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Abstract. Two-dimensional (2D) spectroscopy uses multiple electromagnetic pulses

to infer the properties of a complex system. A paradigmatic class of target systems

are molecular aggregates, for which one can obtain information on the eigenstates,

various types of static and dynamic disorder and on relaxation processes. However,

two-dimensional spectra can be difficult to interpret without precise knowledge of how

the signal components relate to microscopic Hamiltonian parameters and system-bath

interactions. Here we show that two-dimensional spectroscopy can be mapped in the

microwave domain to highly controllable Rydberg quantum simulators. By porting

2D spectroscopy to Rydberg atoms, we firstly open the possibility of its experimental

quantum simulation, in a case where parameters and interactions are very well known.

Secondly, the technique may provide additional handles for experimental access to

coherences between system states and the ability to discriminate different types of

decoherence mechanisms in Rydberg gases. We investigate the requirements for a

specific implementation utilizing multiple phase coherent microwave pulses and a phase

cycling technique to isolate signal components.
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1. Introduction

Assemblies of molecules can exchange electronic excitation energy via long-range

interaction of transition dipoles [1]. This process leads to eigenstates that are

coherently delocalised over several molecules, where the details depend on the

molecular arrangement and the interaction with internal vibrations and the environment.

Prominent examples are J- and H-aggregates of organic dyes [2] or the light harvesting

systems in photosynthesis [3].

To understand the resultant eigenstates and dynamics in molecular systems, multi-

dimensional optical spectroscopy has become an indispensable tool [4, 5, 6, 7, 8, 9, 10].

A sequence of ultrashort laser pulses with well defined relative phases results in a signal

that is measured as a function of the time-delays between the pulses. Typically, a

Fourier-transform with respect to some (or all) time delays yields a spectrum in the

frequency domain. The most common technique, referred to as two-dimensional (2D)

spectroscopy, employs four pulses and thus three time delays. Usually, the Fourier

transformation is made with respect to the first time interval τ (between the first and

second pulse) and the last time interval t′ (between the third and fourth pulse). One

obtains a separate 2D spectrum for each time delay between the second and third pulse,

called the waiting time T . This sequence of spectra holds a multitude of information

about the dynamics of the system, its coherences and relaxation pathways as well as

different line broadening mechanisms, see e.g. Ref. [10].

However, these spectra are difficult to interpret and one easily can draw flawed

conclusions based on incomplete or inappropriate models of the system under study.

Numerical calculations should on the one hand reproduce the experimental data, on the

other hand they should provide insight into how the signal depends on the microscopic

properties of the system, e.g. by systematically changing the model parameters.

Unfortunately due to the theoretical complexity this is not possible for many systems

of interest without making severe approximations, especially regarding the treatment

of internal vibrations and the coupling to an environment. Although sophisticated

numerical methods have been developed to treat the dynamics of molecular systems (e.g.

Refs. [11, 12, 13, 14]) in practice one can still handle only a small regime of parameters

and model Hamiltonians.

An alternative to numerical simulations might be offered by quantum simulators,

well controllable physical systems sharing a common Hamiltonian with the target

system that can be used to study quantum dynamics in regimes where numerical

simulations fail. There have been several proposals of quantum simulators for assemblies

of interacting molecules [15, 16, 17, 18, 19] , which could also benefit from sophisticated

probing techniques such as multidimensional spectroscopy. Enabling the latter on these

platforms, would finally facilitate direct comparisons with real molecular systems. In

the present work we propose a quantum simulator based on dipole-coupled assemblies

of Rydberg atoms that closely mimics the physics of small molecular aggregates and is

compatible with multidimensional spectroscopy techniques.
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In the case of molecular assemblies, the transport of electronic excitation energy

proceeds on ultrafast timescales by optical dipole couplings between molecular subunits

on sub-wavelength distance scales [20, 10, 2]. In a Rydberg quantum simulator,

analogous dipole-dipole interactions in the microwave regime allow the migration of

Rydberg excitations through an assembly of atoms on microsecond and micrometer

scales [21]. In contrast to the molecular case, the monomers (atoms) in the quantum

simulator can be positioned at will [22, 23], their transition energies and interactions

tuned through choice of Rydberg quantum state [24] and Markovian [25, 15] or non-

Markovian [26, 27, 28] environments can be engineered to simulate coupling of an

excitation to vibrations. Because transitions between the relevant Rydberg states

correspond to microwave frequencies, it is not a-priori clear, whether parameters such

as interaction strength, lifetime, dephasing rates and interrogation pulse durations and

spacings scale well from the molecular setting to the Rydberg setting such that the

technique remains feasible. We show in the following that it is indeed possible to find

a suitable parameter regime. An important difference though, is the unavailability of

phase matching in this type of microwave spectroscopy. We propose to use phase cycling

[29, 30, 31] and explore the limitations of this requirement for Rydberg experiments.

In this way we establish a clean platform for testing basic features of multi-

dimensional spectroscopy, in which a large variety of disorder and decoherence sources

can be engineered [15, 25, 26, 27, 28]. Our main focus in this article is to adapt 2D

spectroscopy to ultracold Rydberg systems in order to understand and simulate the

corresponding situation in optical spectroscopy of molecular systems. In addition 2D

spectroscopy would provide an additional diagnostics tool that may complement the

already extensive arsenal available to ultracold Rydberg physics [32, 33].

While we focus on the specific case of Rydberg atoms, microwave domain 2D

spectroscopy can more generally be useful whenever quantum dynamics involves energy

differences in the microwave realm, such as in quantum dots [34], Nitrogen-vacancy-

centers or superconducting circuit arrays [35, 16, 17], and much of this section should

apply to these systems too. The technique is already being used, for example, in

rotational spectroscopy of poly-atomic molecules [36] and collisional population transfer

[37].

This article is organized as follows: In section 2, we present the general method of

2D microwave spectroscopy involving a series of short microwave pulses interacting with

a set of coupled two-level systems. We discuss the pulse sequence, spectroscopic signal

and phase cycling method for a measurement of the nonlinear response of the system

briefly in that section, with further details in Appendix B, Appendix C and Appendix

D. In section 3 we discuss how to port microwave 2D spectroscopy to the field of

ultracold Rydberg gases. We show how decoherence in the system can be experimentally

controlled in these systems and derive effective equations for its description in Appendix

A. In section 4 we present proof-of-principle numerical calculations of 2D spectra for

simple models like Rydberg dimer and Rydberg trimer aggregates, which are embedded

within an environment of perturbing atoms giving rise to both homogenous and
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Figure 1. (a) Schematic of a 4-pulse microwave sequence, with variables discussed in

the text. (b) Sketch of Rydberg-dimer (blue) or trimer (blue+grey), to be interrogated

by the microwave pulses, while green ultracold ground state atoms provide tuneable

disorder and decoherence. (c) For the specific example of a Rydberg dimer, four two-

body states play a role. Variables are discussed in the text. (d) The corresponding

energy differences show up in a 2D spectrum as diagonal peaks, with off-diagonal

peaks indicating coherences between them. Inhomogeneous broadening (∼ ∆E) and

homogeneous broadening (∼ 1/Γ) can be distinguished as indicated, since they affect

different frequency axes in the 2D spectrum.

inhomogeneous broadening mechanisms. We show that experimental constraints arising

from the total spectrum acquisition time might require special consideration, possibly

necessitating parallel interrogation of many identical Rydberg aggregates. Finally,

we discuss future prospects for Rydberg quantum simulators and the experimental

simulation of photosynthetic complexes.

2. Generic aspects of microwave 2D spectroscopy

In this section, we briefly outline the basic scenario that we propose and provide

some general principles of microwave 2D spectroscopy. We keep this discussion quite

general. Details specific to Rydberg quantum simulators are discussed in the subsequent

section 3.

2.1. The system and its environment

We consider a collection of N (long-range) interacting two-level systems. We are in

particular interested in a situation where the energy scale of the interaction is small

compared to the transition energies between the two states of the two-level systems.

An incoming electromagnetic field can drive transitions between these states. For

weak fields it is convenient to classify the eigenstates of such a system according to
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the number of ’excitations’, i.e, the number of excited two level systems. We will

be mainly be interested in the subspaces with zero, one or two excitations, which

are usually denoted as the ground state, the single exciton manifold and the two-

exciton manifold, respectively. Typically, there are two effects that complicate the

interpretation of measurements on this system: 1.) The measurement is performed on

an ensemble of non-identical systems (static disorder). Such an ensemble emerges for

example via imperfect preparation, sample inhomogeneity or fluctuations that are slow

compared to the interrogation time scale. 2) Coupling to additional degrees of freedom

that leads to dephasing and relaxation. Both effects usually result in broadening of

absorption lineshapes. One strength of 2D spectroscopy is the ability to disentangle the

contributions of these two effects.

