matrix element to unity and assume a simple Gaussian form for the 

X-ray pulse. Therefore, 

where 𝜌 is the delay of the X-ray pulse with respect to the IR pulse, which varies stochastically from 

shot to shot. For the Auger case, the factor 𝐺𝐴(𝑡) is dependent on the autoionising Auger state and its 

decay linewidth Γ: 

 
𝑊𝐴(𝑘⃗ ) =

Γ

8𝜋
|∫ 𝑑𝑡 exp [𝑖Φ𝐴(𝑡) −

Γ(t − t0)

2
]

∞

𝑡0

∗ ∫ 𝑑𝑡′ 𝜀𝑋(𝑡′)̃  𝐷𝑘⃗ exp [𝑖 ((𝐸𝑒 −
𝑖Γ

2
) (𝑡′ − 𝑡0) − (𝜔𝑋 − 𝐸𝑏)𝑡

′)]
𝑡

𝑡0

|

2

. 

(4) 

 
Φ𝐴(𝑡) = −∫ 𝑑𝑡′ [

1

2
(𝑘⃗ − 𝐴𝐼𝑅

⃗⃗ ⃗⃗ ⃗⃗ (𝑡′))
2
− 𝐸𝐴] ,

∞

𝑡

 
(5) 

 
𝑊𝑒𝑙(𝑘⃗ ) = 𝐶 |∫ 𝑑𝑡 exp[𝑖𝛷𝑒𝑙(𝑘⃗ , 𝑡)] 𝐺𝑒𝑙(𝑡)

∞

−∞

|

2

, 
(6) 

 
Φ𝑒𝑙(𝑘⃗ , 𝑡) = −∫ 𝑑𝑡′ [

1

2
(𝑘⃗ − 𝐴𝐼𝑅

⃗⃗ ⃗⃗ ⃗⃗ (𝑡′))
2
− 𝐸𝑒𝑙] .

∞

𝑡

 
(7) 

 𝐺𝑝ℎ(𝑡) = 𝐷𝑘⃗ 𝜀𝑋(𝑡)̃. (8) 

 
𝐺𝑝ℎ(𝑡) ≈ exp [−

(𝑡 − 𝜌)2

2𝜎2
] , 

(9) 



We will refer to the factors 𝐺𝑒𝑙(𝑡) as effective pulses. The square of the effective pulse is 

equal to the corresponding emission profile. The electrons’ final momenta will depend upon the 

vector potential of the IR pulse, which is given by 

where 𝜔𝐼𝑅 =
2𝜋

𝑇𝐼𝑅
 is the angular frequency and 𝑇𝐼𝑅 is the period of the laser pulse. 𝐴0(𝑡) represents the 

amplitude of the IR pulse. For simplicity, we will assume that the IR pulse is much longer than both 

the XFEL pulse and Auger decay lifetime. The result of this assumption is that for a single shot, the 

amplitude of the electric field interacting with photo- and Auger electrons can be assumed to be 

identical. However, 𝐴0(𝑡) does vary on a timescale comparable to the timing jitter between X-ray and 

laser pulses, with the result that electrons emitted in different shots will generally interact with a 

different streaking amplitude. In Supplementary Figure 1, examples of functions 𝐺𝑝ℎ
2  and 𝐺𝐴

2 are 

shown. 

 

Supplementary Figure 1: Simulated photo- and Auger emission profiles| The red curve represents 

the photoemission profile, 𝐺𝑝ℎ
2 (𝑡), and the blue curve represents the Auger emission profile, 𝐺𝐴

2(𝑡). 

The time axis is relative to the time of arrival of the XFEL pulse. The delay between X-ray ionisation 

and the maximum of 𝐺𝐴
2(𝑡) is about 130 a.u. or 3.3 fs. 

 

 

𝐺𝐴(𝑡) = √
Γ

2𝜋
exp (−

Γ

2
𝑡)∫ 𝑑𝑡′ exp (

Γ

2
𝑡′) 𝜀𝑋̃(𝑡′).