Because of the coupling to the environment, the dynamics of the system is typically

described by a time-evolution equation for the reduced density matrix of the system

ρS(t), which can be formally written as

ρs(t) = U(t)[ρS(0)], (1)

where U(t) is a time-evolution super operator.

2.2. Pulse sequence

This system is irradiated by a sequence of electromagnetic pulses, which are

characterized by a time-dependent electric field E(t). The electric field E(t) is assumed

to be given by a train of four short pulses

E(t) = E0

4∑
j=1

A(t− tj) cos (ω0t− ϕj), (2)

where the A(t) are the (slowly varying) pulse-shapes, roughly of duration δt, and ϕj
control the relative phases of pulses, as sketched in figure 1(a), and E0 their amplitude

and polarisation vector. We define time delays as in figure 1, such that τ = t2 − t1,

T = t3 − t2, t′ = t4 − t3.

The carrier frequency ω0 is chosen to be close to the relevant transition energies

hn of the two-level systems. For a system with spatial extent much smaller than

the wavelength, the interaction of the system with impinging radiation in the dipole

approximation takes the form

Ĥmw =
∑
n

µ̂(n)E(t), (3)

where µ̂(n) is the relevant dipole operator of object n and we have assumed a linearly

polarized field aligned parallel with the transition dipole moments, using E(t) = |E(t)|.
Furthermore, we assume that the wavelength is large compared to the spatial extent of

the system. All discussed assumptions will be fulfilled for the Rydberg setup presented

in the following sections. The matrix elements of the total system dipole operator

µ̂ ≡
∑

n µ̂
(n) are used to determine whether or not transitions between eigenstates are

allowed.
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The duration of each pulse δt and the delays τ , t′ are dictated by the details of the

spectrum of Ĥsys to be interrogated, since pulse durations and delays have to be chosen

to resolve the interactions of interest. We thus require

δt .
~

max|E` − E`′|
, (4)

where E` and E`′ belong to the same exciton manifold, so that microwave pulses are

spectrally wide enough to reach all transitions in the system, see figure 1(c), and π/τ ,

π/t′ . σω, where σω is the linewidth of a certain transition, in order for the spectrum

to resolve details of resonance peaks.

2.3. Spectroscopic signal and phase-cycling

In optical multi-dimensional spectroscopy, the signal of interest generated by the

evolution of ρ̂s(t) can frequently be isolated by choice of a specific geometry of incoming

beam directions and outgoing signal direction, exploiting the phase-matching enforced

by the propagation of fields through the interrogated medium.

For many of the quantum systems amenable to microwave interrogation that we

listed in section 1, there will be no significant propagation through a medium and thus

phase-matching is not readily available. On the other hand, these systems often allow

additional access to some observables within the system, for example the determination

of the total spin projection. Let in the following F̂ denote any observable, measured

immediately after the last pulse, at time tend. The signal depends crucially on the time

delays τ , T , t′ and the three relative phases between subsequent pulses. We write

Sξ(τ, T, t
′) = 〈F̂ (tend)〉 (5)

where ξ is an abbreviation for the triplet of relative phases.

For weak pulses Sξ(τ, T, t
′) is typically dominated by the linear response of the

system, while 2D spectroscopy relies on the consequently weaker nonlinear response.

Therefore one requires a technique to extract specific higher order contributions. One

particular technique is phase cycling. In this approach the signal Sξ(τ, T, t
′) is measured

for several specific choices of the relative phases ξ. By choosing suitable phase

combinations one can isolate a specific signal of interest by a summation of individual

signals for the pulses

S(τ, T, t′) =
∑
ξ

cξSξ(τ, T, t
′), (6)

where the cξ coefficients are determined by the choices of ξ. In optical 2D spectroscopy

there has been much interest in the so-called photon-echo signal [4]. Throughout this

article, we will use this type of signal as our example to illustrate microwave Rydberg

2D spectroscopy. We briefly introduce phase-cycling in Appendix C, and discuss how

the phases and the coefficients cξ have to be chosen in this case.
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As the final step in 2D spectroscopy, we Fourier transform the time-domain signal

with respect to τ and t′ to reach the frequency domain 2D spectrum

S̃(ωτ , T, ωt′) =

∫ ∞
0

∫ ∞
0

S(τ, T, t′)e−iωτ τeiωt′ t
′
dτdt′. (7)

3. Rydberg aggregate 2D spectroscopy

We now move to the specific application of the 2D spectroscopy protocol to Rydberg

aggregates.

3.1. Rydberg Aggregate

As a Rydberg aggregate [38] we consider a collection of dipole-dipole coupled atoms,

where each atom can be in either of two electronic states | s 〉 or | p 〉, with energies

Es and Ep, respectively. We choose | s 〉 = | ν = 43, l = 0,m = 0 〉 and | p 〉 =

| ν = 43, l = 1,m = 0 〉, where ν is the principal quantum number and l the angular

momentum. Many other pairs of dipole coupled Rydberg states would be equally useful.

The Hamiltonian for the aggregate including dipole-dipole interactions is then (~ = 1):

Ĥagg =
∑
nm

Wnmσ̂
(n)
ps σ̂

(m)
sp , (8)

where σ̂
(n)
ab = [| a 〉〈 b |]n is a transition operator on atom n. In general, dipole dipole

interactions would allow transition to additional states with m 6= 0 [39], which can

be suppressed by Zeeman-shifting them out of resonance with a magnetic field, see

e.g. [40, 41]. Then,

Wnm = W (rn, rm) = C3(1− 3 cos2 θ)/|rn − rm|3 (9)

describes the strength of dipole-dipole coupling between atom pairs located at rn, rm,

with angle θ between the direction of transition dipoles and the inter-atomic axis. The

transition dipole between the two states defined above points along the quantisation

axis, given by the direction of the applied static magnetic field.

Let us now consider additional microwave irradiation of that aggregate, assuming

the microwave field to be linearly polarized along the quantisation axis. The central

frequency ω0 of the microwave pulses is chosen to be roughly resonant with the transition

energy between these two states ~ω0 = ~ωsp = Ep − Es. For the example above

ω0/(2π) = 49 GHz. Using µ̂(n) = µ0(σ̂
(n)
sp + σ̂

(n)
ps )/2 in (3), the Hamiltonian for light-

matter interaction is, after conversion to a rotating frame at the field-frequency and

performing the rotating wave approximation:

Ĥmw =
∑
n

[µ0Ẽ(t)σ̂(n)
sp + h.c.−∆mwσ̂

(n)
pp ]. (10)

Here, µ0 is the transition dipole moment between the two states and Ẽ(t) is the complex

electric field envelope of the microwave pulses,

Ẽ(t) = E0

4∑
j=1

A(t− tj) exp [−iϕj]. (11)
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By ∆mw = ωmw − ω0 we denote the microwave detuning.

Spatially, all atoms are assumed to be trapped in the quantum ground-state of

very tight optical traps. Thus interaction parameters in (8) are effectively spatially

averaged over the ground-state wavefunctions. Recent experiments can position these

optical traps almost at will, using digital micromirror devices or spatial light modulators

[22, 23].

We assume the Rydberg aggregate is initialized in the state ρ̂s = | s 〉〈 s |, where

| s 〉 = | ss..s 〉, with all aggregate atoms in | s 〉. It then interacts with the microwave-

pulse train (2), which will drive transitions to states which contain a non-zero p state

population.

Most ultracold Rydberg experiments can routinely measure the total number of

atoms in a specific Rydberg state quite accurately. We thus chose F̂ =
∑

n[|p〉〈p|]n
as measurement operator, which counts the number of p-excitations generated in the

system by the microwave pulse train.

3.2. Controllable environment for decoherence

To assess the effects of decoherence we embed the Rydberg aggregates in a cold

atom environment that allows tailoring a variety of different decoherence mechanisms

[15, 25, 26, 27].