𝑡

𝑡0

 
(10) 

 𝐴𝐼𝑅(𝑡) = 𝐴0(𝑡) sin(𝜔𝐼𝑅𝑡), (11) 



 

S2: Semiclassical approach 

Whilst the final results presented in the main text were calculated using a fully quantum-

mechanical approach, it is useful to first discuss a semiclassical approximation, which will be used to 

formulate a relationship between the final energy of an emitted electron and its moment of emission. 

The phase Φ(𝑘⃗ , 𝑡) in equation (7) varies rapidly in time, making direct computation of the state 

amplitudes time-consuming. However, the fast oscillation of the integrand in equation (6), which 

describes the probability of electron emission, means the result will be dominated by the saddle 

points, where the phase is stationary in time. These points 𝑡𝑠 are defined by the condition 

𝜕Φ(𝑘⃗ ,𝑡)

𝜕𝑡
|𝑡=𝑡𝑠 = 0, with solutions given by 

where 𝑘 = |𝑘⃗ |, 𝐴𝐼𝑅(𝑡) = |𝐴𝐼𝑅
⃗⃗ ⃗⃗ ⃗⃗ (𝑡)|, and 𝜃 is the angle of electron emission. Henceforth, we shall 

assume that the electrons are detected along the direction of polarisation of the pulses, so that 𝜃 = 0.  

Equation (12) links the final momentum 𝑘, and hence final electron energy 𝐸 =
𝑘2

2
, with the time of 

electron emission 𝑡𝑠. Solving it, we find 

where we have used the fact that for our experimental conditions, 𝐴0 ≪ 𝑘, 𝑘0. In our experiment there 

is only one stationary point of Φ – the closest one to the excitation time 𝜏 – which contributes to the 

integrand in equation (6). Were the IR carrier frequency significantly higher, multiple stationary 

points would contribute, making the physical picture more complicated. This case is omitted from our 

discussion for brevity but could prove worthwhile for future investigation. 

 

S3: Relationship between theoretical and experimentally measured quantities 

In the experiment, time-of-flight (TOF) spectra for photoelectrons and Auger electrons are 

recorded for every shot. Each measurement is made with a different vector potential 𝐴𝐼𝑅, because 

 
(
𝑘2

2
− 𝐸𝑒𝑙) − 𝑘 cos(𝜃)𝐴𝐼𝑅(𝑡𝑠) +

𝐴𝐼𝑅
2 (𝑡𝑠)

2
= 0, 

(12) 

 

𝑘 − 𝐴𝐼𝑅(𝑡𝑠) = √2𝐸𝑒𝑙 = 𝑘0;        𝑡𝑠 =
arcsin [

𝑘 − 𝑘0
𝐴0

]

𝜔𝐼𝑅
+ 2𝑛𝜋, 𝑛 ∈ ℤ, 

(13) 



neither the relative arrival time of the two pulses nor the carrier-envelope phase of the streaking pulse 

are controlled. This affects the shapes of the pair of TOF spectra obtained for each shot. After 

converting the spectra from TOF to kinetic energy, we evaluate the centre of energy (COE) for each 

of the two emission peaks. Plotting the laser-field-induced change in COE, 𝛥𝐸, for each of the two 

peaks against one another results in the elliptical figure shown in the main text. Measuring the phase 

shift between this ellipse’s parametric components is how we arrive at the time-delay between the two 

centres, and we will use this value to calculate the Auger decay lifetime. 

Within the full quantum treatment of the experiment, we can compute the change in an 

emission peak’s centre of energy due to interaction with the streaking laser: 

Using the semiclassical approximation, we can transform the above expression and integrate over 

time instead of over emitted electron energy. Following the relations (13) and assuming that 𝐴𝐼𝑅(𝑡) ≪

𝑘0, we find 

It is straightforward to evaluate this expression for the photoelectrons; the photoemission profile 

𝐺𝑝ℎ(𝑡) is short compared to the period of the streaking pulse, since the XFEL pulse duration 𝜎 ≪ 𝑇𝐼𝑅. 