For this we consider a few additional environment atoms, separately trapped at

specific locations xn in the vicinity of the aggregate atoms. The environment atoms

are then optically coupled from their ground state to two other states in the scheme of

electromagnetically induced transparency (EIT) involving an auxiliary Rydberg state

| r 〉, shown in figure 2(b). By populating the | r 〉 state the | r 〉 → | s, p 〉 interactions

introduce on-site static energy disorder, which implies that the energy of a certain

system state then depends on which atoms are in the | s 〉 or | p 〉 state, rather than

just their total populations. Additionally, when environment atoms reach the decaying

state | e 〉, the resultant light absorption allows the discrimination of aggregate states

| s 〉, | p 〉 and hence causes measurement induced dephasing. For a detailed discussion of

these effects, we refer to [15]. The complete many-body Hamiltonian for the assembly of

Rydberg aggregate plus environment atoms is described in (A.1)-(A.4). Calculating the

corresponding time evolution of this open quantum system while explicitly including

the non-trivial environment degrees of freedom is a formidable task. However, for

the selected parameter regimes that we focus on below, it is possible to simplify

the numerical treatment considerably. These are the cases in which it is possible to

adiabatically eliminate the dynamics of environment atoms using techniques of [42] as

in [25, 15], which requires relaxation that is fast compared to the timescale for dipole-

dipole interactions, Γp �maxnm[Wnm]. In that regime one can obtain the effective

master equation

˙̂ρ = −i[Ĥagg + Ĥmw + Ĥeff, ρ̂] +
∑
α

L
L̂
(α)

eff
[ρ̂]. (12)
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Figure 2. (a) Interactions between aggregate atoms and environment atoms, where

Vrs and Vrp represent van der Waals interactions of environment atoms with aggregate

atoms in s and p states, respectively and W represents dipole-dipole interactions

between aggregate atoms. (b) EIT-scheme for environment atom, where Ωp and Ωc
are probe and coupling Rabi frequencies, respectively. ∆p and ∆c are detunings while

Γp is the decay rate from | e 〉 on the probe transition. (c) Microwave coupling of the

Rydberg s state to the p state in the aggregate, with Rabi frequency Ωmw and detuning

∆mw.

where the super-operator LÔ[ρ̂] = Ôρ̂Ô†−(Ô†Ôρ̂+ρ̂Ô†Ô)/2 accounts for the decoherence

in the system. The density matrix is written as ρ̂ =
∑

kl ρkl|χk 〉〈χl |, where | ξk 〉 is a

many body state for the Rydberg aggregate only, given in the form of a tensor product

|χk 〉 =
N⊗
i=1

|T ki 〉 = |T k1 T k2 ...T kN 〉, (13)

where T ki ∈ {s, p} and k ∈ {1, 2, ...2N} as we have 2N states for N aggregate atoms.

In (12), Ĥagg, Ĥmw, Ĥeff and L̂
(α)
eff are the aggregate Hamiltonian (8), microwave

Hamiltonian (10), effective Hamiltonian and Lindblad jump operator, respectively. The

index α numbers the environment atoms used to control decoherence. We can write

Ĥeff =
∑
k

H
(k)
eff |χk 〉〈χk |, (14)

L̂
(α)
eff =

∑
k

L
(k,α)
eff |χk 〉〈χk |, (15)

with details given in Appendix A.

Both, Ĥeff and L̂
(α)
eff depend on the probe and coupling Rabi frequencies in the

EIT scheme implemented for the environment atoms, Ωp and Ωc respectively, the

corresponding detunings ∆p and ∆c, as well as the spontaneous decay rate of the

intermediate state Γp. Crucially, they also depend on the van-der-Waals interactions

between environmental atoms and aggregate atoms. All of these can be varied in

experiments, rendering both disorder and dephasing distributions widely tunable.

Later we shall engineer disorder and dephasing in this setup through a synthetically

controlled distribution px of locations of environmental atoms. These can for example

be chosen from a Gaussian random distribution, with a fresh disorder realization in

each experiment. Through the resultant distribution of H
(k)
eff for varying locations of

environment atoms, the energy for a given aggregate state k is fluctuating. We call
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the distribution of these energies PE with width ∆E. Similarly, the L
(k,α)
eff define a

distribution of dephasing rates Pγ with width ∆γ for later reference.

4. Two-dimensional Rydberg spectra

Here we show that with Rydberg atoms and microwave pulses one can simulate the

basic features of 2D optical spectroscopy of molecular aggregates. For the example

of small aggregates and a specific choice of environmental parameters, we will discuss

relevant aspects of the obtained spectra such as peak broadening caused by dephasing

and static disorder. We will then discuss aspects specific to an implementation in

Rydberg experiments.

4.1. Exemplary parameters

For the following demonstrations, we use the parameters summarized in table 1. The

different parameter sets are chosen on one hand to demonstrate various aspects of 2D

spectroscopy and on the other hand to allow tractable numerical and analytical analysis:

the numerically simpler equation (12) is valid, and even diagonal when expressed in the

basis of the eigenstates of the effective Hamiltonian, as discussed in Appendix D. The

former aids numerical solutions, since the more general equation (1) would be very time-

consuming to solve, and latter allows simple analytical results. However, importantly,

2D spectroscopy of embedded Rydberg aggregates can also be performed for a broad

range of parameters well outside the range of validity of (12) that are known to lead

to more interesting dynamics [26, 27], which is however challenging for numerical or

analytical considerations.

For the parameters in the table, the order of magnitude of the most energetic

eigenstate will be |Umax| ∼maxnm[Wnm], with Umax ≈ 5 MHz. According to the

discussion in section 2.1 we thus need pulse-lengths δt . 200ns, which are technically

feasible. Additionally, since we do not include the decay of the Rydberg excitation, the

longest possible pulse sequence of duration τtot, must be within the Rydberg system

lifetime τeff ≈ τ0/N = 14.6 µs , where τ0 = 44 µs is the lifetime of a single atom in

s-state‡ and N = 3.

4.2. Rydberg dimer spectra

We first consider the simplest example: Two Rydberg atoms separated by a distance

d = 10 µm form the aggregate, shown as blue balls in the inset of figure 3a. This

aggregate has two single-exciton states | ± 〉 = (| ps 〉 ± | sp 〉)/
√

2 (with energies

ωsp ±W (d)) and one two-exciton state | pp 〉 (with energy 2ωsp). Each aggregate atom

is flanked by a detector atom placed δ = 1.5 µm away, sketched as green balls.

‡ Lifetimes in p-states are larger, so this is a worst case estimate.
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Figure 3. Two dimensional spectrum of a monitored Rydberg dimer for waiting time

T = 0. The atom arrangement is shown in the inset of (a) with d = 10 µm (resulting

in an interaction W (d)/(2π) = 1.619 MHz, δ = 1.5 µm, with all other parameters

shown in Table 1. Blue balls indicate aggregate atoms, and green ones environment

atoms. (a) Absolute value of the signal intensity S̃(ωτ , ωt′). White dashed lines are 1D

cuts for which we compare numerical and analytical results in figure D1. (b) the phase

arg[S̃]. (c)-(e) Double sided Feynman diagrams [5] representing the dominant Liouville

space pathways for the spectra shown in (a) and (b). Curly incoming (outgoing) arrows

representing interaction of the Rydberg dimer with a microwave pulse resulting in (de-)

excitation.

Figure C4,rp/(2π) C6,rp/(2π) C6,rs/(2π) Ωp/2π Ωc/2π ∆p/(2π) ∆c/(2π)

[MHz µm4] [MHz µm6] [MHz µm6] [MHz] [MHz] [MHz] [MHz]

(3) −1032 −87 1.8 30 0 0

(4)(a) −1032 −87 0.3 10 0 0

(4)(b) −1032 −87 1.3 30 0 0

(5)(a) −0.4 −0.1 40 120 -20 20

(5)(b) −0.4 −0.1 30 120 -40 40

Table 1. Parameters used in calculations of 2D spectra in the following figures. All

simulations use C3/(2π) = 1619 [MHz µm3], Γp/(2π) = 6.1 MHz and Ωmw/(2π) = 4

MHz.

Using phase cycling as described in section 2.3 with details listed in Appendix C, we show

the absolute value of the expected 2D spectrum and its complex phase in figure 3. Here

and in the following we plot the absolute value using arcsinh(5 · 103 |S̃|) to make small

features more visible. We have obtained the spectrum shown in figure 3 by numerically

simulating (12) for 64 different time delays in τ and t′ each. Simulations employ the
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high-level package XMDS [43, 44]. For the pulses we used smoothened step functions

with rise-time trise � δt §.
We also show in Appendix C how the spectrum looks for a specific single pulse

sequence. In these calculations, we have made sure to stay in regime of very low

p-excitation probability and thus low signal strength, such that perturbation theory

remains valid. In practice, one would want to venture to the limit of the perturbative

regime with higher probability of p-excitation, in order to avoid the need for too many

repetitions of the experiment, see section 4.5.