The result is that the streaking vector potential varies slowly compared to the timescale of 

photoemission, allowing us to obtain a simple approximation for the photoelectron case: 

In this expression 𝑡0 represents the arrival time of the XFEL pulse with respect to the 

streaking pulse. Note that equation (16) is equivalent to equation (3) from the main text. 

The few-femtosecond Auger emission is also short compared to the period of the streaking 

pulse. Assuming a small variation in vector potential during Auger emission, one can expand 𝐴𝐼𝑅(𝑡) 

about the XFEL arrival time 𝑡0 using a Taylor series. Let the centre of time (COT) of the Auger 

emission profile be defined as 

 

𝛥𝐸𝑒𝑙 =
∫(

𝑘2

2 − 𝐸𝑒𝑙)𝑊𝑒𝑙(𝑘) 𝑘 𝑑𝑘

∫𝑊𝑒𝑙(𝑘) 𝑘 𝑑𝑘
. 

(14) 

 
𝛥𝐸𝑒𝑙 = 𝑘0

∫𝐴𝐼𝑅(𝑡)𝐺𝑒𝑙
2 (𝑡)𝑑𝑡

∫𝐺𝑒𝑙
2 (𝑡)𝑑𝑡

. 
(15) 

 
𝛥𝐸𝑝ℎ ≈ 𝑘0𝐴𝐼𝑅(𝑡0) = 𝐴0√2𝐸𝑝ℎ sin(𝜔𝐼𝑅𝑡0). 

(16) 



Note that this quantity is independent of 𝑡0. We can use this to obtain an approximate formula 

for 𝛥𝐸𝐴𝑢𝑔𝑒𝑟: 

where 𝜙 = 𝜔𝐼𝑅𝐶𝑇𝐴. This approximation provides a clear relation between the energy shift 

𝛥𝐸𝐴𝑢𝑔𝑒𝑟  and the COT 𝐶𝑇𝐴 of the effective Auger pulse, and will enable us to relate the spectral-

domain quantities measured in the experiment to the temporal properties of the decay process. In 

particular, comparing equations (16) and (18) shows us the time-delay between the COE of the 

photoemission and Auger streaked spectra is given by 

 

S4: The phenomenological approach 

It is worth comparing the quantum-mechanical theory described above with the 

phenomenological ad hoc theory, based upon rate equations, which has been applied in the past [5]. 

The latter is based on a description of the Auger process in terms of the following rate equation for the 

resonant Auger state population: 

with solution 

In equations (21) and (22), 𝑛(𝑡) represents the population of the Auger state, and 𝑆(𝑡) is a source 

term, usually defined as the probability of photoexcitation. The decay rate 𝜅 is related to the Auger 

decay lifetime 𝜏𝐴 according to the relation 𝜅 =
1

𝜏𝐴
. The time-evolution of 𝑛(𝑡) characterises the Auger 

emission profile; thus, in the ad hoc model, when the core-excited state is induced by a Gaussian X-

ray pulse of r.m.s. duration 𝜎 and the form 

 
𝐶𝑇𝐴 =

∫ 𝑡𝐺𝐴
2(𝑡)𝑑𝑡

∫ 𝐺𝐴
2(𝑡)𝑑𝑡

. 
(17) 

 𝛥𝐸𝐴𝑢𝑔𝑒𝑟 ≈ 𝑘0𝐴𝐼𝑅(𝑡0 + 𝐶𝑇𝐴) = 𝐴0√2𝐸𝐴 sin(𝜔𝐼𝑅𝑡0 + 𝜙), (18) 

 
𝜏𝑑𝑒𝑙𝑎𝑦 =

𝜙𝑇

2𝜋
= 𝐶𝑇𝐴 

(19) 

 𝑑𝑛(𝑡)

𝑑𝑡
= −𝜅𝑛(𝑡) + 𝑆(𝑡), 

(20) 

 
𝑛(𝑡) = ∫ 𝑑𝑡′ exp(−𝜅(𝑡 − 𝑡′))𝑆(𝑡′) .