For this simple case of a symmetric dimer, we can easily understand the position,

intensity and lineshape of peaks in the spectrum from perturbation theory [4]. One can

identify and represent the relevant contributions to the signal by so-called double-sided

Feynman diagrams, shown in figure 3 and discussed in Appendix B and Appendix D. Of

crucial importance are the energy differences and transition dipoles between eigenstates

of Hagg +Heff, see (12), which are listed in table D1. Using the notation of figure 1(c),

we find that from the initial ground-state | ss 〉 transitions only proceed via the states

| ss 〉 ↔ |+ 〉 ↔ | pp 〉. The corresponding frequencies are ω+,ss = (2π)× 1.56 MHz and

ω+,pp = (2π)×1.67 MHz and transition strengths µ+,ss = µ+,pp =
√

2µ. The state | − 〉 is

not involved due to its anti-symmetry. The first interaction creates a coherence between

the ground state | ss 〉 and |+ 〉. For the parameters used, the environment does not

induce coupling between different elements of the reduced density matrix of the system.

Therefore, during the time interval τ , the system accumulates a phase ω+,ssτ . The

Fourier transformation with respect to τ gives a peak at the position ωτ = ω+,ss. The

width of this peak is determined by the corresponding dephasing rate Γ+,ss. In order to

provide a contribution to the signal, which is the number of p-excitations, the second

pulse must bring the system either to the population of the |+ 〉 state (diagrams c-e)

contributing a single p, or to the doubly p-excited population (diagram f). For the

present choice of parameters the environment does not affect populations. For diagram

(c) and (d), the system is again in the coherence between ground state | ss 〉 and |+ 〉
during the time-evolution t′, after the third pulse. As before, the Fourier transform then

gives a peak at ωt′ = ω+,ss. Thus diagrams (c) and (d) give rise to the diagonal peak

at (2π) × (1.56, 1.56) MHz. Its intensity is proportional to |µ+,ss|4 = 4µ4. In contrast,

for diagrams (e) and (f), the third pulse brings the system into a coherence between the

doubly excited state | pp 〉 and |+ 〉, during the time-evolution t′. Since the frequency

ωpp,+ is different from the frequency ω+,ss, see figure 1(c), this results (after Fourier

transformation) in an off-diagonal peak at (2π) × (1.56,−1.67) MHz. The complete

spectrum for the symmetric dimer can to a good approximation be written analytically

as

S(ωτ , ω
′
t) = −|µ+,ss|4

E4
0

(ωτ − Ω+,ss)(ωt′ − Ω+,ss)

§ The specific pulse shape we use is A(t0) = 1
2 (tanh[(teff − |t0|)/trise] + 1), if (− δt2 < t0 ≤ δt

2 ), with

teff = δt
2 − 3trise, trise = 0.01µs and δt = 0.05µs.
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+ |µ+,ss|2|µpp,+|2
E4

0

(ωτ − Ω+,ss)(ωt′ − Ωpp,+)
(16)

with Ωa,b = ωa,b − iΓa,b. For details see Appendix B-Appendix D.1. Here, in particular,

infinitely short pulses have been assumed. For the present choice of parameters and

a single environment atom near each site, we find Γ+,ss ≈ (2π) × 0.2155 MHz and

Γpp,+ ≈ (2π) × 0.2150 MHz. There is very good agreement between the full non-

perturbative calculation and the analytic result, as can be seen in figure D1. By changing

the parameters of lasers acting on the environment atoms, our system allows tuning

the widths Γ+,ss and Γpp,+. Note, that in parameter regimes where the simple master

equation (12) is no longer valid the environment can cause more complicated effects

than simple dephasing.

If one introduces asymmetry to the system, for example by using a different

placement of environment atoms or a different number of them near each of the two

aggregate atoms, the | − 〉 state is no longer perfectly antisymmetric and additional

weak contributions from this transition arise.

4.3. Rydberg trimer spectra

The Rydberg trimer is a significant extension compared to the dimer, as it now allows

different geometries ranging from ones that lead to only one bright state (as in the

previous dimer case) to cases where all transitions are dipole-allowed. In the following

we show an example for each, but focus on the latter. As in the previous section for the

dimer, we first also take one environment atom per site. These atoms are arranged as

shown in the insets of figure 4.

In the first case, of panel (a), the trimer is arranged linearly, but slightly non-

equidistant. This gives rise to several dipole-allowed transitions, which can be seen

by the emergence of new peaks. These peaks are however very small compared to

those involving the dominant symmetric state, which behaves akin to the dimer case in

section 4.2.

To obtain a richer spectrum we focus on the L-shaped arrangement shown in the

inset of figure 4b. Here, because of the anisotropy of the dipole-dipole interactions,

the eigenstates have a very different form compared to the linear arrangement, which

results in the emergence of several transitions that have comparably large strength.

The spectrum in figure 4(b) thus shows a multitude of diagonal and off-diagonal peaks.

As for the dimer case their positions, intensities and lineshapes can be understood

from perturbation theory. The peak positions are again determined by the eigenenergy

differences of the effective Hamiltonian in (B.1). We will comment here only on the main

features. The trimer has three single-exciton states and three double-exciton states.

This gives rise to three transitions between ground state | sss 〉 and the single excited

states and 9 transitions between single-exciton states and double exciton states. The

corresponding frequencies are given in table D2. Similar to the discussion in the previous

section, the relevant contributions arising during the first time interval τ stem from a
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Figure 4. Two dimensional spectrum of an environmentally monitored Rydberg

trimer with geometry shown in the insets. Blue balls indicate aggregate atoms, and

green ones environment atoms. (a) non-equidistant trimer with d1 = 10 µm and

d2 = 12.6 µm, δ = 2.5 µm and (b) L-shaped trimer with d1 = 10 µm and d2 = 12.6

µm, δ = 1.5 µm and all other parameters are shown Table 1. (c)-(e) Doublesided

Feynman diagrams representing the relevant Liouville space pathways for the photon

echo signal for the Rydberg trimer.

coherence between ground and single exciton states. After Fourier transform these show

three respective transition frequencies, indicated by the three vertical lines in figure 4(b).

The same frequencies can also appear during the time-evolution t′, indicated by lines

when also ωt′ equals one of these. The discussion so far results in the three diagonal

peaks at (2π)× (−2.29,−2.29), (2π)× (−0.09,−0.09), (2π)× (2.29, 2.29) MHz. During

the second time interval t′, the system can instead also be in coherences between a singly

excited state and a doubly excited state. This gives three additional contributions which

result in the eight off-diagonal peaks in figure 4(b) located at (2π) × (−2.29,−0.03),

(2π) × (−2.29, 4.55), (2π) × (−2.29, 2.17), (2π) × (−0.09,−2.23), (2π) × (−0.09, 2.35),

(2π)× (2.29,−4.61), (2π)× (2.29,−0.03) and (2π)× (2.29,−2.41) MHz. A ninth peak

at (2π)× (−0.09,−0.03) MHz merges with the central diagonal peak. See also table D2

in Appendix D.2, where we list all relevant system parameters and eigenstates.

4.4. Separating homogeneous and inhomogenous broadening

A strength of higher dimensional spectroscopy is the disentangling of different types

of line broadening mechanisms. This can be clearly illustrated and studied in the

embedded Rydberg setup, where one can independently tune the two types of broadening
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Figure 5. Two dimensional spectrum of an environmentally monitored Rydberg

aggregate, with larger energy disorder compared to dephasing, atom color coding

as in earlier figures. (a) Rydberg dimer; d = 10 µm and two environment atoms

per aggregate atom. (b) Rydberg trimer; d1 = 10 µm, d2 = 12.6 µm, see inset

figure 4(b). All parameters are given in Table 1. Each aggregate atom is flanked

by two environment atoms, the trapping location of which is synthetically disordered

independently, with width σ = 565 nm along the indicated directions, see text. We

average 1000 realizations in each case. (c) Resultant histogram for the distribution of

energy disorder PE and (d) dephasing rates Pγ , see section 3.2, for the same parameters

as in (a). (e,f), the same for parameters of panel (b).

[15, 25, 26, 27].

As stated earlier, we assume all atoms to be tightly trapped in the harmonic

oscillator ground-state of their respective trap. Detector atoms should be easily

trappable against the weak, dressed van-der-Waals Forces exerted on them, while

aggregate atoms might have to undergo additional ground-state cooling after each phase

set, or sequence, since they experience much stronger bare dipole-dipole interactions. If

we assume ground-state trapping, one can envisage an effective Hamiltonian, obtained

after integrating out spatial degrees of freedom. This would not contain any disorder

without experimental intervention. However disorder can be introduced and controlled

synthetically, by moving selected optical trap centres after measuring one complete

spectrum, which we assume to happen in the following.

We then explore averaged spectra for a trimer as in the previous section, but with

parameters adjusted to enhance diagonal disorder, arising via Ĥeff in (14) compared to
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dephasing, arising from (15). Synthetical disorder is included by randomly varying the

trapping location of two environment atoms per aggregate atom, after each spectrum

acquisition. By “spectrum acquisition” we imply gathering the complete dataset:

measuring the mean signal strength (p-population) for all sets of phases and all required

time-delays. The detector traps in realisation number k are then at xk = x0 + σηkn,

where the central positions x0 are described in the caption of figure 5, n are normal

unit vectors along the axes indicated by black arrows in the insets, ηk is drawn from a

Gaussian distribution of unit variance, and σ thus sets the width (standard deviation)

of this position distribution.

The resultant spectra are shown in figure 5(a,b), together with the corresponding

dephasing and disorder distributions. The shift, width and shape of 2D peaks along the

diagonal reflects the on-site energy disorder distribution in figure 5(c,d), defined as PE
in section 3.2. In contrast, the width in the off-diagonal direction matches the dephasing

distributions in figure 5(e,f).

4.5. Spectrum acquisition time and ensemble spectroscopy

To experimentally measure any of the spectra shown, one has to gather enough statistics

to obtain a sufficiently high signal to noise ratio. Since the signal is of fourth order in

the weak electric field, the probability to promote atoms to the p-state is quite small.

Now, phase cycling relies on a precise cancellation of an undesired large leading order

signal in the sum (6). Hence, we determine the signal to noise ratio required for this

cancellation to work. We explicitly explored this aspect in the simulations shown in

figure 6 and discuss it in more detail in Appendix E. For the parameters of figure 3,

we infer the need for about Nrep ≈ 105 repetitions of each measurement, where the

latter refers to a single sequence of pulses with subsequent measurement of the total

p-population.

Based on this one can estimate the duration of acquisition of a single spectrum.

The maximum interval between pulses, τmax is linked via τmax = π/∆ω with the desired

frequency resolution ∆ω. In order to resolve the shape of peaks, ∆ω ought be smaller

than typical dephasing rates γ in the system, which govern the width of peaks. For

the example in section 4.2 this yields 2τmax ≈ 10 µs. Let the duration of the two

pulses be τ = n∆t and t′ = m∆t, where the minimal time-step size ∆t = π/ωmax, as

follows from discrete Fourier theory. In turn the maximum frequency ωmax of the target

spectrum has to exceed all relevant eigenenergies of the system. The total duration for

one sequence of pulses will then be τtot = 4
∑Npts/2

n,m (n + m)∆t, where the number of

points per frequency axis, Npts, is determined by ∆τ and τmax (and similar for the t′

axis). The expression gives τtot = ∆tN2
pts(1 + Npts), and when including the number

of repetitions discussed above and the number of phases Nphases to be cycled over, the

total duration is approximately

Ttot =
πN2

pts(Npts + 1)

ωmax

×Nphases ×Nrep. (17)
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Figure 6. Simulation of 2D-spectrum in the presence of discrete atoms counts. (a)

Two dimensional spectrum of embedded Rydberg dimer, as in figure 3, but obtained

by explicitly simulating the detection of a discrete number of atoms, assuming the

measurement is repeated Nrep = 105 times and Ωmw/(2π) = 16 MHz. (b) Comparison

along the value of ωτ indicated by the white dashed line in (a) with the analytical

expectation. (c) To accelerate obtaining the average final Rydberg p population, we

propose the interrogation of a large number of replica aggregates in parallel by the

same microwave pulse.

We note that this is a lower limit, since we do not consider any time required for

the initialisation of each measurement, such as trap loading. Assuming that a single

repetition takes Trep ≈ 0.58 seconds, for the exemplary parameters of Fig. 6 we find

Ttot ≈ 16 hours. Recall, however, that our parameters are largely chosen to ease theory,

and we expect that the total time can be lowered by a significant factor when using

different parameters such as higher principal Rydberg quantum numbers up to n ≈ 80.

Higher principal quantum numbers increase the dipole-dipole interaction strength C3

in (9) according to C3 ∼ n4, and consequently the system eigenenergy differences

En − Em. The 2D spectrum of interest then covers a larger frequency range, allowing

less frequency resolution and hence much shorter delay-times, if the relative widths of

peaks are preserved.

For setups where the above duration is nonetheless a hindrance, we propose the

simultaneous interrogation of an ensemble of identically prepared replica of the Rydberg

aggregate as sketched in figure 6(c) by the same microwave pulse. Replicas should be far

enough separated not to affect one another. Such a system can be realised using spatially

structured laser fields for trapping the atoms in arbitrary 2D geometries [22, 23]. As

discussed in section 3.1, our signal is simply the total number of Rydberg atoms in the p-

state, hence simultaneous interrogation would automatically average over all aggregates

in the system. For the discussion above, one can thus significantly reduce the number

of repetitions Nrep for the ensemble average, since many repetitions would be provided

already by a single experimental run.

In these simulations and those of the preceding section, both detector and aggregate

atoms are expected to be at a precisely determined trapping location. We explore in

Appendix F what happens if these locations themselves vary during acquisition of a

single spectrum, and find that trapping centre fluctuations of spatial widths exceeding
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σ = 0.2 µm begin to require an increasing number of repetitions.

5. Conclusions and outlook

We have outlined a protocol for non-linear two-dimensional spectroscopy, which is

a powerful tool in material science and physical chemistry, applied to the realm of

ultracold Rydberg physics. Through the excellent control over the latter, this would

enable a benchmark platform for the further development of algorithms and tweaks for

multidimensional spectroscopic techniques, such as phase cycling schemes. Particularly

helpful in this regard, is the ability to engineer different decay, disorder and dephasing

sources in the Rydberg setting. We demonstrated this with several simple arrangements

of a Rydberg dimer and Rydberg trimer embedded in a controllable environment, using

realistic parameters.

To illustrate the points above, we did not need to vary the third time delay in

our four pulse sequence, the so called waiting time T . By additionally scanning the

waiting time, one could not only acquire information about system eigenstates, but

also about time-evolution of the system in a non-equilibrium situation [45]. In one

further step, by Fourier transforming the third delay, the technique would be augmented

to 3D spectroscopy [46]. Finally, the technique can in principle be augmented to an

increasingly larger number of pulses, furnishing ND-spectroscopy.

When going beyond the examples discussed above, using 2D spectroscopy on larger,

more theoretically challenging Rydberg systems could also add a window on Rydberg

dynamics that is complementary to the many existing techniques, providing new ways

to look at dipolar-interacting quantum systems, especially those interacting with their

environment [47], involving many-body resonant interactions [48], spin relaxation [49]

or transport [50].

While we have chosen parameters for demonstrations in this article to yield most

tractable theory, performing experiments would of course be even more interesting under

conditions that challenge theory, in particular when the environment-aggregate system

becomes non-Markovian [26, 27]. This can also be achieved for example by allowing

motion of the Rydberg aggregate atoms [51, 52, 53] to be induced by dipole-dipole

interactions, which then can mimick for example molecular vibrations [54].
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Appendix A. Model for Rydberg aggregate embedded in a decohering

environment

The model considered in the present work, shown in figure 2, is discussed in detail in

Ref. [15]. However, in that work the focus was on the single excitation manifold, i.e.,

states of the form | s, · · · , p, · · · , s 〉 with a single p-excitation. For 2D spectroscopy one

must include also the total ground state and the states of the two exciton manifold. We

thus provide an extension of the approximate effective master equation that includes

those states in this appendix.

The total Hamiltonian, without the microwave, can be divided into three parts

Ĥ = Ĥint + ĤEIT + Ĥagg. (A.1)

Where Ĥagg is the Rydberg aggregate Hamiltonian (8). The Hamiltonian ĤEIT of the

environment atoms that are driven by two lasers reads

ĤEIT =
∑
α

Ωp

2
([| e 〉〈 g |]α + H.c.) +

Ωc

2
([| r 〉〈 e |]α + H.c.)

−∆p[| e 〉〈 e |]α − (∆p + ∆c)[| r 〉〈 r |]α, (A.2)

where | g 〉, | e 〉 and | r 〉 are ground state, excited state and Rydberg state. All of these

are involved in the EIT scheme for the environment atoms [15], which are labelled with

the index α. Ωp and Ωc are probe and coupling Rabi frequencies and ∆p and ∆c are the

respective detunings. The interaction between environment atoms and aggregate atoms

is given by

Ĥint =
2N∑
k

∑
α

V̄kα[| r 〉〈 r |]α ⊗ |χk 〉〈χk |, (A.3)

The many-body states |χk 〉 are defined in Eq. (13) of the main text and V̄kα reads,

V̄kα = =
N∑
i

hki V
iα
rp + (1− hki )V iα

rs , (A.4)

where hki takes the values 0 for T ki = s and 1 for T ki = p. The interaction potential

between the i-th aggregate atom in the state s and the α-th environment atom in the

Rydberg state | r 〉 is given by V iα
rs = C6,rs

|rα−rk|6
. For the case when the aggregate atom is

in the p state we discuss two different types of potential which can be selected by the

choice of | r 〉, V iα
rp = C4,rp

|rα−rk|4
, or V iα

rp = C6,rp

|rα−rk|6
, as discussed in Ref. [15]. These different

choices are also indicated in table 1.