𝑡

−∞

 
(21) 



  

the temporal profile of the Auger emission will be given by 

In the preceding two equations, the zero of time is defined as the moment of interaction 

between the X-ray pulse and the target. Using this expression, we can show that this model predicts 

that the time-delay between the photo- and Auger emission bursts – the quantity 𝜏𝑑𝑒𝑙𝑎𝑦 that we 

measured in our experiment – is identical to the Auger decay lifetime. 

Note that, since the photoelectrons are emitted promptly upon interaction with the XFEL 

pulse, 𝜏𝑑𝑒𝑙𝑎𝑦 is equivalent to the centre of mass of 𝑛(𝑡) in the time domain, given by 

First examine the denominator in equation (24): 

Now, express exp (−𝜅𝑡) as −
1

𝜅

𝑑 exp(−𝜅𝑡)

𝑑𝑡
: 

The next step is to integrate by parts: 

 
𝑆(𝑡′) = exp(−

(𝑡′)2

𝜎2 ), 
(22) 

 

𝑛(𝑡) = ∫ 𝑑𝑡′ exp(−
𝑡′2

𝜎2
− 𝜅(𝑡 − 𝑡′)) .

𝑡

−∞

 
(23) 

 
𝜏𝑑𝑒𝑙𝑎𝑦 =

∫ 𝑡𝐴(𝑡)𝑑𝑡
∞

−∞

∫ 𝐴(𝑡)𝑑𝑡
∞

−∞

=
𝐴1

𝐴0
. (24) 

 
𝐴0 = ∫ 𝑑𝑡

∞

−∞

∫ exp(−
𝑡′2

𝜎2
− 𝜅[𝑡 − 𝑡′])  𝑑𝑡′

𝑡

−∞ 

= ∫ 𝑑𝑡 exp (−𝜅𝑡)
∞

−∞

∫ exp(−
𝑡′2

𝜎2
+ 𝜅𝑡′)  𝑑𝑡′

𝑡

−∞ 

. 

(25) 

 
𝐴0 = −

1

𝜅
∫ 𝑑𝑡 

𝑑 exp(−𝜅𝑡)

𝑑𝑡

∞

−∞

∫ exp(−
𝑡′2

𝜎2
+ 𝜅𝑡′)  𝑑𝑡′

𝑡

−∞ 

. (26) 



where we have noted that the term in the square brackets vanishes, and substituted 𝜏𝐴 =
1

𝜅
. We can 

follow a similar procedure to evaluate the numerator in equation (24). 

Expressing 𝑡 ⋅ exp (−𝜅𝑡) as −
𝜕

𝜕𝜅
{exp(−𝜅𝑡)}, we can write 𝐴1as follows: 

This equation now has a similar form to that of 𝐴0 in equation (25) above. Adopting the same strategy 

before integrating by parts, we find 

 
𝐴0 = −𝜏𝐴 ([exp(−𝜅𝑡)∫ exp (−

𝑡′2

𝜎2
+ 𝜅𝑡′)𝑑𝑡′

𝑡

−∞ 

]
𝑡=−∞

∞

− ∫ 𝑑𝑡 exp(−𝜅𝑡)
∞

−∞

𝑑

𝑑𝑡
{∫ exp(−

𝑡′2

𝜎2
+ 𝜅𝑡′)  𝑑𝑡′

𝑡

−∞ 

})

= 𝜏𝐴 (∫ 𝑑𝑡exp(−𝜅𝑡)
∞

−∞

exp(−
𝑡2

𝜎2
+ 𝜅𝑡)). 

 

(27) 

 
∴ 𝐴0 = 𝜏𝐴 ∫ 𝑑𝑡

∞

−∞

exp(−
𝑡2

𝜎2), (28) 

 
𝐴1 = ∫ 𝑡 𝑑𝑡

∞

−∞

∫ exp(−
𝑡′2

𝜎2
− 𝜅[𝑡 − 𝑡′])  𝑑𝑡′

𝑡

−∞ 

= ∫ 𝑡 ⋅ exp(−𝜅𝑡) 𝑑𝑡
∞

−∞

∫ exp(−
𝑡′2

𝜎2
+ 𝜅𝑡′)  𝑑𝑡′

𝑡

−∞ 

. 