Finally one has to take into account the spontaneous decay of the intermediate state,

on the probe transition from | e 〉 back to | e 〉, with rate Γp. This is accomplished by

augmenting the equation of motion to a Lindblad master equation with decay operators

L̂α = [| g 〉〈 e |]α, as usual [55].
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Appendix A.1. Approximate effective master equation

The full many-body Hilbertspace with many environment atoms and several aggregate

atoms is too large to handle numerically. For a wide range of laser parameters

and couplings it is possible to adiabatically eliminate all excited states | e 〉 and

| r 〉 of the environment atoms to obtain an evolution equation in the space of

aggregate atoms alone. Following the method of Ref. [42] we define a projector,

Pg =
∑
k

|χk 〉〈χk | ⊗ | g 〉〈 g |, on the relevant state space, in which all environment

atoms are in the ground state | g 〉. The first part acts on aggregate atoms and

second part on environment atoms (| g 〉 = | gg...g 〉). The complementary operator

to P̂g is given by P̂e = 1 − P̂g. As a result of the adiabatic elimination procedure

[42], we obtain an effective Hamiltonian and Lindblad operators, Ĥeff and L̂
(α)
eff , which

can be written as Ĥeff = −1
2
Ω̂−[Ĥ−1

NH + (Ĥ−1
NH)†]Ω̂+ + Ĥg and L̂

(α)
eff = L̂Ĥ−1

NHΩ̂+, where

ĤNH = Ĥe − i
∑

α L̂
†
αL̂α/2 is a non-Hermitian Hamiltonian, while Ĥg, Ĥe, Ω̂+ and Ω̂−

are given by Ĥg = P̂gĤP̂g = P̂gĤaggP̂g, and

Ĥe = P̂e

[∑
α

Ωc
2

([| r 〉〈 e |]α + H.c.)−∆p[| e 〉〈 e |]α− (∆p + ∆c)[| r 〉〈 r |]α + Ĥint + Ĥagg

]
P̂e,

Ω̂+ = P̂e

[∑
α

Ωp
2

[| e 〉〈 g |]α
]
P̂g and Ω̂− = Ω̂†+.

Evaluating the expressions above, and using the definitions (14) and (15), we obtain

H
(k)
eff =

[∑
α

(4Ṽkα∆p + 1)Ω2
pṼkα

16Ṽ 2
kα|∆̃p|2 + 8Ṽkα∆p + 1

]
, (A.5)

and

L̂
(kα)
eff = −

2ṼkαΩp

√
Γp

1 + 4Ṽkα∆̃p

, (A.6)

where Ṽkα = (V̄kα −∆p −∆c)/Ω
2
c . We have defined ∆̃p = ∆p + iΓp/2. As long as |χk 〉

contains only a single excitation, this reduces to the expressions in [15].

Under the conditions discussed in section 3.2, we now can solve (12) using the

results of the present section to predict all measurements on the Rydberg aggregate,

including 2D spectra. This is computationally much easier than the full many-body

evolution (1).

Appendix B. Perturbative calculation of system response

To understand the spectra shown in the present work, it is useful to consider

analytical expressions obtained from standard perturbation theory [4] with respect to

the aggregate-radiation interaction. For reference we provide here the basic equations

needed in the Rydberg context.

We first diagonalize Ĥagg + Ĥeff to obtain the eigenenergies and eigenstates of the

Rydberg aggregate system(
Ĥagg + Ĥeff

)
| k 〉 = Ek| k 〉. (B.1)
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Both, Ĥagg and Ĥeff , conserve the number of p-excitations, Np, hence the eigenstates

can be classified according to Np. States with Np = 1 are denoted as one-exciton states

and states with Np = 2 as two exciton states.

For zero microwave detuning, (10) becomes Ĥmw = E(t)
∑N

n=1 µ̂n with µ̂n =

µ0(σ
(n)
sp + σ

(n)
ps )/2. The matrix elements of µ̂ ≡

∑
n µ̂n between eigenstates (B.1) are

denoted by 〈 χ̃k |µ̂| χ̃k′ 〉 = µkk′ and determine whether or not transitions between these

states are allowed. The time evolution in (12), including the Lindblad terms from the

environment, is written as

ρ̇(t) = − i
~
L̆0ρ−

i

~
L̆mw(t)ρ, (B.2)

where L̆0 is the super-operator, indicated by ,̆ accounting for free evolution of the system

without the microwave field.

Following [4], we expand the time-evolving ρ to fourth order in the electric field

such that the relevant contribution to our signal is

S(t) = Tr{F̂ ρ(4)}, (B.3)

with F̂ defined in section 3.1. After the expansion, we find

S(t) =
1

~4
Tr{F̂

∫ t

t0

dτ4

∫ τ4

t0

dτ3

∫ τ3

t0

dτ2

∫ τ2

t0

dτ1Ğ(t− τ4)L̆mw(τ4)

× Ğ(τ4 − τ3)L̆mw(τ3)Ğ(τ3 − τ2)L̆mw(τ2)

× Ğ(τ2 − τ1)L̆mw(τ1)Ğ(τ1 − t0)ρ(t0)}, (B.4)

with the Green’s matrix in the time domain defined by

Ğ(τ) = θ(τ) exp
(
− i

~
L̆0τ

)
, (B.5)

From (10) we see that we can write L̆mw = V̆E(t), splitting the light-matter interaction

into an operator and an electric field part, see (3). Substituting t1 = τ2 − τ1, t2 =

τ3 − τ2, . . . t4 = t− τ4 and making use of the initial time, t0 → −∞, we obtain,

S(t) =
1

~4

∫ ∞
0

dt4

∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1

×R(t1, t2, t3, t4)E(t, t4, t3, t2, t1) (B.6)

with the response function

R(t1, t2, t3, t4) = Tr{F̂ Ğ(t4)V̆Ğ(t3)V̆Ğ(t2)V̆Ğ(t1)V̆ρ(−∞)}, (B.7)

and electric field product

E(t, t4, t3, t2, t1) = E(t− t4)E(t− t4 − t3)

× E(t−t4−t3 − t2)E(t−t4−t3−t2−t1). (B.8)

Let us finally decompose the atom-field coupling super-operator V̆ into V̆ = V̆up + V̆down

where the part V̆up contains the elements µ
∑

n σ̂ps of (10) that cause system excitations,

while V̆down contains those, µ
∑

n σ̂sp, causing de-excitations. Hence V̆down = V̆†up In the

original Master-equation (12), the operators in V̂ will act on the density matrix from
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the left as well as from the right, since these actions originate from a commutator [4].

We can represent this by further splitting the super-operators defined above in a left-

and right component [56, 57], according to V̆up = V̆L + V̆R with

V̆Lρ↔ V̂upρ̂, and V̆Rρ↔ ρ̂V̂up (B.9)

where V̂up is the respective operator in Hilbert space. Equation (B.7) is a sum of terms

involving four interactions with the electro-magnetic field that involve excitations or

de-excitations acting on the left or the right of the density matrix. Between these

interactions, the system propagates either in a population or coherence of the density

matrix according to (B.5). Each of these terms can thus be represented by a double-sided

Feynman diagram as given for example in figure 3.

At this stage, the fourth order response (B.6) contains still contributions that are

not of much interest, such as such as non-resonant terms or the square of second order

responses. These can be removed through phase-matching when the system probed

provides a medium for the interrogating fields, or through phase cycling when that is

not the case.

Appendix C. Phase cycling technique

After obtaining the simple expression for the fourth order response of our system in

(B.6), we now give a brief idea how to isolate contributions of interest using phase-

cycling. More information is widely available, [31, 58, 59, 60, 61, 62, 63].

We now also perform the rotating wave approximation (RWA), to ultimately reach

the form (11) for the fields in the light-matter coupling Hamiltonian. Through the

RWA, the complex phase eiφj of the j’th pulse effectively enters V̆L, while V̆†L contains

e−iφj . In contrast one obtains a factor e−iφj in V̆R, while V̆†R contains eiφj . This can be

summarized by the rule that all left-pointing arrows in diagrams as in figure 3 contribute

the phase −φj, while right-pointing arrows are contributing with +φj.