(29) 

 
𝐴1 = ∫ −

𝜕

𝜕𝜅
{exp(−𝜅𝑡)} 𝑑𝑡

∞

−∞

∫ exp(−
𝑡′2

𝜎2
+ 𝜅𝑡′)  𝑑𝑡′

𝑡

−∞ 

. (30) 

 
𝐴1 = ∫ 𝑑𝑡 

𝜕

𝜕𝜅
{
1

𝜅

𝑑 exp(−𝜅𝑡)

𝑑𝑡
}

∞

−∞

∫ exp(−
𝑡′2

𝜎2
+ 𝜅𝑡′)  𝑑𝑡′

𝑡

−∞ 

= ([
𝜕

𝜕𝜅
{
1

𝜅
exp(−𝜅𝑡)}∫ exp(−

𝑡′2

𝜎2
+ 𝜅𝑡′)𝑑𝑡′

𝑡

−∞ 

]
𝑡=−∞

∞

− ∫ 𝑑𝑡
𝜕

𝜕𝜅
{
1

𝜅
exp(−𝜅𝑡)} ⋅

∞

−∞

𝑑

𝑑𝑡
{∫ exp(−

𝑡′2

𝜎2
+ 𝜅𝑡′)  𝑑𝑡′

𝑡

−∞ 

}) 

(31) 



again because the term in the square brackets vanishes. Evaluating the partial differential yields the 

following expression: 

The second term is zero, so finally, 

Now, we can complete the proof by combining equations (24), (28) and (34): 

In summary, the Auger decay lifetime 𝜏𝐴, which is defined as the reciprocal of the decay rate 

𝜅, has been shown to be identical to the centre of mass 𝑇 of the temporal Auger emission profile – 

provided that we assume a probabilistic decay based upon the rate equation (20). Since the 

photoelectrons are emitted promptly after interaction with the XFEL pulse, 𝑇 is also identical to the 

temporal displacement between the centres of mass of the two emission bursts 𝜏𝑑𝑒𝑙𝑎𝑦, which is the 

quantity measured in our experiment. 

The ad hoc model uses the population of the continuum Auger states as its dynamical 

quantity, whilst the quantum model uses these states’ amplitudes. In the quantum model, the 

population of the state is computed by integrating the amplitude of the states over time and squaring 

 
𝐴1 = −(∫ 𝑑𝑡

𝜕

𝜕𝜅
{
1

𝜅
exp(−𝜅𝑡)} ⋅

∞

−∞

exp(−
𝑡2

𝜎2
+ 𝜅𝑡)), (32) 

 
𝐴1 = −(∫ 𝑑𝑡 ( 

−1

𝜅2
exp(−𝜅𝑡) − 𝑡 ⋅ exp(−𝜅𝑡))

∞

−∞

exp(−
𝑡2

𝜎2
+ 𝜅𝑡))

= ∫ 𝑑𝑡 (
1

𝜅2
+ 𝑡)

∞

−∞

exp(−
𝑡2

𝜎2
+ 𝜅𝑡) exp(−𝜅𝑡)

= ∫ 𝑑𝑡 𝜏𝐴
2

∞

−∞

exp (−
𝑡2

𝜎2) + ∫ 𝑑𝑡
∞

−∞

𝑡 ⋅ exp (−
𝑡2

𝜎2) . 

(33) 

 
𝐴1 = 𝜏𝐴

2 ∫ 𝑑𝑡
∞

−∞

exp(−
𝑡2

𝜎2). (34) 

 

𝑇 =
𝐴1

𝐴0
=

𝜏𝐴
2 ∫ 𝑑𝑡

∞

−∞
exp (−

𝑡2

𝜎2)

𝜏𝐴 ∫ 𝑑𝑡
∞

−∞
exp (−

𝑡2

𝜎2)
= 𝜏𝐴. (35) 



the result. This difference in treatment means that the results predicted by the two models will 

generally differ, as discussed in the main text. However, in the limit of a very prompt excitation of the 

resonant state, both models predict an exponential decay in this state’s population and will give 

similar results. 
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