Regardless of these details, it is evident from the preceding discussion and (B.6)

and (B.3), is that the dependence of the signal on the phases of a given single pulse

sequence will formally take the form

Sφ1φ2φ3φ4(t) =
∑
αβγδ

S̃αβγδ(t)e
i(αφ1+βφ2+γφ3+δφ4), (C.1)

where the integers α to δ count how many excitations or de-excitations occurred through

a pulse with a given phase. We now recognise (C.1) as discrete Fourier representation of

the signal S, hence the coefficient S̃αβγδ for a specific choice of indices can be extracted

using an inverse Fourier transform from the space of phases to that of coefficients.

Consider now the photon echo diagrams listed in figure 3. If we inspect the arrow

directions and take into account the phase-sign allocation discussed at the beginning of

this section, we find that all of them obtain a phase contribution −φ1 + φ2 + φ3 − φ4.

In terms of the Fourier decomposition (C.1) this corresponds to indices α = −1, β =

1, γ = 1, δ = −1. Since these are also all diagrams with this combination of phases,
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Figure C1. Two dimensional un-cycled spectrum of a monitored Rydberg dimer, for

the same case as shown in figure 3(a). The signal intensity is clearly dominated by

independent frequency features for each axis..

we can obtain the signal corresponding to the sum of all photon echo diagrams by the

inverse discrete Fourier transform:

S̄pe ≡ S̃αβγδ(t) =
∑

φ1φ2φ3φ4

Sφ1φ2φ3φ4(t)e
−i(αφ1+βφ2+γφ3+δφ4), (C.2)

with the index choice α = −1, β = 1, γ = 1, δ = −1.

The final question is on how many different phase data-points S in (C.1) needs

to be sampled. Since each set of phases will take up experimental time, it is typically

desirable to minimize the number of sets. Such schemes are discussed for example in

Refs. [31, 29]. We used a scheme which employs 27 different sets of phases. Since only

relative phases between pulses can matter, we set the phase of the last pulse to zero

φ4 = 0, and then cycle the remaining ones in three discrete steps over the complex unit

circle, φ1 = l(2π/3), φ2 = m(2π/3), φ1 = n(2π/3), with l,m, n ∈ {0, 1, 2}, yielding a

total of 27 combinations. Such a 27 step phase cycling scheme has been experimentally

implemented in two dimensional fluorescence spectroscopy [63]. Using this scheme, we

thus explicitly obtain the phase cycled signal as

S̄pe(τ, T, t
′) =

1

27

2∑
l=0

2∑
m=0

2∑
n=0

ei(l
2π
3
−m 2π

3
−n 2π

3 )S(l 2π
3

)(m 2π
3

)(n 2π
3

)(τ, T, t
′), (C.3)

where we have now made the remaining dependence on time delays explicit. Using

S̃pe(ωτ , T, ωt′) =
1

2π

∫ ∫
dτdt′ e−iωτ τeiωt′ t

′
S̄pe(τ, T, t

′), (C.4)

this is then converted to frequency space (ωτ , ωt′).

For the case T = 0 one can reduce the number of phase-sets by using

S̄pe(τ, T = 0, t′) =
1

27

[
2

2∑
l=0

2∑
m=0

n<m∑
n=0

ei(l
2π
3
−m 2π

3
−n 2π

3 )S(l 2π
3

)(m 2π
3

)(n 2π
3

)(τ, 0, t
′)
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+
2∑
l=0

2∑
m=0

ei(l
2π
3
−m 2π

3
−m 2π

3 )S(l 2π
3

)(m 2π
3

)(m 2π
3

)(τ, 0, t
′)
]
, (C.5)

which requires only 18 phase triples.

For a further intuitive idea on the functionality of phase cycling, consider the un-

cycled spectrum in figure C1, obtained from simulations of (12) for just a single set

of phases: φ1 = φ2 = φ3 = φ4 = 0. This corresponds to the Rydberg dimer of

figure 3(a). Clearly, the peak structure of figure 3(a) is not visible. Instead the spectrum

is dominated by second order features at ωτ = 0 (or ωt′ = 0), which imply a signal that

is independent of the respective delay τ (t′). This in turn implies that this signal is

independent of pulse one (three). Whenever a contribution to S does not depend on

one of the first three pulses, it is evident from (C.3) that it drops out in the summation

over complex pre-factors, since e.g.
∑2

n=0 e
in( 2π

3 ) = 0. In this manner leading second

order contributions are removed and fourth order ones brought to the fore.

Appendix D. Perturbative calculation of photo echo contributions

Let us now continue where we left off in Appendix B, assuming that through phase-

cycling as discussed in the previous appendix, the system response in (B.7) is reduced

to only those contributions corresponding to the photon echo. We show only diagrams

where the ket is excited, each diagram has a vertically mirrored partner, which

contributes the complex conjugate amplitude, such that the final contribution to the

population is real. In the case of interaction on the ket, the first interaction term in

(B.7) is VR. To comply with the restrictions discussed in the previous Appendix C,

the photon echo component needs an equal number of inward and outward interactions,

which reduces the number of terms in (B.7) to four, for which the Feynman diagrams are

shown in figure 3. Thus we obtain a response functionR(t1, t2, t3, t4) = R1+R2+R3+R4

with

R1 = −E4
0Tr{F̂ Ğ(t4)V̆ †RĞ(t3)V̆LĞ(t2)V̆ †RĞ(t1)V̆Rρ(−∞)}, (D.1)

R2 = −E4
0Tr{F̂ Ğ(t4)V̆RĞ(t3)V̆ †L Ğ(t2)V̆RĞ(t1)V̆Rρ(−∞)}, (D.2)

R3 = −E4
0Tr{F̂ Ğ(t4)V̆ †L Ğ(t3)V̆LĞ(t2)V̆LĞ(t1)V̆Rρ(−∞)}, (D.3)

R4 = +E4
0Tr{F̂ Ğ(t4)V̆RĞ(t3)V̆LĞ(t2)V̆LĞ(t1)V̆Rρ(−∞)}. (D.4)

The next step is to convolve the response function R with the electric field pulses as

in (B.6), which is simplified by the impulsive limit where the electric field pulse shapes

are delta functions, A(t) = δ(t) in (2). We also express the response in the eigen-basis

of the effective Hamiltonian, | χ̃k 〉. Finally taking the Fourier transform of the signal,

each response in (D.1) contributes a term

S̃i(ωτ , T, ωt′) = E4
0

1

~4

∫ ∞
0

∫ ∞
0

Ri(τ, T, t
′)e−iωτ τeiωt′ t

′
dτdt′. (D.5)

Since there are no other time-arguments in the Rj, in this impulsive limit for the field,

Fourier transforms essentially act directly on the Green’s functions.
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For all cases considered in this work the Liouville propagator is diagonal in the

chosen basis, which is a rather special case and requires the absence of relaxation

processes that move population between different eigenstates. However that allows us

to obtain simple expression for the 2D spectrum, as S̃(ωτ , T, ωt′) =
∑4

i=1 S̃i(ωτ , T, ωt′)

with contributions

S̃1 = −E4
0

∑
i,j

|µsβj |2|µsβi|2G̃βjs(ωτ )Gss(T )G̃βis(ωt′), (D.6)

S̃2 = −E4
0

∑
i,j

µsβjµβjs|µsβi |2G̃βjs(ωτ )Gβjβi(T )G̃βis(ωt′), (D.7)

S̃3 = −E4
0

∑
i,j,k

µsβjµβjζkµζkβiµβisG̃ζkβi(ωτ )Gβjβi(T )G̃βis(ωt′), (D.8)

S̃4 = 2E4
0

∑
i,j,k

µsβjµβjζkµζkβiµβisG̃ζkβi(ωτ )Gβjβi(T )G̃βis(ωt′), (D.9)

where the indices i, j run over all single exciton eigenstates | β 〉 and k runs over all

two-exciton states | ζ 〉. The factor 2 in the last equation comes from the fact that the

final state in this path-way contains two p-excitations. All expressions use the Green’s

function in the frequency domain, given by

G̃kk′(ω) =
1

ω − ωkk′ − iΓkk′
, (D.10)

where ωkk′ = ωk − ωk′ is the transition frequency between states | k′ 〉 and | k 〉, and

Γkk′ =
∑
α

[
〈 k |L̂(α)

eff | k 〉〈 k
′ |L̂(α)†

eff | k
′ 〉

− 1

2
(〈 k |L̂(α)†

eff L̂
(α)
eff | k 〉+ 〈 k′ |L̂(α)†

eff L̂
(α)
eff | k

′ 〉)
]

(D.11)

is the effective decay rate in this state. In general Γkk′ is complex and the imaginary

part contributes a shift to the transition energy.

To compare with full numerical calculations, we calculate the total signal, S =∑4
i Si, and typically plot the modulus of the resultant complex function. It is thus

instructive to consider the absolute value of G̃kk′(ω), which is a Lorentzian with peak at

ωkk′ − Im[Γkk′ ] and a width given by Re[Γkk′ ]. To perform a discrete Fourier transform,

we additionally multiply the signal with a Gaussian window function

κ(τ, t′) = exp
(
− τ 2 + t′2

σ2
G

)
, (D.12)

prior to transform, where the width which is chosen as σG = 0.3τmax, where τmax depends

on the largest value of τ and t′.

We can now apply the results obtained so far to the Rydberg dimer and trimer

aggregates discussed in the main article.

Appendix D.1. Dimer spectrum

For the symmetric dimer discussed in section 4.2 of the main text, there are only two

non-zero transition dipole matrix elements (µss,+ and µ+,pp). Then (D.1)-(D.4) from
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Transitions Transition frequencies Transition dipole Γkk′/(2π)

between states ωkk′/(2π) [MHz] µkk′/(2π) [MHz] [MHz]

1 | ss 〉 → |+ 〉 1.56 2.83 0.22 - 0.04i

2 | ss 〉 → |− 〉 -1.68 4.4× 10−16 0.22 - 0.04i

3 |+ 〉 → | pp 〉 -1.68 2.83 0.21 + 0.04i

4 | − 〉 → | pp 〉 1.56 4.4× 10−16 0.21 + 0.04i

Table D1. Parameters entering the analytical calculations (D.17) for the spectrum

shown in figure 3, as discussed in the text.

above become

R1 = −|µss,+|4Gss,+(τ)Gss,ss(T )Gss,+(t′), (D.13)

R2 = −|µss,+|4Gss,+(τ)G+,+(T )Gss,+(t′), (D.14)

R3 = −|µss,+|2|µpp,+|2Gss,+(τ)Gpp,pp(T )Gpp,+(t′), (D.15)

R4 = 2|µss,+|2|µpp,+|2Gss+(τ)Gpp,pp(T )Gpp,+(t′). (D.16)

Each of the above responses represent an individual Liouville space pathway, for which

diagrams are shown in figure 3. After Fourier transform, we can finally write the

complete signal as

S̃(ωτ , 0, ωt′) =
E4

0

2π

(
|µss,+|2G̃ss,+(ωτ )

)
×
(
− 2|µss,+|2G̃ss,+(ωt′) + |µpp,+|2G̃pp,+(ωt′)

)
. (D.17)

The energy differences, from (B.1), effective decay rates from (D.11) and transition

dipoles of all transitions are listed in table D1. For transition dipoles see the discussion

in section 4.2.

It is instructive to compare the analytical result with the numerical non-

perturbative calculations, based on the numerical solution of the complete master

equation (12). The results are shown in figure D1 along two selected one-dimensional

cuts of figure 3. We find good agreement, validating both approaches. Residual small

differences can be due to finite pulse duration or non-perturbative effects, which are

included in the numerical solution, but not in the analytical one. Note that the impulsive

limit is not necessary to obtain analytical results, but it yields simpler expressions, which

for our short pulses allow a direct interpretation of the 2D spectra.

Appendix D.2. Trimer spectrum

The eigen-states of the trimer system, with geometry shown in the inset of figure 4(b),

are | sss 〉, | βn 〉, | ζn 〉 and | ppp 〉, where the | βn 〉 are given by

| β1 〉 = 0.496| pss 〉 − 0.711| sps 〉 − 0.496| ssp 〉,
| β2 〉 = −0.503| pss 〉 − 0.702| sps 〉+ 0.503| ssp 〉,
| β3 〉 = 0.707| pss 〉+ 0.707| ssp 〉,
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Figure D1. Comparison of results from numerical simulations of the Lindblad

master equation, (12), and analytical calculations using four Liouville pathways shown

diagrammatically in figure 3. (a) Cut along the ωt′ axis at ωτ/2π = 1.56 MHz, (red

solid) numerical, (blue dashed) analytical and (light gray solid) Fourier transform of

the half-sided Gaussian window function for orientation, shifted to the position of the

main peak. (b) Cut along the ωτ axis at ωt′/2π = 1.56 MHz and (c) cut along the ωτ
axis at ωt′/2π = −1.67 MHz. (d) 2D spectrum of difference of the Fourier signals of

numerical and analytical methods, ∆S̃ = |S̃numerical − S̃analytical|.

Transitions Transition frequencies Transition dipole Γkk′/(2π)

between states ωkk′/(2π) [MHz] µkk′/(2π) [MHz] [MHz]

1 | sss 〉 → | β1 〉 −2.29 -1.42 0.11 + 0.04i

2 | sss 〉 → | β2 〉 2.29 -1.40 0.11 + 0.04i

3 | sss 〉 → | β3 〉 −0.09 2.83 0.12 + 0.04i

4 | β1 〉 → | ζ1 〉 −0.03 -0.99 0.24 + 0.06i

5 | β1 〉 → | ζ2 〉 4.55 1.00 0.19 + 0.04i

6 | β1 〉 → | ζ3 〉 2.17 -2.01 0.22 + 0.03i

7 | β2 〉 → | ζ1 〉 −4.61 1.00 0.24 + 0.06i

8 | β2 〉 → | ζ2 〉 −0.03 -1.01 0.19 + 0.04i

9 | β2 〉 → | ζ3 〉 −2.41 -1.99 0.22 + 0.03i

10 | β3 〉 → | ζ1 〉 −2.23 -2.01 0.22 + 0.06i

11 | β3 〉 → | ζ2 〉 2.35 -1.99 0.19 + 0.04i

12 | β3 〉 → | ζ3 〉 −0.03 2.00 0.29 + 0.05i

Table D2. Parameters entering the analytic calculations for the Rydberg trimer

(figure 4).

and the | ζn 〉 can be obtained from the | βn 〉 by swapping all s states with p states. As

for the dimer, the interpretation of spectra in the main article will require all transition

energies ωkk′ with the respective transition dipoles as well as Γkk′ as provided in table D2.
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Figure F1. Two dimensional spectrum of Rydberg dimer with position fluctuations

during spectrum acquisition. Parameters are as in figure 3, except Ωmw/(2π) = 16

MHz, but the position of aggregate and detector atoms is given a random 2D offset

with a Gaussian distribution of width σ = 200 nm. This offset is varied after each

individual set of four phases has been simulated. We use the technique of Appendix E

to model discrete atoms counts and average over Nrep ∼ 105 repetitions.

Appendix E. Statistical Ensemble calculation

In order to calculate the number of repetitions of the experiment required, we

numerically determine the signal S based on the count of a discrete number of Rydberg

atoms in the p-state, as would be the case in experiment, rather than complete knowledge

of the time evolved system density matrix ρ̂(t).

For this we first determine the reduced density matrix for a single aggregate atom,

e.g. for atom 1 in a dimer:

ρ̂1 = Tr2{ρ̂} = (ρss,ss + ρsp,sp)| s 〉〈 s |+ (ρps,ps + ρpp,pp)| p 〉〈 p |. (E.1)

From the resultant probabilities, a random number decides whether the atom is

measured in s or in p. This is repeated Nrep times, to obtain a discretely sampled

signal S̃(ξ) for each set of phases, which after phase cycling and Fourier transform gives

rise to the graphs shown in figure 6. We conclude from this simulation, that about

Nrep ∼ 105 repetitions are required to resolve the spectrum for these parameters.

Appendix F. Trap center fluctuations

In this appendix we explore the sensitivity of the phase-cycling procedure, discussed

in Appendix C, to position fluctuations of the aggregate atoms or the detector atoms.

Since we assume these to be trapped in the quantum ground state of their respective

optical potential, such fluctuations would have to be due to imprecision in the alignment

of these.

For the simulation, the position of each atom is given a random offset, drawn from

a two-dimensional Gaussian distribution with standard-deviation σ. The random offset
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is newly drawn after each set of phases, in contrast to the typical disorder situation in

an optical setting. The results are shown in figure F1 for σ = 200 nm. The simulation

employed the technique of the preceding appendix, and modelled the discrete counting

of the number of p-excitatons in an experiment, averaging over Nrep = 105 repetitions.

We find, that for larger width σ than shown, the small side-peak is no longer resolved

so that Nrep would have to be further increased.
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[25] H. Schempp, G. Günter, S. Wüster, M. Weidemüller and S. Whitlock; Correlated exciton transport

in Rydberg-dressed-atom spin chains; Physical review letters 115 093002 (2015).
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